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ORIGINAL RESEARCH Open Access

Computer-aided diagnosis for (123I)FP-CIT
imaging: impact on clinical reporting
Jonathan Christopher Taylor1* , Charles Romanowski2, Eleanor Lorenz1, Christine Lo3, Oliver Bandmann4

and John Fenner5

Abstract

Background: For (123I)FP-CIT imaging, a number of algorithms have shown high performance in distinguishing

normal patient images from those with disease, but none have yet been tested as part of reporting workflows. This

study aims to evaluate the impact on reporters’ performance of a computer-aided diagnosis (CADx) tool developed

from established machine learning technology.

Three experienced (123I)FP-CIT reporters (two radiologists and one clinical scientist) were asked to visually score 155

reconstructed clinical and research images on a 5-point diagnostic confidence scale (read 1). Once completed, the

process was then repeated (read 2). Immediately after submitting each image score for a second time, the CADx

system output was displayed to reporters alongside the image data. With this information available, the reporters

submitted a score for the third time (read 3). Comparisons between reads 1 and 2 provided evidence of intra-

operator reliability, and differences between reads 2 and 3 showed the impact of the CADx.

Results: The performance of all reporters demonstrated a degree of variability when analysing images through

visual analysis alone. However, inclusion of CADx improved consistency between reporters, for both clinical and

research data. The introduction of CADx increased the accuracy of the radiologists when reporting (unfamiliar)

research images but had less impact on the clinical scientist and caused no significant change in accuracy for the

clinical data.

Conclusions: The outcomes for this study indicate the value of CADx as a diagnostic aid in the clinic and

encourage future development for more refined incorporation into clinical practice.

Keywords: (123I)FP-CIT, Machine learning, Support vector machine, Computer-aided diagnosis

Background

(123I)FP-CIT (ioflupane) single-photon emission computed

tomography (SPECT) is routinely used for assessment and

differential diagnosis of patients with Parkinsonian syn-

dromes. (123I)FP-CIT SPECT is pathological in patients

with any neurodegenerative form of Parkinsonism,

including not only classical Parkinson’s disease (PD), but

also atypical Parkinsonian disorders such as multiple

system atrophy (MSA) or progressive supranuclear palsy

(PSP). It is normal in patients with non-neurodegenerative

movement disorders such as drug-induced Parkinsonism

or essential tremor. In recent years, different automated

classification algorithms have been developed which aim to

accurately separate these images into binary diagnostic

groups: either with disease or without disease. Many such

classifiers are based on machine learning approaches. For

instance, Palumbo et al. created classifiers based on

support vector machines (SVMs) and neural networks to

separate patients with PD from those without [1]. Huertas-

Fernández et al. developed and evaluated models based on

logistic regression, linear discriminant analysis and SVMs

to differentiate between patients with PD and vascular

Parkinsonism [2]. A summary of recently published ma-

chine learning algorithms for (123I)FP-CIT classification is

presented in recent work by Taylor [3]. Performance

figures from many of these classification tools appear to be

impressive, with accuracies in excess of 95% commonly

reported [3]. However, it is not yet clear whether such

algorithms provide benefits in the clinic in terms of
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increased diagnostic accuracy or consistency as compared

to standard reporting procedures.

The likely use for automated classifiers in (123I)FP-CIT

imaging, and for other areas of nuclear medicine in the

near term, is either as an independent assistant to the

radiologist or as a training/audit tool, whereby reporter

performance is compared to an independent assessment.

In this study, the first scenario is considered, where the

classifier performs the role of a second reporter, giving a

second opinion on image appearances, which may

influence the reporter’s final diagnostic decision. Using

classification algorithms in this way is often referred to

as computer-aided diagnosis (CADx).

In (123I)FP-CIT, assistive reporting software, in the form

of semi-quantification, is already established. Here, relative

uptake in striatal regions of interest is compared to an

area of non-specific uptake and displayed alongside refer-

ence values. This provides radiologists with a parameter

that can be related to the likelihood of disease being

present. Use of such tools has been shown to increase

consistency between reporters and improve confidence

[4–9]. However, semi-quantification is a limited diagnostic

tool. Firstly, standalone performance has been shown to

be inferior to that of even relatively simple machine

learning algorithms [3]. Furthermore, semi-

quantification software may provide large numbers of

uptake ratios, each with their own associated normal

range. It can be challenging to interpret each of these

sets of figures to give an overall opinion on image ap-

pearances. Machine learning tools, on the other hand,

can be tuned to provide just a single output related

to the probability of disease being present. Therefore,

there is potential for CADx systems based on ma-

chine learning algorithms to provide more effective

assistance to reporters, to give improved reporting

performance. To date, there has been no exploration

of the potential for automated classifiers in clinical,

computer-aided (123I)FP-CIT reporting. This limits the

usefulness of this approach.

The following study aims to address this issue by exam-

ining the performance of experienced reporters, with and

without assistance from an automated classifier. Although

the automated classifier is based on a particular machine

learning methodology, results are likely to be reflective of

the potential benefits of any highly performing binary

classification tool and therefore provide insights into the

general impact of CADx on (123I)FP-CIT reporting. Two

contrasting datasets are used in this study, one based on

historical clinical data from a single hospital and the

other based on research data acquired from a number

of other hospitals under a different acquisition protocol

(downloaded from the Parkinson’s Progression Markers

Initiative (PPMI) website, http://www.ppmi-info.org/).

By selecting two contrasting cohorts, findings provide

evidence of the impact of CADx beyond a single set of

specific acquisition conditions and patient characteristics.

Methods

Automated classifier

In this study, a simple machine learning methodology

was adopted for creation of classifiers, which has shown

high performance in previous tests. Briefly, the algorithm

consisted of a linear support vector machine (SVM) with

input features derived from the first five principal com-

ponents of image voxel intensities (ordered according to

reducing variance) and patient age. Spatial and intensity

normalisation was applied to images before training the

algorithm. Spatial normalisation was achieved through

multi-stage, automated, affine registration, and intensity

normalisation was achieved by dividing all voxel inten-

sities by the mean value in the occipital lobe (see [3],

algorithm ML 2 for more details). An appropriate value

for the ‘C’ hyperparameter in the SVM algorithm was se-

lected through initial repeated, 10-fold cross-validation.

Algorithm training was completed using Matlab software

(Matlab, Natick, USA) and the libSVM library [10].

Data

Three hundred fifty-nine historical (123I)FP-CIT datasets

were extracted from the archives at Sheffield Teaching

Hospitals NHS Foundation Trust, for patients scanned

between May 2007 and May 2015, after excluding

images where significant vascular disease was identified

in concomitant MRI brain scans, or where the images

contained significant artefacts. All patient images were

acquired from dual-headed gamma cameras, manufac-

tured by GE (3 GE Infinia and 1 GE Millenium, GE

Healthcare, Chicago, USA), and all reconstructions were

performed using the same GE Xeleris v2.1 software (GE

Healthcare, Chicago, USA) and settings (ordered subset

expectation maximisation with two iterations, 10 subsets

and no scatter or attenuation correction). See Table 1 for

a summary of the key patient preparation and image

acquisition parameters.

Table 1 Summary of the acquisition and patient preparation

parameters for the local and PPMI databases

Parameter Local database PPMI database

Administered activity 167–185 MBq 111–185 MBq

Injection-to-scan delay 3–6 h 3.5–4.5 h

Acquisition time 30 min 30–45 min

Acquisition pixel size 3.68 mm Variable (scanner dependent)

Number of projections 120 (over 360°) 90 or 120 (over 360°)

Energy window 159 keV ± 10% 159 keV± 10% and 122 keV± 10%

Collimator LEHR Variable (scanner dependent)
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The patient notes associated with the datasets, if avail-

able, were examined by two neurologists to establish a ref-

erence diagnosis. Of the examined notes, there were 55

patients for which a clinical diagnosis could be established

with high confidence, based on the Queen Square Brain

Bank criteria for the diagnosis of PD. Thirty-three of these

were classified as having pre-synaptic dopaminergic deficit

(PDD) and 22 as not having PDD. The mean time of

follow-up post SPECT imaging was 31 months, with a

minimum of 15 months and a maximum of 51 months.

There were 34 male and 21 female patients in this subset.

At the time of scanning, their mean age was 66 years

(range 29–80 years). These cases were used for evaluating

diagnostic performance in the reporting study only. The

remaining 304 cases, without a reference clinical diagno-

sis, were divided into broad categories according to the

original image report (113 patients without PDD and 191

with PDD; see [3] for more details) and used purely for al-

gorithm training (classifier 1). Thus, there was a difference

in the labelling methodology for different subsets of the

local data, with algorithm training relying on data with a

reference diagnosis based on visual assessment only, and

reporting performance measured with data that had refer-

ence diagnosis based on clinical follow-up.

In addition, all the baseline (123I)FP-CIT examinations

from the Parkinson’s Progression Markers Initiative (PPMI)

database were also downloaded, for which a reference

clinical diagnosis was available in all cases (209 healthy

controls (HC), 448 with Parkinson’s disease (PD)). This

data was used to train and evaluate a separate classifier

(classifier 2), to provide additional insight into the potential

impact of CADx. This classifier used the same model,

hyperparameter and training procedures as classifier 1,

but with the different training data can be considered a

distinct algorithm. Image acquisition, reconstruction

and processing parameters for the PPMI dataset are

described elsewhere [11, 12]. However, the key patient

preparation and acquisition parameters are summarised

in Table 1. In contrast to the local data, PPMI images were

reconstructed with HOSEM software (Hermes Medical,

Stockholm, Sweden) utilising an OSEM algorithm with

eight iterations and eight subsets and attenuation

correction based on Chang’s method [13]. No scatter

correction was performed.

The PPMI data were split into training and test sub-

sets in such a way as to skew the test data towards more

difficult cases. This was done due to the fact that pa-

tients were only included in the PD group if their

SPECT scans displayed abnormal appearances, as

assessed by the PPMI core lab team. PD patients for

whom the SPECT scan was normal or equivocal were

excluded from the database. This screened collection of

data was therefore likely to be associated with higher

visual reporting accuracy as compared to the local

clinical data. To counteract this bias, more challenging

cases were preferentially selected for the test set, using

striatal binding ratio results as a surrogate marker of the

likely difficulty in classifying the data.

The PPMI data was split in half, maintaining the same

HC to PD ratio in both subgroups. The first half (328

patients) was used to train the classifier (classifier 2). For

the second half of the data, semi-quantification figures

were examined to find the 40 healthy controls with the

lowest putamenal striatal binding ratios (SBRs) and the

60 PD cases with the highest SBRs. This collection of

100 images, skewed towards more equivocal data (ac-

cording to semi-quantification results), was used in the

clinical evaluation. The remaining data, which was

neither used for algorithm training nor for testing with

radiologists, was excluded.

Reporting software

Routine reporting in Sheffield involves visual evaluation

of four reconstructed slices (7.4 mm thick) from the

centre of the rigidly registered brain and of a summed

image created by combining these axial slices. This data

is observed using Jview (Link Medical, Bramshill, UK), a

clinical platform based on Java software. An additional

Java applet was written to augment the functionality of

Jview, to force each set of patient images in the study to

be viewed in a standard format. An additional pane was

inserted on the left hand side of the screen, which con-

tained buttons allowing the user to move to the next

case or to input their diagnostic confidence score. This

pane was also used to display the output from the CADx

tool (at an appropriate stage of the study) and patient

age (see Fig. 1).

The CADx output was in the form of a probability

value. libSVM’s inbuilt function for converting SVM

scores to probabilities was adopted for the chosen classi-

fication algorithms in this study, which utilises cross-

validation to fit the available data to a logistic function.

The probability of belonging to the abnormal class was

estimated for all the patients. Given that the classifiers

were binary, for cases where P ≥ 0.5, the corresponding

probability of belonging to the normal class was 1-P (i.e.

less than 0.5). In these cases, the CADx output value

was displayed in red font. For patients where P < 0.5, the

corresponding probability of belonging to the normal

class was greater than 0.5 and a blue font was used in

the display.

Reporting methodology

The study involved three reporters examining test images,

presented in a random order, three times (an overview of

the study methodology is shown in Fig. 2). On the first

two occasions, reporters were asked to independently

score all images in the cohort according to their
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confidence in either a normal or abnormal classification,

through visual assessment alone. The second read com-

menced once all cases in the cohort had been scored once

and a subsequent delay time of at least 4 months had ex-

pired. The delay between reads 1 and 2 reduced the effects

from recall bias. In contrast, the second and third reads

were carried out together such that immediately after a re-

porter had recorded a score for a particular image, they

were then presented with the same image, but with the

probability value from the automated classifier displayed

prominently on the screen. Thus, comparison between the

first and (delayed) second visual reads provided an insight

into intra-reporter reliability. Comparison of the second

and third reads gave an indication of the impact of CADx

on reporting.

A 5-point diagnostic confidence scale was used through-

out, where a score of 1 was equivalent to having high con-

fidence that the image showed abnormal dopaminergic

function and a score of 5 was equivalent to having high

confidence that the image was normal. Scores of 2 and 4

were assigned to images where reporters were less

confident in their overall assessment but still favoured one

of the binary choices, and a score of 3 was used for any

equivocal cases.

This process was repeated for both the local and PPMI

datasets. Three reporters were recruited, two consultant

Fig. 2 Overview of study methodology. Repeated for both the local and PPMI data

Fig. 1 Display presented to reporters. Screenshot of the display presented to reporters during the study (in this case, the CADx output is visible)
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radiologists (Rad 1 and Rad 2) and one clinical scientist

(CS 1), all with greater than 5 years experience of read-

ing (123I)FP-CIT images as part of routine clinical duties

in a large teaching hospital. Each reporter used a clinical

workstation for viewing the images, in isolation from the

other reporters.

The metrics selected to evaluate reporter perform-

ance were sensitivity, specificity and diagnostic accur-

acy. These metrics were calculated by compressing the

submitted confidence scores into three classification

categories: with disease, without disease and equivocal.

In addition, inter- and intra-reporter reliability were

assessed using the intraclass correlation coefficient

(ICC), calculated from the raw diagnostic confidence

scores. ICC is a commonly applied metric for evaluat-

ing intra- and inter-rater reliability using ordinal or

interval rating scales. Values of ICC can range from 0

to 1 where 1 represents perfect reliability with no

measurement variability and 0 is representative of no

reliability. In this study, the two-way random model

was implemented for measuring inter-reporter reli-

ability, with single measures (i.e. ICC (2, 1)), and the

one-way random model with single measures (i.e.

ICC (1, 1)) implemented for assessing intra-reporter

reliability. These particular forms of ICC were se-

lected based on the guides provided by Rankin [14]

and Koo [15].

In addition to tests of reporter performance, the stan-

dalone accuracy, sensitivity and specificity of the CADx

tool was also measured for all the test cases. This was

done to confirm that the algorithm was sufficiently ac-

curate to be used as a reporting assistant and to quantify

the performance gap between the human reporters and

the software.

After the study had been completed, each reporter was

asked a series of set questions from a questionnaire in

separate interviews. This aspect of the study was primar-

ily designed to provide an insight into the CADx-

radiologist relationship, to assess the effects of the CADx

software on clinician decision-making; this is an import-

ant topic that has largely been ignored by researchers

[16]. The questions included a mix of open and closed

queries. Restricted response categories were included,

where possible, to allow for more straightforward

analysis.

Results

Figures 3, 4 and 5 summarise performance metrics for

each reporter for each of the three reads, for local data

and PPMI data respectively. Standalone performance of

the CADx tool is also shown. The time delay between

reads 1 and 2 ranged from 137 to 356 days across the two

datasets and three reporters, well in excess of 4 months.

Reporters’ confidence scores changed in approximately

13% of cases for the local data and in approximately 17%

of cases for the PPMI data after being exposed to the

CADx software output (i.e. comparing reads 2 and 3).

Intra- and inter-reporter reliability results are shown in

Table 2 and Fig. 6. Separate inter-reporter reliability

figures are displayed considering all three reporters to-

gether, then considering just the radiologists alone.

Table 3 summarises responses received to the main

questions in the questionnaire.

Discussion

This work considered the use of automated classifiers as

a computer-aided diagnosis tool for (123I)FP-CIT

imaging. Analysis of Figs. 3, 4 and 5 suggests that there

was relatively high variation in reporters’ performance

metrics between the first and second reads in some

cases, for both sets of data. For instance, the diagnostic

accuracy of CS1 changed from 0.82 to 0.91 when

Fig. 3 Diagnostic accuracy figures for the the image reads. Diagnostic accuracy figures for the three image reads, for local data (a) and PPMI data

(b). Standalone CADx performance is also shown, for comparison
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reporting the same set of local images. This suggests

that there is a reasonable degree of intra-reporter vari-

ability when analysing images visually, even for experi-

enced reporters. These findings were unexpected and

may be related to the fact that there was a relatively long

time gap between image reads, such that reporters’ im-

pressions of what constitutes a normal or abnormal

image may have drifted. Patient age was not displayed to

reporters during read 1 but was available during reads 2

and 3. This may also have introduced additional variabil-

ity. However, such variability may be an exaggeration of

what is normally expected in the local clinical service,

where a group reporting scenario is used routinely, with

semi-quantitative results available. This may help to

ameliorate the effects of individuals’ changing visual im-

pression. Nonetheless, results do provide a reminder

that human perception and understanding of medical

images is not a constant and invites speculation that it

could be improved through routine use of assistive

software.

The increased consistency offered by CADx tools is

demonstrated by inter-reporter reliability results. Figure 6a

demonstrates that for the two radiologists at least, there

was a noticeable increase in the intraclass correlation coef-

ficient between reads 2 and 3, showing that there was

reduced variability in submitted confidence scores. For the

PPMI data, the 95% confidence interval bounds indicate

that the increase in reliability was statistically significant.

These trends are reinforced by percentage agreement fig-

ures: for the PPMI data, the radiologists had completed

agreement in confidence scores in 77 and 74% of cases for

reads 1 and 2, rising to 87% agreement after introduction

of CADx. However, the upward trend in ICC figures is less

clear when the clinical scientist was included in the ana-

lysis (see Fig. 6b).

Given the increased consistency between reporters

during read 3, in terms of their confidence in a particu-

lar classification, it is likely that the introduction of a

CADx system would also have benefits in terms of re-

duced intra-reporter variability. However, estimation of

Fig. 4 Sensitivity figures for the three image reads. Sensitivity figures for the three image reads, for local data (a) and PPMI data (b). Standalone

CADx performance is also shown, for comparison

Fig. 5 Specificity figures for the three image reads. Specificity figures for the three image reads, for local data (a) and PPMI data (b). Standalone

CADx performance is also shown, for comparison
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such an effect would require that the reporting exercise,

with CADx assistance, be repeated.

Comparing reads 2 and 3 (i.e. directly before and after

the CADx was shown to the reporter), there is evidence

of some uplift in performance for the PPMI data, where

accuracy, sensitivity and specificity either stayed the

same or increased for all reporters. Conversely, for the

local data, there was no clear change in performance as

a result of the introduction of CADx. These contrasting

results for the two different datasets could be partly

related to the reliability of the reference diagnoses for

the two different datasets. Classifier 1 was trained with

(local) data where the reference classification was

derived from the original image report, created through

reporters’ visual analysis of the SPECT data (with patient

notes and other imaging available). Thus, the CADx tool

was trained to the diagnostic performance level of con-

ventional reporting methods. Conversely, classifier 2 was

trained with PPMI data where the diagnoses of the pa-

tients was better established and was not solely reliant

on the (123I)FP-CIT scan result. In this case, standalone

performance of the algorithm could have exceeded that

achievable through visual interpretation, increasing the

chances of CADx having a significant impact on

reporters’ decisions.

For the PPMI data, it is again interesting to note the

contrasting performance results between the clinical

scientist (CS1) and the two radiologists (Rad1 and

Rad2). Further analysis of the data suggests that CS1

only changed his confidence score in 7% of cases for the

PPMI data after viewing CADx results, as compared to

21 and 22% for Rad1 and Rad2 respectively. A similar

but less marked trend was seen in the local data, where

CS1 changed his score in 6% of cases as compared to 9

and 23% for Rad1 and Rad2 respectively. This is consist-

ent with the radiologists relying more heavily on the

CADx decision than the clinical scientist, particularly for

the unfamiliar PPMI data.

In this study, the PPMI test data was deliberately

skewed towards more difficult cases in order to maxi-

mise the opportunity for CADx to influence results. This

was necessary because of the strict patient group defini-

tions set out in the PPMI protocol. In particular, scans

without evidence of dopaminergic deficit (SWEDD),

where patients display features associated with PD but

have normal SPECT scan appearances, are classified

separately to HC and PD groups. SWEDD cases were

excluded from the current study, which would ordinarily

lead to an increase in test accuracy beyond that which

might be expected in clinic. For illustrative purposes, ap-

plying classifier 2 to the 76 SWEDD cases in the PPMI

database gives an abnormal classification in only 7 of 76

patients (the remaining 69 cases are classified as belong-

ing to the non-diseased group).

Table 2 Intra-reporter reliability (ICC) results for all reporters, with 95% confidence intervals (CI), for PPMI data and local data

Intra-reporter reliability

PPMI Local

Reporter ICC 95% CI (lower) 95% CI (upper) ICC 95% CI (lower) 95% CI (upper)

Rad1 0.87 0.82 0.91 0.89 0.82 0.93

Rad2 0.95 0.92 0.96 0.93 0.88 0.96

CS1 0.91 0.87 0.94 0.88 0.80 0.93

Fig. 6 Inter-reporter reliability (ICC) results for each of the three image reads. Inter-reporter reliability (ICC) results for each of the three image

reads for PPMI data and local data. Graph (a) is derived from radiologist data only (Rad1 and Rad2); graph (b) is from all reporters. Whiskers

represent 95% confidence intervals
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The effects of skewing the PPMI test database can be

demonstrated through analysis of standalone CADx and

semi-quantitative performance figures. In previous work

[3], it was shown that a classifier based on five principal

components and a linear SVM achieved a mean diagnostic

accuracy of 0.97 for randomly sampled data, the joint

highest performance of all the machine learning methods

considered. In the current study, accuracy was lower, i.e.

0.92 for the skewed PPMI data. Similarly, a semi-

quantitative method based on finding the optimum point

on an ROC curve of putamen uptake values (SQ 17 in [3])

, gave a mean accuracy value of 0.95 for randomly selected

PPMI test data [3]. This was found to be the best perform-

ance achieved of all the tested semi-quantitative ap-

proaches. However, in the current study, the performance

for the same method dropped to 0.74 for skewed PPMI

data. Thus, by manipulating the PPMI data, results dem-

onstrate that it was possible to reduce algorithm accuracy,

by implication making the data more difficult to interpret

by reporters.

It is difficult to directly compare findings of the

current study to those of studies evaluating the effects of

semi-quantification on radiologists’ performance, mainly

due to differences in data used and methodology. How-

ever, the broad findings of this work—that CADx can

improve accuracy if adopted by reporters with limited

experience of the data and that consistency in terms of

diagnostic confidence scores may also improve as a re-

sult—are similar to much of those of the previous work

related to semi-quantification [4–9].

These broad similarities are perhaps surprising given

that machine learning algorithms have previously been

shown to differentiate themselves from a wide range of

semi-quantitative methods in terms of standalone per-

formance, albeit by a small margin in most cases [3].

Thus, although the CADx system used here offers

advantages over conventional semi-quantification ap-

proaches, questions remain as to whether this translates

into improved clinical performance above and beyond

that offered by semi-quantification.

Evaluation of the radiologist-CAD relationship is rarely

carried out. In this study, the questionnaires provided to

participating radiologists give a useful insight into

CADx’s influence on decision-making and how it could

be improved. The responses suggested that the CADx

tool generally agreed well with the reporters’ classifica-

tion decisions, with only a very limited number of dis-

agreements. This reflects the quantitative analysis above.

The classifiers mostly had a small or moderate impact

on decision-making processes, which was as expected

for an application where normal and abnormal appear-

ances are often relatively easy to identify. The most com-

mon comment was that the CADx tool gave reporters

added confidence in their decision, in a similar way to

what might be expected from the presence of a human

second reader.

Interestingly, all three reporters felt that having access

to both CADx and semi-quantification was preferable to

having access to one or the other. This implies that the

functionality of each was felt to be positive and

Table 3 Summary of responses to the questionnaire (restricted response categories only)

Question Responses

A lot Moderately A little Not at all Unsure

In general, how well did your initial reporting
decisions correlate with the CADx output?

Rad1 – – – –

Rad2

CS1

Substantial impact Moderate impact Small impact No impact Unsure

In general, how would you rate the impact of the
CADx algorithm on your reporting decisions?

– Rad1 Rad2 – –

CS1

CADx Semi-quant Both Unsure

Would you prefer to have CADx for assistive DaTSCAN
reporting or semi-quantification? Or Both?

– – Rad1 –

Rad2

CS1

Yes (substantial benefit) Yes (moderate benefit) Yes (small benefit) No Unsure

Would it benefit you if the CADx system also provided
information on how it came to its decision (e.g. reduced
putamen uptake, high background uptake)

– CS1 Rad1 – –

Rad2

Substantial benefit Moderate benefit Small benefit No benefit Unsure

To what extent would the CADx system be a useful
training tool to improve DaTSCAN reporting performance
for inexperienced clinicians?

Rad2 Rad1 – – CS1
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complementary. It might be speculated that a greater

impact on reporting performance can be measured by

performing a clinical study using a combined software

algorithm that outputs both striatal binding ratios and

overall probabilities.

The questionnaire results provide additional evidence that

the approaches and opinions of the two radiologists were

close to each other but differed from that of the clinical sci-

entist. In general, the clinical scientist was less positive about

the CADx tool and more cautious about relying upon it.

The testing scenario was associated with some limita-

tions. As mentioned previously, patients’ clinical history

was not available to reporters as it would have been in

clinic. If such information were available, the impact of

CADx may have been different. However, machine learn-

ing algorithms can also make use of clinical history data,

and the addition of these inputs may help to rebalance

relative performance. Secondly, patient age was only pro-

vided to reporters on reads 2 and 3. This may have caused

additional intra-reporter variability. Even so, the data im-

plies that the impact of CADx for the radiologists was at

least as big as any differences in reporting performance

attributed to inclusion/exclusion of patient age.

The reference diagnoses of all the images studied was

binary (i.e. either with or without disease). However, the

5-point confidence scale used by reporters associated a

score of 3 with an equivocal classification, giving users a

choice of three different classifications. This mismatch

dictated that accuracy, sensitivity and specificity were all

negatively affected whenever a reporter submitted an

equivocal confidence score. Although a score of 3 was

selected in less than 3% of cases, this suggests that metrics

of diagnostic performance may be more pessimistic than

might have been the case if only two classifications were

available for users to select. The diagnostic confidence

scores reported are likely to be closely correlated with

disease severity. However, it should be emphasised that

these are distinct concepts. If a disease severity scale had

been provided to reporters, the intra- and inter-operator

variability results may have been slightly different.

In respect of wider application, this study examined

two classifiers (classifiers 1 and 2) trained separately with

data from distinct sources. There may be a negative im-

pact on classifier performance should the algorithms be

applied to data acquired from different equipment, in

different institutions. Indeed, the classifier calibrations

applied to convert classifier outputs into probabilities

may be misleading under these circumstances. If ma-

chine learning tools are to be used more widely, these is-

sues require further investigation.

Conclusions

This study represents a comparative diagnostic exercise

involving identification of patients with pre-synaptic

dopaminergic deficit for two sets of data (local, PPMI) using

established and CADx reporting methods. The perform-

ance of all the experienced reporters demonstrated a degree

of variability when analysing images through visual analysis

alone. However, inclusion of CADx improved accuracy,

sensitivity and specificity for two experienced radiologists,

when viewing (unfamiliar) PPMI data.

In addition, the introduction of CADx increased

consistency between the two radiologists, in terms of their

diagnostic confidence scores, for both the PPMI and local

data. Clinical scientist reporting performance was less

affected by the CADx tool with little change in reporting

performance between reads 2 and 3, for both sets of

patient images. The more cautious approach of the clinical

scientist was also evident in responses to the question-

naire, which sought to assess usability of the tool. These

qualitative results also revealed that all reporters would

prefer to have access to both semi-quantification and

CADx in clinic, rather than one or other in isolation. The

outcomes for this study indicate the value of CADx as a

diagnostic aid in the clinic and encourage future develop-

ment for more refined incorporation into clinical practice.
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