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Keith C. Hamer1

1School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
2Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
3School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
4Scottish Natural Heritage, Battleby, Redgorton, Perth PH1 3EW, UK

WJG, 0000-0002-6428-719X; KCH, 0000-0002-2158-2420

The development of foraging strategies that enable juveniles to efficiently

identify and exploit predictable habitat features is critical for survival and

long-term fitness. In the marine environment, meso- and sub-mesoscale fea-

tures such as oceanographic fronts offer a visible cue to enhanced foraging

conditions, but how individuals learn to identify these features is a mystery.

In this study, we investigate age-related differences in the fine-scale foraging

behaviour of adult (aged � 5 years) and immature (aged 2–4 years) north-

ern gannets Morus bassanus. Using high-resolution GPS-loggers, we reveal

that adults have a much narrower foraging distribution than immature

birds and much higher individual foraging site fidelity. By conditioning

the transition probabilities of a hidden Markov model on satellite-derived

measures of frontal activity, we then demonstrate that adults show a stron-

ger response to frontal activity than immature birds, and are more likely to

commence foraging behaviour as frontal intensity increases. Together, these

results indicate that adult gannets are more proficient foragers than imma-

tures, supporting the hypothesis that foraging specializations are learned

during individual exploratory behaviour in early life. Such memory-based

individual foraging strategies may also explain the extended period of

immaturity observed in gannets and many other long-lived species.
1. Introduction
The mortality of young animals is typically much higher than that of adults and

explaining this difference is fundamental to the study of population age struc-

ture, dynamics and persistence [1,2]. The main hypothesis invoked to explain

higher mortality among immatures is a lack of proficiency in skills such as fora-

ging and predator avoidance, due to a lack of experience and learning

combined with physical immaturity [3–5]. Inequalities in levels of foraging

ability may result in young animals being competitively excluded from optimal

foraging habitat by more experienced adults [5,6]. Alternatively, young animals

may lack the experience to recognize profitable patches [7]. This could lead to

the selective disappearance of immatures incapable of developing appropriate

foraging skills [8,9] and may explain why many long-lived iteroparous animals

delay the age of first breeding until well after they become physiologically

mature [10–12].
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Individual foraging specializations are prevalent among

adults of long-lived species [13,14], and have potentially

far-reaching consequences for individual fitness, as well as

influencing the manner in which populations can respond

to environmental change [15]. However, the mechanisms pro-

ducing and maintaining such individual differences are only

poorly understood. In some species, foraging specializations

are learned by cultural transmission from mother to offspring

(e.g. in sea otters Enhydra lutris [16]) or among a close-knit

social group (e.g. in social primates and dolphins [17,18]).

However, in most cases individuals acquire foraging special-

izations independently and in the absence of detectable

morphological differences. Hence an alternative explanation

is that such specializations are learned during individual

exploratory behaviours in early life, that then become cana-

lized and refined with age and experience [14,19]. This

‘exploration-refinement’ process [20] may be especially

important for some forms of specialization such as individual

foraging site fidelity (IFSF), where an animal repeatedly visits

the same foraging patch. However, there are very few data

to examine the development of IFSF [19] or the association

between IFSF and foraging proficiency. IFSF could result

from individuals learning to identify and relocate profitable

patches, but while it is well known that foraging competence

tends to increase with age [5,10] it is less clear whether

or not this includes an enhanced ability to recognize

suitable patches.

In the marine environment, meso- and sub-mesoscale

oceanic features such as fronts, eddies and filaments entrain

nutrients, enhance primary productivity and aggregate zoo-

plankton [21–23]. These features occur throughout the

oceans, creating enhanced foraging conditions that attract

higher predators, including cetaceans [24], sea turtles [25],

pinnipeds [26] and seabirds [27]. The foraging behaviour of

these marine predators has been linked to fronts identified

from both composite mapping of remotely sensed sea surface

temperature and chlorophyll-a fields [28–30], and from sur-

face velocity fields estimated via satellite altimetry [27,31].

However, while these features are ubiquitous, spatial and

temporal variation in size, intensity and persistence affects

their suitability as foraging patches [28,32], and we lack an

understanding of how individuals learn to identify these

areas or the cues that they use to find them.

In this study, our objective was to investigate simultaneous

age-related differences in both foraging specialization (IFSF)

and proficiency; in particular, the use of frontal areas as

foraging habitat. We focus on the northern gannet Morus
bassanus (hereafter gannet), a long-lived neritic seabird charac-

terized by over-lapping generations and a long pre-breeding

period (�5 years) [33]. Adult gannets display high consistency

in individual foraging behaviour [34,35] including IFSF associ-

ated with foraging in areas of high frontal activity [28,29]. By

contrast, a recent study revealed much lower levels of IFSF

among immature birds, suggesting that young individuals

require a protracted period of learning to develop the foraging

consistency observed in adults [19]. Alternatively, immature

birds may simply choose to explore a greater range of different

sites than adults on successive foraging trips. It is not currently

known whether immatures are less able than adults to locate

and exploit areas of high frontal activity or whether IFSF is

associated with a more restricted foraging distribution

among adults overall, as might be expected if birds learn to

avoid unprofitable foraging areas.
To better understand how cognitive processes are influ-

enced by and give rise to movement patterns requires the

integration of high-resolution telemetry data, fine-scale

remote sensing data and recent methodological develop-

ments in data analysis [36]. Here, we combine data

collected by high-resolution GPS-loggers with satellite-

derived measures of frontal activity using state-switching

models [37]. We compare the foraging specialization and

proficiency of immature and chick-rearing adult gannets,

examining three specific predictions: (i) adults use a more

restricted range of foraging locations than immature birds,

resulting in a narrower foraging distribution at population

level and hence a degree of segregation between adults and

immature birds at sea; (ii) adults show both higher IFSF

and a stronger response than immature birds to areas of

high frontal activity indicative of suitable foraging sites and

(iii) associated with these changes, adults make more effec-

tive use of time at sea, spending no more time foraging

than immatures, despite needing to provide for dependent

offspring in addition to themselves.
2. Methods
2.1. Study system and data collection
Fieldwork was conducted between June and August 2015

at the world’s largest gannet colony, Bass Rock, Scotland

(56860 N, 2836 W), where ca 75 000 pairs breed annually. Using

a 6 m telescopic pole fitted with a wire crook, 35 adult gannets

(ages � 5 years) were caught at the nest-site while attending

chicks, and 21 immature gannets (ages 2–4 years, identified

using plumage characteristics [33,38]) were caught at club sites

(areas of the colony frequented by pre-breeding individuals) or

while attempting to hold territories around the colony. On cap-

ture, birds were marked with a unique metal ring (British Trust

for Ornithology, UK) and an individually numbered colour-

ring [39]. We deployed GPS-loggers (i-gotU GT-600, Mobile

Action Technology Inc., Taipei, Taiwan, 37 g) on adult birds

and GPS Radio Frequency loggers (GPS-RF, e-obs GmbH,

Munich, Germany, 45 g) on immature birds as recapture was

unlikely but remote download of the data was possible within

2 km of the colony. All loggers were attached to the upper side

of three central tail feathers using Tesaq tape, and programmed

to record locations every 2 min. Total handling time was approxi-

mately 15 min. Maximum device weight (45 g) was less than 2%

of body weight (3.2+ 0.3 kg) and below the maximum rec-

ommended for bio-logging studies [40], while the difference in

device weights for adults and immature birds was only 0.25%

of body mass. Previous studies indicate that such deployments

have no discernible impact on trip durations or body masses of

birds [41,42]. We recaptured 34 adults, providing 31 devices

with usable data, and downloaded usable datasets from 15

immature birds.

2.2. Oceanographic data
To identify areas of frontal activity, we used the backward-in-

time finite-size Lyapunov exponent (FSLE, [43]) available via

CLS/CNES Aviso (http://www.aviso.altimetry.fr). This tech-

nique measures the relative dispersion of particles traced over

altimetry-derived time-dependent current velocity fields [43].

Ridges of high FSLE values occur where formally distant water

masses converge to create a transport front, providing a good

proxy for areas of frontal activity such as sub-mesoscale chloro-

phyll and SST filaments [44]. As a Lagrangian diagnostic, this

approach has the benefit of (i) incorporating both the spatial

http://www.aviso.altimetry.fr
http://www.aviso.altimetry.fr
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Figure 1. At-sea distribution of (a) 31 adult and (b) 15 immature gannets estimated from the bivariate kernel utilization distribution (UD) of GPS locations. Colours represent
specific UD contours; the breeding colony is represented by a black dot; grey lines represent 50 m, 150 m and 200 m depth contours. (Online version in colour.)
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and temporal variability of altimetry velocity fields [24] and (ii)

approximating the types of Lagrangian coherent structures

that marine predators have previously been shown to exploit

[27,45,46].
2.3. Statistical analysis
During data processing, we defined foraging trips as periods

when birds were more than 10 km from the colony for more

than 40 min; all other locations were classified as either colony

attendance or rafting [47] and excluded from this analysis. All

data were transformed to a UTM 30N projection and, to

remove irregularities in satellite uplink time, were regularized

by linear interpolation to 2 min intervals using the package

adehabitatLT v. 0.3.23 [48].

To quantify the extent to which the foraging distributions of

adult and immature birds overlapped, we calculated the bivari-

ate kernel utilization distribution (UD) for each group using a

smoothing parameter of 10 km and a grid size of 1 km in the

package adehabitatHR v. 0.4.15 [48]. Overlap was estimated

using Bhattacharyya’s affinity (BA) [49] where 0 equates to no

overlap and 1 to complete overlap in the UDs. We estimated a

null distribution of BA values by randomly reassigning age

class among the 46 individuals 1000 times and calculated

p-values as the proportion of random assignment BA values

that were smaller than the observed BA estimate [42].
For each foraging trip, we calculated: (a) trip duration (h), (b)

total trip length (km), (c) departure angle (average of the first five

bearings greater than 10 km from the colony, rad), (d) trip range

(maximum displacement from the colony, km), (e) the x-coordinate

and ( f) the y-coordinate of the furthest location from the colony (m)

and (g) the trip area (minimum convex polygon, km2). Differences

in trip characteristics between adult and immature birds were then

examined using linear mixed-effects models fitted with bird ID as a

random intercept as there were multiple trip measurements per

individual. In these models, trip duration, total distance travelled

and foraging area were log10 transformed.

After testing for population-level differences, we examined

the consistency of individual differences in trip characteristics

by calculating a measure of repeatability based on the intra-

class correlation coefficient from linear mixed-effect models

fitted with bird ID as a random intercept using the package

rptR [50]. We used repeatability as a proxy for foraging special-

ization within the adult and immature populations, testing the

null hypothesis that between-individual variance in a particular

characteristic was equal to within-individual variance [34].

We then tested differences in the repeatability of trip charac-

teristics between adult and immature birds by calculating

pairwise differences in Z-transformed repeatability estimates

(Zr) and examined whether or not the corresponding confidence

intervals overlapped zero [50,51]. For departure angles, we calcu-

lated repeatability using circular ANOVAs fitted with the

package circular [52] following standard methods [53,54].

We used hidden Markov models (HMMs) to examine the at-

sea behaviour of adult and immature gannets using the package

moveHMM v.1.0 [55]. The movement of an individual along a

foraging trip was decomposed into three underlying states

by characterization of the distributions of step lengths and turn-

ing angles between consecutive locations. We used a gamma

distribution to describe the step lengths and a von Mises distri-

bution to describe the turning angles. The three states were

based on a priori understanding of gannet behaviour [56];

during a foraging trip individuals will (i) spend time in directed

flight to and from foraging patches, (ii) perform slow and tortu-

ous flight when foraging within a patch, and (iii) spend time

resting on the sea surface [57]. During a previous study of

gannets equipped with GPS loggers and time–depth recorders

(TDRs) 81% of all TDR dives corresponded with locations ident-

ified as foraging by a similarly parameterized HMM [57]. As

initial parameter values are required for model estimation, we

http://rsif.royalsocietypublishing.org/


Table 1. Summary of foraging trip metrics for adult and immature northern gannets Morus bassanus tracked from Bass Rock UK.

adult immature

likelihood-ratio testmedian range median range

trip duration (h) 24.4 3.0 – 56.1 43.0 1.4 – 411.5 x2
1 ¼ 4:26, p ¼ 0.04

trip length (km) 629.0 48.8 – 1201.7 697.4 26.1 – 4864.8 x2
1 ¼ 1:42, p ¼ 0.23

trip range (km) 239.8 17.6 – 507.5 283.9 11.0 – 593.3 x2
1 ¼ 0:88, p ¼ 0.35

trip area (km2) 7107.4 55.3 – 34666.9 10545.2 18.9 – 251190.4 x2
1 ¼ 0:32, p ¼ 0.57
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verified that the model had identified the maximum-likelihood

estimates of the parameters by refitting the model 25 times

with random initial parameter values. We used the Viterbi algor-

ithm to estimate the most likely sequence of movement states to

have generated the observations based on the fitted model [58].

To assess differences in movement patterns between adult

and immature birds, we included the additive effect of age

(binary; adult/immature), FSLE and the interaction between

the two as covariates in the HMM framework. These covariates

were included within the HMM formulation as a logistic

regression that expresses the transition probabilities of the under-

lying state process as a function of the covariates, allowing us to

assess the importance of the covariates on the probability of

switching between states [59,60]. FSLE values were transformed

to a positive scale to aid interpretation. The resulting models

were then ranked based on the Akaike information criterion

(AIC). Finally, we examined differences in the proportion of

time adult and immature gannets spent in each of the three

states using mixed-effects logistic regressions, with bird ID

as a random intercept using the package lme4 v. 1.1-10 [61].

All analyses were conducted using R v. 3.2.2 [62].
3. Results
3.1. Foraging distribution
This study provides information on 129 foraging trips for 31

adult gannets and 118 foraging trips for 15 immature gan-

nets, representing data for a total of 393 gannet-days. During

this time, adults repeatedly used areas to the northeast and

southeast of the breeding colony, while immature birds were

much more widely distributed across the North Sea (figure 1;

electronic supplementary material, animation S1). Conse-

quently, the overlap in UD between the two groups,

estimated using BA (figure 2), was significantly lower than

the null expectation for both the 50% and 95% UD contours

(BA ¼ 0.23, p ¼ 0.04 and BA ¼ 0.69, p ¼ 0.01, respectively).
3.2. Foraging specialization and proficiency
Adult gannets were significantly more repeatable than

immature birds in the angle at which they departed the

colony (Zr ¼ 0.87, 95% CI 0.36–1.38) and the y-coordinate

(latitude) of the terminal point of their foraging trip (Zr ¼
1.23, 95% CI 0.72–1.74), indicating a much higher level of

IFSF among adults (figure 3). In addition, foraging trips of

adults were much shorter in duration than those of immature

birds (median 24 h and 43 h, respectively; table 1; x2
1 ¼ 4:26,

p ¼ 0.04) despite there being little difference in the total dis-

tance travelled per trip (x2
1 ¼ 1:42, p ¼ 0.23), the maximum

range from the colony (x2
1 ¼ 0:88, p ¼ 0.35) or the area

covered at sea per trip (x2
1 ¼ 0:32, p ¼ 0.57; table 1).
The HMM decomposed the tracking data into three

distinct states, capturing clearly identifiable movement pat-

terns that we use here as proxies for three behavioural

modes: (i) short step lengths and small turning angles (step:

0.03+ 0.02 km; turn: m ¼ 0, k ¼ 22.3) corresponded with ani-

mals resting on the water; (ii) short step lengths and large

turning angles (step: 0.41+ 0.54 km; turn: m ¼ 0, k ¼ 1.0) cor-

responded with animals foraging and (iii) long step lengths

and small turning angles (step: 1.66+0.43 km; turn: m ¼ 0,

k ¼ 27.1) corresponded with animals transiting to and from

the colony and between foraging sites (figure 4). The AIC

of the HMM was greatly improved by including age, FSLE

intensity and the interaction between the two (table 2), indi-

cating that adult and immature gannets responded

differently to frontal intensity. As predicted, adults exhibited

a stronger response to frontal activity than immature birds,

and were more likely to switch from transiting to foraging

modes as frontal intensity increased (figures 4c and 5;

electronic supplementary material, animation S2).

During trips, adult and immature gannets spent a similar

proportion of the day foraging (x2
1 ¼ 0:14, p ¼ 0.71; table 3).

However, adults spent a smaller proportion of daylight

hours resting on the water (x2
1 ¼ 33:14, p , 0.01) and a greater

proportion of time transiting (x2
1 ¼ 33:15, p , 0.01) than

immature birds. Both adult and immature gannets spent

greater than 80% of the night resting on the sea surface.
4. Discussion
In this study, our integrated approach revealed novel differ-

ences in the foraging specialization and proficiency of adult

and immature gannets. In line with our predictions, adults

had a much narrower foraging distribution than immature

birds and showed greater IFSF. In addition, adults were

more likely than immature birds to switch from transiting to

foraging modes when encountering areas of high frontal

activity. Together these results strongly suggest that the devel-

opment of IFSF is linked to individuals learning to identify

and remember the location of suitable foraging habitat

associated with persistent and semi-persistent oceanic fronts.

Adult gannets foraged predominantly to the northeast

and southeast of the breeding colony, while immature birds

ranged much more widely across the North Sea, with their

core foraging distribution (25% and 50% UDs) including

extensive areas east of the colony within the central North

Sea that were largely ignored by adults (figure 1). A tidal

mixing front forms approximately 50 km offshore to the

northeast of Bass Rock and has previously been identified

as important for gannets foraging from this colony [63].

http://rsif.royalsocietypublishing.org/
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Both adult and immature gannets visited this region, and also

travelled further north to the Fladen Ground, an area that

contains a semi-permanent eddy formed from the confluence

of the Fair Isle current and East Shetland Atlantic inflow, and

also driven in part by local bathymetry [64,65]. Immature

http://rsif.royalsocietypublishing.org/
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Table 2. Comparison by AIC of the candidate three-state HMM that
included frontal intensity (FSLE) and age as covariates acting on the
transition probabilities, and an intercept only model.

AIC DAIC

FSLE * age 2270679.2 0.0

FSLE þ age 2270667.2 12.0

age 2270474.6 204.6

FSLE 2270140.4 538.8

�1 2269905.0 774.2
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gannets then travelled as far north and east as the Norwegian

Trench, whereas adults did not. In addition, many more adult

than immature birds travelled to the southeast of the breed-

ing colony, using areas of enhanced productivity around

the Farn Deeps (figure 1).

Segregation between adult and immature individuals

could arise from differences in habitat selection or dietary

requirements, mirroring the sexual segregation observed

among adults in this population [42,66]. However, while dis-

tributions overlapped less than expected by chance, there was

nonetheless substantial overlap, particularly northeast of the

colony, suggesting that adults and immatures may target

similar resources. Immature individuals are less constrained

than adults during the breeding season, and so could range

further from the breeding colony to target under-used habitat

and reduce intraspecific competition [19,38,39] but this sug-

gestion was not supported by the similarity in foraging trip

ranges of adults and immature birds in our study (table 1).

Hence the narrower foraging distribution of adults most

probably arose from more experienced birds choosing a

more restricted selection of foraging locations.

Adults had high IFSF and consistently switched from

transiting to foraging in response to high frontal density, sup-

porting previous evidence that IFSF among adults results

from individuals returning repeatedly to sites characterized
by persistent ocean fronts or consistently high fishing activity

[28,67]. In contrast to adults, immature birds had both much

lower IFSF and a much weaker response to ocean fronts, sup-

porting the hypothesis that IFSF results from individuals

learning to identify and relocate such profitable foraging

locations [19,35]. Lower IFSF could potentially have been

due to immature birds encountering lower intraspecific

competition at sea, as a result of their broader foraging distri-

bution [14,68], but this seems unlikely because of their

substantial overlap with adults, including short trips in

areas of high conspecific density (figure 1), and because

longer trips to locations not visited by adults from Bass

Rock are likely to have overlapped with birds from adjacent

colonies [39]. Hence our data support the notion that IFSF

results from learning, with site familiarity being developed

in early life during individual exploration or by using social

information (for instance, immature gannets frequently

follow adults at sea [69]) and subsequently canalized through

acquired navigational memory [20,35]. These findings

complement recent developments from the physical sciences

demonstrating that site fidelity to profitable foraging

patches can arise through reinforcement in inhomogeneous

environments [70].

Adults had much lower repeatability in trip durations

and total distances travelled than in bearings and desti-

nations of trips, as recorded previously [34,71], probably

reflecting differences in conditions (e.g. wind) experienced

during trips [72] or fine-scale variation in prey availability

or individual energy requirements. Overall, adult and imma-

ture gannets did not differ in the proportion of time

attributed to foraging on each trip. However, given that

breeding adults were foraging both for self-maintenance

and chick provisioning, while immature birds foraged only

to provision themselves, the similarity in the proportion of

time spent foraging suggests that in association with greater

IFSF and a stronger response to frontal density, adults had

greater foraging efficiency than immature birds [73]. This

could have resulted from a higher dive rate, a higher success

rate or a combination of both. Immature gannets also spent

less time in transiting flight and more time resting per

trip, which may have been due to lower flight performance

[74]. For example, immature Eurasian griffon vultures Gyps
fulvus have a lower soaring–gliding efficiency, a higher pro-

portion of flapping flight and higher energy expenditure

during flight when compared with adults [75].
5. Conclusion
Here, we have demonstrated how an integrated approach

combining high-resolution bio-logging technology with satel-

lite-derived environmental data in HMMs can provide novel

insights into key ecological questions. This approach has been

used to identify the principal movement patterns of a marine

predator and to reveal age-related differences in how individ-

uals respond when encountering potentially good foraging

habitat. Foraging efficiency is well known to increase with

age and experience prior to senescence, and the time taken

to develop the ability to obtain sufficient food for reproduc-

tion, in addition to self-maintenance, may constrain age at

first breeding in many long-lived species [10,76]. Our data

suggest the development of IFSF through individual learning

could play a key role in increasing foraging proficiency, and

http://rsif.royalsocietypublishing.org/


Table 3. Proportion of time spent in each behavioural mode during a foraging trip for adult and immature northern gannets Morus bassanus tracked from Bass
Rock UK.

adult immature

median range median range likelihood-ratio test

foraging 0.363 0.132 – 0.897 0.318 0.093 – 0.771 x2
1 ¼ 0:14, p ¼ 0.71

resting 0.159 0 – 0.389 0.293 0 – 0.747 x2
1 ¼ 33:14, p , 0.01

travelling 0.460 0.063 – 0.867 0.361 0 – 0.870 x2
1 ¼ 33:15, p , 0.01
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delayed breeding may be the result of individuals acquiring

individual foraging specialization. Further studies, including

longitudinal analyses, are now required to quantify the

relationship between individual specialization and age at

first breeding in long-lived species.
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