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Abstract we use a Lagrangian chemical transport model with a Monte Carlo approach to determine
impacts of kinetic rate uncertainties on simulated concentrations of ozone, NO, and OH in a high-altitude
biomass burning plume and a low-level industrial pollution plume undergoing long-range transport.
Uncertainties in kinetic rate constants yield 10-12 ppbv (5th to 95th percentile) uncertainty in the ozone
concentration, dominated by reactions that cycle NO and NO,, control NO, conversion to NO, reservoir
species, and key reactions contributing to Os loss (O('D) + H50, HO + Os). Our results imply that better
understanding of the peroxyacetylnitrate (PAN) thermal decomposition constant is key to predicting
large-scale O3 production from fire emissions and uncertainty in the reaction of NO + O3 at low temperatures
is particularly important for both the anthropogenic and biomass burning plumes. The highlighted reactions
serve as a useful template for targeting new laboratory experiments aimed at reducing uncertainties in our
understanding of tropospheric Oz photochemistry.

Plain Language Summary Computer models used to assess and predict how air pollution changes
in response to emissions, and how it affects climate and human health, rely on information from laboratory
experiments to prescribe the rates at which different atmospheric chemical species react. This laboratory
information has uncertainties associated with experimental limitations or constraints. We show how these
uncertainties affect confidence in model predictions of tropospheric ozone in two pollution plumes. Ozone is
a key air pollutant, harmful to human health and vegetation, as well as a climate warming agent. We identify
key reactions that lead to large uncertainty in simulated ozone and demonstrate the importance of low
confidence in some reactions at low temperatures in driving large portion of ozone uncertainty. Our work
serves as a key basis from which to motivate future lab experiments aimed at reducing uncertainty in our
understanding of tropospheric ozone.

1. Introduction

Atmospheric chemistry processes control the distribution and abundance of trace constituents that affect
both climate and air quality. Tropospheric ozone (Os) is a greenhouse gas and air pollutant, harmful to human
health [e.g., Levy et al., 2001; Ito et al., 2005] and detrimental to vegetation and crops [Sitch et al., 2007; Van
Dingenen et al., 2009; Hollaway et al., 2012]. Ozone is produced in situ in the troposphere by photochemical
oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NO, = NO + NO,).
Globally, photolysis of O3 is the chief source of the OH radical [Logan et al., 1981; Lelieveld et al., 2002],
controlling the lifetime of the greenhouse gas methane [Myhre et al., 2013], and oxidation of gas-phase
aerosol precursors [Kroll and Seinfeld, 2008]. Once exported to the free troposphere where it has a lifetime
of several weeks, O3 can undergo long-range transport between continents [Jacob et al., 1999; Jaffe et al.,
2003; Stohl et al., 2003; Price et al., 2004]. A robust understanding of O3 photochemistry during continental
export is central to our ability to predict response of the large-scale distribution of tropospheric ozone and
OH to changes in continental emissions of NO, and VOCs, and to our estimates of contributions from long-
range transport of O3 and precursors to surface Os in a given region. Aggressive emissions reductions in
Europe and the U.S. have resulted in a decrease in the frequency of peak O3 levels since the 1990s [Lin
et al, 2001; Soldberg and Lindskog, 2005]. However, overall emissions of Oz precursors in the Northern
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Hemisphere (NH) are expected to continue to rise as economies in South and East Asia grow rapidly [Zhang
et al., 2009]. This is likely to lead to an increasing relative sensitivity of air quality in the western U.S. and
Europe to O3 formed upstream and imported during long-range transport events [Parrish et al., 2009;
Verstraeten et al., 2015].

Models of atmospheric chemistry underpin our predictions of responses of climate and air quality to changes
in anthropogenic and natural emissions. Model photochemical processes rely on data from laboratory experi-
ments to parameterize the kinetics of chemical reactions, which are generally recommended by expert
panels, based on the latest and best available laboratory data from the literature (the NASA Jet Propulsion
Laboratory (JPL) [Burkholder et al, 2015] and the International Union of Pure and Applied Chemistry
(IUPACQ) [Atkinson et al., 2004; Crowley et al., 2010] recommendations). The data from lab experiments used
in such recommendations have uncertainties associated with experimental constraints and specific aspects
of a given reaction system. Routinely, information regarding uncertainties in these parameters is not consid-
ered in model predictions; however, their impacts could potentially lead to uncertainties in simulation of key
species concentrations important for climate and air quality. Here we focus specifically on the impact of
kinetic data uncertainties in reactions of gas-phase HO,, NO,, and organic species on O3 photochemistry in
polluted plumes undergoing long-range transport. We use a Lagrangian chemical transport model and
Monte Carlo ensemble approach to simulate photochemistry in two contrasting anthropogenic and biomass
burning plumes. We quantify sensitivity of simulated concentrations of O3 and key precursors to model
kinetic parameter uncertainties using aircraft observations to provide model initialization and an observa-
tional comparison with model ensemble spread. We partition simulated uncertainty between specific
reaction rates and identify key kinetic parameters that dominate the uncertainty in simulated oxidant photo-
chemistry in the plumes and compare this uncertainty with that due to physical processes.

2. Methodology

2.1. Plume Cases and Modeling Framework

We examine two plume case studies, based on air masses sampled sequentially on multiple occasions by
aircraft during the ICARTT (International Consortium for Atmospheric Research on Transport and
Transformation) campaign in summer 2004 [Fehsenfeld et al., 2006]. This pseudo-Lagrangian observation
framework allows monitoring of air mass chemical evolution over several days [Methven et al., 2006]. We
use the CiTTyCAT Lagrangian chemistry model [Evans et al., 2000; Pugh et al., 2012; Arnold et al., 2015], which
includes inorganic NO,, O,, and HO,, chemistry, along with a treatment of methane and NMHC oxidation and
comprises 90 species and 220 reactions (see supporting information for more details) to simulate tropo-
spheric chemistry between aircraft observation points, and the sensitivity of this chemistry to kinetic
parameter uncertainties. Air mass trajectories for the ICARTT Lagrangian Cases 2 and 3 [Methven et al.,
2006] are calculated using the ROTRAJ (Reading Offline Trajectory) Lagrangian transport model [Methven
et al, 2003] and initialized with species concentrations observed within the matching time windows of
Cain et al. [2012]. We label Lagrangian Case 2 as “biomass burning upper troposphere (BBU)” and Case 3 as
“anthropogenic pollution low level (APL)". A similar Lagrangian model framework was found to capture
observed changes in Oz and precursors in the same BBU case [Real et al., 2007] and APL case [Real et al.,
2008]. Cain et al. [2012] used a CiTTyCAT model ensemble trajectory framework to examine the sensitivity
of photochemical evolution to the representation of physical processes in these cases. Here the focus is on
quantifying parametric model uncertainty associated with photochemical rates.

2.2, Perturbed Ensemble Methodology

The CiTTyCAT model framework has been modified to allow Monte Carlo ensemble simulations of each
plume case, where each ensemble member considers a unique systematic perturbation of kinetic rate
parameters in the model, per temperature-dependent parameter uncertainty estimates from the literature.
Model rate constants and their uncertainties are taken from the JPL [Burkholder et al., 2015] and IUPAC
[Atkinson et al., 2004; Crowley et al., 2010] gas kinetic data recommendations and are used to set up a
probability space that can be sampled by running the model with combinations of perturbed rate constants.
The Latin hypercube (LHC) method [Mckay et al., 2000] is used to efficiently sample the parameter space and
to define ensemble perturbations. Since computational limitations prevent simulation of combinations of
perturbations across the whole parameter space of 261 reaction rate constants, we first perform a set of
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simulations probing the one-at-a-time effect of each reaction rate constant uncertainty on Oz and OH evolu-
tion in the plumes. From these we identify a smaller set of 73 rate constant uncertainties that have largest
impacts on O3 and OH, for a full Monte Carlo simulation framework, allowing us to account for interdependen-
cies between uncertainties in the reaction rate constants. A 2500-member ensemble was found to be sufficient
to produce robust estimates of plume concentration uncertainty (see supporting information for details).

For a given reaction, the reaction rate constant, k, is commonly given by
k(T) = koe # m

where k; is the prefactor, AE is the activation energy, T is the temperature, and R is the universal gas constant.
The uncertainties in reaction rate constants are documented in the IUPAC and JPL recommendations, along
with their temperature dependence. We use IUPAC recommendations for those rate constants that are not
available in the JPL documentation.

The uncertainty of the rate constant increases as the temperature diverges from 298 K. The uncertainty on a
given rate constant, f(T), is calculated using the formula provided by JPL data sheets:

F(T) = £(298 K)expl9(-—=9)] "

where (298 K) is the uncertainty factor at 298 K and g is an uncertainty parameter, both provided in the data
sheets. The 10 uncertainty at a temperature, T, is obtained by multiplying the rate, k(T), by the uncertainty
factor, f(T). If the reaction rate is unavailable in the JPL data sheets, we use IUPAC and the following reaction
rate uncertainty formula from Atkinson et al. [2004]:

AE (1 1
Alogk(T) = Alogk(298 K) +0.43437 — [ = — — 3
ogk(T) = Alogk(298 ) + 046343 { F (1 - )} ®
where A log k(T) is the 20 uncertainty of the reaction rate constant at temperature, T. In both cases, the uncer-
tainty as a function of temperature is not determined by rigorous statistical analysis, but through subjective

assessment by evaluators.

The model ensembles are run both with and without temperature dependence of the rate constant uncer-
tainties included in equations (2) and (3). Comparing these two sets of ensembles gives information on the
uncertainty in plume chemistry introduced by the poorer knowledge of kinetic parameters at temperatures
farther from 298 K. For further details of the ensemble simulation method see supporting information.

We determine the reaction rates that produce the majority of the uncertainty in simulated O5 using a multiple
linear regression for each of the reaction rates as a function of the simulated perturbation to the O3 concen-
tration. As meteorological and chemical conditions change over the duration of plume transport, the effect of
rate constant uncertainties is assessed after 2, 3, and 6 days of trajectory transport to evaluate the time
dependence of the uncertainty in simulated Os.

3. Results

3.1. Evolution of Ozone Uncertainty

Figures 1 and 2 show the time evolution of O3, NO,, CO, and OH in the simulated APL (anthropogenic pollu-
tion low-level) and BBU (biomass burning upper troposphere) air masses, respectively. The plotted envelopes
display the 5th, 25th, 75th, and 95th percentile concentrations based on 2500 model simulations. The range
of aircraft observations from downstream interception of the air masses are shown as vertical bars, represent-
ing one standard deviation on either side of the mean observed concentrations in each Lagrangian match
window [Cain et al., 2012].

The spread of O3 concentrations produced by the kinetic uncertainties in the APL case (Figure 1a) increases
rapidly after around 0.7 days, at the onset of daylight. Peroxyacetylnitrate (PAN) shows the largest fractional
spread of the NO, species, partly reflecting the spread in its precursor NO,, as well as uncertainties in the
specific rate of its formation (see section 3.3.1). Large spread in the nighttime NO, reservoir species N,Os
partly results from ensemble spread in its precursor species (including production of NO3, which is impacted
by ensemble spread in both NO, and O3). Spread in N,Os appears to be a key driver of spread in daytime NO,,
due to the reformation of NO, from N,Os at sunrise. This reformation of NO, is limited by heterogeneous

RIDLEY ET AL.

OZONE RESPONSE TO KINETIC UNCERTAINTIES 7474



@AG U Geophysical Research Letters 10.1002/2017GL073802

14F (d)
5 12f 1
5 3 10F 0
% E gt |
B e 5
o = 6fF
T g4t 0
o ] e S—
2\ o ]
0 0 : C
0.0 2.0 4.0 6.0 0.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
Days Days Days
100F : === Observations f) 140 (g) 1
g === Reaction rate uncertainty 120 E
----------- . : ===== Assumed background
= : ! = 100
g ; : g
10 ‘wxPE 0
1
0.0 2.0 4.0 i .0
Days Days
40 12
20} I )
30 5 8
= o { =
X g° g
g g Spfpm—————
= Z 4 {a
I
10
A o [ !
0 A A A 0
.0 2.0 4.0 6 0 4 A

1 .0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
Days Days Days

Figure 1. Time evolution of simulated ozone, OH, CO, and NO,, concentrations in the APL air mass, with uncertainty ranges based on 10 Monte Carlo model ensem-
bles, each comprising 500 perturbed rate simulations. Median ensemble concentrations are shown in black. Dark blue and light blue shading show 25th to 75th
percentile and 5th to 95th percentile ranges, respectively. Red vertical bars and symbol show observed standard deviation and mean concentrations observed by
ICARTT campaign aircraft within the air mass [Real et al., 2007, 2008]. Black dashed lines indicate the background concentration assumed in the model, based on
ICARTT observations [Real et al., 2007, 2008]. Note that simulated air mass dilution with background air and surface deposition mean that total NOy is not conserved.

conversion of N,Os to nitric acid (HNOs) overnight. O3 spread increases to 5.6 ppbv (from the 5th to 95th
percentile) by the end of the first 24 h and continues to increase throughout the simulation, reaching
9.6 ppbv after 3 days, and a maximum of 11.9 ppbv at the end of the 6 day simulation. NO,
concentrations and their spread decrease after day 3, as concentrations of NO, reservoir species (PAN and
N,Os) reduce substantially. Although ensemble spread in OH (Figure 2b) does contribute to spread in CO
(Figure 2¢), the effect is small (11.1 ppbv) due to the long CO lifetime (approximately 90 days in this air
mass). CO loss is dominated by plume dilution with surrounding background air. We assume a piecewise
constant background concentration based on the observations [Real et al, 2008]. Impacts of mixing
assumptions on simulated air mass chemistry are discussed in section 3.2.

Ensemble spread in O3 is initially small in the BBU case (Figure 2a) and begins to expand after around 2.3 days
to reach a maximum spread of 9.9 ppbv (from the 5th to 95th percentile) after 5.8 days. The increase in spread
corresponds with the time when the air mass begins to descend in altitude, reaching warmer temperatures
(see supporting information Figure S1), promoting the thermal decomposition of PAN to reform NO,. This
effect can be seen in Figures 2f and 2j, showing the time series of NO, and PAN. The spread in NO, and
PAN increases onward from 2.3 days, reaching respective spreads of 0.14 ppbv after 3.0 days and 0.44 ppbv
after 6.0 days. Ensemble spread in PAN decomposition rate is the key determinant of O3 spread in this plume,
due to PAN’s role as the source of NO, for Oz production (see section 3.3.2). From the same point in time,
spread in HNO; increases, due to the increased ensemble spread in NO, and OH. Spread in OH again
produces small spread in CO (7.2 ppbv) due to its long chemical lifetime. Real et al. [2007] showed that
dilution with background air dominates loss in CO in this case, as also discussed for the APL case. As in the
APL case, spread in N,Os and NOs are also evident in the BBU case, contributed to by the spread in NO,
and Os. Cain et al. [2012] also showed increased sensitivity to physical parameters after the initial 2 days of
simulation of the BBU case. Modeled mixing rates, in particular, impacted chemical O3 production through
dilution of O3 precursor concentrations, producing Oz concentrations that were 3 up to ppbv higher (lower)
with weaker (stronger) mixing.

RIDLEY ET AL. OZONE RESPONSE TO KINETIC UNCERTAINTIES 7475



QAGU

Geophysical Research Letters 10.1002/2017GL073802

500 2500
(b) ] (c) (d)
400 2000 } 1
L ] 3 =
2 300 \F\ T —\\‘I
F { O o
(6]
- A /\ /\ o I
50 0 /\ /\ /\ 8 [0 L SR BO00bsssssnr s sienpiaatcans
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
Days Days Days Days
0.30 - 50
(e) === Observations (f) (9)
100 4 0.25F === Reaction rate uncertainty 1 40
I' o0k T Assumed background
3 g2 g
5 f = 0.15f g,
< g 010} z 20
AMALHAA 1ot s
0.00 ota A
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
Days Days Days
50 1.0 - 3000 -
(h) (i) 0)
40 0.8 2500F
E 30 ?g 06 g 2000 }
3 20 Z 1500
z o
10 A A 1000 \
0 A h A ; 500
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
Days Days Days

Figure 2. As in Figure 1 but for the BBU air mass simulations.

There is good agreement between the model and observations from the P3 and Falcon aircraft within
Lagrangian match windows of NO, NO,, PAN, and CO for the APL Case (Figure 1). However, the trajectory
used has a high bias in water vapor of approximately 5 g/kg, and both O3 and CO do not decline as rapidly
as observed along the trajectory. The model does not reproduce the observed factor of 5 decline in HNO3
concentration that the observations suggest, similar to Real et al. [2008]. This is likely explained by a lack of
dry deposition in the model trajectory; Cain et al. [2012] show that transition of the air mass into the boundary
layer can yield rapid dry deposition of HNO3, with wet deposition playing a secondary role. For the BBU case,
the model overestimates observed O3 and NO, while underestimating CO and PAN. However, the model
ensemble encompasses observed O3, NO, and total NO, after 4.5 days, while PAN remains underestimated
(a consequence of the large uncertainty in PAN concentrations from which the model is initialized).
Despite the underestimate in observed absolute PAN concentration, the upper range of simulated PAN lost
to thermal decomposition (which provides a source of NO, to the air mass) during descent of the air mass is
on the same order as that observed (ensemble range 270-790 pptv versus ~700 pptv observed between
match windows). Cain et al. [2012] explored the sensitivity of CGiTTyCAT model concentrations in these cases
to uncertainties in initial conditions of the trajectory and found a model spread between 10 and 30 ppbv for
O3 in the APL case and an initial spread of 40 ppbv for the BBU case that tended toward a spread of 10 ppbv
by the end of the simulation. The model sensitivity to different physical parameters and VOC chemistry
produced up to a 5 ppbv and a 7 ppbv range of O3 mixing ratios in the BBU case, respectively, and up to
20 ppbv for both sensitivities in the APL case. These uncertainties confound comparison with observations;
however, the broad agreement with observed air mass chemical changes suggests that the key chemical
processes are being captured sufficiently well to explore the sensitivity of the simulated O3 to individual
reaction rate kinetics.

3.2. Influence of Mixing

We explore the sensitivity of the simulated concentrations and spread of species resulting from kinetic
uncertainties to the rate of mixing between the plume and background concentrations. For the
standard APL simulation, we assume a polluted layer depth of 1500 m and use the 50th percentile
mixing rate (xmig = 1.2 m? s~') derived from observed changes in VOC ratios within the air mass from
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Figure 3. Air mass ozone uncertainty resulting from 1 sigma uncertainties in different reaction rates after 2 (black), 3 (dark
grey) and 6 days (light grey), derived from Monte Carlo model ensembles comprising 2500 perturbed rate simulations for
(a) the APL case and (b) the BBU case. Reactions are ordered by the average contribution to the O3 uncertainty over

the 6 day period. Solid bars show ozone response based on application of reaction rate uncertainties at 298 K. Unfilled parts
of each bar show the uncertainty contribution resulting from temperature dependence of the rate parameter uncertainties.
The uncertainty when using the 25th and 75th percentile mixing rates are shown as the blue and red crosses, respectively.
The underlined reactions appear in both cases. The reaction rate uncertainty factors, f(298 K) and g, are included in
brackets under the reaction for reference. There are two sets of uncertainty factors for the termolecular reactions and
the 1 sigma uncertainty on the gamma factor is shown for the heterogenous reactions. See text for details.

Arnold et al. [2007] and we repeat the simulations with the 25th and 75th percentile values of the mixing rate
(Kgow = 052 m? s! and kg = 1.56 m? s~ '). Both the slower and faster mixing rates cause the O;
concentration to drop more rapidly, yielding 8% and 12% less ozone after 6 days (see Figures S2 and S3).
The spread in the O3 concentration owing to the reaction rate constant uncertainties is also reduced for
both mixing rate limits (the spread in Os is 8.8 ppbv for the slower mixing rate and 7.6 ppbv for the higher
mixing rate after 3 days). Faster mixing reduces Os directly through relaxation to lower background O;
concentrations. In the slower mixing case, NO, is suppressed compared with the standard case, due to
slower mixing of elevated background NO into the air parcel, as well as less mixing of PAN into the air
mass at day ~3, resulting in slower photochemical O3 formation. Reduction in ozone is therefore due to
physical mixing of ozone in one case, and due to chemical response to lower NO, (due to less mixing) in
the other case. Since loss of Os is driven by first-order kinetics (i.e,, it is dependent on the concentration of
05 itself), the stronger decrease in Oz over the course of the trajectory likely also limits the simulated
spread in Os. For the BBU case, mixing has less influence on the ensemble O3 simulation. The 25th, 50th,
and 75th percentile mixing rates from Arnold et al. [2007] are kqow = 0.65 M* 5™ kmig = 0.91 m? s ', and
Kfast = 1.56 M2 s~ 7, respectively. In this case the Os; concentration is changed by <1% for each mixing
scenario (see Figures S4 and S5). The spread in Os is increased by 6% after 3 days for the slower mixing
rate and reduced by 11% for the faster mixing rate.

3.3. Rate-Specific Ozone Uncertainty

The perturbation in O3 resulting from a 1o change in each reaction rate can be estimated by linear
regression of the O3 concentration at a given time against the set of perturbed rates used. These O;
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sensitivities (Figure 3) are calculated at 2, 3, and 6 days into the plume transport to show the relative
importance of each rate uncertainty as chemistry evolves. Reactions are ranked based upon the average
contribution to the O3z uncertainty over the 6 day simulation period. The results from the fixed-
temperature ensembles are used to determine how much of the uncertainty can be attributed to tem-
perature by taking the difference in the O3 perturbation between ensembles using uncertainties with full
reaction rate temperature dependence and those simply assuming uncertainties based on 298 K. The
uncertainty in Oz resulting from temperature effects is shown as the unfilled part of the bars in
Figure 3. The effect of the temperature uncertainty is greater in the BBU case than in the APL case, since
the ambient temperature stays closer to 298 K in the APL case (temperature, pressure, and water vapor
for the simulation are displayed in Figure S1).

3.3.1. APL Case

For the APL case, uncertainty in O3 is dominated by uncertainty in reactions controlling O3 loss (reaction of
HO, + O3 and loss of O('D) through reaction with H,0), and fundamental reactions governing the cycling
and loss of NO, (HO, + NO; NO + Os; OH + NO,). These reactions are key in determining the net change in
05 through their controls on Os loss and the NO, abundance. The impact of these rate uncertainties on O3
increases by 20-40% between day 2 and day 3 and then by a similar percentage again by day 6.
Uncertainty in the reaction of HO, + NO produces comparable, but opposite sign response in Os to the
HO, + O3 loss reaction uncertainty. Six day Oz responses to uncertainties in o('D) + H,0, NO + O, and
OH + NO, are of comparable magnitudes (1.04-1.19 ppbv), with temperature dependence of the NO + O3 uncer-
tainty increasing the O uncertainty by 20%. Impact of the uncertainty in the quenching of O('D) to OCP) is
comparable but opposite in sign to that in the O('D) + H,0 reaction, due to the importance of the competition
between these reactions in controlling net O3 loss. Although we apply uncertainties in absolute rate constants
for O('D) reactions, since these are recommended in the JPL assessment, we note that there are smaller
uncertainties quoted for relative O('D) rate constants determined in some studies [e.g., Carl, 2005].

Uncertainties in reactions that play a role in the interconversion of PAN and its precursors are relatively
more important on short timescales in the APL case. Uncertainty in PAN decomposition and in the reac-
tion of MeCO3 with NO both contribute a positive perturbation to Os of approximately 0.5 ppbv on a
2 day timescale; the latter being a route for cycling NO to NO,, competing with NO, loss via
MeCOs; + NO,. On longer timescales, these reactions become less important in this air mass as NO,
concentrations decline and the warm, moist environment favors loss of NO, via reaction with OH to form
HNOs. Uncertainty in this reaction contributes an Oz uncertainty of more than 1.0 ppbv after 6 days.
Uncertainty in the reaction of OH + CH,4 produces the same but opposite sign Oz response to the hetero-
geneous hydrolysis of N,Os (+0.53 and —0.53 ppbv respectively after 6 days), due to their respective roles
in supply of peroxy radicals and loss of NO,.

The mixing rate assumed for the air mass has no significant impact on the relative importance of reaction
rates for the APL case. However, the mixing sensitivity tests show a decrease in the O3 uncertainty of up to
18% when the slower mixing rate is used and up to 47% decrease when the faster mixing rate is used.
3.3.2. BBU Case

Uncertainty in net O3 change in the BBU case on a 6 day timescale is dominated by the uncertainty in the PAN
decomposition rate, producing an Os sensitivity of more than 1.5 ppbv. This is the largest 1 sigma sensitivity
overall in this simulated case. Increased Os response to this rate constant uncertainty later in the transport
event occurs due to descent of the air mass to warmer temperatures, promoting decomposition of PAN to
release NO,. As in the APL case, uncertainty in the reactions of NO + O3 and MeCOs3 + NO also produces a
large Os sensitivity after 6 days (0.98 and 0.73 ppbv magnitude, respectively), due to their roles in NO to
NO, cycling, and the latter's competition with PAN formation. Reaction of MeCO5; with CH30, directly
competes with the PAN formation reaction, and uncertainty in this reaction produces a substantial O3
response in the BBU case after 6 days (0.62 ppbv). Uncertainty in the HO, + NO reaction, a key route for
cycling of NO to NO,, produces a response of similar magnitude after 6 days.

After only 2 days, PAN is stable due to lower temperatures in the upper troposphere, and uncertainty in the
PAN decomposition rate produces a smaller O3 uncertainty. Two day O3 response is dominated by uncer-
tainty in reactions determining ozone loss, particularly NO + O3 and HO, + Os.
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The BBU case demonstrates substantial effects of increased kinetic uncertainties at lower temperatures
(white bars in Figure 3b). This sensitivity is due to temperatures in the UT air mass being substantially lower
than 298 K, at which kinetic parameter uncertainty is minimum [Burkholder et al., 2015]. Sensitivity to the
temperature dependence of the uncertainty in the rate of NO + Os is substantial, increasing the Os response
to uncertainty in this reaction by between 45 and 55%, contributing an Os sensitivity after 6 days of 0.44 ppbv
of a total of 0.98 ppbv. The documented temperature dependence of uncertainty in this reaction is slightly
larger than other key reactions (e.g., 21% at 260 K, compared with 16% for the HO, + NO reaction) and
increases with temperature deviation from 298 K at a faster rate [Burkholder et al., 2015]. Temperature effects
on O3 uncertainty are also substantial for PAN decomposition and HO, + O3 reactions after 6 days, increasing
the Os uncertainty by 11% and 12%, respectively.

The mixing rate assumed for the air mass has no significant impact on the relative importance of reac-
tion rates, as with the APL case. The effect of uncertainty in mixing is weaker in the BBU case, with
slower mixing contributing up to a 10% increase in the Oz uncertainty and faster mixing up to a
20% decrease.

4, Discussion and Conclusions

The range in simulated ozone concentrations due to kinetic uncertainties is 9.9 and 11.9 ppbv (5th to 95th
percentile) for the BBU and APL cases, respectively. This is several times larger than estimates of the Asian
contribution to surface Os concentrations over the North American West Coast (~1-4 ppbv) [Brown-Steiner
and Hess, 2011; Sudo and Akimoto, 2007] from long-range transport, and an order of magnitude larger than
estimates of the annual trend in Os in this region from increases in trans-Pacific inflow [Verstraeten et al., 2015;
Cooper et al., 2010; Parrish et al., 2009]. The range in ozone is comparable with intermodel standard deviation
in present-day surface and lower tropospheric ozone concentrations among current generation global
models of tropospheric chemistry [Young et al., 2013].

Our results imply particularly poor constraint on our knowledge of ozone chemistry in biomass burning
plumes transported to the upper troposphere. This may have important implications for simulating tropo-
spheric oxidant chemistry in the tropical troposphere, where biomass burning emissions are rapidly
transported vertically in deep convection and are an important source of ozone and precursors [Anderson
et al., 2016; Singh et al., 2000; Folkins et al., 1997]. Uncertainty in biomass burning emission impacts on upper
tropospheric ozone has important implications for our confidence in radiative forcing from anthropogenic
changes in tropospheric ozone [Rap et al., 2015].

Uncertainty in simulated O3 in the two air masses is dominated by kinetic uncertainties in reactions that cycle
NO and NO,, reactions controlling conversion of NO, to NO, reservoir species, plus key reactions contributing
to O3 loss (O('D) + H,0, HO, + O3). Twelve of the fifteen leading rate constant uncertainties contribute to O3
uncertainty in both the APL and BBU cases (underlined in Figure 3). The large PAN loading of the BBU case
and air mass descent to warmer temperatures means that Os production in this plume is highly sensitive
to uncertainty in the rate of PAN thermal decomposition. Large PAN loadings are commonly observed in
biomass burning plumes, meaning that understanding of O3 production from biomass burning emissions
on a large scale may be sensitive to this rate uncertainty. Uncertainty in the rate of Oz + NO is a key driver
of O3 uncertainty in both cases, and the larger uncertainty of this reaction rate at low temperatures produces
considerable uncertainty, particularly in the upper tropospheric BBU case. The reaction of HO, + NO ranks
highly in its contribution to plume Os uncertainty in both cases, illustrating its crucial role in determining
available NO, for O3 production.

Chemical transport models routinely use the same kinetic rate constants provided by the JPL and IUPAC
assessments used here. The uncertainty in O3 that we have demonstrated may therefore represent a so-far
uncharacterized error or bias across model O3 estimates. Improved confidence in the rate parameters for
these fundamental reactions, and particularly their temperature dependence in the case of NO + O3, would
allow substantial reduction in Oz production rate uncertainty. Overall, our results provide a framework for
targeting new laboratory experiments aimed at reducing uncertainties in our understanding of tropospheric
O3 photochemistry.
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Erratum

In the originally published version of this article, equation (1) incorrectly included the exponent
—%T instead of —%. The equation has been amended, and the present version may be considered the
authoritative version of record.
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