
This is a repository copy of Medium step sizes are harmful for the compact genetic
algorithm.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130706/

Version: Accepted Version

Proceedings Paper:
Lengler, J., Sudholt, D. orcid.org/0000-0001-6020-1646 and Witt, C. (2018) Medium step
sizes are harmful for the compact genetic algorithm. In: Aquirre, H., (ed.) Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2018). Genetic and
Evolutionary Computation Conference (GECCO 2018), 15-19 Jul 2018, Kyoto, Japan.
ACM , pp. 1499-1506. ISBN 978-1-4503-5618-3

https://doi.org/10.1145/3205455.3205576

© 2018 The Authors. This is an author produced version of a paper subsequently
published in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2018). Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Medium Step Sizes are Harmful for the
Compact Genetic Algorithm

Johannes Lengler
Department of Computer Science

ETH Zürich
Zürich, Switzerland

Dirk Sudholt
Department of Computer Science

University of Sheield
Sheield, United Kingdom

Carsten Witt
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

ABSTRACT

We study the intricate dynamics of the Compact Genetic Algorithm

(cGA) on OneMax, and how its performance depends on the step

size 1/K , that determines how quickly decisions about promising bit

values are ixed in the probabilistic model. It is known that cGA and

UMDA, a related algorithm, run in expected time O(n logn) when
the step size is just small enough (K = Θ(√n logn)) to avoid wrong
decisions being ixed. UMDA also shows the same performance in a

very diferent regime (equivalent to K = Θ(logn) in the cGA) with

much larger steps sizes, but for very diferent reasons: many wrong

decisions are ixed initially, but then reverted eiciently.

We show that step sizes in between these two optimal regimes

are harmful as they yield larger runtimes: we prove a lower bound

of Ω(K1/3n+n logn) for the cGA onOneMax forK = O(√n/log2 n).
For K = Ω(log3 n) the runtime increases with growing K before

dropping again to O(K√n + n logn) for K = Ω(√n logn). This
suggests that the expected runtime for cGA is a bimodal function

inK with two very diferent optimal regions andworse performance

in between.

CCS CONCEPTS

· Theory of computation → Theory of randomized search

heuristics;

KEYWORDS

Estimation-of-distribution algorithms, compact genetic algorithm,

evolutionary algorithms, running time analysis, theory.

1 INTRODUCTION

Estimation-of-distribution algorithms (EDAs) are general meta-

heuristics for optimisation that represent a more recent alternative

to classical approaches like evolutionary algorithms (EAs). EDAs

typically do not directly evolve populations of search points but

build probabilistic models of promising solutions by repeatedly sam-

pling and selecting points from the underlying search space. Hence,

information about the search can be stored in a relatively compact

way, which can make EDAs space-eicient and time-eicient.

Recently, there has been signiicant progress in the theoretical

understanding of EDAs, which supports their use as an alternative

to evolutionary algorithms. It has been shown that EDAs are ro-

bust to noise [5] and that they have at least comparable runtime

behaviour to EAs. Diferent EDAs like cGA [13], ACO [11, 13], and

UMDA [8, 9, 14] have been investigated from this perspective.

In this paper, we pick up recent research about the runtime be-

haviour of the Compact Genetic Algorithm (cGA) [6]. The behaviour

on the theoretical benchmark function OneMax is of particular

interest since this function illustrates important properties and

serves as a basis for the analysis on more complicated functions.

Droste [2] was the irst to prove that cGA is eicient onOneMax by

providing a bound of O(n1+ϵ) on the runtime. Recently, this bound

was reined to O(n logn) by Sudholt and Witt [13]. However, this

bound only applies to a very speciic setting of the step size 1/K ,
which is an algorithm-speciic parameter of the cGA. Parameters

equivalent to step sizes exist in other EDAs, including the UMDA

mentioned above.

The choice of the step size is crucial for EDAs. It governs the

speed at which the probabilistic model is adjusted towards the

structure of recently sampled good solutions. If the step size is

too large, the adjustment is too greedy, it is too likely to adapt

to incorrect parts of sampled solutions and the system behaves

chaotically. If it is too small, adaptation takes very long. However,

the dependency of the runtime of cGA and UMDA on the step size is

even more subtle1. For both cGA and UMDA, small step sizes lead to

optimal performance where with high probability all decisions are

made correctly, but still as fast as possible. For UMDA it was shown

that there is another, much bigger step size that allows incorrect

decisions to be relected in the probabilistic model for a while, but

this is compensated by faster updates.

More concretely, the results from [13] show that for K ≥
c
√
n logn, where c is an appropriate constant, cGA and UMDA

(with K being replaced by the corresponding parameter λ) optimise

OneMax eiciently since for all bits the probabilities of sampling

a one increase smoothly towards their optimal value because of

the small step size 1/K . The same holds for UMDA, leading to run-

time bounds O(K√n) and O(λ√n), respectively. At K = c
√
n logn

(resp. λ = c
√
n logn) both algorithms optimiseOneMax in expected

time O(n logn). For smaller step sizes (larger K), at least for cGA it

is known that the runtime increases as Ω(K√n) [13].
On the other hand, it has been independently shown in [9] and

[14] that the UMDA achieves the same runtime O(n logn) for λ =
c ′ logn for a suitable constant c ′. The bound at these very large step
sizes emphasises that the search dynamics seem to proceed very

diferently from the dynamics at small step sizes. Namely, for many

bits the model irst learns incorrectly that the optimal value is 0 and

then eiciently corrects this decision. The results in [9] and [14]

show a general runtime bound ofO(λn) for all λ ≥ c ′ logn and λ =

o(√n logn). We call this regime the medium step size regime, and it

is separated from other regimes by two phase transitions: one for

small step sizes,K > c
√
n logn as discussed above, and one for even

1Unfortunately, our understanding of these algorithms is somewhat fragmented, since
some results are proven only for cGA and some are proven only for UMDA. However,
despite their diferent appearances, cGA and UMDA have been shown to be closely
related, and where results for both algorithms exist, they coincide. Thus we take results
for the UMDA as strong indication for analogous behaviour of the cGA, and vice versa.

larger step sizes, corresponding to K = o(logn), where the system
behaves so chaotically that correct decisions are regularly forgotten

and the expected runtime on OneMax becomes exponential2.

We also know that the runtime of cGA is Ω(n logn) for allK [13].

However, it remained an open question whether the runtime

is Θ(n logn) throughout the whole medium step size regime, or

whether the runtime increases with K as suggested by the upper

bound O(λn) for UMDA.

Here we show that the runtime of cGA does indeed increase.

Our main result is as follows.

Theorem 1.1. If K = O(n1/2/(log(n) log logn)) then the optimi-

sation time of cGA on OneMax is Ω(K1/3n+n logn) with probability
1 − o(1) and in expectation.

This result suggests that the runtime and the underlying search

dynamics depend in an astonishingly complex way on the step size:

as long as the step size is in the large regime (K = o(logn)), the run-
time is exponential [11]. Assuming that the upper bound for UMDA

also holds for cGA, it then decreases toO(n logn) at the point where
the medium regime is entered. Then the runtime grows with K in

the medium regime, where it grows up to Ω(n7/6/logn). Before
entering the small step size regime (K = c

√
n logn) the runtime

drops again toO(n logn) [13]. For even smaller step sizes (larger K)

the runtime increases again [13]. Preliminary experiments conirm

that the runtime indeed shows this complex bimodal behaviour.

The proof of our main theorem is technically demanding but in-

sightful: we obtain insights into the probabilistic process governing

cGA through careful drift analysis. In very rough terms, we analyse

the drift of a potential function that measures the distance of the

current sampling distribution to the optimal distribution. However,

the drift depends on the sampling variance, which is a random

variable as well. This leads to a complex feedback system between

sampling variance and drift of potential function that tends to self-

balance. We are conident that the approach and the tools used here

yield insights that will prove useful for analysing other stochastic

processes where the drift is changing over time.

This paper is structured as follows. Section 2 deines the cGA

and presents fundamental properties of its search dynamics. Sec-

tion 3 elaborates on the intriguing search dynamics of cGA in the

medium parameter range, including a proof of the fact that many

probabilities in the model initially are learnt incorrectly. Section 4

is the heart of our analysis and presents the so-called Stabilisation

Lemma, proving that the sampling variance and, thereby, the drift

of the potential approach a steady state during the optimisation. It

starts with a general road map for the proof. Finally, Section 5 puts

the whole machinery together to prove the main result.

Due to space limitations, many proofs are reduced to proof

sketches. In particular, standard arguments like drift analysis and

Chernof bounds are only sketched for the sake of brevity. For back-

ground on techniques from the analysis of randomised algorithms

used in this work (martingales, gambler’s ruin, coupling, principle

of deferred decisions) we refer to [10].

2This second phase transition has been made explicit in [11] with respect to an ACO
algorithm that in fact represents a simple EDA, similar to cGA.

2 THE COMPACT GENETIC ALGORITHM

AND ITS SEARCH DYNAMICS

The cGA, deined in Algorithm 1, uses marginal probabilities pi,t
that correspond to the probability of setting bit i to 1 in iteration t .

In each iteration two solutions x and y are being created inde-

pendently using the sampling distribution p1,t , . . . ,pn,t . Then the

itter ofspring amongst x and y is determined, and the marginal

probabilities are adjusted by a step size of ±1/K in the direction

of the better ofspring for bits where both ofspring difer. Here K

determines the strength of the update of the probabilistic model.

The marginal probabilities are always restricted to the interval

[1/n, 1 − 1/n] to avoid ixation at 0 or 1. This ensures that there is al-
ways a positive probability of reaching a global optimum. Through-

out the paper, we refer to 1/n and 1 − 1/n as (lower and upper)

borders. We call bits of-border if their marginal probabilities are

outside of {1/n, 1 − 1/n}.

Algorithm 1: Compact Genetic Algorithm (cGA)

t ← 0 and p1,t ← p2,t ← · · · ← pn,t ← 1/2
while termination criterion not met do

for i ∈ {1, . . . ,n} do
xi ← 1 with prob. pi,t , xi ← 0 with prob. 1 − pi,t

for i ∈ {1, . . . ,n} do
yi ← 1 with prob. pi,t , yi ← 0 with prob. 1 − pi,t

if f (x) < f (y) then swap x and y;

for i ∈ {1, . . . ,n} do
if xi > yi then p′i,t+1 ← pi,t + 1/K ;
if xi < yi then p′i,t+1 ← pi,t − 1/K ;
if xi = yi then p′i,t+1 ← pi,t ;

pi,t+1 ← min{max{1/n,p′i,t+1}, 1 − 1/n}
t ← t + 1

Overall, we are interested in the cGA’s number of function evalu-

ations until the optimum is sampled; this number is typically called

runtime or optimisation time. Note that the runtime is twice the

number of iterations until the optimum is sampled.

The behaviour of the cGA is governed byVt ≔
∑n
i=1 pi,t (1−pi,t),

the sampling variance at time t . We know from previous work

[11, 13] that Vt plays a crucial role in the drift of the marginal

probabilities. The following lemma makes this precise by stating

transition probabilities and showing that the expected drift towards

higher pi,t values is proportional to 1/√Vt .
Lemma 2.1. Consider the cGA on OneMax such that 1/K divides

1/2 − 1/n. Then pi,t+1 = min{max{1/n,p′i,t+1}, 1 − 1/n} where

p′i,t+1=




pi,t , w. prob. 1 − 2pi,t (1 − pi,1)
pi,t +

1
K , w. prob.

(
1
2 + Θ

(
1/√Vt

))
2pi,t (1 − pi,1)

pi,t − 1
K , w. prob.

(
1
2 − Θ

(
1/√Vt

))
2pi,t (1 − pi,1)

(1)

This implies

E[pi,t+1 − pi,t | pi,t] = Θ(1) · pi,t (1 − pi,t)
K
√
Vt

where the lower bound requires pi,t < 1 − 1/n and the upper bound

requires pi,t > 1/n.
2

If 1/K divides 1/2 − 1/n then the state space is always restricted

to pi,t ∈ {1/n, 1/n + 1/K , . . . , 1/2, . . . , 1 − 1/n − 1/K , 1 − 1/n}. In
the following we tacitly assume this condition in all results.

Proof Sketch for Lemma 2.1. Note that p′i,t+1 , pi,t only if

the ofspring are sampled diferently on bit i , which happens with

probability 2pi,t (1−pi,t), thus Pr
(
pi,t+1 = pi,t

)
= 1−2pi,t (1−pi,t).

If there was no selection in the cGA, the remaining probability

2pi,t (1 − pi,t) would be split evenly amongst changes of +1/K and

−1/K . This is the case in most steps, namely in steps where all

bits other than i show a clear majority of ones in one ofspring,

such that bit i has no efect on the decision whether to update with

respect to x or y. Such steps are called random walk steps (rw-steps)

in [13]. However, if the remaining bits have equal numbers of ones,

and if xi , yi , then bit i does determine the decision whether to

update with respect to x or y, so that always p′i,t = pi,t + 1/K . Such
steps are called biased steps (b-steps) in [13]. The probability of a

biased step is Θ(1/√Vt), inversely proportional to the root of the

sampling variance. The lower bound was shown in [11, proof of

Lemma 1] and the upper bound follows from a general probability

bound for Poisson-Binomial distributions [1].

The expectation follows from the probability bounds. �

Remark 1. A statement very similar to Lemma 2.1 also holds

for the UMDA on OneMax, even though the latter algorithm uses

a sampling and update procedure that is rather diferent from the

cGA as it can in principle lead to large changes in a single iteration.

However, the expected change of a marginal probability follows the

same principle as for the cGA. Roughly speaking, the results from

[8] and [14] together show that the UMDA’s marginal probabilities

evolve according to

E[pi,t+1 − pi,t | pi,t] = Θ(1) · pi,t (1 − pi,t)/
√
Vt

Note that this drift is by a factor of K larger than in the cGA. However,

since each iteration of the UMDA entails λ itness evaluations, where

λ is a parameter that can be compared to K in the cGA, the overall

runtime is the same for both algorithms.

The progression of the cGA can be measured by considering

a natural potential function: the function φt :=
∑n
i=1(1 − pi,t)

measures the distance to the łidealž distribution where all pi,t are 1.

While the drift on individual bits is inversely proportional to the

root of the sampling variance
√
Vt , the following lemma shows that

the drift of the potential is proportional to
√
Vt . It also provides a

tail bound for the change of the potential.

Lemma 2.2. Let φt :=
∑n
i=1(1 − pi,t), then E[φt − φt+1 | φt] =

O(√Vt /K). Moreover, for all t such that Vt = O(K2),

Pr
(
|φt − φt+1 | ≥

√
Vt logn | φt

)
≤ n−Ω(logn).

Proof Sketch. The expectation follows from
∑n
i=1

pi,t (1−pi,t)
K
√
Vt

=

Vt
K
√
Vt
=

√
Vt
K by deinition of Vt and Lemma 2.1 and showing that

the contribution of bits at the lower border is of smaller order.

For the second statement, pi,t only changes by ±1/K with prob-

ability 2pi,t (1 − pi,t). We then apply Chernof-Hoefding bounds

to bound the number of marginal probabilities that change. �

3 DYNAMICS WITH MEDIUM STEP SIZES

As described in the introduction, the cGA in the medium step size

regime, corresponding to K = o(√n logn) and K = Ω(logn), will
behave less stable than in the small step size regime. In particular,

many marginal probabilities will be reinforced in the wrong way

and will walk to the lower border before the optimum is found,

resulting in an expected optimisation time of Ω(n logn) [13]. With

respect to the UMDA it is known [14] that such wrong decisions can

be łunlearnedž eiciently, more precisely the potential φt improves

by an expected value of Ω(1) per iteration. This implies the upper

bound O(λn) in the medium regime, which becomes minimal for

λ = Θ(logn). Even though formally we have no upper bounds

on the runtime of cGA on OneMax in the medium regime, we

conjecture strongly that it exhibits the same behaviour as UMDA

and has expected optimisation timeO(Kn). We inally recall that for

extremely large step sizes, corresponding to K = o(logn) (resp. λ =
o(logn)), exponential runtimes seem to occur since the system

contains too few states to build a reliable probabilistic model.

The following lemma shows that a linear number of bits tends

to reach the upper and lower borders in the initial phase of a run.

Lemma 3.1. Consider the cGA withK ≤ √n. Then with probability
1 − 2−Ω(n) at least Ω(n) bits reach the lower border and at least Ω(n)
bits reach the upper border within the irst O(K2) iterations.

A proof of Lemma 3.1 is essentially contained in the proof of

Theorem 5 in [12], where calculations can be simpliied because of

the assumption on K . Details are omitted.

Bits at any lower border tend to remain there for a long time.

The following statement shows that in an epoch of length r = o(n)
the fraction of bits at a border only changes slightly.

Deinition 3.2. Let γ (t) denote the fraction of bits at the lower

border at time t .

Lemma 3.3. For every r = o(n) and every t ≤ t ′ ≤ t + r with

probability 1−e−Ω(r) we haveγ (t ′) ≥ γ (t)−O(r/n). With probability

1 − e−Ω(r) there is a time t0 = O(K2) such that γ0 := γ (t0) = Ω(1).
Both statements also hold for the fraction of bits at the upper border.

The proof uses that a bit at a border has to sample the opposite

value in one ofspring to leave the border, which has probability at

most 2/n, and applying Chernof bounds. Details are omitted.

We now show that with high probability, every of-border bit will

hit one of the borders after a short number of iterations. The proof

of the following lemma uses that the probability of increasing a

marginal probability is always at least the probability of decreasing

it. Hence, if every iteration was actually changing the probability,

the time bound O(K2) would follow by standard arguments on the

fair random walk on K states. However, the probability of changing

the state is only pi,t (1−pi,t) and the additional logK-factor covers
that the process has to travel through states with a low probability

of movement before hitting a border.

Lemma 3.4. Consider the marginal probability pi,t of a bit i of

the cGA with K = ω(1) on OneMax. Let T be the irst time where

pi,t ∈ {1/n, 1 − 1/n}. Then for every initial value pi,0 and all r ≥ 8,

E[T | pi,0] ≤ 4K2 lnK and Pr(T ≥ rK2 lnK | pi,0) ≤ 2−⌊r/8⌋ .
3

4 STABILISATION OF THE SAMPLING

VARIANCE

Now that we have collected the basic properties of the cGA, we

can give a detailed road map of the proof. We want to use a drift

argument for the potential φt . After a short initial phase, most of

the bits are at the borders, but since a linear fraction is at the lower

border we start with φt = Ω(n). As we have seen, the drift of φt is
O(√Vt /K), so the heart of the proof is to study how Vt evolves.

However, the behaviour ofVt is complex. It is determined by the

number and position of the bits in the of-border region (the other

bits contribute only negligibly). By Lemma 2.1, each pi,t performs

a random walk with (state-dependent) drift proportional to 1/√Vt .
Therefore,Vt afects itself in a complex feedback loop. For example,

if Vt is large, then the drift of each pi,t is weak (not to be confused

with the drift of φt , which is strong for large Vt). This has two

opposing efects. Consider a bit that leaves the lower border. On the

one hand, the bit has a large probability to be re-absorbed by this

border quickly. On the other hand, if it does gain some distance from

the lower border then it spends a long time in the of-border region,

due to the weak drift. For small Vt and large drift, the situation

is reversed. Bits that leave the lower border are less likely to be

re-absorbed, but also need less time to reach the upper border. Thus

the number and position of bits in the of-border region depends in

a rather complex way on Vt .

To complicate things even more, the feedback loop from Vt to

itself has a considerable lag. For example, imagine thatVt suddenly

decreases, i.e. the drift of the pi,t increases. Then bits close to the

lower border are less likely to return to the lower border, and this

also afects bits which have already left the border earlier. On the

other hand, the drift causes bits to cross the of-border region more

quickly, but this takes time: bits that are initially in the of-border

region will not jump to a border instantly. Thus the dynamics ofVt
plays a role. For instance, if a phase of smallVt (large drift of pi,t) is

followed by a phase of large Vt (small drift of pi,t), then in the irst

phase many bits reach the of-border region, and they all may spend

a long time there in the second phase. This combination could not

be caused by any static value of Vt .

Although the situation appears hopelessly complex, we over-

come these obstacles using the following key idea: the sampling vari-

ance Vt of all bits at time t can be estimated accurately by analysing

the stochastic behaviour of one bit i over a period of time. More

speciically, we split the run of the algorithm into epochs of length

K2β(n) = o(n/log logn), with β(n) = C log2 n for a suiciently large

constantC , long enough that the value ofVt may take efect on the

distribution of the bits. We assume that in one such epoch we know

bounds Vmin ≤ Vt ≤ Vmax, and we show that, by analysing the

dynamics of a single bit, (stronger) bounds V ′min ≤ Vt ≤ V ′max hold

for the next epoch. The following key lemma makes this precise.

Lemma 4.1 (Stabilisation Lemma). Let r := K2β(n) with K ≥
C log3 n and with β(n) = C log2 n, for a suiciently large constant

C > 0. Let further t1 > 0, t2 := t1 + r and t3 := t2 + r . Assume

γ (t1) = Ω(1). There is C ′ > 0 such that the following holds for all

Vmin ∈ [0,K2/3/C ′] and Vmax ∈ [C ′K4/3
,∞]. Assume that Vmin ≤

Vt ≤ Vmax for all t ∈ [t1, t2]. Then with probability 1 − q we have

V ′min ≤ Vt ≤ V ′max for the time [t2, t3], with the following parameters.

(a) If Vmin = 0, Vmax arbitrary, then V
′
min = Ω(

√
K), V ′max = ∞, and

q = exp(−Ω(
√
K)).

(b) If Vmin = Ω(
√
K), Vmax arbitrary, then

• V ′min = Ω(
√
KV

1/4
min
);

• V ′max = O(K min{K ,√Vmax}/
√
Vmin);

• q = exp(−Ω(min{√Vmin,
√
K/V 1/4

min
})).

To understand where the values of V ′min and V ′max come from,

we recall that Vt =
∑n
i=1 pi,t (1 − pi,t), and we regard the terms

pi,t (1 − pi,t) from an orthogonal perspective. For a ixed bit i that

leaves the lower border at some time t1, we consider the total

lifetime contribution of this bit to all Vt until it hits a border again

at some time t2, so we consider Pi =
∑t2
t=t1

pi,t (1 − pi,t). Note
that Vt and Pi are conceptually very diferent quantities, as the

irst one adds up contributions of all bits for a ixed time, while the

second quantiies the total contribution of a ixed bit over its lifetime.

Nevertheless, we show in Section 4.1 that their expectations are

related, E[Vt] ≈ 2γ (t)E[Pi], where 2γ (t) is the expected number of

bits that leave the lower border in each round.3 Crucially, E[Pi]
is much easier to analyse: we link E[Pi] to the expected hitting

time E[T] of a rescaled and loop-free version of the random walks

that the bits perform. In Section 4.2 we then derive upper and

lower bounds on E[T] that hold for all random walks with given

bounds on the drift, which then lead to upper and lower bounds

V ′min ≤ E[Vt] ≤ V ′max.

To prove Lemma 4.1, it is not suicient to know E[Vt], we also
need concentration for Vt . Naturally Vt is a sum of random vari-

ables pi,t (1 − pi,t), so we would like to use the Chernof bound.

Unfortunately, all the random walks of the bits are correlated, so

the pi,t are not independent. However, we show by an elegant argu-

ment in Section 4.3 that we may still apply the Chernof bound. We

partition the set of bits intom batches, and show that the random

walks of the bits in each batch do not substantially inluence each

other. This allows us to show that the contribution of each batch

is concentrated with exponentially small error probabilities. The

overall proof of Lemma 4.1 is then by induction. Given that we

know bounds Vmin and Vmax for one epoch, we show by induction

over all times t in the next epoch that Vt satisies even stronger

bounds V ′min and V ′max.

In Section 5 we then apply Lemma 4.1 iteratively to show that

the bounds Vmin and Vmax become stronger with each new epoch,

until we reach Vmin = Ω(K2/3) and Vmax = O(K4/3). At this point
the approach reaches its limit, since then the new bounds V ′min and

V ′max are no longer sharper thanVmin andVmax. Still, the argument

shows that Vt = O(K4/3) from this point onwards, which gives us

an upper bound of O(K−1/3) on the drift of φt and a lower bound

of Ω(K1/3n) on the runtime of the algorithm.

As the proof outline indicates, the key step is to prove Lemma 4.1,

and the rest of the section is devoted to it.

4.1 Connecting Vt to the Lifetime of a Bit

In this section we will lay the foundation to analyse E[Vt]. We

consider the situation of Lemma 4.1, i.e., we assume that we know

bounds Vmin ≤ Vt ≤ Vmax that hold for an epoch [t1, t2] of length
3The actual statement is a bit more subtle and involves lower and upper bounds on
Pi , see Lemma 4.3.

4

t2 − t1 = r = K2β(n). We want to compute E[Vt] for a ixed t ∈
[t2, t3]. SinceVt =

∑n
i=1 pi,t (1−pi,t), we call the term pi,t (1−pi,t)

the contribution of the i-th bit to Vt . The main result of this section

(and one of the main insights of the paper) is that the contribution

of the of-border bit can be described by E[Vt] = Θ(γ (t)E[T]), where
T is the lifetime of a random variable that performs a rescaled and

loop-free version of the random walk that each pi,t performs.

First we introduce the rescaled and loop-free random walk. It

can be described as the random walk that pi,t performs for an

individual bit if we ignore self-loops, i.e., if we assume that in each

step pi,t either increases or decreases by 1/K . Moreover, it will

be convenient to scale the random walk by roughly a factor of K

so that the borders are 0 and K instead of 1/n and 1 − 1/n. The
exact scaling is given by the formula Xi,t = (pi,t − 1/n)/(K − 2/n).
Formally, assume that Xt is a random walk on {0, . . . ,K} where
the following bounds hold whenever Xt ∈ {1, . . . ,K − 1}.

Xt+1 =

{
Xt + 1, w. prob. 12 + d(t),
Xt − 1, w. prob. 12 − d(t),

(2)

where d(t) = Ω
(
1/
√
Vmax

)
and d(t) = O

(
1/
√
Vmin

)
.

Note that by Lemma 2.1, if we condition on pi,t+1 , pi,t then

pi,t follows a random walk that increases with probability 1/2 +
Θ(1/√Vt). Hence, if Vmin ≤ Vt ≤ Vmax then this loop-free random

walk ofpi,t follows the description in (2) after scaling. Therefore, we

will refer to the random walk deined by (2) as the loop-free random

walk of a bit. We remark that it is slight abuse of terminology to

speak of the loop-free random walk, since (2) actually describes a

class of random walks. Formally, when we prove upper and lower

bounds on the hitting time of łthež loop-free randomwalk, we prove

bounds on the hitting time of any random walk that follows (2).

To link E[Vt] and E[T], we need one more seemingly unrelated

concept. Consider a bit i that leaves the lower border at some time

t0, i.e., pi,t0−1 = 1/n and pi,t0 = 1/n+1/K , and let t ′ > 0 be the irst

point in time whenpi,t hits a border, sopi,t ′ = 1/n orpi,t ′ = 1−1/n.
Then we call

Pi :=
∑t ′−1

t=t0
pi,t (1 − pi,t), where pi,t0 = 1/n + 1/K (3)

the lifetime contribution of the i-th bit. Analogously, we denote by

P ′i the lifetime contribution if bit i leaves the upper border,

P ′i :=
∑t ′−1

t=t0
pi,t (1 − pi,t), where pi,t0 = 1 − 1/n − 1/K . (4)

Note that Vt and Pi are both sums over terms of the form

pi,t (1 − pi,t). But while Vt sums over all i for ixed t , Pi sums over

some values of t for a ixed i . Nevertheless, as announced in the

proof outline, we will show that the expectations E[Vt] and E[Pi]
are closely related, and this will be the link between E[Vt] and E[T].
More precisely, we show the following lemma.

Lemma 4.2. Consider the situation of Lemma 4.1. Let t ∈ [t2, t3],
and assumeVmin ≤ Vt ′ ≤ Vmax for all t

′ ∈ [t1, t − 1]. Let Slow be the

set of all bits i with pi,t < {1/n, 1−1/n}, and such that their last visit
of a border was in [t1, t], and it was at the lower border. Formally, we

require that t0 := max{τ ∈ [t1, t] | pi,τ ∈ {1/n, 1 − 1/n}} exists and
that pi,t0 = 1/n. Let Supp be the analogous set, where the last visit

was at the upper border. Then

(a) E[∑i ∈Slow pi,t (1 − pi,t)] = Θ(E[Pi]).

(b) E[∑i ∈Supp pi,t (1 − pi,t)] = Θ(E[P ′i]).
(c) E[∑i ∈{1, ...,n }\(Slow∪Supp) pi,t (1 − pi,t)] = O(1).

Proof. (a) Recall that we assume γ (t1) = Ω(1). Since γ (t) is
slowly changing by Lemma 3.3, there is a constant c > 0 such that

c ≤ γ (t) ≤ 1 for all t ∈ [t1, t3]. In particular, for every t ′ ∈ [t1, t3],
the expected number of bits s(t) which leave the lower border at

time t is E[s(t)] = γ (t)n · 2n (1 − 1
n) = (2 − o(1))γ (t) = Θ(1).

Consider a bit that leaves the lower border at time 0, and let

ρt := pi,t (1 − pi,t) if i has not hit a border in the interval [1, t],
and ρt := 0 otherwise. Let Et := E[ρt]. Then E[Pi] =

∑∞
t=0 Et .

On the other hand, for a ixed t ∈ [t2, t3] let us estimate Vt, low :=∑
i ∈Slow pi,t (1 − pi,t). Assume that bit i leaves the border at some

time t − τ ∈ [t1, t]. If it does not hit a border until time t , then it

contributes ρτ toVt, low. The same is true if it does hit a border, and

doesn’t leave the lower border again in the remainder of the epoch,

since then i < Slow and ρτ = 0. For the remaining case, assume

that i leaves the lower border several times t − τ1, t − τ2, . . . , t − τk ,
with τ1 < τ2 < . . . < τk . Then ρτ2 = . . . = ρτk = 0, and by

the same argument as before, the contribution of i to Vt, low is

ρτ1 =
∑k
i=1 ρτk , where ρτ1 may or may not be zero. Therefore, we

can compute E[Vt, low] by summing up a term Eτ for every bit that

leaves the lower border at time t −τ , counting bits multiple times if

they leave the lower border multiple times. Recall that the number

of bits s(t) that leave the lower border at time t − τ has expectation

E[s(t)] = Θ(1). Therefore,

E[Vt, low] = E
[∑t−t1

τ=0
st−τ · Eτ

]
= Θ(1)

∑t−t1
τ=0

Eτ . (5)

The sum on the right hand side is almost E[Pi], except that the
sum only goes to t − t1 instead of∞. Thus we need to argue that∑∞
τ=t−t1+1 Eτ is not too large. By Lemma 3.4 the probability that a

bit does not hit a border state in τ > t − t1 ≥ r = K2β(n) rounds
is e−Ω(τ /(K

2 logK)). Hence, we may split the range [t − t1 + 1,∞)
into subintervals of the form [i · K2 logK , (i + 1) · K2 logK), then
the i-th subinterval contributesO((K2 logK)e−i). Therefore, setting
i0 := β(n)/logK , the missing part of the sum is at most

∑∞
τ=r

e−Ω(τ /(K
2 logK))

= O
(
K2 logK

∑∞
i=i0

e−i
)
= o(1/K)

since β = C log2 n for a suiciently large constantC . This is clearly

smaller than the rest of the sum, since already E1 ≥ 1/K · (1− 1/K).
Hence E[Vt, low] = Θ(E[Pi]), as required.

The proof of (b) is analogous to (a). Finally, (c) follows from

Lemma 3.4. We omit the details. �

The next lemma links the lifetime contribution Pi and P
′
i to the

hitting time T of the loop-free random walk.

Lemma 4.3. Consider the situation of Lemma 4.1. Assume for i = 1

or i = K − 1 that Ti,min and Ti,max are a lower and upper bound,

respectively, on the expected hitting time of {0,K} of every random
walk as in (2) with X0 = i . Then the lifetime contributions Pi and P

′
i

deined in (3) and (4) satisfy

2T1,min ≤ E[Pi] ≤ 2T1,max.

2TK−1,min ≤ E[P ′i] ≤ 2TK−1,max.

We say that E[Pi] = Θ(E[T]), where T is the hitting time of the

loop-free random walk starting at 1, and similarly for E[P ′i].
5

Proof Sketch. Bit i contributes pi,t (1 − pi,t) to Pi , and the ex-

pected time until bit i makes a non-loop step is 1/(2pi,t (1−pi,t)) by
Lemma 2.1. Thus the total contribution to Pi per non-loop step is in

expectation exactly 1/2. The claims then follow because T counts

the number of non-loop steps of pi,t . �

Lemmas 4.2 and 4.3 together yield the following corollary.

Corollary 4.4. Consider the situation of Lemma 4.1, and let

Ti,min and Ti,max be lower and upper bounds, respectively, on the

expected hitting time of {0,K} of every random walk as in (2) with

X0 = i . Assume T1,min = ω(1). Then for all t ∈ [t2, t3],
Ω(T1,min +TK−1,min) ∋ E[Vt] ∈ O(T1,max +TK−1,max)

By Corollary 4.4, in order to understand E[Vt] it suices to anal-

yse the expected hitting time E[T] of the loop-free random walk.

4.2 Bounds on the Lifetime of a Bit

We now give upper and lower bounds on the expected lifetime of

every loop-free random walk, assuming that we only have lower

and upper bounds ∆min and ∆max on the drift that hold the whole

time. We start with the upper bound.

Lemma 4.5. Consider a stochastic process {Xt }t ≥0 on {0, 1, . . . ,K},
variables ∆t that may depend on X0, . . . ,Xt and ∆min > 0, ∆max ≥
1/(2K) such that Pr(Xt+1 = Xt + 1 | Xt < K) = 1/2 + ∆t and

Pr(Xt+1 = Xt − 1 | Xt > 0) = 1/2 − ∆t for ∆min ≤ ∆t ≤ ∆max.

LetT be the hitting time of states 0 or K , then regardless of the choice

of the ∆t ,

E[T | X0 = 1] = O(min{K2
∆max,K∆max/∆min}) and

E[T | X0 = K − 1] = O(min{K , 1/∆min}).
Remark 2. The most important term for us is E[T | X0 = 1] =

O(K∆max/∆min). This is tight, i.e., there is a scheme for choosing ∆t
that yields a time of Ω(K∆max/∆min) if ∆min = Ω(1/K).

Proof Sketch. The proof for X0 = 1 ixes an intermediate state

k0 = Θ(1/∆max) and shows, using martingale theory and the upper

bound ∆max on the drift, that (1) the time to reach either state 0 or

state k0 is O(1/∆max), and (2) the probability that k0 is reached is

O(∆max). In that case, using the lower bound ∆min on the drift, the

remaining time to hit state 0 or state K is O(K/∆min) by additive

drift. The time from k0 is also bounded byO(K2) as it is dominated

by the expected time a fair random walk would take if state 0 was

made relecting. The statement for X0 = K − 1 is proved using

similar arguments, starting from K − 1 instead of k0. �

The following lemma gives a lower bound on the lifetime of

every loop-free random walk.

Lemma 4.6. Consider a stochastic process {Xt }t ≥0 on {0, 1, . . . ,K},
variables ∆t that may depend on X0, . . . ,Xt and ∆min > 0, ∆max ≥
(4 lnK)/K such that Pr(Xt+1 = Xt + 1 | Xt < K) = 1/2 + ∆t and

Pr(Xt+1 = Xt − 1 | Xt > 0) = 1/2 − ∆t for ∆min ≤ ∆t ≤ ∆max. Let

T be the hitting time of states 0 or K , then regardless of the choice of

the ∆t ,

Pr
(
T > 1

2K/∆max | X0 = 1
)
= Ω(

√
∆max/K + ∆min)

and

E[T | X0 = 1] = Ω(
√
K/∆max + K∆min/∆max).

Remark 3. There is a scheme for choosing ∆t such that the bound

on the expectation from Lemma 4.6 is asymptotically tight.

Proof Sketch. The lower bound on the expectation follows

immediately from the lower bounds on the probabilities. To show

the latter, we couple the process with two processes Xmin
t and

Xmax
t that always use the minimum and maximum drift ∆min and

∆max, respectively. The coupling ensures that X
min
t ≤ Xt ≤ Xmax

t ,

hence as long as Xmin
t > 0 and Xmax

t < K , the process cannot have

reached a border state. We show for both coupled processes that the

probability of reaching their respective borders in time 1
2K/∆max

is small, and then apply a union bound. For the Xmax
t process a

negligibly small failure probability follows from additive drift with

tail bounds [7] and the condition ∆max ≥ (4 lnK)/K . For the Xmin
t

process we show that the fair random walk on the integers, starting

in state 1, does not reach state 0 in time 1
2K/∆max with probability

Ω(
√
∆max/K). In addition, the Xmin

t process on the integers never

reaches state 0 with probability Ω(∆min) [4, page 351], which yields

the second term in the claimed probability. �

4.3 Establishing Concentration

Ourmajor tool for showing concentrationwill be using the Chernof

bound [3] and the Chernof-Hoefding bound [3].

The basic idea is that for ixed t , we deine for each bit i a random

variableXi := pi,t (1−pi,t) to capture the contribution of the i-th bit
to Vt =

∑n
i=1 Xi . In the previous sections we have computed E[Vt]

by studying the expected lifetime E[T]. Concentration of Vt would

follow immediately by the Chernof bound if the random walks of

the diferent bits were independent of each other. Unfortunately,

this is not the case. However, for the initial case of the stabilisation

lemma, Lemma 4.1 (a), we show that the random walks behave

almost independent, which allows us to show the following lemma.

Lemma 4.7. Assume the situation of Lemma 4.1 (a). Then Vt =

Ω(
√
K) holds with probability 1 − e−Ω(

√
K) for all t ∈ [t2, t3].

Proof Sketch. We use an inductive argument over t ∈ [t2, t3].
Note that if we choose the constant C ′ in Lemma 4.1 large enough,

then we have V ′min ≥ Vmin and V ′max ≤ Vmax. Therefore, by induc-

tion hypothesis we may assume that Vmin ≤ V ′min ≤ Vt ′ ≤ Vmax ≤
Vmax also holds for t ′ ∈ [t2, t − 1].

As mentioned above, we know that E[Vt] = E[T] = Ω(
√
K) by

Lemma 4.6 with trivial drift bounds ∆min = 0 and ∆max = 1/2, so
it remains to show concentration. Fix i ∈ {1, . . . ,n}, and consider

the random walk that pi,t performs over time. More precisely, we

consider one step of this randomwalk, from t to t+1. If the ofspring

x and y have the same i-th bit, then pi,t+1 = pi,t , so assume that x

and y difer in the i-th bit. We want to understand how the drift of

pi,t changes if we condition on what the other bits do.

So assume that we have already drawn all bits of the two of-

spring x and y at time t + 1 except for the i-th bit. Assume also

that someone tells us which of x ,y is the selected ofspring. Then

conditioning on all this information does inluence (and sometimes

determine) the behaviour of pi,t , However, one can show that even

after conditioning, pi,t still has non-negative drift. This allows us

to couple the pi,t to independent random walks, and to apply the

Chernof bound. We omit the details. �

6

We would like to use a similar argument also in the cases with

non-trivial ∆min and ∆max. Unfortunately, it is no longer true that

the drift remains lower bounded by ∆min > 0 if we uncover the ran-

dom walk steps of the other bits. However, the bound still remains

true if we condition on only a few of the other bits. More precisely, if

we consider a batch of r bits b1, . . . ,br for a suitably chosen r ∈ N,

then even if we condition on the values that the two ofspring have

in the bits b1, . . . ,br−1 then bit br will still perform a random walk

where the drift in each round is in Θ(1/(K√Vt)). Hence, we can
couple the random walks of b1, . . . ,br−1 to r independent random
walks, and apply the Chernof bound to show that the contribution

of this batch is concentrated. Afterwards we use a union bound

over all batches.

Formally, we show the following pseudo-independence lemma.

Note that there are two types of error events in the lemma. One is

the explicit event E, the other is the event that B < B, i.e., that the
other bits in the batch display an atypical distribution. However,

both events are very unlikely if Vt is large, which we may assume

after one application of Lemma 4.7.

Lemma 4.8. Consider a vector of probabilities pt with potential

Vt =
∑n
i=1 pi,t (1 − pi,t).

Let m = m(n) ≥ 3. Let S ⊆ {1, . . . ,n} be a random set which

contains each bit independently with probability 1/m. Then there is

an error event E of probability Pr(E) = e−Ω(Vt /m) such that, con-

ditioned on ¬E, the following holds for all i0 ∈ S . Let b1i and b2i
be the i-th bit in the irst and second ofspring, respectively, and let

B := (b ji)i ∈S\{i0 }, j ∈{1,2} . There is a set B ⊆ {0, 1}2(m−1) such that

Pr(B ∈ B) = 1 − e−Ω(min{m,Vt /m }) and such that for all ®B ∈ B,

E[pi0,t+1 − pi0,t | pt ,B = ®B,¬E] ∈ Ω
(
pi0,t (1 − pi0,t)

K
√
Vt

)
, and

E[pi0,t+1 − pi0,t | pt ,B = ®B,¬E] ∈ O
(
pi0,t (1 − pi0,t)

K
√
Vt

)
. (6)

Proof Sketch. The error event E is that the contribution

of S to Vt deviates from its expectation Vt /m by more than a fac-

tor of 2, which is unlikely by Chernof bounds. For a set A ⊆
{1, . . . ,n}, let dA be the diference of the itnesses between the

two ofspring caused by the bits in A. Then the set B is deined

by B := { ®B ∈ {0, 1}2(m−1) | |dS\{i } | ≤ η
√
Vt } for a small con-

stant η, and it is unlikely that B < B by a careful application of

the Chernof-Hoefding bounds. The drift of pi,t comes from the

cases in which d {1, ...,n }\{i } ∈ {−1, 0, 1}, in which it may inlu-

ence selection. However, for ®B ∈ B we have dS\{i } = k for some

|k | ≤ η
√
Vt . For every such k , the probability that d {1, ...,n }\S = −k

(or = −k + 1 or = −k − 1) is Θ(1/√Vt) [1, 14]. Thus the probability
that i inluences selection is asymptotically the same as in the proof

of Lemma 2.1, and therefore the resulting drift is also asymptotically

the same. �

Lemma 4.8 allows us to partition the bits randomly intom batches,

such that in each batch the bits perform random walks that can be

coupled to independent random walks. In particular, we will be able

to apply the Chernof-Hoefding bounds to each batch. This gives

concentration of the Vt as follows.

Lemma 4.9. Assume the situation of Lemma 4.1 (b), in particular

V ′min = Ω(
√
KV

1/4
min
) and V ′max = O(K min{K ,

√
Vmax/Vmin}) where

we may choose the hidden constants suitably. Then with probability

1 − exp(−Ω(min{√Vmin,
√
K/V 1/4

min
})), for all t ∈ [t2, t3], we have

V ′min ≤ Vt ≤ V ′max.

Proof. Apart from the complication with the batches, the proof

is analogous to the proof of Lemma 4.7. We omit the details. �

Altogether, we have proven the Stabilisation Lemma 4.1: part (a)

is proven in Lemma 4.7, and part (b) is proven in Lemma 4.9.

5 PROOF OF THE MAIN RESULT

Lemma 5.1. With probability 1−exp(−Ω(K1/4)),Vmin = Ω(K2/3)
and Vmax = O(K4/3) after i∗ = O(log logK) epochs of length r =

K2β(n).
Moreover, for any ixed t ≥ i∗r , as long as γ (τ) = Ω(1) for all

τ ∈ [i∗r , t − 1], Vmax and Vmin are bounded in the same way during

[i∗r , t], with a failure probability of at most t/r · exp(−Ω(K1/3)), and
with probability 1− tn exp(−Ω(β(n)/logn)) the number of of-border

bits at any time t ∈ [i∗r , t] is at most 4K2β(n). In particular, if t = n2,
β(n) = C log2 n, and K ≥ C log3 n for a suiciently large constant

C > 0, then the error probability is o(1).

Proof Sketch. All subsequent statements hold with some error

probability, which we omit due to space restrictions. By Lemma 3.3,

we know that the initial fraction of marginal probabilities at the

lower border is Ω(1). We apply the irst statement of the Stabilisa-

tion Lemma 4.1 (a) with respect to an initial epoch of length r

and obtain that Vt = Ω(K1/2) in an epoch [t2, t3] of length at

least r . Applying the statement again, now with respect to this

epoch and with the assumption Vmin = Ω(K1/2), we obtain Vmin =

Ω(K5/8) for the next epoch. Iterating this argument i times, we

have Vmin = Ω(K2/3−(2/3)(1/4)i+1) after i epochs of length r . Choos-
ing i∗ = c ln lnK for a suiciently large constant c > 0, we get

Vmin = Ω(K2/3−1/logK) = Ω(K2/3) after i∗/2 iterations.
Applying part (b) of the Stabilisation Lemma 4.1 with respect to

the i∗-th epoch, we obtain thatVmax = O(K2) for the next epoch.We

apply the statement again, and the next epoch will satisfy Vmax =

O(K
√
K2/K2/3) = O(K5/3). Iterating this argument using the new

value of Vmax and still Vmin = Ω(K2/3) for O(log logK) epochs
similarly as above, we arrive at Vmax = O(K4/3).

For t ≥ i∗r , we may apply the same argument again, and the

statement on Vmin and Vmax then follows from a union bound over

all epochs. For the number of of-border bits, by Lemma 3.4 every

bit hits a border after at most K2β(n) rounds. Since the probability
that a ixed bit leaves the border is 2 · 1/n · (1 − 1/n) in each round,

the expected number of bits that leave the border is at most 2 per

round. Thus the expected number of non-border bits at time t is at

most 2K2β(n), and concentration follows by a union bound.

Finally, the statement for t = n2 follows since n2e−Ω(logn) = o(1)
if the hidden constant is large enough. �

We are inally ready to prove our main result.

Proof of Theorem 1.1. A lower bound of Ω(√nK+n logn)was
shown in [13]. Hence it suices to show a lower bound of Ω(K1/3n)

7

forK ≥ C log3 n,where we may choose the constantC to our liking.

In the following, we assume that all events that occur with high

probability do occur.

Recall that the potential φt :=
∑n
i=1(1−pi,t) is the total distance

of all marginal probabilities to the optimal value of 1. By Lemma 3.3,

we have aγ0 = Ω(1) fraction of bits at the lower border at some time

within the irst O(K2) iterations with probability 1 − e−Ω(K 2β (n)).
In particular, this implies φt ≥ γ0(n − 1).

We show that the expected time until either φt has decreased

to γ0/4 · (n − 1) or the global optimum is found is Ω(K1/3n) with
high probability. This implies the claim since in an iteration where

φt > γ0/4 · (n − 1) the probability of sampling the optimum is

exponentially small: for ixedφt , the best case scenario for sampling

the optimum is that all bits have equal values. Hence the probability

of sampling the optimum is at most (φt /n)n = 2−Ω(n), which still

holds when considering a union bound over O(K1/3n) steps.
By Lemma 5.1, with probability exp(−Ω(K1/4)) = o(1) we will

have Vt = O(K4/3) after T = O(r log logK) = o(n) steps. By
Lemma 3.3, with high probability we will still have at least γ0/2 ·
(n − 1) bits at the lower border.

Moreover, also by Lemma 5.1, if we can show γ (t) = Ω(1) then
the bound Vt = O(K4/3) remains true for the next K1/3n rounds,

with probability 1 − o(1). So it remains to show γ (t) = Ω(1) for
t ∈ [T ,Ω(K1/3n)]. Note that the prerequisites of Lemma 5.1 only

concern times strictly before t , so we can use the statement of the

lemma inductively to show that γ (t) = Ω(1). By Lemma 5.1, the

number of of-border bits in each epoch is O(K2β(n)), hence while
φt > γ0/4 · (n − 1), we have γ (t) ≥ γ0/4 − O(K2β(n)/n) = Ω(1)
as of-border bits (and bits at the upper border) only contribute

O(K2β(n)) = o(n) to φt . Hence Lemma 5.1 implies that with prob-

ability 1 − o(1), Vt = O(K4/3) holds for all t ∈ [T ,n2] such that

φt > γ0/4 · (n − 1).
By Lemma 2.2, the drift of φt is at most O

(√
Vt /K

)
= O(K−1/3)

and the change of φt is bounded by
√
Vt logn = O(K2/3 logn) with

probability 1 − n−Ω(logn), even when taking a union bound over

O(K1/3n) steps. Applying Theorem 1 in [7] with a maximum step

size of O(K2/3 logn), distance γ0/4 · (n − 1) and drift O(K−1/3),
the time until φt ≤ γ0/4 · (n − 1) is at least Ω(γ0/4 · (n − 1) ·
K1/3) = Ω(K1/3n) with probability 1 − e−Ω

(
n ·K−1/3/(K 4/3 log2 n)

)
=

1 − e−Ω(n1/6/log2 n)
, where the last step uses K = O(n1/2). Adding

up failure probabilities completes the proof. �

6 CONCLUSIONS

We have shown a lower bound of Ω(K1/3n + n logn) for the cGA
on OneMax that at its core has a very careful analysis of the dy-

namic behaviour of the sampling variance and how it stabilises in a

complex feedback loop that exhibits a considerable lag. A key idea

to handle this complexity was to show that the sampling variance

Vt of all bits at time t can be estimated accurately by analysing the

stochastic behaviour of one bit i over a period of time.

Assuming that cGA has the same upper bound as UMDA for

step sizes K = Θ(logn), the expected optimisation time of cGA is a

bimodal function in K with worse performance in between its two

minima.

We believe that our analysis can be extended towards an upper

bound ofO(K2/3n+n logn), using that typicallyVt = Ω(K2/3) after
an initial phase, which implies a drift of Ω(√Vt /K) = Ω(K−2/3)
for φt . This would require additional arguments to deal with γ (t)
decreasing to sub-constant values where showing concentration

becomes more diicult. Another avenue for future work would be

to investigate whether the results and techniques carry over to the

UMDA, where the marginal probabilities can make larger steps.

ACKNOWLEDGMENTS

This paper was initiated at Dagstuhl seminar 17101 łTheory of

Randomized Optimization Heuristicsž and is based upon work from

COST Action CA15140 ‘Improving Applicability of Nature-Inspired

Optimisation by Joining Theory and Practice (ImAppNIO)’ sup-

ported by COST (European Cooperation in Science & Technology).

REFERENCES
[1] J.-B. Baillon, R. Cominetti, and J. Vaisman. A sharp uniform bound for the

distribution of sums of bernoulli trials. Combinatorics, Probability and Computing,
25:352ś361, 2016.

[2] S. Droste. A rigorous analysis of the compact genetic algorithm for linear func-
tions. Natural Computing, 5(3):257ś283, 2006.

[3] D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[4] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, 1968.

[5] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton. The beneit of recombina-
tion in noisy evolutionary search. In Proc. of ISAAC ’15, pages 140ś150. Springer,
2015.

[6] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation, 3(4):287ś297, 1999.

[7] T. Kötzing. Concentration of irst hitting times under additive drift. Algorithmica,
75:490ś506, 2016.

[8] M. S. Krejca and C.Witt. Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. In Proc. of FOGA ’17, pages 65ś79. ACM Press,
2017.

[9] P. K. Lehre and P. T. H. Nguyen. Tight bounds on runtime of the univariate
marginal distribution algorithm via anti-concentration. In Proc. of GECCO ’17,
pages 1383ś1390. ACM Press, 2017.

[10] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University
Press, 2005.

[11] F. Neumann, D. Sudholt, and C. Witt. A few ants are enough: ACO with iteration-
best update. In Proc. of GECCO ’10, pages 63ś70. ACM Press, 2010.

[12] D. Sudholt and C. Witt. Full version of [13] at http://arxiv.org/abs/1607.04063.
[13] D. Sudholt and C. Witt. Update strength in EDAs and ACO: How to avoid genetic

drift. In Proc. of GECCO ’16, pages 61ś68. ACM Press, 2016.
[14] C. Witt. Upper bounds on the runtime of the Univariate Marginal Distribution

Algorithm on OneMax. In Proc. of GECCO ’17, pages 1415ś1422. ACM Press,
2017.

8

http://arxiv.org/abs/1607.04063

	Abstract
	1 Introduction
	2 The Compact Genetic Algorithm and Its Search Dynamics
	3 Dynamics with Medium Step Sizes
	4 Stabilisation of the Sampling Variance
	4.1 Connecting normalnormalVt to the Lifetime of a Bit
	4.2 Bounds on the Lifetime of a Bit
	4.3 Establishing Concentration

	5 Proof of the Main Result
	6 Conclusions
	Acknowledgments
	References

