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Abstract 

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterized by facial, oral and 

digital abnormalities associated with a wide range of additional features (polycystic kidney disease, 

cerebral malformations and several other) to delineate a growing list of OFDS subtypes. The most 

frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a 

centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other 

ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has 

been greatly helped by the recent development of whole exome sequencing (WES). Here, we present 

all our published and unpublished results for WES in 24 OFDS cases. We identified causal variants in 

five new genes (C2CD3, TMEM107, INTU, KIAA0753, IFT57) and related the clinical spectrum of four 

genes in other ciliopathies (C5orf42, TMEM138, TMEM231, WDPCP) to OFDS. Mutations were also 

detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of 

centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterizing 

three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole 

elongation; the MKS module, a major component of the transition zone; and the CPLANE complex 

necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide 

heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the 

three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of 

these 3 main subtypes, a further classification could be based on the genotype. 
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INTRODUCTION 

 

Oral-facial-digital (OFD) syndromes are rare genetic disorders characterized by the association of 

abnormalities of the face (hypertelorism, low-set ears), oral cavity (lingual hamartoma, abnormal 

frenulae, lobulated tongue) and extremities (brachydactyly, polydactyly). OFD syndromes also 

comprise a broad range of additional features that initially led to the clinical delineation of 13 OFD 

subtypes with mainly OFDI (polycystic kidney disease, corpus callosum agenesis), OFDIV (tibial 

dysplasia), OFDVI (mesoaxial polydactyly, vermis hypoplasia, molar tooth sign) and OFDIX 

(retinopathy) (1,2). More recently, a new subtype has been described associated with microcephaly 

which has designated OFDXIV by OMIM (MIM 615948). However, the precise phenotypic description 

revealed new unclassified OFD subtypes, in particular with severe microcephaly (3–6). Classically, the 

inheritance pattern is autosomal recessive except for OFDI, which has dominant X-linked inheritance 

and is lethal in males. Until recently, the molecular bases of OFD syndromes were poorly known. A 

few years ago, the OFD1 gene [MIM 300170] was initially described as causing the OFDI subtype (7). 

OFD1 encodes a protein located in the centrosome and basal body of primary cilia, suggesting that 

OFD syndromes are ciliopathies.  

Ciliopathies are human diseases defined by ciliary structural and/or functional defects. Cilia, 

microtubule-based organelles projecting from the cytoplasmic membrane of the cell body, are 

divided into motile and non-motile or primary cilia. The primary cilia appear to be essential in several 

biological processes especially during development (8) and serve a broad range of specific sensory 

processes using receptors and ion channels to sense photo, chemo and mechanical stimuli and allow 

the transduction of signalling pathways. Four structural compartments have been described: (1) the 

centrosome, composed of two centrioles (mother and daughter) and pericentriolar material, 

including the mature mother centriole, which converts to the basal body that orients and positions 

the cilium (9); (2) the basal body formed where the centrosome, a microtubule organizing centre, 

migrates to the cell surface to initiate cilium assembly; (3) the transition zone, located at the distal 

end of basal body and composed of Y-links connecting microtubules to the ciliary membrane and 

ciliary necklace; and (4) the transition fibres, that forms the ciliary gate and constitutes a diffusion 

barrier to regulate cytoplasmic protein entry into the ciliary compartment (10,11). The microtubules 

extend distally from the basal body to form the axoneme, where receptors localize on the apex and 

the ciliary membrane, a lipid bilayer distinct from the plasma membrane, and surround the cilium. 

Proteins are transported along the axoneme to permit ciliary growth, maintenance and function. This 

essential intraflagellar transport is composed of two modules: IFT-A for retrograde transport and IFT-

B for anterograde transport, which distribute ciliary molecules to the different ciliary compartments 
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(12).  

Ciliopathies present a broad range of features (retinopathy, cerebral malformations, bone defects, 

deafness or renal disease …); they are thus highly genetically heterogeneous diseases, and include 

nephronophthisis (NPHP), Joubert (JBS), Meckel-Gruber (MKS), Bardet-Biedl (BBS) syndromes and 

different chondrodysplasias. Multiple allelism has been described, suggesting that human ciliopathies 

are genetically complex (13). More recently, mutations in six additional genes that encode ciliary 

proteins have been identified in one or two patients with OFDS: centrosomal proteins implicated in 

centriole elongation (NEK1 [MIM 604588], SCLT1 [MIM 611399] and TBC1D32/C6orf170 [MIM 

615867]), proteins located in the transition zone (TMEM216 [MIM 613277] and TCTN3 [MIM 

613847]) and a protein that regulates ciliary signalling (DDX59 [MIM 615464]). Each known gene 

appears to be implicated in a classified OFD subtype: OFD1 in OFDI [MIM 311200] with polycystic 

kidney disease and corpus callosum agenesis, TCTN3 in OFDIV [MIM 258860] with tibial defect, 

DDX59 in OFDV [MIM 174300], TMEM216 in OFDVI [MIM 277170] characterized by cerebellar 

hypoplasia with the molar tooth sign, SCTL1 and TBC1D32/C6orf170 in OFDIX [MIM 258865] with 

coloboma (7,14–22).  

Using a strategy of whole exome sequencing, we identified five new causal genes in OFD syndromes 

and showed the implication of four additional genes previously reported in other ciliopathies, as well 

as their different ciliary functions. In this unique cohort, all novel genes have been published 

independently. This paper presents an overview of the whole series and discusses the classification 

of this group with the advance of molecular delineation. 

 

 

PATIENTS AND METHODS 

 

Patient cohort  

We gathered an international cohort of 115 index cases affected with different OFD syndromes. In all 

cases with a typical OFD I phenotype, we looked for OFD1 SNV or CNV by Sanger sequencing and 

targeted array-CGH, respectively (23,24). Causal OFD1 SNV or CNV were identified in 59/115 cases. 

Among the 56 other index cases with atypical clinical features or negative OFD1 sequencing (Figure 1 

and Table S1), we performed whole exome sequencing (WES) in 24 index cases, including 17 sporadic 

cases and 7 cases from consanguineous parents. WES was limited to 24 cases because of the quality 

and quantity of patients’ DNA and the availability of parental DNA. All of the patients presented oral 

abnormalities (lingual hamartoma, abnormal frenulae or lobulated tongue), facial dysmorphism and 

extremity abnormalities (mainly polydactyly), associated with cerebral malformations (12/14 cases), 
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retinopathy (3/16 cases), renal abnormalities (4/14 cases) and/or cardiac malformations (9/17 cases). 

Six individuals were diagnosed with OFDVI because of the molar tooth sign (MTS) on brain MRI and 

positive diagnostic criteria, two with OFDII and one with OFDV (25). Parental DNA samples were 

available in 17/24 cases. 

 

Exome Analysis 

After written consent had been obtained, blood samples were collected and DNA was extracted. 

Three micrograms of genomic DNA per index individual was subjected to whole-exome capture and 

sequencing using the SureSelect Human All Exon V5 kit (Agilent). The resulting libraries were 

sequenced on a HiSeq 2000 (Illumina) as paired-end 76 bp reads. BAM files were aligned to a human 

genome reference sequence (GRCh37/hg19) using BWA (Burrows-Wheeler Aligner; v0.6.2). All 

aligned read data were subject to the following steps:  (i) duplicate paired-end reads were removed 

by Picard 1.77, (ii) indel realignment and (iii) base quality score recalibration were done on the 

Genome Analysis Toolkit (GATK; v2.1-10). Variants with a quality score >30 and an alignment quality 

score >20 were annotated with SeattleSeq SNP Annotation (see Web resources). CNV were detected 

by XHMM software (https://www.atgu.mgh.harvard.edu/) and annotated using chromosomic 

coordinates of coding exonic sequences on the human genome 

(https://www.ncbi.nlm.nih.gov/refseq/). Rare variants present at a frequency above 1% in dbSNP 

138, ExAC Browser and the NHLBI GO Exome Sequencing Project or present in 312 exomes of 

unaffected individuals were excluded (see Web resources).  To improve our exome analysis, data 

were crossed with a list of known cilia-related genes from the Ciliome Database, Cildb v2.1, Syscilia 

(see Web resources) and transcriptomic, proteomic and bioinformatics studies of cilia to identify 

putative ciliary genes (26–29). First, we looked for SNV or CNV in the six known genes in OFDS (OFD1, 

TCTN3, TMEM216, SCLT1, TBC1D32/C6orf170 and DDX59). We then focused on genes with 

homozygous variants in consanguineous families and with two heterozygous variants in other cases 

and prioritized (i) genes associated with human disease in ClinVar or HGMD databases (see Web 

resources), (ii) cilia-related genes and (iii) other genes (Figure 2).  

 

Sanger sequencing 

Candidate variants and parental segregation were confirmed by Sanger sequencing. The different 

primers are available on request.  Genomic DNA was amplified by Polymerase Chain Reaction (PCR) 

using HotStarTaq PCR kit (Qiagen) according to the manufacturer’s protocol. PCR products were 

purified by the Agencourt CleanSEQ system (Beckman Coulter) and sequenced with the BigDye 

https://www.atgu.mgh.harvard.edu/
https://www.ncbi.nlm.nih.gov/refseq/
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Terminator Cycle Sequencing kit, v3.1 (Applied Biosystems) in ABI 3730 sequencer (Applied 

Biosystems). Sequence data were analysed using Mutation Surveyor v4.0.9 (Softgenomics). 

RESULTS 

 

WES identified causal mutations in 14/24 cases. The first analysis of known genes implicated in OFDS 

identified a homozygous missense variant in the DDX59 gene [MIM 610621] and heterozygous 

mutations in the OFD1 gene [MIM 311200] in three unrelated cases (p.Tyr87Cys, p.Ala614Hisfs*15 

and c.655-8A>G, predicted to affect a splice-site). In these latter cases, OFD1 mutations were not 

previously detected by Sanger sequencing.  

The filtering strategy extracted five homozygous variants in consanguineous families (Table 1): a 

frameshift in the INTU gene [MIM 610621], a nonsense mutation in the C2CD3 gene [MIM 615944], 

TMEM138 [MIM 614459] and TMEM107 genes, and a synonymous variant affecting a splice site in 

the IFT57 gene [MIM 606621] (6,30–33). For all these genes, Sanger sequencing and parental 

segregation confirmed the homozygous status in the affected cases and the heterozygous status in 

each parent. We also identified compound heterozygous variants in four ciliary genes (Table 1): 

TMEM231 [MIM 614949], WDPCP [MIM 613580], C5orf42 genes [MIM 614571] and KIAA0753 

(31,33–35). Sanger sequencing and parental segregation confirmed the compound heterozygous 

status in the affected cases and the heterozygous status in each parent for all genes, except for the 

KIAA0753 gene. For this gene, Sanger sequencing confirmed that the nonsense variant 

(NM_014804.2:p.Lys631*) was maternally inherited and the intronic substitution 

(NM_014804.2:c.1546-3C>A) occurred de novo and affected a splice-site causing a truncated protein 

(34). 

The clinical heterogeneity of OFD syndromes was confirmed with various atypical signs and the 

overlap between OFD subtypes. Patients with a mutated OFD1 gene presented typical signs of the 

OFDI subtype (lingual hamartoma, lobulated or bifid tongue, cleft palate, renal disease and corpus 

callosum agenesis) associated with very rare abnormalities including cardiac malformations (case 

n°20), the molar tooth sign on brain MRI (case n°13) or 11 pairs of ribs (case n°12), which suggest 

overlapping with other subtypes. Variants in TMEM138, TMEM107 and C5orf42 caused OFDVI, 

characterized by the molar tooth sign. In unclassified OFD, C2CD3 mutations were associated with 

severe microcephaly, INTU and WDPCP mutations with cardiac defects, and IFT57 mutations with 

chondysplasia. DDX59 mutations had previously been reported in OFDII and identified in this cohort 

in a case of OFD V (n°1). OFDV, characterized by a median cleft of the upper lip and post-axial 

polydactyly, overlapped with OFD II, but this was predominantly found in patients of Indian origin. 

Finally, variants in the TMEM231 gene were identified in a foetal case with unclassified OFD. 
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We thus identified causal mutations in five new genes, in four genes previously implicated in other 

ciliopathies and in two genes previously known to be responsible for OFD syndromes (Figure 3).  

 

DISCUSSION 

 

This study presents the largest OFD cohort investigated by WES. It led to the identification of causal 

mutations in 58% of affected cases, thus confirming the power of WES in identifying the genetic 

cause in well-phenotyped cases and highly heterogeneous disorders.  

 

Wide clinical and genetic heterogeneity of OFD syndromes 

The wide clinical heterogeneity and variable modes of inheritance in OFD syndromes suggest 

extreme genetic heterogeneity. Exome sequencing thus appeared the obvious choice, and because 

OFD syndromes were suspected to be mainly recessive, we initially focused on homozygous or 

potential compound heterozygous mutations, and prioritized ciliary genes and truncating rare 

variants in the absence of OMIM genes. In cases of suspected consanguinity, the probable causal 

variant was expected to be located within a large stretch of a homozygous region, thereby making it 

easier to identify new genes. Causal variants were thus identified in five new genes, at the 

homozygous status (C2CD3, INTU, IFT57, TMEM107) or compound heterozygous status (KIAA0753) 

(6,32,33). Recently, additional C2CD3, TMEM107 and TMEM231 mutations confirmed the implication 

of these genes in OFD syndromes (Table 1) (36,37). Causal variants were also identified in six other 

genes previously implicated in OFD syndromes (DDX59, OFD1) or in other ciliopathies (TMEM138, 

C5orf42, TMEM231, WDPCP). In all these patients, the OFD phenotype was clinically heterogeneous 

with OFDI (OFD1), OFDV (DDX59), OFDVI (TMEM138, TMEM107, KIAA0753, OFD1, C5orf42) or 

OFDXIV (C2CD3), as well as unclassified OFD (TMEM231, IFT57, INTU, WDPCP), with cerebellar 

hypoplasia, severe microcephaly, chondrodysplasia or cardiopathy. These results demonstrate the 

wide clinical and genetic heterogeneity of OFD syndromes, with, to date, 16 different genes. 

However, except for OFD1, few mutations have been reported in the other OFD genes because OFD 

syndromes remain rare with wide genetic heterogeneity and because some mutations are found in 

specific ethnic groups (figure 4).  

 

 

Frequent clinical and genetic allelism between OFD and ciliopathies 
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The progressive identification of the molecular bases has highlighted the involvement of the primary 

cilia in OFD syndromes and confirmed the clinical and genetic overlap between OFD and other 

ciliopathies (38). Indeed, OFD1, which is responsible for OFDI syndrome, was also reported in JBS and 

severe retinitis pigmentosa (39–42). TMEM216, initially implicated in JBS and MKS, also caused 

OFDVI (43). Moreover, we identified OFD mutations in the TMEM107 gene which also cause JBS 

(30,33), as well as in four other genes previously implicated in other ciliopathies (TMEM138, C5orf42, 

TMEM231, WDPCP) (table 1). To date, allelism with other ciliopathies affects nine of the 15 OFD 

genes. The most frequent allelism concerns OFDVI and JBS (TMEM216, TMEM138, TMEM231, 

TMEM107, OFD1, and C5orf42) (30,31,33,35,43,44). TMEM231, TMEM107 and C5orf42 genes also 

cause MKS (30,45,46), thus confirming the clear allelism between OFDVI, MKS and JBS syndromes 

with variable phenotypic expression. INTU and WDPCP mutations are also reported in NPHP and BBS, 

respectively, but the allelism between OFD and BBS remains uncertain because of the absence of 

clinical data in the reported cases (33,47). Recently, C2CD3 mutations have also been reported in two 

foetuses with skeletal dysplasia, suggesting a short rib-polydactyly (SRP) syndrome (48). 

 

Characterization of three ciliopathy protein complexes and cilia disturbance in OFD syndromes 

The clinical description of different subtypes suggested that the causal proteins could be assembled 

in different functional modules. Because the 15 genes encode for proteins located in different 

compartments of primary cilia, new ciliary functions were suspected of being implicated in OFD 

syndromes (Table 2). Different functional studies have revealed two new ciliary complexes, CPLANE 

and KIAA0753-OFD1-FOPNL, and better characterized the transition zone and MKS module. 

At the centrosomal level, the positive regulator C2CD3 was found to be an antagonist of OFD1, a 

negative regulator of centriole elongation (6). KIAA0753 or OFIP (OFD1 and FOR20 Interacting 

Protein) forms a ternary complex with OFD1 and FOPNL (also known as FOR20) to initiate ciliogenesis 

and control centriole length (34). When KIAA0753 is necessary to recruit OFD1 and FOPNL in 

centriole and pericentriolar satellites and to stabilize microtubule organization in the centrosome, 

C2CD3 was thought to be associated with the KIAA0753-OFD1-FOPNL complex probably via OFD1 

protein. Knockdown of OFD1, C2CD3 or KIAA0753 induces hyperelongated (OFD1, KIAA0753) or 

shortened centrioles with the absence of subdistal appendages (C2CD3). These centriole defects 

affect membrane anchoring with the absence of cilia or greatly decreased cilium length. All these 

proteins control centriole elongation as do other centrosomal complexes, consisting of subunits with 

antagonist functions in ciliogenesis. 

At the basal body level, a new protein complex, CPLANE (Ciliogenesis and Planar polarity Effectors) 

formed by FUZ, RSG1 and the three OFD proteins INTU, WDPCP and C5orf42, was characterized (33). 
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C5orf42 initially recruits CPLANE components in the hierarchical assembly of this complex. CPLANE 

complex binds extensively with the IFT-A complex involved in retrograde intraflagellar transport, 

which is crucial for the recruitment of peripheral IFT-A proteins (IFT144, IFT43, IFT121 and IFT139) 

and their cytosolic pre-assembly. CPLANE defects affect intraflagellar transport and induce shortened 

cilia. Thus RSG1 and FUZ genes are good candidates for OFD syndrome, but so far, Sanger sequencing 

of a local cohort negative for known OFD genes has not revealed any mutations in these genes.  

At the transition zone (TZ), two functional modules, MKS and NPHP, interact to regulate ciliogenesis, 

the assembly of membrane-microtubule Y-link connectors, diffusion barrier formation, and the entry 

of IFT particles into the cilia (30,31,49). The NPHP module consists of two subunits (NPHP1-4) and the 

MKS module of twelve subunits (RPGRIP1L, TMEM107, TMEM216, B9D1, B9D2, MKS1, TMEM17, 

TMEM231, TMEM218, TMEM237, TMEM67 and CC2D2A), some of which are now known to be 

involved in OFD syndromes (TMEM231, TMEM216). It has been reported that TMEM107 occupies a 

new intermediate layer in the hierarchical assembly of the MKS module and is necessary to recruit 

TZ-proteins MKS1, TMEM17, TMEM237 and the new OFD protein TMEM231 (30). In C. elegans, 

CEP290 is required for the TZ localization of the MKS protein module and of other TZ-proteins, such 

as TMEM138, involved in OFD syndrome (31).  

The new IFT57 gene encodes a peripheral subunit of the IFT-B complex, which consists of 14 

members. It is believed that the IFT-B complex has been highly conserved during evolution and has 

an essential function in the formation and maintenance of primary cilia. Only five subunits are 

involved in ciliopathies (IFT27, IFT80, IFT81, IFT88, IFT172) (50). IFT57 mutations induce staining of 

IFT57 in the basal body in OFD patients’ fibroblasts, whereas IFT57 was observed in the whole cilia in 

controls. Likewise, the IFT57 mutation affects the SHH pathway, thus confirming the involvement of 

IFT57 in ciliary transport and signalling transduction (32).  

 

Most of the genes involved in the same ciliopathy encode for subunits of the same protein complex 

and usually affect one ciliary function. In contrast, OFD syndromes implicate several protein 

complexes with various localizations and various ciliary functions, from centriole elongation to 

intraflagellar transport, thus illustrating the wide genetic heterogeneity. However, we noted a 

correlation between the genotype and the phenotype. Mutations in TZ-genes mainly caused OFDVI, 

CPLANE-gene mutations caused unclassified OFD with cardiac malformations and mutations in genes 

coding for centrosomal proteins were implicated in various subtypes (OFDI, IX, XIV or unclassified) 

but with a clinical continuum between C2CD3, KIAA0753 and OFD1, sometimes including the molar 

tooth sign on brain MRI or renal abnormalities. 
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OFD syndromes: a distinct subgroup of ciliopathies and phenotype-genotype correlations 

OFD syndromes were initially classified as 13 clinical subtypes depending on the additional clinical 

features (polycystic kidney disease, corpus callosum agenesis, tibial dysplasia, retinopathy…). While 

numerous cases of OFDI, OFDIV and OFDVI syndromes have been reported, only anecdotal or single 

cases of some other subtypes have been published. This initial classification now appears to be 

obsolete given the wide clinical and molecular heterogeneity, with different overlapping ciliopathies 

such as JBS, MKS, BBS, SRP and NPHP. When OFD1 mutations induce OFDI or OFDVI subtypes, the 

OFDVI subtype appears to be linked to different genes also implicated in JBS and MKS. Considering 

the clinical and molecular data, the OFD classification could be reduced to three main subtypes and 

several additional anecdotal cases (Table 3). Indeed, while a fine clinical description of the disease 

remains important for reverse phenotyping, prognosis and genetic counselling, a detailed 

classification appears to be extremely complex and of little use in such diseases with high clinical and 

genetic heterogeneity. Indeed, this high genetic heterogeneity leads to the use of WES for the 

molecular diagnosis of patients with OFD syndromes. 

 

The high efficiency of the WES strategy in highly heterogeneous diseases 

Despite the high clinical and genetic heterogeneity of these diseases, the solo WES strategy was very 

successful and led to the identification of five new genes responsible for OFD (C2CD3, 

KIAA0753/OFIP, IFT57, INTU, TMEM107). It also confirmed that OFD, BBS, JBS, MKS and SRP are 

allelic disorders and extended the clinical spectrum of TMEM138, TMEM231, C5orf42, C2CD3 and 

WDPCP genes, thus increasing to 16 the number of genes known to be responsible for OFDS (Figures 

3 and 4). This was possible thanks to a large 15-year international cohort and to knowing the 

probable mode of inheritance and the functions of candidate proteins. However, 42% of affected 

cases remained negative, raising questions about the choice of strategy. Indeed, the hypothesis of 

autosomal recessive inheritance and the limited availability of parental DNA at the beginning of the 

study led us to preferentially use the solo WES strategy, which is known to be less effective for the 

identification of sporadic mutations. In these negative patients, a trio WES strategy or whole genome 

sequencing (WGS) could now be considered to look for non-exonic variants. In these negative cases, 

genetic counselling remains difficult because an autosomal recessive mode of inheritance could be 

excluded.  

 

In conclusion, this solo WES strategy in 24 OFDS cases identified five new genes responsible for OFD 

(C2CD3, KIAA0753/OFIP, IFT57, INTU, TMEM107), confirmed that OFD, BBS, JBS, MKS and SRP are 

allelic disorders and extended the clinical spectrum of TMEM138, TMEM231, C5orf42, C2CD3 and 
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WDPCP genes, thus increasing to 16 the number of genes known to be responsible for OFDS (Figures 

3 and 4). Negative patients explored by secondary WES or WGS analysis with the trio strategy could 

extend these results to additional new genes. 
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Legends 

 

Figure 1: Clinical pictures, X-rays and brain MRI of OFD cases. Case 3a (K), case 3b (L), case 4 (B, N, V), case 5 

(κ), case 6a (A, R, S, T, U), case 6b (F, Y, Z, α, β), case 7 (G), case 8 (E, L, Q, ε, ζ, ι, κ), case 10 (J, Y), case 11 (O), 

case 17 (D, I, K), case 19 (E), case 22 (ε), case 25 (λ, μ), case 26b (D, X, ζ), case 27 (P, ν, ο, π) case 28b (Q, ρ, ς), 

case 29 (υ,φ) with facial dysmorphism (A-D) including low-set ears, median pseudo-cleft of upper lip (F), 

missing incisors (A) or severe microcephaly (B), abnormal frenulae (E), cleft palate (I), lobulated tongue or 

hamartoma (G, H, J), pre and postaxial polydactyly of hands and feet (R, S, V, W, ε, ζ, ι, κ-υ), broad duplicated 

and/or deviated hallux (T, U, V, ε, ζ, η, θ, μ, ν, υ), Y-sharped metacarpal abnormality (κ, π), hypothalamic 

hamartoma (P), cerebellar hypoplasia (Q), brain MRI with MTS (K-O). 

 

Figure 2: Strategy for exome analysis 

 

Figure 3: Localization of proteins encoded by the 16 OFD genes in primary cilia. 5 new OFD genes (in red), 4 

genes previously implicated in other ciliopathies (in green), 7 genes previously reported in OFD - 2 with 

presented mutations (blue) and 5 others (white). 

Figure 4: Distribution of mutated genes in genotyped OFD cases reported in this study and in the literature. 

 

Table S1: Clinical data of all OFD cases with exome analysis (patients 1-24) and only OFD patients from the 

replication cohort (patients 25-29) with causal mutations. NA: Not Available, AO: oculomotor apraxia, AVSD: 

atrio-ventricular septal defects, B: brachydactyly, C: clinodactyly, CCA: Corpus callosum agenesis, DWM: Dandy-

Walker malformation, F: female, FB: frontal bossing, PF: upslanting palpebral fissures, HH: Hypothalamic 

hamartoma, HM: hypermetropia, HN: hypoplasia of the alae of nose, ID: Intellectual disability, IVC: Intra-

ventricular communication, LSE: low-set ears, M: male, MP: mesoaxial polydactyly, MR: micro/retrognathia, 

MTS: Molar Tooth Sign, NL: The Netherlands, P: polydactyly, PMD: psychomotor delay, PoP:  

Postaxial polydactyly, PrP: Pre-axial polydactyly, PSD: primary septal defect, S: syndactyly, ToF: teratology of 

Fallot, Y: Y-shaped metacarpal. 

 

Table 1: OFD genes identified by whole-exome sequencing or targeted gene sequencing   

 

Table 2: Summary of OFD phenotypes as well as localization and function of OFD proteins 

 

Table 3: Novel classification of OFDS based on the association between clinical and molecular features 
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Case Gene 
Ciliary 

gene 
OMIM 

Mutation 
Inheritance EVS ExAC cDNA tests 

c. position p. position 

Cohort analyzed by exome 

1 DDX59 NA Oral-facial-digital syndrome V [174300] 
c.754G>A 

c.754G>A 

p.Gly252Arg 

p.Gly252Arg 

Maternal 

Paternal 

- - - 

2 TMEM138 + Joubert syndrome 16 [614465] 
c.352A>T 

c.352A>T 

p.Met118Leu 

p.Met118Leu 

NA 

NA 

- - - 

3a/b TMEM107 + - 
c.134A>G 

c.134A>G 

p.Glu45Gly 

p.Glu45Gly 

Maternal 

Paternal 

- - - 

4 C2CD3 + Oral-facial-digital syndrome XIV [ 615948] 
c.184C>T 

c.184C>T 

p.Arg62* 

p.Arg62* 

Maternal 

Paternal 

- - - 

5 INTU + - 
c.396delT 

c.396delT 

p.Asn132Lysfs*11 

p.Asn132Lysfs*11 

NA 

NA 

- - - 

6a IFT57 + - 
c.777G>A 

c.777G>A 

p.Lys259Lys 

p.Lys259Lys 

NA 

NA 

- - Splice defect 

7 C5orf42 + Joubert syndrome 17 [614615] 
3557delA 

c.3577C>T 

Lys1186Argfs*22 

p.Arg1193Cys 

NA 

NA 

- 

- 

- 

- 

- 

8 C5orf42 + Joubert syndrome 17 [614615] 
c.3290-2A>G 

c.493delA 

- 

p.Ile165Tyrfs*17 

Maternal 

Paternal 

- 

1/6155 

- 

- 

- 

9 TMEM231 + 
Joubert syndrome 20 [614970] 

Meckel syndrome 11 [615397] 

c.656C>T 

c.532C>G 

p.Pro219Leu 

p.Pro178Ala 

Maternal 

Paternal 

- 

- 

- 

- 

- 

10 WDPCP + Bardet-Biedl syndrome 15 [209900] 
c.160G>A 

c.526_527delTT 

p.Asp54Asn 

Leu176Ilefs*21 

Paternal 

Maternal 

1/11827 

- 

7/119586 

- 

- 

11 KIAA0753 + - 
c.1546-3C>A 

c.1891A>T 

- 

p.Lys631* 

de novo 

Maternal 

- 

- 

- 

- 

Splice defect 

- 

12 OFD1 + Oral-facial-digital syndrome I [3111200] 

Joubert syndrome 10 [300804] 

Simpson-Golabi-Behmel syndrome 2 [300209] 

Retinitis pigmentosa 23 [300424] 

c.260A>G p.Tyr87Cys de novo - - - 

13 OFD1 + c.1840delG p.Ala614Hisfs*15 de novo - - - 

20 OFD1 + 
c.655-8A>G - de novo - - - 

Replication cohort 

25 C5orf42 + Joubert syndrome 17 [614615] 
c.3550C>T 

c.9121C>T 

p.Arg1184Cys 

p.Gln3041* 

Paternal 

Maternal 

- 

- 

- 

- 

- 

26a/b C5orf42 + Joubert syndrome 17 [614615] 
c.3150-1G>T 

c.3150-1G>T 

- 

- 

Maternal 

Paternal 

- 

- 

- 

- 

Splice defect 

Splice defect 

27 C5orf42 + Joubert syndrome 17 [614615] 
c.2377C>T 

c.8509G>T 

p.Gln793* 

p.Val2837Leu 

Paternal 

Maternal 

- 

- 

2/ 22038 

- 

- 

28b C5orf42 + Joubert syndrome 17 [614615] 
c.493delA 

c.3380C>T 

p.Ile165Tyrfs*17 

p.Ser1127Leu 

Paternal 

Maternal 

- 

- 

- 

- 

- 
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NA: Not  Available 

Table 1:  OFD genes identified by whole-exome sequencing or single gene sequencing    

 

 

 

 

 

 

 

 

 

 

 

 

29 C2CD3 + - 
c.3085T>C 

c.3911-2A>T 

p.Cys1029Gly 

- 

NA - 

6/ 12978 

- 

31/ 120818 

- 

Splice defect 
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Gene 
Protein 

localization 

Functional protein 

complex 
Protein function 

OFD 

subtype 
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Reference 

OFD1 Centrosome/BB OFD1-KIAA0753-

FOPNL 

Negative regulator of centriole elongation OFDI x   x x   Ferrante et al., 2001 

C2CD3 Centrosome/TF - Positive regulator of centriole elongation OFDXIV  x x  x   Thauvin-Robinet et al., 2014 

KIAA0753

/OFIP 

Centrosome OFD1-KIAA0753-

FOPNL 

Recruitment of OFD1 at centriole OFD VI  x   x x  Chevrier et al., 2015 

SCTL1 Centrosome/TF - Unknown, ciliogenesis OFDIX     x   Adly et al.,2013 

TBC1D32 Centrosome - Unknown OFDIX  x   x   Adly et al.,2013 

DDX59 Cytosol/? - Regulation of ciliary signalling OFDV  x      Present study 

INTU BB CPLANE IFT-A pre-assembly OFDII?  x  x    Toriyama et al., 2016 

WDPCP BB CPLANE IFT-A pre-assembly -  x      Toriyama et al., 2016 

C5orf42 BB/TZ CPLANE IFT-A pre-assembly OFDVI x x   x x  Lopes et al., 2014 

TCTN3 TZ - Regulation of ciliary signalling OFDIV x x  x x  x Thomas et al., 2012 

TMEM216 TZ MKS Ciliary gate formation OFDVI x x   x   Valente et al., 2012 

TMEM231 TZ MKS Ciliary gate formation OFDVI?  x   x   Li et al., 2016 

TMEM107 TZ MKS Ciliary gate formation OFDVI  x x  x x  Lambacher et al., 2015 

TMEM138 TZ - Vesicular transport OFDVI     x x  Li et al., 2016 

IFT57 BB/Axoneme IFT-B Intraflagellar transport -  x      Thevenon et al., 2016 

 

Table 2: Summary of OFD phenotype as well as localization and function of OFD proteins 

BB: Basal Body, OFD: Oral-Facial-Digital, TF: Transition fibers 
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OFD subtype Clinical data Genes 

OFDI Polycystic kidney disease, Corpus callosum agenesis OFD1 

OFDIV Tibial dysplasia TCTN3 

OFDVI Molar tooth sign TMEM216, TMEM231, TMEM138,  

C5orf42, TMEM107, KIAA0753 

Classification based on the 
genotype for other patients 

Median cleft of the upper lip DDX59, NEK1 

Cardiac defects INTU, WDPCP 

Retinopathy SCLT1, TBC1D32/C7orf170 

Severe microcephaly C2CD3 

Chondrodysplasia IFT57 

  

 

Table 3: Novel classification of OFDS based on associated clinical feature and molecular basis 

 


