
This is a repository copy of Kernelization using structural parameters on sparse graph
classes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130764/

Version: Accepted Version

Article:

Gajarsky, J., Hlineny, P., Obdrzalek, J. et al. (5 more authors) (2017) Kernelization using
structural parameters on sparse graph classes. Journal of Computer and System
Sciences, 84. pp. 219-242. ISSN 0022-0000

https://doi.org/10.1016/j.jcss.2016.09.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Kernelization Using Structural Parameters on Sparse

Graph ClassesI

Jakub Gajarskýa, Petr Hlin¥nýa, Jan Obdrºáleka, Sebastian Ordyniaka, Felix
Reidlb, Peter Rossmanithb, Fernando Sánchez Villaamilb, Somnath Sikdarb

aFaculty of Informatics, Masaryk University, Brno, Czech Republic,

{gajarsky,hlineny,obdrzalek,ordyniak}@fi.muni.cz.
bTheoretical Computer Science, Department of Computer Science, RWTH Aachen

University, Aachen, Germany,

{reidl,rossmani,fernando.sanchez,sikdar}@cs.rwth-aachen.de.

Abstract

We prove that graph problems with �nite integer index have linear kernels on
graphs of bounded expansion when parameterized by the size of a modulator to
constant-treedepth graphs. For nowhere dense graph classes, our result yields
almost-linear kernels. We also argue that such a linear kernelization result
with a weaker parameter would fail to include some of the problems covered by
our framework. We only require the problems to have FII on graphs of constant
treedepth. This allows to prove linear kernels also for problems such as Longest-
Path/Cycle, Exact-s, t-Path, Treewidth, and Pathwidth, which do not have FII
on general graphs.

1. Introduction

Data preprocessing has always been a part of algorithm design. The last decade
has seen steady progress in the area of kernelization, an area which deals with the
design of polynomial-time preprocessing algorithms. These algorithms compress
an input instance of a parameterized problem into an equivalent output instance
whose size is bounded by some function of the parameter. Parameterized com-
plexity theory guarantees the existence of such kernels for problems that are
�xed-parameter tractable. Some problems admit stronger kernelization in the
sense that the size of the output instance is bounded by a polynomial (or even
linear) function of the parameter, the so-called polynomial (or linear) kernels.

Of great interest are algorithmic meta-theorems, results that focus on prob-
lem classes instead of single problems. In the area of graph algorithms, such

IResearch funded by DFG-Project RO 927/12-1 �Theoretical and Practical Aspects of
Kernelization�, the Czech Science Foundation under grant 14-03501S, and the European So-
cial Fund and the state budget of the Czech Republic under project CZ.1.07/2.3.00/30.0009
(S. Ordyniak).

Preprint submitted to Elsevier October 5, 2016

meta-theorems usually have the following form: all problems with a speci�c
property admit, on a speci�c graph class, an algorithm of a speci�c type. We
are speci�cally interested in meta-theorems that concern kernelization, for which
a solid groundwork already exists. Before we delve into the history, we need to
quickly establish the keystone property that drives all these meta-theorems: the
notion of �nite integer index (FII).

Roughly speaking, a graph problem has FII if there exists a �nite set S of
graphs such that every instance of the problem can be represented by a member
of S alongside an integer �o�set�. This property is the basis of the protrusion re-
placement rule whereby protrusions (pieces of the input graph satisfying certain
requirements) are replaced by members of the set S. Finite integer index is an
intrinsic property of the problem itself and is not directly related to whether it
can be expressed in a certain logic. In particular, expressibility in the monadic
second-order logic of graphs with vertices and edges (MSO2 and its extension to
optimization problems abbreviated as EMSO2) does not imply FII (see [1] for
su�ciency conditions for a problem expressible in counting MSO to have FII). As
an example of this phenomenon, Hamiltonian Path has FII on general graphs
whereas Longest Path does not, although both are EMSO2-expressible.

Now, the �rst steps towards a kernelization meta-theorem appeared in a
paper by Guo and Niedermeier who provided a prescription of how to design
linear kernels on planar graphs for graph problems which satisfy a certain dis-
tance property [2]. Their work built on the seminal paper by Alber, Fellows, and
Niedermeier who showed that Dominating Set has a linear kernel on planar
graphs [3]. This was followed by the �rst true meta-theorem in this area by Bod-
laender et al. [1] who showed that graph problems that have FII and satisfy a
property called quasi-coverable1 admit linear kernels on bounded genus graphs.
Shortly after [1] was published, Fomin et al. [4] proved a meta-theorem for linear
kernels on H-minor-free graphs, a graph class that strictly contains graphs of
bounded genus. A rough statement of their main result states that any graph
problem that has FII, is contraction bidimensional, and satis�es a separation
property has a linear kernel on graphs excluding a �xed graph as minor. This
result was, in turn, generalized in [5] to H-topological-minor-free graphs, which
strictly contain H-minor-free graphs. Here, the problems are required to have
FII and to be treewidth-bounding : A graph problem is treewidth-bounding if
yes-instances have a vertex set of size linear in the parameter, the deletion of
which results in a graph of bounded treewidth. Such a vertex set is called a
modulator to bounded treewidth. Prototypical problems that satisfy this con-
dition are Feedback Vertex Set and Treewidth t-Vertex Deletion2,
when parameterized by the solution size.

We see that while these meta-theorems (viewed in chronological order) steadily
covered larger graph classes, the set of problems captured in their framework
diminished as the other precondition(s) became stricter. Surprisingly, this is not

1This property was called quasi-compactness in earlier version of [1]
2For problem de�nitions, see Appendix.

2

due to said preconditions: It turns out that they can be expressed in a uni�ed
manner and are therefore equally restrictive. The combined properties of bidi-
mensionality and separability (used to prove the result on H-minor-free graphs)
imply that the problem is treewidth-bounding (cf. Lemma 3.2 and 3.3 in [4]).
Quasi-coverability on bounded genus graphs implies the same (cf. Lemma 6.4
in [1]). This demonstrates that all three previous meta-theorems on linear ker-
nels implicitly or explicitly used treewidth-boundedness. Hence the diminishing
set of problems can be blamed on the increasingly weaker interaction of the
graph classes with the problem parameters, not the (only apparently) stricter
precondition on the problems.

This insight motivates a di�erent view on previous meta-theorems: problems
that have FII admit linear kernels if parameterized by a treewidth modulator in
classes excluding a topological minor. In small enough classes (bounded genus,
apex-minor-free) the natural parameterization of problems satisfying some ba-
sic properties (quasi-coverable, contraction-bidimensionality) coincides with the
parameterization by a treewidth-modulator. This change in perspective replaces
the natural parameter�whose structural impact diminishes in larger sparse
graph classes�by an explicit structural parameter which retains the crucial
interaction between parameter and graph class. It also gives us, as we will see,
the freedom to adapt the parameterization to our needs.

The next well-established level in the sparse-graph hierarchy [6] is formed
by the classes of bounded expansion. The notion was introduced by Ne²et°il and
Ossona de Mendez [7] and subsumes graph classes excluding a �xed graph as a
topological minor. It turns out that for these classes the serviceable parameter-
ization by a treewidth modulator cannot work if we aim for linear kernels: Any
graph class G can be transformed into a class G̃ of bounded expansion by replac-
ing every graph G ∈ G with G̃, obtained in turn by replacing each edge of G by
a path on |V (G)| vertices. For problems like Treewidth t-Vertex Deletion
and, in particular, Feedback Vertex Set this operation neither changes the
instance membership nor does it increase the parameter. As both the problems
do not admit kernels of size O(k2−ǫ) unless coNP ⊆ NP/poly, by a result of Dell
and Melkebeek [8], a linear kernelization result on bounded-expansion classes
of graphs and under the treewidth-modulator parameterization would have to
exclude both these natural problems.

In this work, we identify a structural parameter that indeed does allow linear
kernels for all problems that have FII on graph classes of bounded expansion�
the size of a treedepth modulator. This parameter not only increases under
replacing edges with paths (a necessary prerequisite as we now know), but it
also provides exactly the structure that seems necessary to obtain such a result.
To put this parameterization into context, let us recap some previous work on
structural parameters. Even outside the realm of sparse graphs, they have been
used to zero in on those aspects of problems that make them intractable�a
development that certainly �ts the overall agenda of parameterized complexity.
This research of alternative parameterizations has given rise to what is called
the parameterized ecology [9].

Already the perhaps strongest structural parameter for graph-related problems�

3

the vertex cover number�makes up an interesting niche of said ecology, as
we summarize now. Many problems that are W-hard or otherwise di�cult to
parameterize such as Longest Path [10], Cutwidth [11], Bandwidth, Im-
balance, Distortion [12], List Coloring, Precoloring Extension, Eq-
uitable Coloring, L(p,1)-Labeling, and Channel Assignment [13] are
(easily) �xed-parameter tractable (fpt) when parameterized by the vertex cover
number. Some generalizations of vertex cover have also been successfully used
as a parameter, e.g., [14, 15]. Even problems that do admit kernels in general
or are fpt can bene�t from such a strong structural parameter�for example,
Odd Cycle Transversal (which admits a randomized and highly technical
kernel), Chordal Deletion (which is fpt but does not admit a polynomial ker-
nel), and F-Minor-Free Deletion [16]. On the other hand, some problems
are unlikely to admit polynomial kernelization even with this strong additional
parameterization: Dominating Set, for example, has no polynomial kernel
when parameterized by the solution size and the vertex cover number [17] and
neither does the problem of �nding a t-treewidth modulator parameterized by
a t′-treewidth modulator (for most values of t and t′) [18].

In light of previous work on structural parameters and the fact that a mod-
ulator to bounded treedepth is a signi�cantly weaker parameter than the vertex
cover number (which is the special case of a modulator to treedepth one), we
conclude that treedepth modulator is a well-motivated choice in our case.

Our contribution

We show that, assuming FII, a parameterization by the size of a modulator
to bounded treedepth allows for linear kernels in linear time on graph classes
of bounded expansion. The same parameter yields almost-linear kernels on
nowhere dense graph classes, which strictly contain those of bounded expansion.
In particular, nowhere dense classes are the largest collections of graphs that may
still be called sparse [6]. In these results we do not require a treedepth modulator
to be supplied as part of the input, as we show that it can be approximated to
within a constant factor.

Furthermore, we only need FII to hold on graphs of bounded treedepth,
thus including problems which do not have FII in general. Some problems
that are included because of this relaxation are Longest Path/Cycle, Path-
width and Treewidth, none of which have polynomial kernels with respect
to their standard parameters, even on sparse graphs, since they admit sim-
ple AND/OR-Compositions [19]. Problems covered by our framework include
also Hamiltonian Path/Cycle, several variants of Dominating Set, (Con-
nected) Vertex Cover, Chordal Vertex Deletion, Feedback Vertex
Set, Induced Matching, Branchwidth and Odd Cycle Transversal.
In particular, we cover all problems included in earlier frameworks [1, 4, 5].
We emphasize, however, that this paper does not subsume the former results
since our parameter (the size of a modulator to constant treedepth) is neces-
sarily larger or equal than the parameter of the previous results (the size of a
modulator to constant treewidth).

4

Organization

Our notation and the main de�nitions pertaining to graph classes can all be
found in Section 2. Section 3 deals with the notion of �nite integer index and
the protrusion machinery. In Section 4, we prove our meta-theorems for graph
classes of bounded expansion and for nowhere dense classes. In Section 5 we list
problems already known to have �nite integer index, and show that connectivity
problems such as Longest Path, and the width-measure problem Branch-
width have FII in appropriate graph classes. In Section 6 we show that the
FII results can be extended to include the width-measure problems Treewidth
and Pathwidth, (the cases of which are surprisingly more di�cult than that
of branchwidth). These �ndings then enable us to apply our meta-theorem and
obtain new kernelization results for the listed problems. We conclude in Sec-
tion 7 with some open problems. In the appendix, we de�ne (some of) the graph
problems that we deal with in this paper.

2. Preliminaries

We use standard graph-theoretic notation (see [20] for any unde�ned terminol-
ogy). All our graphs are �nite and simple. Given a graph G, we use V (G) and
E(G) to denote its vertex and edge sets. For convenience we assume that V (G)
is a totally ordered set, and use uv instead of {u, v} to denote the edges of G.
By H ⊆ G we mean that H is a subgraph of G, and by H ⊆ind G we denote
that H is an induced subgraph of G. For X ⊆ V (G), we let G[X] denote the
subgraph of G induced by X, and we de�ne G−X := G[V (G) \X].

Since we will mainly be concerned with sparse graphs in this paper, we let
|G| denote the number of vertices in the graph G. The distance dG(v, w) of two
vertices v, w ∈ V (G) is the length (number of edges) of a shortest v, w-path in
G and ∞ if v and w lie in di�erent connected components of G. The diameter
diam(G) of a graph is the length of a longest shortest path between all pairs
of vertices in G. A complete subgraph of G is called a clique and we denote by
ω(G) the largest size of a clique of G.

The concept of neighborhood is used heavily throughout the paper. The
neighborhood of a vertex v ∈ V (G) is the set NG(v) = {w ∈ V (G) | vw ∈
E(G)}, the degree of v is degG(v) = |NG(v)|, and the closed neighborhood
of v is de�ned as NG[v] := NG(v) ∪ {v}. We extend this naturally to sets of
vertices and subgraphs: For S ⊆ V (G) we denote NG(S) the set of vertices
in V (G) \ S that have at least one neighbor in S, and for a subgraph H of
G we put NG(H) = NG(V (H)). Finally if X is a subset of vertices disjoint
from S, then NG

X (S) is the set NG(S)∩X (and similarly for NG
X (H)). Given a

graph G and a set W ⊆ V (G), we also de�ne ∂G(W) as the set of vertices in W
that have a neighbor in V (G) \W . Note that NG(W) = ∂G(V (G) \W). A
graph G is d-degenerate for d ∈ N0 if every subgraph G′ of G contains a vertex

v ∈ V (G′) with degG
′

(v) 6 d. The degeneracy of G is the smallest d such that
G is d-degenerate.

A set S of vertices of a graph G is a separator if G − S is not connected.
In particular, we say that S separates two (not necessarily disjoint) sets A and

5

B of vertices of G if A ∩ B ⊆ S and G − S does not contain a path between
a vertex in A \ S and a vertex in B \ S. We say that a set of vertices S is a
minimum separator for A and B if there is no (cardinality-wise) smaller set of
vertices separating A and B in G. Given a set A of vertices we say that a vertex
v is reachable from A in G if G contains a path between a vertex from A and v.

In the rest of the paper we often drop the index G from all the notation if
it is clear which graph is being referred to.

2.1. Minors and shallow minors

We start by de�ning the notion of edge contraction. Given an edge e = uv
of a graph G, we let G/e denote the graph obtained from G by contracting
the edge e, which amounts to deleting the endpoints of e, introducing a new
vertex wuv, and making it adjacent to all vertices in (NG(u) ∪NG(v)) \ {u, v}.
By contracting e = uv to the vertex w, we mean that the vertex wuv is renamed
as w. Subdividing an edge is, in a sense, an opposite operation to contraction.
A graph G is called a 6 k-subdivision of a graph H if (some) edges of H are
replaced by paths of length at most k + 1.

A minor of G is a graph obtained from a subgraph of G by contracting zero
or more edges. In a more general view, if H is isomorphic to a minor of G,
then we call H a minor of G as well, and we write H �m G. A graph G is
H-minor-free if H �mG.

We next introduce the notion of a shallow minor.

De�nition 2.1 (Shallow minor [6]). For an integer d, a graph H is a shallow
minor at depth d of G if there exists a set of disjoint subsets V1, . . . , Vp of V (G)
such that

1. each graph G[Vi] has radius at most d, meaning that there exists vi ∈ Vi (a
center) such that every vertex in Vi is within distance at most d in G[Vi]
from vi; and

2. there is a bijection ψ : V (H) → {V1, . . . , Vp} such that for u, v ∈ V (H),
uv ∈ E(H) only if there is an edge in G with an endpoint each in ψ(u)
and ψ(v).

The sets V1, . . . , Vp are called the branch sets of this particular embedding of
the minor. Note that if u, v ∈ V (H) with branch sets ψ(u) = Vi and ψ(v) = Vj ,
then the distance of the centers vi ∈ Vi and vj ∈ Vj is bounded by dG(vi, vj) 6
(2d + 1) · dH(u, v). The class of shallow minors of G at depth d is denoted by
G▽ d. This notation is extended to graph classes G as well: G ▽ d =

⋃
G∈G G▽ d.

Note that, in particular, G▽ 0 is the class of all subgraphs of G, and G▽∞
is the class of all minors of G.

2.2. Parameterized problems, kernels and treewidth

In this paper we deal with parameterized problems where the value of the pa-
rameter is not explicitly speci�ed in the input instance. This situation is slightly
di�erent from the usual case where the parameter is supplied with the input and

6

a parameterized problem is de�ned as sets of tuples (x, k) as in [21]. As such,
we �nd it convenient to adopt the de�nition of Flum and Grohe [22] and we feel
that this is the approach one might have to choose when dealing with generalized
parameters as is done in this paper.

Let Σ be a �nite alphabet. A parameterization of Σ∗ is a mapping κ : Σ∗ →
N0 that is polynomial-time computable. A parameterized problem Π is a pair
(Q, κ) consisting of a set Q ⊆ Σ∗ of strings over Σ and a parameterization κ
over Σ∗. A parameterized problem Π is �xed-parameter tractable if there exist
an algorithm A, a computable function f : N0 → N0 and a polynomial p such
that for all x ∈ Σ∗, A decides x in time f(κ(x)) · p(|x|).

We are, in particular, dealing with decision problems for which the input (a
word Q ⊆ Σ∗ as above) is composed of a graph and an integer argument. To
formally capture this form of an input, we give the next de�nition.

De�nition 2.2 (Graph problem). A graph problem Π is a set of pairs (G, ξ),
where G is a graph and ξ ∈ N0, such that for all graphs G1, G2 and all ξ ∈ N0,
G1

∼= G2 implies that (G1, ξ) ∈ Π i� (G2, ξ) ∈ Π.

We remark that for graph problems which have no integer argument on the
input, we may simply pad an arbitrary integer ξ such as 0.

De�nition 2.3 (Kernelization). A kernelization of a parameterized problem
(Q, κ) over the alphabet Σ is a polynomial-time computable function A : Σ∗ →
Σ∗ such that for all x ∈ Σ∗, we have

1. x ∈ Q if and only if A(x) ∈ Q, and

2. |A(x)| 6 g(κ(x)),

where g is some computable function. The function g is called the size of the
kernel. If g(κ(x)) = κ(x)O(1) or g(κ(x)) = O(κ(x)), we say that Π admits a
polynomial kernel and a linear kernel, respectively.

De�nition 2.4 (Treewidth). A tree decomposition T of an (undirected) graph
G = (V,E) is a pair (T, χ), where T is a tree and χ is a function that assigns
each tree node t a set χ(t) ⊆ V of vertices such that the following conditions
hold:

(P1) For every vertex u ∈ V , there is a tree node t such that u ∈ χ(t).

(P2) For every edge {u, v} ∈ E(G) there is a tree node t such that u, v ∈ χ(t).

(P3) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) forms a
subtree of T .

The sets χ(t) are called bags of the decomposition T and, in particular, χ(t)
is the bag associated with the tree node t. The width of a tree decomposition
(T, χ) is the size of a largest bag minus 1. The treewidth of a graph G, denoted
by tw(G), is the minimum width over all tree decompositions of G. Any tree
decomposition of G of width tw(G) is called optimal.

7

Let T = (T, χ) be a tree decomposition of a graph G and let G′ be an
induced subgraph of G. The projection of T onto G′, denoted by T |G′, is the
pair (T, χ′) where χ′(t) = χ(t) ∩ V (G′) for every t ∈ V (T). It is well known
that T |G′ is a tree decomposition of G′.

De�nition 2.5 (Pathwidth). A path decomposition of a graph G is a tree
decomposition (T, χ) such that T is a path. The pathwidth of G, denoted by
pw(G), is the minimum width over all path decompositions of G.

All other notions and de�nitions introduced for tree decompositions above apply
in the same way for path decompositions.

It is folklore that every bag of a path or tree decomposition is a separator
in the underlying graph. We will use the following formulation of this fact.

Proposition 2.6 (folklore). Let T = (T, χ) be a tree decomposition (path de-
composition) of a graph G, let t ∈ V (T), and let T1 and T2 be two sets of
nodes of T − {t} such that {t} separates T1 from T2 in T . Then χ(t) separates⋃

s∈T1
χ(s) from

⋃
s∈T2

χ(s) in G.

The de�nition of branchwidth is done in a slightly di�erent manner:

De�nition 2.7 (Branchwidth). A branch-decomposition of a graph G is a pair
(T, τ) where T is a tree of maximum degree three and τ a bijective function
τ : E(G) → {t : t is a leaf of T}. For an edge e of T , the connected components
of T \ e induce a bipartition (X,Y) of the edge set of G. The width of e is then
de�ned as the number of vertices of G incident both with an edge of X and
an edge of Y . The width of (T, τ) is the maximum width over all edges of T .
The branchwidth of G, denoted by bw(G), is the minimum of the width of all
branch-decompositions of G.

It is well know fact that the branchwidth of a graph class is bounded if and
only if its treewidth is bounded.

2.3. Grad and graph classes of bounded expansion

Let us recall the main de�nitions pertaining to the notion of graphs of bounded
expansion. We follow the recent book by Ne²et°il and Ossona de Mendez [6].

De�nition 2.8 (Greatest reduced average density (grad) [7, 23]). Let G be
a graph class. Then the greatest reduced average density of G with rank d is
de�ned as

∇d(G) = sup
H∈G ▽ d

|E(H)|

|V (H)|
.

This notation is also used for graphs via the convention that∇d(G) := ∇d({G}).
In particular, note that G▽ 0 denotes the set of subgraphs of G and hence
2∇0(G) is the maximum average degree of all subgraphs of G. The degeneracy
of G is, therefore, exactly 2∇0(G).

8

De�nition 2.9 (Bounded expansion [7]). A graph class G has bounded expan-
sion if there exists a function f : N0 → R (called the expansion function) such
that for all d ∈ N0, ∇d(G) 6 f(d).

If G is a graph class of bounded expansion with expansion function f , we say
that G has expansion bounded by f . An important relation we make use of later
is: ∇d(G) = ∇0(G▽ d), i.e. the grad of G with rank d is precisely one half the
maximum average degree of subgraphs of its depth d shallow minors.

Another important notion that we make use of extensively is that of treedepth.
In this context, a rooted forest is a disjoint union of rooted trees. For a vertex x
in a tree T of a rooted forest, the height (or depth) of x in the forest is the
number of vertices in the path from the root of T to x. The height of a rooted
forest is the maximum height of a vertex of the forest.

De�nition 2.10 (Treedepth). Let the closure of a rooted forest F be the
graph clos(F) = (Vc, Ec) with the vertex set Vc =

⋃
T∈F V (T) and the edge

set Ec = {xy : x is an ancestor of y in some T ∈ F}. A treedepth decomposition
of a graph G is a rooted forest F such that G ⊆ clos(F). The treedepth td(G)
of a graph G is the minimum height of any treedepth decomposition of G.

Proposition 2.11 ([6]). Given a graph G with n nodes and a constant w, it is
possible to decide whether G has treedepth at most w, and if so, to compute an
optimal treedepth decomposition of G in time O(n).

We list some additional well-known facts about graphs of bounded treedepth.

Proposition 2.12 (see, e.g. [6]). Let G be a graph.

a) If G has no path with more than d vertices, then td(G) 6 d.

b) If td(G) 6 d, then G has no paths with 2d vertices and, in particular, any
DFS-tree of G has depth at most 2d − 1.

c) If td(G) 6 d, then G is d-degenerate and hence has at most d · |V (G)| edges.

d) Any DFS-forest F of G is a treedepth decomposition of G (not necessarily
optimal).

e) If F is a treedepth decomposition of G, then the vertex sets of root-to-leaf
paths of each T ∈ F , ordered by the DFS order of their leaf ends, form
the bags of a path decomposition of G. Consequently, if td(G) 6 d, then
tw(G) 6 pw(G) 6 d− 1.

f) It is td(G) 6 d if and only if G can be colored with at most d colors such
that every connected subgraph of G contains at least one color that appears
exactly once. Consequently, the property ` td(G) 6 d' is expressible in MSO1

logic for each �xed value of d.

A useful way of thinking about graphs of bounded treedepth is that they are
(sparse) graphs with no long paths.

9

Figure 1: The anatomy of a protrusion.

For a graph G and an integer d, a modulator to treedepth d of G is a set of
vertices M ⊆ V (G) such that td(G −M) 6 d. The size of a modulator is the
cardinality of the set M .

Finally, we need the following well-known result on degenerate graphs.

Proposition 2.13 ([24]). Every d-degenerate graph G with n > d vertices has
at most 2d(n− d+ 1) cliques.

3. The Protrusion Machinery

In this section, we recapitulate the main ideas of the protrusion machinery
developed in [1, 4].

De�nition 3.1 (r-protrusion [1]). Given a graph G, a set W ⊆ V (G) is an
r-protrusion of G if |∂G(W)| 6 r and tw(G[W]) 6 r − 1.3 We call ∂G(W) the
boundary and |W | the size of the protrusion W .

Thus an r-protrusion in a graph can be seen as an induced subgraph that is
separated from the rest of the graph by a small boundary and, in addition, has
small treewidth. See Figure 1.

A t-boundaried graph is a pair (G, bd(G)), where G is a graph and bd(G) ⊆
V (G) is a set of t = | bd(G)| vertices with distinct labels from the set {1, . . . , t}.
The graph G is called the underlying unlabeled graph and bd(G) is called the
boundary.4 Given a graph class G, we let Gt denote the class of t-boundaried
graphs (G, bd(G)) where G ∈ G.

Consider t-boundaried graphs (H, bd(H)) and (G, bd(G)). In the following
we write bd(G) = bd(H) to denote that the boundary vertices of G and H are
the same and that they are labeled in the same way. We say that (H, bd(H)) is
a subgraph of (G, bd(G)) if H ⊆ G and bd(H) = bd(G). We say that (H, bd(H))

3We want the bags in a tree-decomposition of G[W] to be of size at most r.
4Usually denoted by ∂(G), but this collides with our usage of ∂.

10

is an induced subgraph of (G, bd(G)) if for some X ⊆ V (G), H = G[X] and
bd(H) = bd(G). The boundaries of two t-boundaried graphs (G, bd(G)) and
(H, bd(H)) are identical if the function mapping each vertex of bd(G) to that
vertex of bd(H) with the same label is an isomorphism between G[bd(G)] and
H[bd(H)]. Note that in the case of (H, bd(H)) being an induced subgraph
of (G, bd(G)), the boundaries are identical by de�nition. In the following, we

will denote a t-boundaried graph (G, bd(G)) shortly by G̃ to avoid cumbersome
notation.

De�nition 3.2 (Gluing and ungluing). For t-boundaried graphs G̃1 and G̃2,

we let G̃1 ⊕ G̃2 denote the graph obtained by taking the disjoint union of G1

and G2 and identifying each vertex in bd(G1) with the vertex in bd(G2) with
the same label. The resulting order of vertices is an arbitrary extension of the
orderings on V (G1) and V (G2) \ V (G1). This operation is called gluing.

Let H be an induced subgraph of G and let B denote the set ∂G(H) labeled
with distinct labels from {1, . . . , t} such that t = |B| = |∂G(H)|. The operation
of ungluing H from G creates the t-boundaried graph G⊖BH :=

(
G− (V (H) \

B), B
)
.

The gluing operation entails taking the union of edges both of whose endpoints
are in the boundary, with implicit deletion of multiple edges to keep the graph
simple. The ungluing operation preserves the boundary (both the vertices and
the edges). For the sake of clarity, we sometimes annotate the ⊕ operator with
the boundary as well.

Note that an r-protrusion W of a graph G implicitly de�nes a t-boundaried
graph G̃[W] :=

(
G[W], ∂G(W)

)
, t = |∂G(W)| 6 r, where the boundary vertices

are assigned labels from {1, . . . , t} according to their order in G. Hence we can
rigorously deal with protrusions in G as with t-boundaried subgraphs of G as,
e.g., in the following de�nition.

De�nition 3.3 (Replacement). LetW be an r-protrusion of a graph G de�ning

the t-boundaried graph G̃[W], and let B be the labeled set of the boundary

∂G(W). For a t-boundaried graph H̃, replacing G̃[W] by H̃ in G is de�ned as

the operation (G⊖B G[W])⊕B H̃.

The following de�nition concerns the centerpiece of our framework. Recall that
an equivalence relation has �nite index if it de�nes a �nite number of equivalence
classes.

De�nition 3.4 (Finite integer index; FII). Let Π be a graph problem and let

G̃1 = (G1, bd(G1)), G̃2 = (G2, bd(G2)) be two t-boundaried graphs. We say

that G̃1 ≡Π,t G̃2 if there exists an integer constant ∆Π,t(G̃1, G̃2) such that for

all t-boundaried graphs H̃ = (H, bd(H)) and for all ξ ∈ N0:

(
G̃1 ⊕ H̃, ξ

)
∈ Π i�

(
G̃2 ⊕ H̃, ξ +∆Π,t(G̃1, G̃2)

)
∈ Π.

We say that Π has �nite integer index in the class F if, for every t ∈ N0, the
relation ≡Π,t has �nite index if restricted to F .

11

Note that the constant ∆Π,t(G̃1, G̃2) depends on Π, t, and the ordered pair

(G̃1, G̃2) so that ∆Π,t(G̃1, G̃2) = −∆Π,t(G̃2, G̃1). On most occasions, the prob-
lem Π and the class F will be clear from the context and in such situations, we
use ≡t and ∆t instead of ≡Π,t and ∆Π,t, respectively.

If a graph problem has �nite integer index then its instances can be reduced
by �replacing protrusions�. The technique of replacing protrusions hinges on
the fact that each protrusion of �large� size can be replaced by a �small� gadget
from the same equivalence class as the protrusion, which consequently behaves
similarly w.r.t. the problem at hand. If G̃1 is replaced by a gadget G̃2 (strictly

saying, H ⊕ G̃1 is replaced by H ⊕ G̃2), then ξ changes by ∆Π,t(G̃1, G̃2). Many
problems have �nite integer index in general graphs, including Vertex Cover,
Independent Set, Feedback Vertex Set, Dominating Set, Connected
Dominating Set, and Edge Dominating Set. For a more complete list
see [1, 4]. Some problems that do not have �nite integer index in general graphs
are Connected Feedback Vertex Set, Longest Path and Longest Cy-
cle.

For a graph class F , let Ft denote the class of all t-boundaried graphs made
of the members of F . The next lemma shows that if we assume that a graph
problem Π has FII in a graph class F , then we can choose �nitely many repre-
sentatives for the equivalence classes of ≡Π,t from a (possibly di�erent) graph
class G under certain circumstances.

Lemma 3.5. Let F be a graph class and Π a graph problem such that Π has
FII in F . Let G be a class of graphs in which some vertices have labels from
{1, . . . , t}, and � be a relation on G such that G is well-quasi-ordered by �.
Then, for each t ∈ N0, there exists a �nite set R(t,F ,G,�) ⊆ Ft ∩ G with

the following property. For every G̃ = (G, bd(G)) ∈ Ft ∩ G there exists G̃0 =

(G0, bd(G0)) ∈ R(t,F ,G,�) such that bd(G) and bd(G0) are identical, G̃ ≡Π,t

G̃0, and G0 � G.

Proof. Let E1, . . . , Eq be the equivalence classes of the relation ≡Π,t on Ft,
where q is some constant. For each equivalence class Ei, de�ne E ′

i = Ei ∩ G.

Next, partition E ′
i into at most 2t

2

· t! sets E ′
i,j such that all graphs in E ′

i,j have
identical boundaries. Since G is well-quasi-ordered by �, there is a �nite set
Gi,j ⊆ E ′

i,j of the �-minimal elements, for every i, j as above. In other words,

for all G̃ ∈ E ′
i,j there exist G̃0 ∈ Gi,j satisfying the three properties stated in

the lemma. Consequently,
⋃

j Gi,j can be chosen as the representatives for each
Ei. Altogether, de�ne R(t,F ,G,�) =

⋃
i,j Gi,j . Since R(t,F ,G,�) is the �nite

union of �nite sets, it is �nite.

Let us explain how we use Lemma 3.5. The graph problems Π that we consider
in this paper usually have FII on the class of general graphs or, for all p ∈ N0,
in the class of graphs of treedepth at most p. In accordance with the notation
in Lemma 3.5, the class F corresponds to the class where Π has FII. The choice
of our parameter now ensures that our kernelization replaces protrusions of
treedepth at most a previously �xed constant d: choosing G to be the graphs

12

of treedepth at most d, all protrusions (actually the graphs induced by them)
are members of F ∩ G. As G is well-quasi ordered under the label-preserving
induced subgraph relation [6, Chapter 6, Lemma 6.13], we choose � to be ⊆ind.

Now consider a restriction of the graph problem Π to a class K that is closed
under taking induced subgraphs. In this paper, the class K is a hereditary
graph class of bounded expansion or a hereditary and nowhere dense class.
This ensures that ∅ 6= K ∩ G ⊆ F ∩ G. Given an instance (G, ξ) of Π with
G ∈ K, one can replace a protrusion of G by a representative (of constant size)
that is an induced subgraph of that protrusion, ensuring that this replacement
creates a graph that still resides in K. To summarize, Lemma 3.5 guarantees
that the protrusion replacement rule (described next) preserves the graph class
K and the parameter.

As preparation for the kernelization theorems of the next section, let P

denote the set of all graph problems that have FII on general graphs or, for
each p ∈ N0, in the class of graphs of treedepth at most p. Our reduction rule
is formalized as follows.

Reduction Rule 3.6 (Protrusion replacement). Let t, d ∈ N0 and let Π ∈ P.
Let R(t, d) be a class of boundaried graphs of treedepth at most d containing
representatives of the equivalence classes of ≡Π,i restricted to the graphs of
treedepth at most d, for i = 1, . . . , t. Let (G, ξ) be an instance of Π and assume
that W ⊆ V (G) is a t-protrusion of treedepth at most d with boundary B =

∂G(W) in G of size i = |B| 6 t. Let R̃ ∈ R(t, d) be a ≡Π,i-representative

of G̃[W]. The protrusion replacement rule is the following:

Reduce (G, ξ) to (G′, ξ′) :=
(
(G⊖B G[W])⊕B R̃, ξ +∆Π,i(G̃[W], R̃)

)
.

We let F denote the class on which the problem has FII and by G the class of
graphs of treedepth at most d. The existence of a suitable �nite set of represen-
tatives R(t, d) for Rule 3.6 is guaranteed by Lemma 3.5: we let R(t, d) denote
the �nite set

⋃t
i=1 R(i,F ,G,⊆ind) from Lemma 3.5, and ρ(t, d) denote the size of

the largest member of R(t, d). The safety of the protrusion replacement follows
from the de�nition of FII.

In what follows, when applying the protrusion replacement by Rule 3.6, we
will always assume that for the �xed problem Π ∈ P and each t, d ∈ N0, we
are given the �nite set R(t, d) of representatives. Our algorithm is therefore
non-constructive, as are all previous algorithms in the meta-kernelization line
of work [1, 4, 25, 26].

4. Linear Kernels on Graphs of Bounded Expansion

In this section we provide the underlying meta-theorems of our new kernelization
results. Namely, we are going to show that graph problems that have �nite
integer index on general graphs or in the class of graphs with bounded treedepth
admit linear kernels on hereditary graph classes with bounded expansion, when

13

parameterized by the size of a modulator to constant treedepth. On nowhere
dense classes, we obtain almost-linear kernels.

Our main theorem is the following.

Theorem 4.1. Let K be a graph class of bounded expansion and let d ∈ N0

be a constant. Let Π ∈ P. Then there is an algorithm that takes as input
(G, ξ) ∈ K ×N0 and, in time O(|G|+ log ξ), outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(|S|), where S is an optimal treedepth-d modulator of the graph G.

We proceed as follows. Because an optimal treedepth-d modulator cannot be
assumed as part of the input, we compute an approximate modulator S ⊆ V (G)
to partition V (G) into sets Y0⊎Y1⊎· · ·⊎Yℓ such that S ⊆ Y0 and |Y0| = O(|S|)
and for 1 6 i 6 l, Yi induces a collection of connected components of G − Y0
that have exactly the same small neighborhood in Y0. We then use bounded
expansion to show that ℓ = O(|S|) and use protrusion reduction to replace
each G[Yi], 1 6 i 6 l, by an induced subgraph of G[Yi] of constant size. Every
time the protrusion replacement rule is applied, ξ is modi�ed. This results in
an equivalent instance (G′, ξ′) such that G′ ⊆ G and |G′| = O(|S|), as claimed
in Theorem 4.1.

Lemma 4.2. Fix d ∈ N0. Given a graph G, one can in O(|G|2) time compute a
subset S ⊆ V (G) such that td(G−S) 6 d and |S| is at most 2d times the size of
an optimal treedepth-d modulator of G. On graph classes of bounded expansion,
the set S can be computed in linear time. On nowhere dense classes it can be
computed in time O(|G|1+ε) for every �xed ε > 0.

Proof. We use the fact, cf. Proposition 2.12 b), that any DFS-tree of a graph of
treedepth d has height at most 2d − 1. Start with S0 = ∅. Compute a DFS-tree
of the graph G and if it has height more than 2d − 1, then td(G) > d. So, we
take some path P from the root of the tree of length 2d − 1 and add all the 2d

vertices of P into a set S0 (to be part of S), delete V (P) from the graph and
repeat. (Clearly, at least one of the vertices of P must be in any modulator.)
At the end of this procedure, the DFS-tree of the remaining graph G− S0 has
height at most 2d − 1. By Proposition 2.12 e), this gives a path decomposition
of the graph of width at most 2d − 2. Now use standard tools (e.g., Courcelle's
theorem [27] via Proposition 2.12 f) to obtain an optimal treedepth-d modulator
S1 in G− S0, and set S = S0 ∪ S1. Since the treewidth of G− S0 is a constant,
the latter algorithm runs in time linear in the size of the graph. The overall size
of the modulator is at most 2d times the optimal solution.

For a graph G from a class of bounded expansion, we modify the way S0

is computed above (the resulting set will not be larger than the one computed
above, and often much smaller). By [28], graph classes of bounded expansion ad-
mit low treedepth coloring: Given any integer p, there exists an integer np such

14

that any graph of the class can be properly vertex colored using np colors such
that for any set of 1 6 i 6 p colors, the graph induced by the vertices that receive
these i colors has treedepth at most i. Such a coloring is called a p-treedepth
coloring and can be computed in linear time [28]. Here we choose p = 2d and ob-
tain such a coloring for G using np colors. Let G1, . . . , Gr denote the subgraphs
induced by at most 2d of these color classes where r < 2np = O(1). Note that∑

j |Gj | = O(|G|), since every vertex of G appears in at most a constant num-
ber of subgraphs and since G has constant degeneracy,

∑
j |E(Gj)| = O(|G|) as

well.
Any path in G of length 2d − 1 must be in some subgraph Gj , for 1 6 j 6

r, and we hit all such paths with a set S0 obtained in the following iterated
procedure.

Start with S0 = ∅. For each j = 1, 2, . . . , r, we simply construct a treedepth
decomposition of Gj − S0, e.g., by depth-�rst search. Using standard dynamic
programming we �nd an optimum hitting set for the set of all paths of length 2d−
1 in Gj − S0 and add its vertices into S0 (and delete them from the graph).
Again, some hitting set for these paths must be in any modulator. The time
taken to do this for each subgraph Gj −S0 is O(|E(Gj)|). The total time taken
is therefore

∑
j |E(Gj)| = O(|G|).

The approach for nowhere dense classes is nearly the same: by [7, 6], for
a nowhere dense class G and ε′ > 0, p ∈ N0 there exists a threshold Nε′,p

such that for all G ∈ G with |G| > Nε′,p it holds that G has a p-treedepth

coloring with at most |G|ε
′

colors. By a similar statement, nowhere dense
graphs are |G|1+ε′ -degenerate. Therefore, for every ε > 0, the above algo-
rithm runs in time O(|G|1+ε) by choosing ε′ = ε/p and p = 2d; now the
subgraphs G1, . . . , Gr induced by at most 2d colors have again treedepth at
most 2d while r 6 (|G|ε

′

)p = |G|ε. Using the fact that nowhere dense graphs
have degeneracy |G|1+ε, we conclude that the running time to construct S0 is∑

j |E(Gj)| = O(|G|1+ε) and this also bounds the total running time.

We will make heavy use of the following lemma to prove the kernel size.

Lemma 4.3. Let G = (X,Y,E) be a bipartite graph, and p > ∇1(G). Then
there are at most

1. 2p · |X| vertices in Y with degree greater than 2p;

2. (4p+2p)·|X| distinct subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

Proof. We construct a sequence of graphs G0, G1, . . . , Gℓ such that Gi ∈ G▽ 1
for all 0 6 i 6 ℓ as follows. Set G0 = G, and for 0 6 i 6 ℓ − 1 construct Gi+1

from Gi by choosing a vertex v ∈ V (Gi) \X such that N(v) ⊆ X contains two
non-adjacent vertices u,w in Gi and contract uv into the vertex u to obtain
Gi+1. Recall that contracting uv to u is equivalent to deleting vertex v and
adding edges between each vertex in N(v) \u and u. Note that this contraction
will only add edges to X and remove vertices from Y . Hence, for 0 6 i 6 ℓ, we
maintain X ⊆ V (Gi) ⊆ X ∪ Y and that V (Gi) \X ⊆ Y is an independent set.

15

This process clearly terminates, as Gi+1 has at least one more edge between
vertices of X than Gi. Note that Gi ∈ G▽ 1 for 0 6 i 6 ℓ, as the edges
e1, . . . , ei−1 that were contracted to vertices in X in order to construct Gi had
one endpoint each in X and Y , the endpoint in Y being deleted after each
contraction. Thus, e1, . . . , ei−1 induce a set of stars in V (G) = V (G0), and
Gi is obtained from G by contracting these stars. We therefore conclude that
Gi is a depth-one shallow minor of G. In particular, this implies Gℓ[X] is 2p-
degenerate and has at most 2p|X| edges. Further, note that for each 0 6 i 6 ℓ,
Y ∩ V (Gi) is, by construction, still an independent set in Gi.

Let us now prove the �rst claim. To this end, assume that there is a vertex
v ∈ Y ∩ V (Gℓ) such that deg(v) > 2p. We claim that Gℓ[N(v)] (where N(v) ⊆
X) is a clique. If not, we could choose a pair of non-adjacent vertices in Gℓ[N(v)]
and construct a (ℓ+1)-th graph for the sequence which would contradict the fact
that Gℓ is the last graph of the sequence. However, a clique of size |{v}∪N(v)| >
2p+1 is not 2p-degenerate. Hence we conclude that no vertex of Y ∩V (Gℓ) has
degree larger than 2p in Gℓ (and in G). Therefore the vertices of Y of degree
greater than 2p in the graph G, if there were any, must have been deleted during
the edge contractions that resulted in the graph Gℓ. As every contraction added
at least one edge between vertices in X and since Gℓ[X] contains at most 2p|X|
edges, the �rst claim follows.

For the second claim, consider the set Y ′ = Y ∩V (Gℓ). The neighborhood of
every vertex v ∈ Y ′ induces a clique in Gℓ[X]. From the 2p-degeneracy of Gℓ[X]
and Proposition 2.13, it follows that Gℓ[X] has at most 22p|Gℓ[X]| = 4p · |X|
cliques. Thus the number of subsets of X that are neighborhoods of vertices in
Y in G is at most (4p + 2p) · |X|, where we accounted for vertices of Y lost via
contractions by the bound on the number of edges in Gℓ[X].

The following two corollaries to Lemma 4.3 show how it can be applied in our
situation.

Corollary 4.4. Let K be a graph class whose expansion is bounded by a func-
tion f : N0 → R. Suppose that for G ∈ K and S ⊆ V (G), C1, . . . , Cs are
disjoint connected subgraphs of G−S satisfying the following two conditions for
1 6 i 6 s:

1. diam(Ci) 6 δ and

2. |NS(Ci)| > 2 · f(δ + 1).

Then s 6 2 · f(δ + 1) · |S|.

Proof. We construct an auxiliary bipartite graph Ḡ with partite sets S and
Y = {C1, . . . , Cs}. There is an edge between Ci and x ∈ S i� x ∈ NS(Ci).
Note that Ḡ is a depth-δ shallow minor of G with branch sets Ci, 1 6 i 6 s.
In relation to Lemma 4.3 we would like to show that, for any F ∈ Ḡ▽ 1, it is
F ∈ G▽(δ+1) (while ▽ is not additive in general). This follows since a branch
set of F in G is induced by a vertex of S plus a subcollection of attached sets

16

Ci, 1 6 i 6 s, or by one set Ci and a subset of attached vertices from S. In
both the cases the radius is at most 1 + maxi diam(Ci) 6 δ + 1.

Consequently, ∇1(Ḡ) 6 ∇δ+1(G) 6 f(δ + 1) and, by Lemma 4.3 for the
choice p = f(δ + 1),

s 6 2p|S| = 2f(δ + 1) · |S|.

Corollary 4.5. Let K be a graph class whose expansion is bounded by a function
f : N0 → R. Suppose that for G ∈ K and S ⊆ V (G), C1, . . . , Ct are sets of
connected components of G−S such that for all pairs C,C ′ ∈

⋃
i Ci it holds that

C,C ′ ∈ Cj for some j if and only if NS(C) = NS(C
′). Let δ > 0 be a bound

on the diameter of the components, i.e. for all C ∈
⋃

i Ci, diam(C) 6 δ. Then
there can be only at most t 6 (4f(δ+1) + 2f(δ + 1)) · |S| such sets Ci.

Proof. As in the proof of Corollary 4.4, we construct a bipartite graph Ḡ with
partite sets S and Y = {C1, . . . , Cr}, and argue about ∇1(Ḡ) 6 ∇δ+1(G) 6

f(δ + 1). By Lemma 4.3, for p = f(δ + 1),

t 6 (4p + 2p)|S| = (4f(δ+1) + 2f(δ + 1)) · |S|.

In the �rst phase, our kernelization algorithm partitions an input graph accord-
ing to a low-treedepth modulator (as found in Lemma 4.2).

Lemma 4.6. Let K be a graph class with expansion bounded by f , G ∈ K and
S ⊆ V (G) be a treedepth-d modulator (d a constant). There is an algorithm
that partitions V (G) in time O(|G|) into sets Y0 ⊎ Y1 ⊎ · · · ⊎ Yℓ such that the
following hold:

1. S ⊆ Y0 and |Y0| = O(|S|);

2. for 1 6 i 6 ℓ, Yi induces a set of connected components of G − Y0 that
have the same neighborhood in Y0 of size at most 2d+1 + 2 · f(2d);

3. ℓ 6
(
4f(2

d) + 2f(2d)
)
· |S| = O(|S|).

Proof. We �rst construct a DFS-forest D of G − S. Since td(G − S) 6 d,
the height of every tree in D is at most 2d − 1. Assume that there are q
trees T1, . . . , Tq in this forest rooted at r1, . . . , rq, respectively. We construct,
following the same idea as in Proposition 2.12 e), for each Ti, 1 6 i 6 q, a path
decomposition of the subgraph of G[V (Ti)]. Suppose that Ti has leaves l1, . . . , ls
ordered according to their DFS-number. For 1 6 j 6 s, create a bag Bj

containing the vertices on the unique path from lj to ri and string these bags
together in the order B1, . . . , Bs. This is a path decomposition Pi of G[V (Ti)]
with width at most 2d − 2. Note that the root ri is in every bag of Pi. These
steps are in a simpli�ed way depicted in the �rst loop of Algorithm 2 and clearly
run in linear time.

We now use a marking algorithm similar to the one in [5] to mark O(|S|)
bags in the path decompositions P1, . . . ,Pq with the property that each marked

17

Algorithm 2: Bag marking algorithm

Input: A graph G, a subset S ⊆ V (G) such that td(G− S) 6 d, and an integer

t > 0.

SetM← ∅ as the set of marked bags;

for each connected component C of G− S such that NS(C) > t do
Choose an arbitrary vertex v ∈ V (C) as a root and construct a DFS-tree

starting at v;

Use the DFS-tree to obtain a path-decomposition PC = (PC ,BC) of width
at most 2d − 2 in which the bags are ordered from left to right;

Repeat the following loop for the path-decomposition PC of every C;

while PC contains an unprocessed bag do

Let B be the leftmost unprocessed bag of PC ;

Let GB denote the subgraph of G induced by the vertices in the bag B and

in all bags to the left of it in PC .

[Large-subgraph marking step]
if GB contains a connected component CB such that |NS(CB)| > t then
M←M∪ {B} and remove the vertices of B from every bag of PC ;

Bag B is now processed;

return Y0 = S ∪ V (M);

bag can be uniquely identi�ed with a connected subgraph of G − S that has a
large neighborhood in the modulator S.

Let us set t := 2 · f(2d) + 1 as the threshold for what we consider a large
neighborhood in the set S and run Algorithm 2 with this value of t. Note that
there is a one-to-one correspondence between marked bags M and a maximal
set of pairwise disjoint, connected subgraphs with a neighborhood of size at
least t in S. Moreover each such connected subgraph has treedepth at most d
and hence diameter at most 2d − 1. By Corollary 4.4, the number of connected
subgraphs of large neighborhood and hence the number of marked bags is at
most 2·f(2d−1+1)·|S| = O(|S|). We set Y0 := V (M)∪S. As the marking stage
of the algorithm runs through every path-decomposition of the components of
G− S exactly once, this phase takes only linear time.

Now observe that each connected component in G − Y0 has less than t =
2 · f(2d) + 1 neighbors in S: for every connected subgraph C with at least t
neighbors in S, there exists a marked bag B that contains at least one vertex
of C. Importantly, the bag B was the �rst bag that was marked before the
number of neighbors in S of any connected subgraph reached the threshold t.
Hence each connected component of G[V (C) \ B] has degree less than t in S.
Since every component is connected to at most two marked bags (in Y0) and
since each bag is of size at most 2d − 1, the size of the neighborhood of every
component of G− Y0 in Y0 is at most 2(2d − 1) + t 6 2d+1 + 2 · f(2d).

To complete the proof, we simply cluster the connected components of G−Y0

18

according to their neighborhoods in Y0 to obtain the sets Y1, . . . , Yℓ. Since each
connected component of G− S is of diameter δ 6 2d − 1, by Corollary 4.5, the

number ℓ of clusters is at most
(
4f(2

d) + 2f(2d)
)
· |S| = O(|S|), as claimed.

To accomplish this feat in linear time, we assume an arbitrary order of the
vertices in Y0 (say, the order in which they appear in the encoding of the graph).
A simple bipartite auxiliary graph with partitions Y0 and V (G) \ Y0 with edge
set (Y0×V (G)\Y0)∩E(G) can be used to �nd the neighbors of a vertex v 6∈ Y0
inside Y0 in constant time as the number of neighbors of such a vertex is at
most 2d+1 + 2 · f(2d) = O(1). Thus, computing the neighbors in Y0 of every
component of G − Y0 takes only linear time. If we store the neighborhoods of
these components as lists sorted according to the ordering of Y0 inside an array
of length O(|S|), we can sort this array in linear time using bucket sort: each
entry of the list has encoding length at most log |V (G)|, therefore they can be
compared in constant time under the usual RAM-model. The clusters can then
be simply read from the array. Thus the clustering of the components of G−Y0
and therefore the whole decomposition is linear-time computable.

To prove a linear kernel, all that is left to show is that each cluster Yi, 1 6

i 6 ℓ, can be reduced to constant size. Note that each cluster is separated from
the rest of the graph via a small set of vertices in Y0 and that each component
of G − Y0 has constant treedepth even when its boundary is included. These
facts enable us to use the protrusion reduction rule.

In the proof of the following lemma it will be convenient to use the following
normal form of tree decompositions: A triple (T, {Wx | x ∈ V (T)}, r) is a nice
tree decomposition of a graph G if (T, {Wx | x ∈ V (T)}) is a tree decomposition
of G, the tree T is rooted at node r ∈ V (T), and each node of T is of one of the
following four types:

1. a leaf node: a node having no children and containing exactly one vertex
in its bag;

2. a join node: a node x having exactly two children y1, y2, andWx =Wy1
=

Wy2
;

3. an introduce node: a node x having exactly one child y, andWx =Wy∪{v}
for a vertex v of G with v 6∈Wy; or

4. a forget node: a node x having exactly one child y, and Wx = Wy \ {v}
for a vertex v of G with v ∈Wy.

Given a tree decomposition of a graph G of width w, one can e�ectively obtain
in time O(|V (G)|) a nice tree decomposition of G with O(|V (G)|) nodes and of
width at most w [29].

For the next statement and proofs, recall the following concepts from (the
end of) Section 3: the problem class P and our �xed problem Π ∈ P, the
(implicitly given) �nite sets R(t, d) of representatives of the equivalence classes
of the relations ≡Π,i, i = 1, . . . , t, restricted to graphs of treedepth 6 d, and
ρ(t, d) the size of the largest member(s) of R(t, d).

19

Lemma 4.7. For �xed d, h ∈ N0 (constants) and K a graph class, let (G, ξ)
be an instance of Π with G ∈ K and let S ⊆ V (G) be a treedepth-d modulator
of G. Let Y0 ⊎ Y1 ⊎ · · · ⊎ Yℓ be a vertex partition of V (G) such that

• S ⊆ Y0,

• N(Yi) ⊆ Y0 and |NY0
(Yi)| 6 h for 1 6 i 6 ℓ, and

• NY0
(Yi) 6= NY0

(Yj) for i 6= j.

Then one can in O(|G| + log ξ) time obtain an instance (G′, ξ′) and a vertex
partition Y ′

0 ⊎ Y ′
1 ⊎ · · · ⊎ Y ′

ℓ of V (G′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;

2. G′ is an induced subgraph of G with Y ′
0 = Y0; and

3. for 1 6 i 6 ℓ it is |NY ′

0
(Y ′

i)| 6 h, td(G[Y ′
i]) 6 d, and

|Y ′
i | 6 ρ(d+ h, d+ h) = O(1).

Proof. Since S ⊆ Y0 is a treedepth-d modulator, for all 1 6 i 6 ℓ, we have
td(G[Yi]) 6 d and hence tw(G[Yi]) 6 d − 1. Moreover treedepth at most d
implies diameter at most 2d − 1 for each component. Since Y ′

0 = Y0, let N(X)
stand for NY0

(X) = NY ′

0
(X). For each index 1 6 i 6 ℓ, our algorithm constructs

a tree-decomposition of G[Yi ∪ N(Yi)] of width d − 1 + h that satis�es certain
additional properties that we mention below.

The algorithm then uses the tree-decomposition to replace Yi in a systematic
manner using the protrusion replacement Rule 3.6. The special properties of the
tree-decomposition enable the algorithm to perform this replacement in O(|Yi∪

N(Yi)|) time. Total time used to replace all sets Yi is
∑ℓ

i=1 |Yi ∪N(Yi)|. Since,

by Corollary 4.5 (with Y0 in the place of S),
∑ℓ

i=1 |N(Yi)| = O(ℓ) = O(|Y0|),
the running time is indeed O(|G|). It therefore su�ces to specify the properties
of our tree-decompositions and describe how each Yi is replaced with Y ′

i .
The desired tree-decomposition Ti =

(
Ti, {Wx | x ∈ V (Ti)}

)
of width at

most d+ h− 1 for G[Yi ∪N(Yi)] satis�es the following conditions:

1. there is a node r ∈ V (Ti) such that Wr = N(Yi); and

2. the tree-decomposition is nice and rooted at r.

We use Bodlaender's linear-time algorithm [30] to compute the tree decompo-
sition. To ensure the �rst condition, we simply modify the graph Gi so that
N(Yi) induces a clique, and then introducing an extra node r in the resulting
tree decomposition if no such node exists already. The niceness of the decom-
position can simply be restored after this operation. For x ∈ V (Ti), we let G̃x

denote the t-boundaried graph induced by the vertices in the bags of the subtree
of Ti rooted at x. That is, formally,

Gx := G
[
Wx ∪

⋃
y descendant of x

Wy

]
and G̃x := (Gx,Wx) ,

where the boundary bd(Gx) =Wx is of size t 6 d+h. Then Gr = G[Yi∪N(Yi)].
Note that the treedepth of Gx is at most d+ |Wx ∩ S| 6 d+ h.

20

Recall that Π has FII either on general graphs or on bounded treedepth
graphs. Using Lemma 3.5, for each x ∈ V (Ti), there exists a representative

Λ(x) ∈ R(d+h, d+h) of G̃x which is an induced subgraph of Gx and bd(Λ(x)) =

bd(Gx). Replacing G̃x by Λ(x) hence does not increase the treedepth. Fur-
thermore, |Λ(x)| 6 M := ρ(d + h, d + h) which is a constant. Let µ(x) =

∆t(G̃x,Λ(x)).
Our task is to �nd Λ(r) and µ(r) which we will calculate in a bottom-up

manner along Ti in O(|Yi|) time as follows. If y ∈ V (Ti) is a leaf node then
these values can be computed in constant time. Let x ∈ V (Ti) be a node with
exactly one child y whose Λ and µ values are known. Consider the t-boundaried
graph G̃′

x where t 6 d+ h and

G′
x := (Gx ⊖Wy

Gy)⊕Wy
Λ(y) with bd(G′

x) =Wx.

We claim that G̃′
x ≡t G̃x. To prove this, we need to demonstrate that for all

t-boundaried graphs G̃ and all ξ ∈ N0,

(G̃′
x ⊕Wx

G̃, ξ) ∈ Π if and only if (G̃x ⊕Wx
G̃, ξ − µ′) ∈ Π,

where µ′ = ∆t(G̃x, G̃
′
x) is to be speci�ed. Now

(G̃′
x ⊕Wx

G̃, ξ) ∈ Π i� ((G̃x ⊖Wy
Gy)⊕Wy

Λ(y))⊕Wx
G̃, ξ) ∈ Π

i� ((G̃x ⊕Wx
G̃)⊖Wy

Gy)⊕Wy
Λ(y), ξ) ∈ Π

i� ((G̃x ⊕Wx
G̃)⊖Wy

Gy)⊕Wy
G̃y, ξ − µ(y)) ∈ Π,

where the last step follows because of Λ(y) ≡t′ G̃y, where t
′ is either t′ = t+1 6

d + h in case x is a forget node or t′ = t − 1 in case it is an introduce node.
Since

(G̃x ⊕Wx
G̃)⊖Wy

Gy)⊕Wy
G̃y = G̃x ⊕Wx

G̃,

this proves our claim. In fact, we have that µ′ = µ(y).
Observe that G′

x is of constant size, bounded from above by M + |Wx| 6
M + d+ h = O(1). Since Λ(y) is an induced subgraph of Gy, it follows that G

′
x

is an induced subgraph of Gx and therefore has treedepth at most d+ h. Then
we can �nd in constant time the associated representative R̃ ∈ R(d+ h, d+ h)

of G̃′
x. We set Λ(x) := R̃ and µ(x) := µ′ +∆t(G̃

′
x, R̃). Note that the total time

spent at node x to generate these values is a constant.
Lastly, consider the case when x ∈ V (Ti) has exactly two children y1 and y2

whose Λ and µ values are known. Since our tree-decomposition is nice, we
have Wy1

= Wx = Wy2
and therefore bd(Gy1

) = bd(Gy2
) = Wx. Take the

t-boundaried graph G̃′′
x where t 6 d+ h and

G′′
x := Λ(y1)⊕Wx

Λ(y2) with bd(G′′
x) =Wx.

Similarly as in the previous case, one can show that for all graphs G̃ and all
ξ ∈ N0,

(G̃′′
x ⊕Wx

G̃, ξ) ∈ Π if and only if (G̃x ⊕Wx
G̃, ξ − µ′′) ∈ Π,

21

where µ′′ = µ(y1) + µ(y2). The graph G′′
x has size at most 2M which is a

constant. One can therefore, again in constant time, calculate a representative
R̃ ∈ R(d+ h, d+ h) of G̃′′

x. We set Λ(x) := R̃ and µ(x) := µ′′ +∆t(G̃
′′
x, R̃).

To summarize, our proof shows that one can, independently for each i ∈
{1, . . . , ℓ}, in time O(|Ti|) = O(|Yi|) obtain Λ(r) and µ(r) (where r is the root
of the tree-decomposition Ti for G[Yi ∪ N(Yi)]) with the following properties:

for all graphs G̃ and all ξ ∈ N0,

(G̃r ⊕ G̃, ξ) ∈ Π if and only if (Λ(r)⊕ G̃, ξ + µ(r)) ∈ Π.

Let µi := µ(r) and Y ′
i := V (Λ(r)) \ Y0 be the chosen replacement of the clus-

ter Yi. Then G[Y ′
i] is an induced subgraph of G[Yi] of constant size, and

the neighborhood of Y ′
i inside Y0 is untouched. It immediately follows that

td(G[Y ′
i]) 6 td(G[Yi]) 6 d as claimed, too.

Finally, let G′ := G[Y0 ∪ Y ′
1 ∪ · · · ∪ Y ′

ℓ] and ξ′ := ξ + µ1 + · · · + µℓ. The
equivalence of the instances (G, ξ) and (G′, ξ′) of Π then immediately follows
from the safety of the protrusion replacement Rule 3.6.

With the lemmas at hand we can now prove the main theorem of this section.

Proof of Theorem 4.1. Given an instance (G, ξ) of Π with G ∈ K, we calculate
a 2d-approximate modulator S using Lemma 4.2. Using the algorithm outlined
in the proof of Lemma 4.6, we compute the decomposition Y0 ⊎ Y1 ⊎ · · · ⊎ Yℓ.
Each cluster Yi, 1 6 i 6 ℓ, forms a protrusion with boundary size |N(Yi)| 6
2d+1 + 2f(2d) =: h and treedepth (and thus treewidth) at most d.

Applying Lemma 4.7 now yields an equivalent instance (G′, ξ′) with |V (G′)| =

|Y0|+
∑ℓ

i=1 |Y
′
i | vertices, where Y

′
i denote the clusters obtained through applica-

tions of the reduction rule. This quantity is at most O(|S|)+ ℓ ·ρ(d+h, d+h) =
O(|S|) by Lemma 4.6 (3). As G′ is an induced subgraph of G, the above implies
that |V (G′)|+ |E(G′)| = O(|S|) by the degeneracy of G.

Finally, note that if the class K in the theorem is hereditary (which will be
the case of our applications of Theorem 4.1), it also holds G′ ∈ K.

4.1. Extension to larger graph classes

We can extend our result to classes of graphs that are nowhere dense, which
present a wider framework than classes of bounded expansion.

De�nition 4.8 (Nowhere dense [31, 32]). A graph class K is nowhere dense if
for all r ∈ N0 it holds that ω(K▽ r) <∞.

In the above de�nition we use the natural extension of ω to classes of graphs via
ω(K) = supG∈K ω(G). Note that nowhere dense classes are closed under taking
shallow minors in the sense that K▽ r is nowhere dense if K is, albeit with a
di�erent bound on the clique size of r-shallow minors.

We claim the following kernelization result for nowhere dense classes, which
in particular applies to all problems listed below in Section 5.

22

Theorem 4.9. Let a class K be nowhere dense and let d ∈ N0 be a constant.
Let Π ∈ P. There exists an algorithm that takes as input (G, ξ) ∈ K×N0 and,
in time O(|G|1+ε) for every ε > 0, outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(|S|1+ε), where S is an optimal treedepth-d modulator of G.

Here we use the nowhere dense variant of Lemma 4.2 to obtain an approximate
treedepth modulator in almost linear time. The proof of 4.9 follows analogously
to the proof of 4.1, while replacing Lemma 4.3 with Lemma 4.11 (see below)
and using the following property of nowhere dense classes:

Proposition 4.10 ([7], also [6, Section 5.4]). Let G be a nowhere dense graph
class. Then for every α > 0 and every r ∈ N0 there exists nα,r ∈ N0 such that
for every G ∈ G with |G| > nα,r it holds that ∇r(G) 6 |G|α.

We need additional notation. For a graph class G and an integer p we let
G6p := {H ∈ G | |H| 6 p} denote those graphs of G which have at most p
vertices. We shortly write G6p for (G▽ 0)6p.

Lemma 4.11. Let G = (X,Y,E) be a bipartite graph, and p > ∇1

(
G6|X|2

)
.

Then there are at most

1. 2p · |X| vertices in Y with degree greater than ω(G▽ 1); and

2. (2p)ω(G▽ 1) · |X| subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

Proof. We construct a sequence of graphs G0 := G,G1, . . . , Gℓ in the same
way as in the proof of Lemma 4.3. Recall that Gi ∈ G▽ 1 for 1 6 i 6 ℓ,
and so ω(Gℓ[X]) 6 ω(G▽ 1), in particular. Furthermore, since every step i of
the sequence adds an edge to Gi[X], we have ℓ < |X|2/2 and, consequently,
Gℓ[X] results by contracting at most |X|2/2 vertices from Y and so Gℓ[X] ∈
G6|X|2 ▽ 1. Then Gℓ[X] is actually 2p-degenerate and the �rst claim follows in
exactly the same way as in 4.3.

For the second claim, consider again the set Y ′ = Y ∩V (Gℓ). The neighbor-
hood of every vertex v ∈ Y ′ induces a clique in Gℓ[X], as in Lemma 4.3. We
additionally need a strengthening of Proposition 2.13:

Assume a graph H and v ∈ V (H) of degree d. Then the number of cliques in

H containing v is clearly at most
∑ω(H)−1

i=1

(
d
i

)
6 dω(H)−1. If H is d-degenerate,

the overall number of cliques in H is thus at most dω(H)−1 · |H|. In our case
of H = Gℓ[X], there are at most (2p)ω(G▽ 1)−1 · |X| possible cliques in Gℓ[X].
This quantity accounts for all possible distinct neighborhoods of vertices of Y ′

in X, and summing with at most ℓ 6 2p · |X| neighborhoods of the vertices of
Y \ V (Gℓ) we get (with a large margin) the bound in the second claim.

The following two corollaries are analogues of Corollaries 4.4 and 4.5 and will
be used in a similar fashion.

23

Corollary 4.12. Let K be a nowhere dense graph class, and �x any ε > 0 and
δ ∈ N0. Let q = ω(K▽(δ + 1)) < ∞. There exists n0 ∈ N0, depending on K
and ε, δ, such that the following holds for every G ∈ K and S ⊆ V (G), |S| > n0:
If C1, . . . , Cs are disjoint connected subgraphs of G−S satisfying diam(Ci) 6 δ
and |NS(Ci)| > q for i = 1, . . . , s, then s 6 |S|1+ε.

Proof. We construct an auxiliary bipartite graph Ḡ with partite sets S and
Y = {C1, . . . , Cs}. There is an edge between Ci and x ∈ S i� x ∈ NS(Ci). As
in Corollary 4.4, we know that Ḡ is a depth-δ shallow minor of G with branch
sets Ci, 1 6 i 6 s, and, for any F ∈ Ḡ▽ 1, it is moreover F ∈ G▽(δ + 1).
In particular, ω(Ḡ▽ 1) 6 ω(G▽(δ + 1)) 6 q. Though, we will also need the
following small re�nement of the previous fact:

Clearly, there exists a connected subgraph C ′
i ⊆ Ci such that NS(C

′
i) =

NS(Ci), diam(C ′
i) 6 2δ and |C ′

i| 6 diam(Ci)·|NS(Ci)|+1 < 2δ|S|�simply take
a vertex w ∈ V (Ci) together with shortest paths from w to selected neighbors
of NS(Ci) in Ci. Hence it holds for any F ∈ Ḡ6|S|2 ▽ 1 that F ∈ G6m ▽(2δ+1)
where m = |S|2 · 2δ|S| = 2δ|S|3.

Then, using also Proposition 4.10, ∇1

(
Ḡ6|S|2

)
6 ∇2δ+1

(
G6m

)
6 mα for

any α > 0 and all su�ciently large |G| and m. We choose α = ε/4. By the �rst
claim of Lemma 4.11, for p = mα, we get that

s 6 2p|S| = 2
(
2δ|S|3

)ε/4
· |S| < |S|1+ε

whenever |S| is su�ciently large.

Corollary 4.13. Let K be a nowhere dense graph class, and �x any ε > 0 and
δ ∈ N0. There exists n0 ∈ N0, depending on K and ε, δ, such that for every
G ∈ K and S ⊆ V (G), |S| > n0, the following holds: If C1, . . . , Ct are sets of
connected components of G− S such that

1. for all C,C ′ ∈
⋃

i Ci it holds that C,C ′ ∈ Cj for some j if and only if
NS(C) = NS(C

′), and

2. for all C ∈
⋃

i Ci, diam(C) 6 δ,

then t 6 |S|1+ε.

Proof. Let q = ω(K▽(δ + 1)) < ∞. As in the proof of Corollary 4.12, we
construct a bipartite graph Ḡ with partite sets S and Y = {C1, . . . , Cr}, where
the vertices Cj , 1 6 j 6 r, represent the connected components in

⋃
i Ci and Cj

has an edge to x ∈ S i� x ∈ NS(Cj). As before, it holds for any F ∈ Ḡ6|S|2 ▽ 1

that F ∈ G6m ▽(2δ + 1) where m = 2δ|S|3, and consequently ∇1

(
Ḡ6|S|2

)
6

∇2δ+1

(
G6m

)
6 mα for any α > 0 and all su�ciently large |G| and m.

We now choose α = ε/(4q) and apply the second claim of Lemma 4.11;

t 6 |{S′ ⊆ S | ∃Ci ∈ Y : N(Ci) = S′}|

6 (2mα)ω(Ḡ▽ 1) · |S| 6 2qmαq · |S|

= 2qmε/4 · |S| = 2q(2δ)ε/4|S|3ε/4 · |S| < |S|1+ε

24

whenever |S| is su�ciently large.

We are now ready to prove the theorem. First, the following generalization of
Lemma 4.6 follows easily using the above two corollaries.

Lemma 4.14. Let K be a nowhere dense graph class, and �x any ε > 0 and
d ∈ N0 (d a constant). Let q = ω(K▽ 2d) < ∞. Assume any G ∈ G and
S ⊆ V (G) a set of vertices such that td(G−S) 6 d. There is an algorithm that
partitions V (G) in time linear in |G| into sets Y0 ⊎ Y1 ⊎ · · · ⊎ Yℓ such that the
following holds:

1. S ⊆ Y0 and |Y0| = O(|S|1+ε);

2. for 1 6 i 6 ℓ, Yi induces a set of connected components of G − Y0 that
have the same neighborhood in Y0 of size at most 2d+1 + q; and

3. ℓ 6 O(|S|1+ε).

Proof. We use the same algorithm as in the proof of Lemma 4.6; setting the size
of a large neighborhood to q+1 in accordance with the bound in Corollary 4.12.
This proves the �rst two claims, provided |S| is su�ciently large. The third claim
then follows from the conclusion of Corollary 4.13. If, on the other hand, |S|
is bounded from above by a constant, then the claims follow from any trivial
estimates; e.g., s 6 |S|2 in place of Corollary 4.12 and t 6 |S|q+1 in place of
Corollary 4.13.

Proof of Theorem 4.9. The proof now proceeds in exactly the same way as that
of Theorem 4.1.

5. FII and Structural Parameterization

Theorems 4.1 and 4.9, developed in the previous section, allow us to prove linear-
kernelization results for many graph problems on classes of bounded expansion,
and nearly-linear-kernelization results on nowhere dense graph classes, when the
parameter is the size of a modulator to constant treedepth. Let us remind the
reader that Theorems 4.1 and 4.9 apply to problems in the class P, where P

denotes the set of all graph problems that have FII on general graphs or, for
each p ∈ N0, in the class of graphs of treedepth at most p. In this section we will
present several classes of such problems, while postponing two more involved
problems for Section 6.

Firstly, there is the large class of problems which have FII on general graphs.
For these problems we immediately get the following:

Corollary 5.1. The following graph problems have �nite integer index, and
hence linear (O(s)) kernels in any hereditary graph class of bounded expansion,
when the parameter is the size s of a modulator to constant treedepth:

25

Dominating Set, r-Dominating Set, Efficient Dominating Set,
Connected Dominating Set, Vertex Cover, Hamiltonian Path,
Hamiltonian Cycle, Connected Vertex Cover, Independent Set,
Feedback Vertex Set, Edge Dominating Set, Induced Match-
ing, Chordal Vertex Deletion, Odd Cycle Transversal, In-
duced d-Degree Subgraph, Min Leaf Spanning Tree, Max Full
Degree Spanning Tree.

Furthermore, under the same parameter s the listed problems admit kernels of
near-linear size O(s1+ε) for every ε > 0 in any hereditary nowhere dense graph
class.

For a more comprehensive list of problems that have FII in general graphs (and
hence fall under the purview of Theorems 4.1 and 4.9), see [1].

The second class of problems are those which do not have FII in general
graphs (see [33]), but only when restricted to graphs of bounded treedepth.
Here we present four such problems.

Lemma 5.2. Let D be a graph class of bounded treedepth. Then the problems
Longest Path, Longest Cycle, Exact s, t-Path, and Exact Cycle have
FII in D.

Proof. Let Π be any one of the mentioned problems, and let d, t be constants
such that all graphs in D have treedepth 6 d. Consider the class Gt of all
t-boundaried graphs, and let T = {0, 1, . . . , t}.

We de�ne a con�guration of Π with respect to Gt as a multiset

C = {(s1, d1, t1), . . . , (sp, dp, tp)}

of triples from (T ×N0 × T). We say a t-boundaried graph G̃ ∈ Gt satis�es the
con�guration C if there exists a set of (distinct) paths P1, . . . , Pp in G such that

• si, ti can only be endvertices of Pi, V (Pi)∩ bd(G) ⊆ {si, ti}, and |Pi| = di,
for 1 6 i 6 p,

• V (Pi) ∩ V (Pj) ⊆ bd(G) for 1 6 i < j 6 p, and

• V (Pi) ∩ V (Pj) ∩ V (Pk) = ∅ for 1 6 i < j < k 6 p.

Note that, for simplicity, we identify the boundary vertices in bd(G) with their
labels 1, . . . , t from T . Moreover, si, ti can take the value 0 which is not contained
in bd(G): semantically these tuples describe paths which intersect the boundary
of G at only one or no vertex. Another special case are tuples with si = ti
and d = 0: those describe single vertices of the boundary. In short, a graph
satis�es a con�guration if it contains internally non-intersecting paths of length
and endvertices prescribed by the tuples of the con�guration, and no three of
the paths are prescribed to have the same endvertex (hence some con�gurations
are not satis�able at all).

26

The signature σ[G̃] of a graph G̃ ∈ Gt is a function from the con�gurations

into {0, 1} where σ[G̃](C) = 1 i� G̃ satis�es C. We de�ne:

G̃1 ≃σ G̃2 ⇐⇒ σ[G̃1] ≡ σ[G̃2] for G̃1, G̃2 ∈ Gt.

We claim that the equivalence relation ≃σ is a re�nement of ≡Π,t. We provide
only a sketch for Π =Longest Path, the proofs for the other problems work
analogously. To this end we assume the contrary, that σ[G̃1] ≡ σ[G̃2] while

G̃1 6≡t G̃2. Up to symmetry, this means that for all integers c there exists a
graph G̃3 ∈ Gt such that (G̃1 ⊕ G̃3, ℓ) ∈ Π but (G̃2 ⊕ G̃3, ℓ+ c) 6∈ Π. We choose

c = 0 and show the contradiction. Thus the graph G̃1 ⊕ G̃3 contains a path P
of length ℓ but G̃2 ⊕ G̃3 does not.

Using the implicit order given through the vertex order of P we sort the
subpaths of P contained in P∩G1 and so obtain a sequence of paths P1, . . . , Pq ⊆
G1, each with at most two vertices � the ends, in bd(G1). By identifying each
subpath Pi with the tuple (si, di, ti) where di = |Pi| and si is the label of the
start of Pi in bd(G1) (or 0 if si 6∈ bd(G1)) and ti the label of the end of Pi

in bd(G1) (ditto), we obtain a con�guration CP = {(s1, d1, t1), . . . , (sq, dq, tq)}.

Now, G̃1 satis�es CP by the de�nition. Since σ[G̃1](CP) = σ[G̃2](CP), there

exists a set of paths Q1, . . . , Qq ⊆ G2 witnessing that G̃2 satis�es CP . But

then Q1, . . . , Qq together with P ∩G3 form a path Q of length ℓ in G̃2 ⊕ G̃3, a
contradiction.

Second, although ≃σ is generally of in�nite index, we claim that for ev-
ery t, only a �nite number of equivalence classes of ≃σ carry a representative
of treedepth 6 d, and hence ≃σ is of �nite index when restricted to graphs
from D. This is rather easy since graphs of treedepth 6 d do not contain paths
of length 2d − 1 or longer, and so a graph G̃ ∈ Dt can satisfy a con�guration
C = {(s1, d1, t1), . . . , (sp, dp, tp)} only if di ∈ {0, 1, . . . , 2d − 2} for 1 6 i 6 p.
Recall, each boundary vertex label occurs at most twice among s1, t1, . . . , sp, tp
in a satis�able con�guration. Hence only �nitely many such con�gurations C
can be satis�ed by a graph from Dt, and consequently, �nitely many function
values of σ[G̃] are nonzero for any G̃ ∈ Dt and the number of the nonempty
classes of ≃σ restricted to Dt is �nite.

For these problems we can, again using Theorems 4.1 and 4.9, conclude the
following:

Corollary 5.3. The problems Longest Path, Longest Cycle, Exact s, t-
Path, and Exact Path have linear kernels in any hereditary graph class of
bounded expansion, with the size s of a modulator to constant treedepth as the
parameter. Furthermore, under the same parameter s the listed problems admit
kernels of near-linear size O(s1+ε) for every ε > 0 in any hereditary and nowhere
dense graph class.

The third class of problems we consider are the problems associated with the
well known graph width measures branchwidth, pathwidth and treewidth. The
problems are de�ned as follows: TheBranchwidth (Pathwidth, Treewidth)

27

problem is, given a graph G and an integer k, to decide whether G has branch-
width (or pathwidth, treewidth respectively) at most k.

First thing about these problems is that they do not have FII on general
graphs. For pathwidth and treewidth this can be easily proved using the fact
that the complete graph on n vertices, Kn, has pathwidth and treewidth n− 1.

Proposition 5.4. The problems Pathwidth and Treewidth do not have FII
on the class of all graphs.

Proof. For n, t ∈ N0, n > t, let K̃n = (Kn, bd(Kn)) be the t-boundaried com-

plete graph with n vertices. We claim that K̃m 6≡pw,t K̃n and K̃m 6≡tw,t K̃n for
every m,n ∈ N0 with t < m < n. This shows that neither ≡pw,t nor ≡tw,t is
�nite and concludes the proof of the theorem.

Let H̃1 = K̃m and H̃2 = K̃n. Then, pw(K̃m ⊕ H̃1) = m− 1 and pw(K̃n ⊕

H̃1) = n− 1 but pw(K̃m ⊕ H̃2) = n− 1 and pw(K̃n ⊕ H̃2) = n− 1, as required.
The proof for ≡tw,t is identical.

A similar proof for Branchwidth can be obtained using the well-known
fact that the branchwidth of Kn is bw(Kn) = ⌈2/3 · n⌉.

The fact that none of the above problems has FII on general graphs motivates
us to take a closer look at restricted graph classes, which still provide us with
enough power to apply the protrusion replacement machinery. We start with
the relatively easy case of Branchwidth, and postpone the, signi�cantly more
di�cult, problems Pathwidth and Treewidth to Section 6.

Lemma 5.5. Let B be a graph class of bounded branchwidth. Then Branch-
width has FII in B.

Proof. Let Gt be the class of all t-boundaried graphs. Let Xw denote the set
of minor-minimal graphs of branchwidth greater than w (we will see that Xw

is �nite for every w but that is not important for now). That is, G ∈ Xw

if and only if the branchwidth of G is > w but every proper minor of G has
branchwidth 6 w; G is an �obstruction� to branchwidth w. We also say that,
for a graph G and A ⊆ V (G), a graph H is an A-restricted minor of G if H can
be obtained from G by only deleting vertices of A and contracting or deleting
edges with both ends in A. Let Xw

∗t ⊆ Gt be the �t-boundaried fragments� of
members of Xw, up to isomorphism, i.e.

F̃ ∈ Xw
∗t ⇐⇒ ∃F̃ ′ s.t. a bd(F̃)-restricted minor of F̃ ⊕ F̃ ′ belongs to Xw.

Let Π be the problem Branchwidth. The framework of the proof is very
similar to that of Lemma 5.2; members of Xw

∗t play the role of con�gurations
of Π and a signature is a subset of X∗t :=

⋃
w Xw

∗t. First, for a t-boundaried

graph G̃, the signature σ[G̃] is de�ned as the set of those F̃ ∈ X∗t such that F̃

is a rooted minor of G̃, meaning that F is a minor of G in such a way that the
boundary bd(F) = bd(G) is identical (not touched). It is routine to verify that

28

if, informally, the same fragments of �branchwidth obstructions� exist in both
G̃1 and G̃2, then they are equivalent. Formally;

if σ[G̃1] = σ[G̃2], then G̃1 ≡Π,t G̃2 with ∆Π,t(G̃1, G̃2) = 0.

Second, the equivalence relation ≃σ on Gt de�ned by the same signature σ
is generally of in�nite index, though, we claim that for every b, t, only a �nite
number of equivalence classes of ≃σ carry a representative of branchwidth 6 b.
This would follow if we proved that only �nitely many elements of X∗t have
branchwidth 6 b. The latter is a nontrivial statement, possible thanks to some
�ne properties of the �branchwidth obstructions� as proved in [34] (note that
although the paper deals with matroids, its results apply to graph branchwidth
obstructions as well since graph branchwidth equals branchwidth of the cycle
matroid of the graph [35]). Precisely, besides �niteness of Xw for each w, we
use [34, Lemma 4.1] which, in our terms, reads:

If H̃, H̃ ′ are k-boundaried graphs such that H̃ ⊕ H̃ ′ ∈ Xw and k 6 w,
then |E(H)| 6 g(k) or |E(H ′)| 6 g(k), where g(k) = (6k−1 − 1)/5.

Assume now F̃ ∈ X∗t such that the underlying graph F is of branchwidth b,
and let w0 = b+g(t)+

(
t
2

)
. Either, F̃ ∈

⋃
w<w0

Xw
∗t which is a �nite set, or there is

F̃ ′ and a bd(F̃)-restricted minor F1 of F̃ ⊕ F̃ ′ such that F1 ∈ Xw where w > w0.

Note that, in particular, the branchwidth of F̃ ⊕ F̃ ′ is greater than w, and so
the branchwidth of F is greater than w−|E(F ′)| since branchwidth drops by at
most one when deleting or contracting a single edge. If |E(F ′)| 6 g(t)+

(
t
2

)
, then

the branchwidth of F is greater than w−|E(F ′)| > b+g(t)+
(
t
2

)
−g(t)−

(
t
2

)
= b,

a contradiction. Hence, |E(F ′)| > g(t) +
(
t
2

)
. Let F1 = H̃1 ⊕ H̃ ′

1 such that H̃1

is a rooted minor of F̃ and H̃ ′
1 is a rooted minor of F̃ ′. Since F1 is a bd(F̃)-

restricted minor of F̃ ⊕ F̃ ′ (meaning that one is allowed to contract or delete

only edges with both ends in bd(F̃)), it holds |E(F̃ ⊕ F̃ ′)| − |E(F1)| 6
(
t
2

)
and

so |E(F ′)| − |E(H ′
1)| 6

(
t
2

)
. Consequently, |E(H ′

1)| > g(t). The boundary of

H̃ ′
1 is of size k 6 t, and so [34, Lemma 4.1] can be applied to F1. Therefore, we

have |E(H1)| 6 g(k) 6 g(t) and |E(F)| 6 g(t) +
(
t
2

)
, and there are only �nitely

many such t-boundaried graphs without isolated vertices in X∗t.

Since branchwidth is bounded if, and only if, treewidth is bounded, and by
Proposition 2.12e, we can now apply Theorems 4.1 and 4.9 to conclude that:

Corollary 5.6. The problem Branchwidth has a linear kernel in any heredi-
tary graph class of bounded expansion, with the size s of a modulator to constant
treedepth as the parameter. Furthermore, under the same parameter s the prob-
lem admits a kernel of near-linear size O(s1+ε) for every ε > 0 in any hereditary
and nowhere dense graph class.

Somehow surprisingly, it is not at all easy to extend the arguments of
Lemma 5.5 to the related problems Pathwidth and Treewidth, since we
do not have any direct analogue of the results of [34] for the other measures.

29

6. FII of Pathwidth and Treewidth

We dedicate this section to proving that the problems Pathwidth andTreewidth
have FII on graphs of bounded pathwidth and treewidth, respectively. Com-
pared to the path and cycle problems treated in Lemma 5.2 and the Branch-
width problem treated in Lemma 5.5, the proofs here are much more involved
and use the notion of characteristics of path decompositions and tree decom-
positions, which have been introduced in [36]. Because the de�nition of these
characteristics is quite technical and the properties we require have already been
shown in [36], we will not provide a formal de�nition. Instead, we will only state
the required properties and refer the reader to [36] for details and proofs.

The concept of a characteristic of a partial path decomposition of a graph�
or equivalently the characteristic of a path decomposition of a boundaried
graph�was introduced by Bodlaender and Kloks in [36, De�nition 4.4]. Infor-

mally, the characteristic of a path decomposition P of G̃ compactly represents
all the information required to compute, for any H̃, the ways P can be extended
into a path decomposition of the graph G̃ ⊕ H̃. This information can then be
used to compute the pathwidth of the graph G̃⊕H̃. Importantly, the number of
characteristics of path decompositions of width at most w of any t-boundaried
graph only depends on t and w, but not on the the graph itself.

Proposition 6.1 ([36, Lemma 4.1]). Let G̃ be a t-boundaried graph and w an
integer. Then the number of characteristics of path decompositions of width at
most w of G̃ is bounded by a function of t and w.

For integer w, the full set of (path decomposition) characteristics of G̃ of width

at most w (as de�ned in [36, De�nition 4.6]), denoted by FSCPw(G̃), is the set

of all characteristics of path decompositions of G̃ of width at most w. We denote
by FSCP(G̃) the (possibly in�nite) set

⋃
w∈N0

FSCPw(G̃). Recall the de�nition
of the projection of a path-decomposition, denoted by |, from Section 2.2.

Proposition 6.2 ([36, Section 4.3]). Let H̃, G̃1 and G̃2 be t-boundaried graphs,

and let P be a path decomposition of G̃1 ⊕ H̃. If the (unique) characteristic of

P|G1 is in FSCP(G̃2), then there is a path decomposition of G̃2 ⊕ H̃ that has
the same width as P.

Proof sketch. Since the proof relies on an informal understanding of the algo-
rithm described in [36, Section 4.3], we will start with a brief description of
this algorithm. Given a graph G, an integer k, and a path decomposition P
of G with width l, the algorithm described in [36, Section 4.3] decides whether
G has a path decomposition of width at most k (and if so computes such a
path decomposition). The algorithm uses a standard dynamic programming
algorithm, as is the usual approach to solving problems on graphs of bounded
pathwidth. That is, the algorithm computes a set of records (which is called a
full set of characteristics in [36]) for each node of the path decomposition P in
a left to right manner, i.e., starting at the �left� endpoint of the path decom-
position, the algorithm computes such a full set of characteristics for each node

30

from a full set of characteristics of its left neighbor in P until such a full set of
characteristics is eventually computed for the �right� endpoint of P. For a node
p of P let G(p) be the subgraph of G induced by all the vertices contained in
bags of P that are to the left of p in P (including the bag of p itself). Then
the full set of characteristics for p, denoted by F (p), contains one characteristic
for every (partial) path decomposition of G(p) of width at most k. Informally,
a characteristic is a compact representation of a partial path decomposition of
G(p) that contains su�cient information such that the algorithm will later be
able to decide how the partial path decomposition represented by the charac-
teristic can be extended to a partial path decomposition of G(p′) for the right
neighbor p′ of p in P. The crucial point we will employ for our proof below is
that the computations made after a certain bag p of P to a characteristic in
F (p) only depends on the characteristic itself and the set of bags coming after
and including p in P but not on the set of bags coming before p. This is the
usual behavior of a dynamic programming algorithm on a path decomposition
and the algorithm given in [36] is no exception to that rule.

For the interested reader we will now give a brief and informal description
of the characteristics de�ned in [36, De�nition 4.4]. Let P ′ be a partial path
decomposition of G(p) and let S be the set of vertices contained in the bag of
p. The interval model of P ′ (as de�ned in [36, De�nition 3.3]) is the sequence
(Z1, . . . , Zq) of bags obtained from the projection of P ′ onto S after deleting
consecutive bags having the same content. Then a characteristic for P ′ as
de�ned in [36, De�nition 4.4] consists of the interval model of P ′ together with
the �typical list of integers� for each bag of the interval model. Here, the �typical
list of integers� for a bag Zi of the interval model is a compact representation of
the list of integers given by the sizes of the bags in P ′, whose intersection with
S is equal to Zi. For our argumentation given below the exact de�nition of the
�typical list of integers� is not important, i.e., for us it is only important that
the characteristic of P ′ is independent of the graph G(p) \S in the sense that it
contains no information about particular vertices or edges in G(p) \ S but only
about the number of these vertices.

We are now ready to complete the proof of the proposition. For i ∈ {1, 2},

let Pi be any path decomposition of G̃i such that the content of the last bag of
Pi is bd(Gi) and let P3 be any path decomposition of H̃ such that the content
of the �rst bag of P3 is bd(H). Furthermore, for i ∈ {1, 2}, let Pi,3 be the path

decomposition of G̃i ⊕ H̃ obtained from Pi and P3 by appending the �rst bag
of P3 to the last bag of Pi, let pi,3 be the bag of Pi,3 that corresponds to the
last bag of Pi, and let li,3 be the last bag of Pi,3.

Now assume that we run the algorithm described in [36, Section 4.3] on the
path decomposition Pi,3 and let F (pi,3) and F (li,3) be the full set of character-
istics of partial path decompositions computed at the node pi,3 and the node
li,3, respectively, of width at most the width of P.

Then, by the de�nition of a full set of characteristics, we obtain that F (p1,3)
contains the characteristic of P|G1 and that F (l1,3) contains the characteristic
of P. Moreover, the characteristic of P in F (l1,3) is generated by the algorithm

31

from the characteristic of P|G1 in F (p1,3). By the assumptions of the Propo-

sition, we have that the characteristic of P|G1 is contained in FSCP(G̃2) and
hence also in F (p2,3). Hence, because the path decompositions P1,3 and P2,3 are
identical with respect to everything behind the nodes p1,3 and p2,3, respectively,
we obtain that the characteristic of P is also contained in F (l2,3), witnessing

that G̃2 ⊕ H̃ has a path decomposition with the same width as P.

The above Proposition illuminates the usefulness of characteristics to show FII
for the Pathwidth problem. In particular, it follows that if FSCP(G̃1) =

FSCP(G̃2), then G̃1 ≡pw,t G̃2, for all t-boundaried graphs G̃1 and G̃2. Hence,
the full set of characteristics of a boundaried graph fully describes its equiva-
lence class with respect to ≡pw,t. However, as mentioned above the full set of
characteristics of a boundaried graph can be in�nite. We will later show that
if we consider FII with respect to a class C of graphs of bounded pathwidth,
then it is su�cient to consider the set FSCP(pw(G̃)+t)(G̃) instead of FSCP(G̃)

for every t-boundaried graph G̃ = (G, bd(G)) with G ∈ C. Because pw(G̃) is
bounded by a constant, the set of characteristics FSCP(pw(G̃)+t) is �nite due to

Proposition 6.1.
In the rest of this subsection we introduce characteristics for tree decompo-

sitions of boundaried graphs. All the explanations for characteristics of path
decompositions transfer to characteristics of tree decompositions and we will not
repeat them here. In [36, De�nition 5.9] the authors de�ne the characteristic of
a tree decomposition of a boundaried graph. They show the following:

Proposition 6.3 ([36, Remark below Lemma 5.3]). Let G̃ be a t-boundaried
graph and w an integer. Then the number of characteristics of tree decomposi-
tions of width at most w of G̃ is bounded by a function of t and w.

For an integer w, the full set of (tree decomposition) characteristics of G̃ of

width at most w (as de�ned in [36, De�nition 5.11]), denoted by FSCTw(G̃),

is the set of all characteristics of tree decompositions of G̃ of width at most w.
We denote by FSCT(G̃) the (possibly in�nite) set

⋃
w∈N0

FSCTw(G̃).

Proposition 6.4 ([36, Section 5.3]). Let H̃, G̃1 and G̃2 be t-boundaried graphs,

and let T be a tree decomposition of G̃1 ⊕ H̃. If the (unique) characteristic of

P|G1 is in FSCT(G̃2), then there is a tree decomposition of G̃2 ⊕ H̃ that has
the same width as T .

6.1. Pathwidth has FII on graphs of small pathwidth

In this section we will make use of characteristics of path decompositions of
boundaried graphs to show FII for the Pathwidth problem in a class of graphs
of bounded pathwidth. In particular, we will show that the equivalence relation
≃pw,t de�ned by

G̃1 ≃pw,t G̃2 if and only if FSCP(pw(G1)+t)(G̃1) = FSCP(pw(G2)+t)(G̃2)

32

is a re�nement of the equivalence relation ≡pw,t. The following lemma, which
we believe to be interesting in its own right, is central to our proof.

Lemma 6.5. Let G̃1, G̃2 be two t-boundaried graphs, G = G̃1 ⊕ G̃2, and
P = (P, χ) be a path decomposition of G. Then there is a path decomposi-
tion P ′ = (P ′, χ′) of G of the same width as P such that P ′|G1 has width at
most pw(G1) + t.

Proof. If P|G1 has width at most pw(G1) + t, then P ′ := P is the required
path decomposition of G. Otherwise, there is a bag p ∈ V (P) such that |χ(p)∩
V (G1)| > pw(G1) + t + 1, and we call such a bag p a bad bag of P. The
next claim shows that we can eliminate the bad bags of P one by one without
introducing new bad bags. Hence, we obtain the desired path decomposition P ′

from P by a repeated application of the following claim:

Claim. There is a path decomposition P ′′ = (P ′′, χ′′) of G of the same width
as P such that the set of bad bags of P ′′ is a proper subset of the set of bad bags
of P. Moreover, the bag p is no longer a bad bag of P ′′.

For a subgraph G′ of G and a bag p′ of P, let χG′(p′) be the set of vertices
χ(p)∩ V (G′) and let S be a minimum separator between χG1

(p) and bd(G1) in
the graph G. Since bd(G1) separates χG1

(p) from bd(G1) and is of cardinality at
most t, we obtain that |S| 6 t. Let W be the set of all vertices reachable from
χG1

(p) in G−S, and let PW = (PW , χW) be an optimal path decomposition of
G[W]. Then, because W ⊆ V (G1), it follows that the width of PW is at most
the pathwidth of G1.

To obtain the desired path decomposition P ′′, where p is not a bad bag
anymore, we delete all vertices of W from the bags of P and, instead, insert
the path decomposition PW between p and an arbitrary neighbor of p in P . To
ensure Property P3 of a path decomposition for the vertices in χ(p) \ V (G1),
we add χ(p) \ V (G1) to every bag of PW in P ′′. Furthermore, to cover the
edges between S and W in G we also need to add S to p and every bag of
PW . Observe that after applying the above modi�cations the size of any bag
that originated from PW is at most pw(G1) + 1 + t + |χ(p) \ V (G1)|, which is
at most the size of the original bad bag p and hence bounded by the width of
P plus one. Moreover, the sizes of all bags that originated from P did so far
only decrease and in particular the intersection of the bad bag p with G1 is now
exactly S. Since in the following we will do no further modi�cations to the bags
originating from PW and the bag p, we already obtain that the size of those
bags is at most the width of P and p is not a bad bag anymore.

Because χ(p) does not necessarily contain all vertices of S, this could poten-
tially violate the Property P3 of a path decomposition. To get around this we
will add a vertex s ∈ S to every bag p′ ∈ V (P) in between p and any bag con-
taining s, i.e., we complete P ′′ into a valid path decomposition in a minimal way.
This completes the construction of P ′′. As stated in the previous paragraph,
neither p nor any bag originating from PW is a bad bag and moreover the sizes
of these bags is at most the width of P. Because all the vertices that we added

33

or removed from bags originating from P are contained in G1, it su�ces to show
that we never added more vertices to these bags than we removed. Suppose not,
and let p2 (not equal to p and originating from P) be a bag where we add more
vertices than we remove. It follows that there is a bag p1 ∈ V (P) such that p2
lies on the path from p1 to p in P and |R| < |S′|, where R = χ(p2) ∩W and
S′ = (χ(p1)\χ(p2))∩S. Note that in P|G1[W ∪S′] we have χG1[W∪S′](p2) = R.
Because of Proposition 2.6 applied to P|G1[W ∪ S′], R separates χG1[W∪S′](p)
from S′ in G1[W ∪ S′].

We claim that S′′ = (S \ S′)∪R is a separator between χG1
(p) and bd(G1).

Since |S′′| < |S|, this would contradict the minimality of S. Let Π be a path
between χG1

(p) and bd(G1). Since χG1
(p) ⊆ W ∪ S, Π has to intersect S in

order to reach bd(G1). Let s be the �rst vertex of Π which intersects S (note
that the subpath from χG1

(p) to s of Π lies entirely in W). Either s ∈ S \ S′

and therefore s ∈ S′′, or s ∈ S′ and the subpath from χG1
(p) to s of Π lies

entirely in W ∪ S′, and therefore Π has to intersect R ⊆ S′′ in order to reach s.
It follows that S′′ is indeed a separator between χG1

(p) and bd(G1), completing
the proof.

We note here that the bound for the pathwidth given in the above lemma is
essentially tight. To see this, consider the complete bipartite graph G that has t
vertices on one side (side A) and t+1 vertices on the other side (side B). Let G̃1

be the graph G[A] with boundary A, let G̃2 be the graph G with boundary A,

and let P be any optimal path decomposition of G̃1⊕G̃2 = G. Then, because G
is a complete bipartite graph, whose smaller side is A, it holds that P contains
a bag containing A. Consequently, pw(P|G1) = t− 1 while pw(G1) = 0.

Corollary 6.6. Let G̃1 and G̃2 be two t-boundaried graphs and G = G̃1 ⊕ G̃2.
Then there is an optimal path decomposition P of G such that P|G1 has width
at most pw(G1) + t.

The following lemma shows that ≃pw,t is a re�nement of ≡pw,t.

Lemma 6.7. Let G̃1 and G̃2 be two t-boundaried graphs. If G̃1 ≃pw,t G̃2, then

G̃1 ≡pw,t G̃2.

Proof. Let G̃1 and G̃2 be two t-boundaried graphs such that G̃1 ≃pw,t G̃2

and hence FSCP(pw(G1)+t)(G̃1) = FSCP(pw(G2)+t)(G̃2). We show that

pw(G̃1 ⊕ H̃) 6 ξ if and only if pw(G̃2 ⊕ H̃) 6 ξ for any t-boundaried graph

H̃ and any ξ ∈ N0. This implies G̃1 ≡pw,t G̃2 with ∆pw,t(G̃1, G̃2) = 0.

Let H̃ and ξ be such that pw(G̃1 ⊕ H̃) 6 ξ. It follows from Corollary 6.6

that there is a path decomposition P = (P, χ) of G̃1 ⊕ H̃ of width at most ξ
such that P|G1 is a path decomposition of G1 of width at most pw(G1) + t.

Hence, there is a characteristic in FSCP(pw(G1)+t)(G̃1) corresponding to P|G1.

Since FSCP(pw(G1)+t)(G̃1) = FSCP(pw(G2)+t)(G̃2), we have that G̃2 has the
same characteristic. It now follows from Proposition 6.2 that there is a path
decomposition of G̃2⊕H̃ that has the same width as P and hence pw(G̃2⊕H̃) 6

34

ξ, as required. Because the reverse direction is analogous, this concludes the
proof of the lemma.

We are now ready to show the main result of this subsection, i.e., that the
Pathwidth problem has FII on graphs of bounded pathwidth.

Theorem 6.8. For w ∈ N0, let PWw be a class of graphs that have pathwidth
at most w. Then, the problem Pathwidth has FII in PWw.

Proof. Because of Proposition 6.1 the number of equivalence classes of ≃pw,t

among graphs from PWw is �nite for every t ∈ N0. Furthermore, because of
Lemma 6.7 it holds that ≃pw,t is a re�nement of ≡pw,t, which concludes the
proof of the theorem.

As bounded treedepth implies bounded pathwidth (see Proposition 2.12), using
Theorems 4.1 and 4.9 we can conclude the following:

Corollary 6.9. Pathwidth has a linear kernel in any graph class of bounded
expansion, with the size s of a modulator to constant treedepth as the parameter.
Furthermore, under the same parameter s it admits a kernel of near-linear size
O(s1+ε) for every ε > 0 in any hereditary and nowhere dense graph class.

6.2. Treewidth has FII on graphs of small treewidth

As the main ideas of the proof for treewidth are the same as for pathwidth (see
the previous section), we present in detail only the �rst step, Lemma 6.10, which
is di�erent from former Lemma 6.5.

Lemma 6.10. Let G̃1 and G̃2 be two t-boundaried graphs, G = G̃1 ⊕ G̃2, and
T = (T, χ) be a tree decomposition of G. Then there is a tree decomposition
T ′ = (T ′, χ′) of G with the same width as T such that T ′|G1 has width at most
tw(G1) + t.

Proof. If T |G1 has width at most tw(G1)+ t, then T ′ := T is the required tree
decomposition of G. Hence, there is a bag p ∈ V (T) such that |χ(p)∩V (G1)| >
tw(G1)+ t+1. We call such a bag p a bad bag of T . The next claim shows that
we can eliminate the bad bags of T one by one without introducing new bad
bags. Hence, we obtain the desired tree decomposition T ′ from T by a repeated
application of the following claim.

Claim. There is a tree decomposition T ′′ = (T ′′, χ′′) of G of the same width as
T such that the set of bad bags of T ′′ is a proper subset of the set of bad bags of
T . Moreover, the bag p is no longer a bad bag of T ′′.

Let χG1
(p) be the set of vertices in χ(p) ∩ V (G1) and let S be a minimum

separator between χG1
(p) and bd(G1) in the graph G. Then, because bd(G1) is

a separator between χG1
(p) and bd(G1) of cardinality at most t, we obtain that

|S| 6 t. Let W be the set of all vertices reachable from χG1
(p) in G − S, and

let TW = (TW , χW) be an optimal tree decomposition of G[W]. Then, because
W ⊆ V (G1), it follows that the width TW is at most the treewidth of G1.

35

To obtain the desired tree decomposition T ′′, where p is not a bad bag
anymore, we delete all vertices of W from the bags of T and, instead, insert the
tree decomposition TW by connecting any node of TW via an edge to p in T .
However, to cover the edges between S and W in G we also need to add S to p
and every bag of TW . Because χ(p) does not necessarily contain all vertices of
S, this could potentially violate the property P3 of a tree decomposition. To get
around this we will add a vertex s ∈ S to every bag p′ ∈ V (T) that is on a path
between p and any bag containing s in T , i.e., we complete T ′′ into a valid tree
decomposition in a minimal way. This completes the construction of T ′′ and it
remains to argue that adding these vertices from S does not increase the width
of any bag in T . Suppose it does, and let p2 be a bag where we add more vertices
than we remove. Let S′ ⊆ S be the set of added vertices and R = χ(p2) ∩W
the set of removed vertices. It follows that |R| < |S′| and the bag p2 separates
in T the set of bags containing a vertex from S′ from the bag p. Note that in
T |G1[W ∪ S′] we have χG1[W∪S′](p2) = R. Because of Proposition 2.6 applied
to T |G1[W ∪ S′], R separates χG1[W∪S′](p) from S′ in G1[W ∪ S′].

We claim that S′′ = (S \ S′)∪R is a separator between χG1
(p) and bd(G1).

Since |S′′| < |S|, this would contradict the minimality of S. Let Π be a path
between χG1

(p) and bd(G1). Since χG1
(p) ⊆ W ∪ S, Π has to intersect S in

order to reach bd(G1). Let s be the �rst vertex of Π which intersects S (note
that the subpath from χG1

(p) to s of Π lies entirely in W). Either s ∈ S \ S′

and therefore s ∈ S′′, or s ∈ S′ and the subpath from χG1
(p) to s of Π lies

entirely in W ∪ S′, and therefore Π has to intersect R ⊆ S′′ in order to reach s.
It follows that S′′ is indeed a separator between χG1

(p) and bd(G1), completing
the proof.

Corollary 6.11. Let G̃1 and G̃2 be two t-boundaried graphs and G = G̃1 ⊕ G̃2.
Then there is an optimal tree decomposition T of G such that T |G1 has width
at most tw(G1) + t.

Employing a technical lemma analogous to Lemma 6.7, we obtain our main
result of the subsection.

Theorem 6.12. For w ∈ N0, let T Ww be a class of graphs that have treewidth
at most w. Then, the problem Treewidth has FII in T Ww.

Proof. The proof is analogous to the proof of Theorem 6.8.

Overall, we can conclude the section analogously to Corollary 6.9:

Corollary 6.13. Treewidth has a linear kernel in any graph class of bounded
expansion, with the size s of a modulator to constant treedepth as the parameter.
Furthermore, under the same parameter s it admits a kernel of near-linear size
O(s1+ε) for every ε > 0 in any hereditary and nowhere dense graph class.

36

7. Conclusions and Further Research

We have presented kernelization meta-results on graph classes of bounded ex-
pansion and on nowhere dense classes. More speci�cally, we have shown that all
problems with FII on graphs of bounded treedepth admit linear problem ker-
nels on graph classes of bounded expansion when parameterized by the size of
a modulator to constant treedepth. For nowhere dense classes, we have shown
that the kernels have almost-linear size.

The choice of our parameter (treedepth-modulator) is not arbitrary; as dis-
cussed in the introduction, e.g., a modulator to constant treewidth cannot yield
linear kernels for certain natural problems that one would like to include in the
framework. As argued before, this problem can be resolved only by choosing a
parameter that generally increases when subdividing edges. Treedepth, which
can be asymptotically characterized by absence of long paths as a subgraph, is
thus a very natural choice for our purpose.

It remains an open question whether polynomial kernels (under a suitable
weaker parameterization) exist for problems which are not invariant under edge
subdivisions, such as Hamiltonian Cycle. Furthermore, our framework is
general enough that it might apply to graph classes which are not part of the
sparse graph hierarchy. A meta-kernel result for a dense graph class would be
especially interesting. Recent work has shown that a linear kernel for classes of
bounded expansion and an almost linear kernel for nowhere dense graph classes
for Dominating Set exist when parameterized by the natural parameter [37].
This provides some hope that further problems admit such kernels since Domi-
nating Set has acted as a catalyst for a �urry of results before (in fact, it was
the problem that initiated the search for linear kernels on planar graphs).

Finally, it would be interesting to obtain a natural characterization of prob-
lems that have FII on graphs of bounded treedepth.

References

[1] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh,
D. M. Thilikos, (Meta) Kernelization, in: Proc. of 50th FOCS, IEEE Com-
puter Society, 2009, pp. 629�638.

[2] J. Guo, R. Niedermeier, Linear problem kernels for NP-hard problems on
planar graphs, in: Proc. of 34th ICALP, Vol. 4596 of LNCS, Springer, 2007,
pp. 375�386.

[3] J. Alber, M. R. Fellows, R. Niedermeier, Polynomial-time data reduction
for Dominating Set, J. ACM 51 (2004) 363�384.

[4] F. V. Fomin, D. Lokshtanov, S. Saurabh, D. M. Thilikos, Bidimensionality
and kernels, in: Proc. of 21st SODA, SIAM, 2010, pp. 503�510.

[5] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, S. Sikdar,
Linear kernels and single-exponential algorithms via protrusion decompo-
sitions, ACM Trans. Algorithms 12 (2) (2016) 21.

37

[6] J. Ne²et°il, P. Ossona de Mendez, Sparsity: Graphs, Structures, and Algo-
rithms, Vol. 28 of Algorithms and Combinatorics, Springer, 2012.

[7] J. Ne²et°il, P. Ossona de Mendez, Grad and classes with bounded expansion
I. Decompositions, Eur. J. Comb. 29 (3) (2008) 760�776.

[8] H. Dell, D. van Melkebeek, Satis�ability allows no nontrivial sparsi�cation
unless the polynomial-time hierarchy collapses, in: Proc. of 42nd STOC,
2010, pp. 251�260.

[9] M. R. Fellows, B. M. P. Jansen, F. A. Rosamond, Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational
complexity, Eur. J. Comb. 34 (3) (2013) 541�566.

[10] H. L. Bodlaender, B. M. P. Jansen, S. Kratsch, Kernel bounds for path and
cycle problems, in: Proc. of 6th IPEC, no. 7112 in LNCS, Springer, 2011,
pp. 145�158.

[11] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, On
cutwidth parameterized by vertex cover, Algorithmica 68 (4) (2014) 940�
953.

[12] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, S. Saurabh,
Graph layout problems parameterized by vertex cover, in: Proc. of 19th
ISAAC, Vol. 5369 of LNCS, Springer, 2008, pp. 294�305.

[13] J. Fiala, P. A. Golovach, J. Kratochvíl, Parameterized complexity of color-
ing problems: Treewidth versus vertex cover, in: Proc. of 6th TAMC, no.
5532 in LNCS, Springer, 2009, pp. 221�230.

[14] M. Doucha, J. Kratochvíl, Cluster vertex deletion: a parameterization be-
tween vertex cover and clique-width, in: Proc. of 37th MFCS, no. 7464 in
LNCS, Springer, 2012, pp. 348�359.

[15] R. Ganian, Twin-cover: Beyond vertex cover in parameterized algorithmics,
in: Proc. of 6th IPEC, no. 7112 in LNCS, Springer, 2011, pp. 259�271.

[16] F. V. Fomin, B. M. Jansen, M. Pilipczuk, Preprocessing subgraph and
minor problems: When does a small vertex cover help?, J. Comput. Syst.
Sci. 80 (2) (2014) 468�495.

[17] M. Dom, D. Lokshtanov, S. Saurabh, Incompressibility through colors and
IDs, in: Proc. of 36th ICALP, no. 5555 in LNCS, Springer, 2009, pp. 378�
389.

[18] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, On the
hardness of losing width, Theory Comput. Syst. 54 (1) (2014) 73�82.

[19] H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin, On problems
without polynomial kernels, J. Comput. Syst. Sci. 75 (8) (2009) 423�434.

38

[20] R. Diestel, Graph Theory, 4th Edition, Springer, Heidelberg, 2010.

[21] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer, 1999.

[22] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[23] J. Ne²et°il, P. Ossona de Mendez, D. R. Wood, Characterisations and ex-
amples of graph classes with bounded expansion, Eur. J. Comb. 33 (3)
(2012) 350�373.

[24] D. Wood, On the maximum number of cliques in a graph, Graphs Combin.
23 (2007) 337�352.

[25] F. V. Fomin, D. Lokshtanov, N. Misra, G. Philip, S. Saurabh, Hitting for-
bidden minors: Approximation and kernelization, in: Proc. of 28th STACS,
Vol. 9 of LIPIcs, Schloss Dagstuhl�Leibniz-Zentrum für Informatik, 2011,
pp. 189�200.

[26] F. V. Fomin, D. Lokshtanov, N. Misra, S. Saurabh, Planar F-deletion:
Approximation and optimal FPT algorithms, in: Proc. of 53rd FOCS, IEEE
Computer Society, 2012, pp. 470�479.

[27] B. Courcelle, The monadic second-order theory of graphs. I. Recognizable
sets of �nite graphs, Inform. Comput. 85 (1990) 12�75.

[28] J. Ne²et°il, P. Ossona de Mendez, Linear time low tree-width partitions
and algorithmic consequences, in: Proc. of 38th STOC, 2006, pp. 391�400.

[29] H. L. Bodlaender, T. Kloks, Better algorithms for the pathwidth and
treewidth of graphs, in: Proc. of 18th ICALP, Vol. 510 of LNCS, Springer,
1991, pp. 544�555.

[30] H. L. Bodlaender, A linear time algorithm for �nding tree-decompositions
of small treewidth, SIAM J. Comput. 25 (1996) 1305�1317.

[31] J. Ne²et°il, P. Ossona de Mendez, First order properties on nowhere dense
structures, J. Symb. Logic 75 (3) (2010) 868�887.

[32] J. Ne²et°il, P. Ossona de Mendez, On nowhere dense graphs, Eur. J. Comb.
32 (4) (2011) 600�617.

[33] B. de Fluiter, Algorithms for graphs of small treewidth, Ph.D. thesis,
Utrecht University (1997).

[34] J. F. Geelen, A. M. H. Gerards, N. Robertson, G. Whittle, On the excluded
minors for the matroids of branch-width k, J. Comb. Theory, Ser. B 88 (2)
(2003) 261�265.

[35] I. V. Hicks, N. B. M. Jr., The branchwidth of graphs and their cycle ma-
troids, J. Comb. Theory, Ser. B 97 (5) (2007) 681�692.

39

[36] H. L. Bodlaender, T. Kloks, E�cient and constructive algorithms for the
pathwidth and treewidth of graphs, J. Algorithms 21 (2) (1996) 358�402.

[37] P. G. Drange, M. S. Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov,
M. Pilipczuk, M. Pilipczuk, F. Reidl, F. S. Villaamil, S. Saurabh,
S. Siebertz, S. Sikdar, Kernelization and sparseness: the case of dominating
set, in: Proc. of 33rd STACS, Vol. 47 of LIPIcs, 2016, pp. 31:1�31:14.

40

8. Appendix

In this appendix, we formally de�ne some of the problems that we mention in
this paper.

Input: A graph G and a positive integer ℓ.
Problem: Does G contain a simple path of length at least ℓ?

Longest Path

Input: A graph G and a positive integer ℓ.
Problem: Does G contain a simple cycle of length at least ℓ?

Longest Cycle

Input: A graph G, two special vertices s, t ∈ V (G) and a positive
integer ℓ.

Problem: Is there a simple path in G from s to t of length exactly ℓ?

Exact s, t-Path

Input: A graph G and a positive integer ℓ.
Problem: Is there a simple cycle in G of length exactly ℓ?

Exact Cycle

Input: A graph G and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V (G) with at most ℓ vertices such

that G− S is a forest?

Feedback Vertex Set

Input: A graph G and a positive integer ℓ.
Problem: Is the treewidth of G at most ℓ?

Treewidth

Input: A graph G and a positive integer ℓ.
Problem: Is the pathwidth of G at most ℓ?

Pathwidth

41

Input: A graph G and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V (G) with at most ℓ vertices such

that the treewidth of G− S is at most t?

Treewidth-t Vertex Deletion

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V with at most ℓ vertices such that

for all u ∈ V \ S there exists v ∈ S such that uv ∈ E?

Dominating Set

If in addition, we require that G[S] is a connected graph then the problem is
called Connected Dominating Set.

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V with at most ℓ vertices such that

for all u ∈ V \ S there exists v ∈ S such that d(u, v) 6 r?

r-Dominating Set

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there an independent set S ⊆ V with at most ℓ vertices

such that for every u ∈ V \ S there exists exactly one v ∈ S
such that uv ∈ E?

Efficient Dominating Set

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there an edge set S ⊆ E of size at most ℓ such that for

every e ∈ E \ S there exists e′ ∈ S such that e and e′ share
an endpoint?

Edge Dominating Set

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there an edge set S ⊆ E of size at least ℓ such that S is a

matching and for all u, v ∈ V (S), if uv ∈ E then uv ∈ S?

Induced Matching

42

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V of size at most ℓ such that G−S

is chordal?

Chordal Vertex Deletion

Input: A graph G = (V,E) and a positive integer ℓ.
Problem: Is there a vertex set S ⊆ V of size at most ℓ such that G−S

does not contain any graph of the (�nite) family F as a
minor?

F-Minor-Free Deletion

43

