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Abstract

Many real optimisation problems lead to multimodal domains and so require the identifi-
cation of multiple optima. Niching methods have been developed to maintain the population
diversity, to investigate many peaks in parallel and to reduce the effect of genetic drift. Using
rigorous runtime analysis, we analyse for the first time two well known niching methods: prob-
abilistic crowding and restricted tournament selection (RTS). We incorporate both methods
into a (µ+1) EA on the bimodal function Twomax where the goal is to find two optima at
opposite ends of the search space. In probabilistic crowding, the offspring compete with their
parents and the survivor is chosen proportionally to its fitness. On Twomax probabilistic
crowding fails to find any reasonable solution quality even in exponential time. In RTS the
offspring compete against the closest individual amongst w (window size) individuals. We
prove that RTS fails if w is too small, leading to exponential times with high probability.
However, if w is chosen large enough, it finds both optima for Twomax in time O(µn log n)
with high probability. Our theoretical results are accompanied by experimental studies that
match the theoretical results and also shed light on parameters not covered by the theoretical
results.

1 Introduction

Premature convergence is one of the major difficulties in Evolutionary Algorithms (EAs), the
population converging to a sub-optimal individual before the fitness landscape is explored properly.
Real optimisation problems often lead to multimodal domains and so require the identification of
multiple optima, either local or global [23, 25]. In multimodal optimisation problems, there exist
many attractors for which finding a global optimum can become a challenge to any optimisation
algorithm. A diverse population can deal with these multimodal problems as it can explore several
hills in the fitness landscape simultaneously.

One particular way for diversity maintenance are niching methods, based on the mechanics of
natural ecosystems [24]. A niche can be viewed as a subspace in the environment that can support
different types of life. A specie is defined as a group of individuals with similar features capable of
interbreeding among themselves but that are unable to breed with individuals outside their group.
Species can be defined as similar individuals of a specific niche in terms of similarity metrics. In
EAs the term niche is used for the search space domain, and species for the set of individuals with
similar characteristics.

Niching methods have been developed to reduce the effect of genetic drift resulting from the
selection operator in standard EAs. This is often done by modifying the selection process of
individuals, taking into account not only the value of the fitness function but also the distribution
of individuals in the space of genotypes or phenotypes [10]. Niching methods maintain population
diversity and allow the EA to investigate many peaks in parallel, thus avoiding getting trapped
in local optima [23]. Many niching techniques have been introduced, including fitness sharing,
clearing, probabilistic crowding, deterministic crowding, restricted tournament selection, and many
others. The aim is to form and maintain multiple, diverse, final solutions for an exponential to
infinite time period with respect to population size, whether these solutions are of identical fitness
or of varying fitness [3, 10, 24, 26]. Given such a variety of mechanisms to choose from, it is often
not clear which mechanism is the best choice for a particular problem.
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Most of the analyses and comparisons made between niching methods are assessed by means
of empirical investigations using benchmark functions [23, 25]. Theoretical runtime analyses have
been performed that rigorously quantify the expected time needed to find one or several global
optima [2, 6, 21]. Both approaches are important to understand how these mechanisms impact the
EA runtime and if they enhance the search for good individuals. These different expectations imply
where EAs and which niching mechanism should be used and, perhaps even more importantly,
where they should not be used.

Previous theoretical studies [2, 6, 21] compared the expected running time of different diversity
mechanisms when embedded in a simple baseline EA, the (µ+1) EA. All mechanisms were consid-
ered on the well-known bimodal function Twomax(x) := max{∑n

i=1 xi, n −∑n
i=1 xi}. Twomax

consists of two different symmetric slopes (or branches) Zeromax and Onemax with 0n and 1n

as global optima, respectively, and the goal is to evolve a population that contains both optima1.
Twomax was chosen because it is simply structured, hence facilitating a theoretical analysis,

and it is hard for EAs to find both optima as they have the maximum possible Hamming distance.
The results allowed for a fair comparison across a wide range diversity mechanisms, revealing that
some mechanisms like fitness diversity or avoiding genotype duplicates, perform badly, while other
mechanisms like fitness sharing, clearing or deterministic crowding perform surprisingly well (see
Table 1 and Section 1.1).

We contribute to this line of work by studying the performance of two classical diversity mech-
anisms, probabilistic crowding and restricted tournament selection. Both methods are well-known
techniques as covered in tutorials and surveys for diversity-preserving mechanisms [3, 10, 24, 26]
and compared in empirical investigations [23, 25]. However, we are lacking a good understand-
ing of when and why they perform well and how they compare to diversity mechanisms analysed
previously.

In probabilistic crowding, offspring compete against their most similar parent and the survivor
is chosen with a probability proportional to their fitness [13]. The idea is to use a low selection
pressure to prevent the loss of niches of lower fitness [13]. Probabilistic crowding has been used for
multimodal optimisation [1, 13, 14, 15], in its plain form as well as in variants in which a scaling
factor has been introduced into the replacement policy.

Restricted tournament selection (RTS) is a modification of the classical tournament selection
for multimodal optimisation that exhibits niching capabilities. RTS selects two elements from the
population uniformly at random (u. a. r.) to undergo recombination and mutation to produce two
new offspring. The offspring compete with their closest individual from w (window size) more
individuals selected u. a. r. from the population, and the best individual is selected. This form of
tournament restricts an entering individual from competing with others too different from it [12].
RTS has been analysed empirically for the classical comparison between crowding mechanisms for
multimodal optimisation as a replacement strategy [9, 22]. Recent applications for engineering
problems with multimodal domains include facility layout design [8] and the design of product
lines [28] with reported better results compared to the other variants without RTS.

Our contribution is to provide a rigorous theoretical runtime analysis for both mechanisms in
the context of the (µ+1) EA on Twomax, to rigorously assess their performance in comparison to
other diversity mechanisms. In addition, our goal is to provide insights into the working principles
of these mechanisms to enhance our understanding of their strengths and weaknesses.

For the (µ+1) EA with probabilistic crowding, we show in Section 2 that the mechanism is
unable to evolve solutions of significantly higher fitness than that obtained during initialisation
(or, equivalently, through random search), even when given exponential time. The reason is that
fitness-proportional selection between parent and offspring results in an almost uniform choice as
both have very similar fitness, hence fitness-proportional selection degrades to uniform selection
for replacement. For the (µ+1) EA with restricted tournament selection, we show in Section 3
that the mechanism succeeds in finding both optima of Twomax in the same way as deterministic
crowding, provided that the window size w is chosen large enough. However, if the window size is
too small then it cannot prevent one branch taking over the other, leading to exponential running
times with high probability.

1In [6] an additional fitness value for 1n was added to distinguish between a local optimum 0n and a unique
global optimum. There the goal was to find the global optimum, and all approaches had a baseline probability of
1/2 of climbing up the right branch by chance. We use the same approach as [2, 21], and consider the original
definition of Twomax and the goal of finding both global optima. The discussion and presentation of previous work
from [6] is adapted to our setting. We refer to [27] for details.
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Table 1: Overview of runtime analyses for the (µ+1) EA with different diversity mechanisms on
Twomax. Results derived in this paper are shown in bold. The success probability is the proba-
bility of finding both optima within (expected) time O(µn log n). Conditions include restrictions
on the population size µ, the sharing/clearing radius σ, the niche capacity κ, window size w, and
µ′ := min(µ, log n). Results from [6] are adapted to our definition of Twomax; see [27] for details.

Diversity Mechanism Success prob. Conditions

Plain (µ+1) EA [6] o(1) µ = o(n/ log n)

No Duplicates
Genotype [6] o(1) µ = o(

√
n)

Fitness [6] o(1) µ = poly(n)

Deterministic Crowding [6] 1− 2−µ+1 all µ

Fitness Sharing (σ = n/2)
Population-based [6] 1 µ ≥ 2
Individual-based [21] 1 µ ≥ 3

Clearing (σ = n/2) [2] 1 µ ≥ κn2

Probabilistic Crowding 2−Ω(n) all µ

RTS
Small w sizes o(1) µ = o(n1/w)

Large w sizes 1 − 2−µ′+3
w ≥ 2.5µ lnn

Our theoretical results are accompanied by experiments in Section 4 that cover a wider range
of parameter settings and that show a very good match between our theoretical and empirical
results.

1.1 Previous Work

Table 1 summarises all known results for diversity mechanisms on Twomax. As can be seen, not
all mechanisms succeed in finding both optima on Twomax efficiently, that is, in expected time
O(µn log n). Friedrich, Oliveto, Sudholt, and Witt [6] showed that the plain (µ+1) EA and the
simple mechanisms like avoiding genotype or fitness duplicates are not able prevent the extinction
of one branch, ending with the population converging to one optimum, with high probability.
Deterministic crowding with a sufficiently large population is able to reach both optima with
high probability in expected time O(µn log n) [6, Theorem 4]. A population-based fitness sharing
approach, constructing the best possible new population amongst parents and offspring, with
µ ≥ 2 is able to find both optima in expected optimisation time O(µn log n) [6, Theorem 5]. The
drawback of this approach is that all possible size µ subsets of this union of size µ+ λ (where λ is
the offspring population size) need to be examined. This is prohibitive for large µ and λ.

Oliveto, Sudholt, and Zarges [21] studied the original fitness sharing approach and showed
that a population size µ = 2 is not sufficient to find both optima in polynomial time; the success
probability is only 1/2−Ω(1) [21, Theorem 1]. However, with µ ≥ 3 fitness sharing again finds both
optima in expected time O(µn log n) [21, Theorem 3]. Covantes Osuna and Sudholt [2] analysed the
clearing mechanism and showed that it can optimise all functions of unitation—function defined
over the number of 1-bits contained in a string—in expected time O(µn log n) [2, Theorem 4.4]
when the distance function and parameters like the clearing radius σ, the niche capacity κ (how
many winners a niche can support) and µ are chosen appropriately. In the case of large niches, that
is, with a clearing radius of σ = n/2, it is able to find both optima in expected time O(µn log n)
[2, Theorem 5.6].

The above works did not consider crossover as recombining individuals from different branches
is likely to create poor offspring. We therefore consider a (µ+1) EA using mutation only.
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2 Probabilistic Crowding

We start by presenting and analysing the (µ+1) EA using probabilistic crowding, defining it
in the same fashion as deterministic crowding in [6]. Recall that in probabilistic crowding, the
offspring compete against the most similar parent according to a distance metric and the survivor
wins proportionally according to their fitness. Without crossover, this means that the mutant y
competes against its parent x using fitness-proportional selection. Then the probability of the

mutant y winning is given by f(y)
f(x)+f(y) , where f is the fitness function. The resulting (µ+1) EA

is shown in Algorithm 1.

Algorithm 1 (µ+1) EA with probabilistic crowding

1: Let t := 0 and initialise P0 with µ individuals chosen u. a. r.
2: while stopping criterion not met do
3: Choose x ∈ Pt u. a. r.
4: Create y by flipping each bit in x independently w/ prob. 1/n.
5: Choose r ∈ [0, 1] u. a. r.

6: if r ≤ f(y)
f(y)+f(x) then Pt+1 = Pt \ {x} ∪ {y} else Pt+1 = Pt end if

7: t := t+ 1.
8: end while

There are several related theoretical analyses for fitness-proportional selection for the case of
the Onemax function. The Simple Genetic Algorithm (SGA) has been analysed with fitness-
proportional selection for parent selection in [16, 19, 20].

Most relevant to this work is the work by Happ, Johannsen, Klein, and Neumann [11], who
analysed a variant of the (1 + 1) EA using fitness-proportional selection and showed that it needs
exponential time to evolve a fitness of at least (1+ ε)n/2 on Onemax with high probability. Their
algorithm can be seen as a special case of the (µ+1) EA with probabilistic crowding for µ = 1.
Our result is similar to the result in [11], but it holds for arbitrary population sizes µ and it applies
to both Onemax and Twomax. The proof uses more modern techniques from drift analysis [17]
that were not available to the authors of [11]. In the following lemma we define in expectation how
the individual accepted for replacement moves away from the individual selected for mutation.

Lemma 2.1. Let x be the selected parent, y be the offspring, and z ∈ {x, y} be the individual
selected for survival. For f = Onemax if f(x) ≥ (1 + δ)n/2 for some positive δ = δ(n) that may
depend on n then

E(f(z)− f(x) | x) ≤ −δ

2
+ Θ

(

1

n

)

.

The statement also holds for Twomax if f(x) ≥ n/2 + log n.

Proof. We first analyse the expected fitness of the mutant y before survival selection. Compared
to its parent x, in expectation at least (1 + δ)n/2 · 1/n = (1 + δ)/2 bits flip from 1 to 0, and at
most (1− δ)n/2 · 1/n = (1− δ)/2 bits flip from 0 to 1. Hence

E(f(y)− f(x) | x) ≤ (1− δ)/2− (1 + δ)/2 = −δ. (1)

We now use this inequality to analyse the fitness difference f(z) − f(x) after survival selection.
Observe that this difference is 0 in case z = x. Hence only generations where y is selected for
survival contribute to E(f(z)− f(x) | x). The latter can be written as follows.

E(f(z)− f(x) | x)

=

∞
∑

d=−∞

Prob(f(y)− f(x) = d | x) · d · f(y)

f(x) + f(y)

Using that with d = f(y)− f(x),

f(y)

f(x) + f(y)
=

(f(x) + f(y))/2 + d/2

f(x) + f(y)
=

1

2
+

d/2

f(x) + f(y)

=
1

2
+ Θ

(

d

n

)

,
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we get

E(f(z)− f(x) | x)

=
∞
∑

d=−∞

Prob(f(y)− f(x) = d | x) · d ·
(

1

2
+ Θ

(

d

n

))

=
1

2

∞
∑

d=−∞

Prob(f(y)− f(x) = d | x) · d

+Θ

(

1

n

) ∞
∑

d=−∞

Prob(f(y)− f(x) = d | x) · d2.

The first sum is E(f(y)− f(x))/2 by definition of the expectation, and we already know from (1)
that E(f(y)− f(x))/2 ≤ −δ/2. The summands in the second sum can be bounded from above
using Prob(f(y) − f(x) = d | x) ≤ 1/(|d|!) as it is necessary to flip at least |d| bits, which has
probability at most

(

n
|d|

)

(1/n)|d| ≤ 1/(|d|!). Thus

E(f(z)− f(x) | x) ≤ − δ

2
+ Θ

(

1

n

) ∞
∑

d=−∞

1

|d|! · d
2

≤ − δ

2
+ Θ

(

1

n

)

· 2
∞
∑

d=1

1

d!
· d2 = −δ

2
+ Θ

(

1

n

)

as
∑∞

d=1
1
d! · d2 =

∑∞
d=1

d
(d−1)! =

∑∞
d=0

d+1
d! =

∑∞
d=0

d
d! +

∑∞
d=0

1
d! =

∑∞
d=1

1
(d−1)! +

∑∞
d=0

1
d! =

2
∑∞

d=0
1
d! = 2e.

The statement also holds for Twomax if f(x) ≥ n/2+ log n as the algorithm only ever notices
a difference to Onemax in case at least log n bits flip in one mutation. Since this only occurs
with probability at most 1/(log n)! = n−Ω(log logn), and the fitness difference between Onemax

and Twomax is at most n/2, this only accounts for an additive error term of n/2 · n−Ω(log logn) =
n−Ω(log logn) in the expectation for Onemax, and this error term is absorbed in the Θ(1/n) term.

Lemma 2.1 gives an important lesson. Assume that the survivalist z was chosen uniformly
between x and y, then we would have

E(f(z)− f(x) | x)

=
1

2
· E(f(y)− f(x) | x) + 1

2
· E(f(x)− f(x) | x) = −δ

2

using (1) and E(f(x)− f(x) | x) = 0. Lemma 2.1 states that compared to this setting, a fitness-
proportional selection of z only gives a vanishing bias of Θ(1/n). In other words, Lemma 2.1
quantifies the observation that in the considered context, fitness-proportional selection is very
similar to uniform selection. We now use Lemma 2.1 to prove a strong negative result on the
performance of the (µ+1) EA with probabilistic crowding. To this end, we will use the negative
drift theorem [17, 18] (also called simplified drift theorem). Note that the expected Onemax value
of a search point chosen u. a. r. is n/2. It is also easy to show that the expected Twomax value
of a uniform random search point is n/2 + Θ(

√
n). These values also represent equilibrium states

for sequences of mutations in the absence of selection. The following theorem shows that the
(µ+1) EA with probabilistic crowding does not evolve any solutions of significantly higher fitness
than these values, even given exponential time.

Theorem 2.2. With probability 1 − 2−Ω(n) the (µ+1) EA with probabilistic crowding on either
f = Onemax or f = Twomax will not have found a search point with fitness at least (1 + ε)n/2
in 2cn function evaluations, for every population size µ, every constant ε > 0 and a small enough
constant c > 0 that may depend on ε.

Proof. We assume that f = Onemax as Twomax can be handled in the same way. We may also
assume that µ = 2o(n) as if µ ≥ 2c

′n for any constant 0 < c′ < 1, the statement follows immediately
(for c := c′) as the first 2c

′n search points contain an optimal search point only with probability at
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most 2 · 2−n · 2c′n = 2−Ω(n) as c′ < 1. Note that in the absence of crossover, probabilistic crowding
evolves µ independent lineages as any offspring only competes directly with its parent. We show
that the probability of any fixed lineage reaching a fitness of at least (1+ ε)n/2 in 2cn generations
is 2−Ω(n). Taking the union bound over all lineages yields that the probability of reaching such a
fitness is bounded by µ · 2−Ω(n) = 2o(n) · 2−Ω(n) = 2−Ω(n), which implies the claim.

Now focus on one lineage. By standard Chernoff bounds (see [4]), the probability of initialising
the lineage with an initial search point of fitness at least (1 + ε/2)n/2 is 2−Ω(n). If this rare
failure event does not happen, the lineage needs to increase an initial fitness from a value at most
(1 + ε/2)n/2 to a value at least (1 + ε)n/2 in order to achieve a fitness of (1 + ε)n/2. We apply
the negative drift theorem to the fitness of the current individual in our lineage to show that this
does not happen in 2cn generations with probability 1− 2−Ω(n). The interval chosen will be from
a := (1 + ε/2)n/2 to b := (1 + ε)n/2; note that it has length εn/4.

Let x be the selected parent, y be the offspring, and z ∈ {x, y} be the individual selected for
survival. We establish the two conditions of the negative drift theorem. The first condition for
search points with fitness at least a = (1+ε/2)n/2 follows from Lemma 2.1 with δ := ε/2, yielding
a drift of at most −ε/4 + Θ(1/n) = −Ω(1). The second condition follows easily from properties
of standard bit mutation: the fitness difference |f(z)− f(x)| is clearly bounded by the number of
flipping bits. The probability of flipping d bits in a standard bit mutation is at most 1/(d!) ≤ 2/2d

for all d ≥ 1. This proves the second condition when choosing r := 2 and δ := 1. Invoking the
negative drift theorem yields that the probability of one lineage reaching a search point with fitness
at least (1+ ε)n/2, starting with a fitness at most (1+ ε/2)n/2, in 2c

′εn/2 steps, for some constant
c′ > 0, is at most 2−Ω(εn/4) = 2−Ω(n). Choosing c := c′ε/4 completes the proof for Onemax.

The same proof can be used for Twomax with minor modifications: note that if the number
of ones is k ≤ n/2, a fitness difference of d can be achieved by increasing or decreasing the number
of ones by d, provided k+ d ≤ n/2 or by creating an offspring with n− k− d ones on the opposite
branch. Since k + d ≤ n/2 ≤ n− k − d, the probability for the latter event is no larger than that
of the former. The same holds symmetrically for k ≥ n/2. Hence all transition probabilities are
bounded by twice the previous bound for Onemax and the second condition can be fulfilled by
doubling r and choosing c := c′ε/8. Then the result follows as for Onemax.

3 Restricted Tournament Selection

The (µ+1) EA with restricted tournament selection (RTS) is defined in a similar way. Recall that
in RTS a new offspring competes with the closest element from w (window size) more members
selected u. a. r. from the population, and the better individual from this competition is selected.

In the (µ+1) EA with RTS, shown in Algorithm 2, an individual x is selected u. a. r. as a parent
and a new individual y is created in the mutation step. Since we are not considering crossover and
only one individual is created, w individuals are selected u. a. r. with replacement and stored in a
temporary population P ∗

t . Then in Line 6 an individual z is selected from population P ∗
t with the

minimum distance from y (ties are broken u. a. r.), and if the individual y has a fitness at least as
good as z, y replaces z.

Algorithm 2 (µ+1) EA with restricted tournament selection

1: Let t := 0 and initialise P0 with µ individuals chosen u. a. r.
2: while stopping criterion not met do
3: Choose x ∈ Pt u. a. r.
4: Create y by flipping each bit in x independently w/ prob. 1/n.
5: Select w individuals u. a. r. from Pt and store them in P ∗

t .
6: Choose z ∈ P ∗

t such that min
z∈P∗

t

d(y, z).

7: if f(y) ≥ f(z) then Pt+1 = Pt \ {z} ∪ {y} else Pt+1 = Pt end if
8: t := t+ 1.
9: end while

As distance functions d we consider genotypic or Hamming distance, defined as the number of
bits that have different values in x and y: d(x, y) := H(x, y) :=

∑n−1
i=0 |xi − yi|, and phenotypic

distances as in [2, 6, 21] based on the number of ones: d(x, y) := | |x|1 − |y|1 | where |x|1 and |y|1
denote the number of 1-bits in individual x and y, respectively.
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3.1 Large Window Sizes Are Effective

Now, let us start with the theoretical analysis for Twomax with a positive result for RTS. The
following shows that, if w is chosen very large, the (µ+1) EA with RTS behaves almost like the
(µ+1) EA with deterministic crowding.

Theorem 3.1. If µ = o(
√
n/ log n) and w ≥ 2.5µ lnn then the (µ+1) EA with restricted tour-

nament selection using genotypic or phenotypic distance finds both optima on Twomax in time
O(µn log n) with probability at least 1− 2−µ′+3, where µ′ := min(µ, log n).

Note that the probability 1− 2−µ′+3 is close to the success probability 1− 2−µ+1 for determin-
istic crowding, if µ ≤ log n, apart from a constant factor in front of the 2−µ′

term. For both, the
success rate converges to 1 very quickly for increasing population sizes. For restricted tournament
selection our probability bound is capped at 1 − 2− logn+3 = 1 − 8/n as there is always a small
probability of an unexpected takeover occurring.

In order to prove Theorem 3.1, we first analyse the probability of initialising a population such
that there are individuals on each branch with a safety gap of σ to the border between branches.
This safety gap will be used to exclude the possibility that the best individual on one branch
creates offspring on the opposite branch.

Lemma 3.2. Consider the population of the (µ+1) EA on Twomax and for some µ and σ. The
probability of having at least one initial search point with at most n/2 − σ ones and one search
point with at least n/2 + σ ones is at least

1− 2

(

1 + 2σ ·
√

2/n

2

)µ

≥ 1− 2−µ+1(1 + o(1))

where the inequality holds if σµ = o(
√
n).

Proof. Using [4, Lemma 7], for a random variable with binomial distribution Bin(n, 1/2), for all
z ∈ [0, n] we have

Prob(X = z) ≤ Prob(X = ⌊n/2⌋) ≤ 2−n ·
(

n

⌊n/2⌋

)

≤
√

2/n.

So let us start by defining the probability that an individual x is initialised inside the safety
gap is at most

pσ := Prob(n/2− σ < |x|1 < n/2 + σ) ≤ 2σ ·
√

2/n.

Now let us define the probability that an individual x is initialised on the outer regions with
|x|1 ≤ n/2−σ ones (0n branch) or |x|1 ≤ n/2+σ ones (1n branch) as p0 and p1, respectively. Note
that both p0 and p1 are symmetric, and p0 + p1 := 1− pσ, and by rewriting we obtain p0 := 1−pσ

2

(the same for p1) with its complement being 1− 1−pσ

2 = 1+pσ

2 .

So the probability of having no individual with at most n/2 − σ ones is (1 − p1)
µ =

(

1+pσ

2

)µ
,

and the same holds for having no individual with at least n/2 + σ ones. Hence the probability of
being initialised as stated in the statement of the lemma is at least

1− 2

(

1 + pσ
2

)µ

= 1− 2−µ+1 · (1 + pσ)
µ.

Plugging in pσ and using the inequality 1+x ≤ ex as well as σµ = o(
√
n) we simplify the last term

as

(1 + pσ)
µ ≤ e2σµ

√
2/n = eo(1) =

1

e−o(1)
≤ 1

1− o(1)
= 1 + o(1),

and by plugging all together we have 1− 2−µ+1(1 + o(1)).

We also show the following time bound, which assumes that the (µ+1) EA never decreases
the best fitness on a considered branch. We will later show in the proof of Theorem 3.1 that this
assumption is met with high probability.

Lemma 3.3. Consider one branch of Twomax and a (µ+1) EA with a replacement selection
where the best fitness of all individuals on this branch never decreases. If the (µ+1) EA is initialised
with at least one individual on the branch then the optimum of the branch is found within time
2eµn lnn with probability 1− 1/n and in expectation.

7



Proof. We apply the multiplicative drift theorem with tail bounds [5] to random variables Xt

that describe the Hamming distance of the closest individual to the targeted optimum. Note that
X0 ≤ n/2 as we start with an individual on the considered branch and the optimum has been
found once Xt = 0.

The probability of selecting an individual with Hamming distance Xt is at least 1/µ. In order
to create a better individual, it is sufficient that one of the Xt differing bits is flipped and the
other bits remain unchanged. Each bit flip has a probability of being mutated of 1/n and the
remaining bits remain unchanged with probability (1−1/n)n−1. Hence, the probability of creating
an individual with a smaller Hamming distance is bounded as follows:

Prob(Xt+1 < Xt | Xt) ≥
1

µ
· Xt

n
·
(

1− 1

n

)n−1

≥ Xt

µen
.

This implies

E(Xt+1 | Xt) ≤
(

1− 1

eµn

)

Xt.

Applying Theorem 1 in [5] yields that the time till the optimum is found is at most eµn ·(ln(n/2)+
lnn) ≤ 2eµn lnn with probability at most 1/n and in expectation.

Using these two lemmas, we can now prove Theorem 3.1.

Proof of Theorem 3.1. According to Lemma 3.2, with probability 1 − 2−µ+1(1 + o(1)) the initial
population contains at least one search point with at most n/2− log n ones and at least one search
point with at least n/2 + log n ones. We assume in the following that this has happened. The
probability of mutation flipping at least log n bits is at most 1/(log n)! = n−Ω(log logn). Taking the
union bound over O(µn log n) steps still gives a superpolynomially small error probability. In the
following, we work under the assumption that mutation never flips more than log n bits.

We call two search points close if their genotypic distance is at most log n. Due to our assump-
tion on mutations, every newly created offspring is close to its parent. Note that on Twomax

the phenotypic distance of any two search point is bounded from above by the genotypic distance,
hence close search points also have a phenotypic distance of at most log n. Note that, whenever
the tournament contains a search point that is close to the new offspring, either the offspring or
a close search point will be removed. If this always happens, the best individual on any branch
cannot be eliminated by an offspring on the opposite branch; recall that initially, the best search
points on the two branches have phenotypic distance at least 2 log n, and this phenotypic distance
increases if the best fitness on any branch improves. When genotypic distances are being used, the
genotypic distance is always at least 2 log n.

Since each offspring has at least one close search point (its parent), the probability that the
tournament does not contain any close search point is at most (1 − 1/µ)w ≤ e−w/µ = e−2.5 lnn =
1/n2.5. So long as the best individual on any branch does not get replaced by any individuals on
the opposite branch, the conditions of Lemma 3.3 are met. Applying Lemma 3.3 to both branches,
by the union bound the probability of both optima being found in time 2eµn lnn is at least 1−2/n.
The probability that in this time a tournament occurs that does not involve a close search point
is O(µn log n) · 1/n2.5 = o(1/n) as µ = o(

√
n/ log n).

All failure probabilities sum up to (assuming n large enough)

2

n
+ o

(

1

n

)

+ 2−µ+1(1 + o(1)) +
O(µn log n)

n−Ω(log logn)
≤ 4

n
+ 2−µ+2 ≤ 2−µ′+3

where the last inequality follows as 2−µ ≤ 2−µ′

and 1/n ≤ 2−µ′

.

In Theorem 3.1 we chose w so large that every tournament included the offspring’s parent with
high probability. Then the (µ+1) EA behaves like the (µ+1) EA with deterministic crowding [6],
leading to similar success probabilities (see Table 1).

A success probability around 1 − 2−µ+1 is best possible for many diversity mechanisms as
with probability 2−µ+1 the whole population is initialised on one branch only (for odd n), and
then it is likely that only one optimum is reached. Methods like fitness sharing and clearing
obtain success probabilities of 1 by more aggressive methods that can force individuals to travel
from one branch to the other by accepting worse search points along the way. The performance of
restricted tournament selection (and that of deterministic crowding) is hence best possible amongst
all mechanisms that do not allow worse search points to enter the population.
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3.2 Small Window Sizes Can Fail

We now turn our attention to small w. If the w is small in comparison to µ, the possibility
emerges that the tournament only contains individuals that are far from the offspring. In that
case even the closest individual in the tournament will be dissimilar to the offspring, resulting in
a competition between individuals from different “niches” (i. e., sets of similar individuals). The
following theorem and its proof show that this may result in one branch taking over the other
branch, even when the branch to get extinct is very close to a global optimum. The resulting
expected optimisation time is exponential.

Theorem 3.4. Let µ ≤ n/8. The probability that the (µ+1) EA with restricted tournament
selection with w ≥ 2 and either genotypic or phenotypic distances finds both optima on Twomax

in time nn−1 is at most O(µw/n). If µ ≤ εn1/w for a sufficiently small constant ε > 0 then the
expected time for finding both optima is Ω(nn).

Note that the probability of finding both optima in nn−1 generations is o(1) if w = O(1) and
µ grows slower than the polynomial n1/w. It also holds if w ≤ c(lnn)/ ln lnn for some constant
0 < c < 1 and µ = O(log n) as then n1/w = e(lnn)/w ≥ e(ln lnn)/c = (lnn)1/c = ω(log n), which
shows µw/n = o(1).

Proof of Theorem 3.4. The analysis follows the proof of [6, Theorem 1]. We assume that the initial
population contains at most one global optimum as the probability of both optima being found
during initialization is at most µ · 2−n = O(µw/n).

We consider the first point of time at which the first optimum is being bound. Without loss
of generality, let us assume that this is 0n. Then we show that with high probability copies of 0n

take over the population before the other optimum 1n is found.
Let i be the number of copies of the 0n individuals in the population, then a good event Gi

(good in a sense of leading towards extinction as we are aiming at a negative result) is to increase
this number from i to i+1. For this it is just necessary to create copies of one of the i individuals.

For n ≥ 2 we have Prob(Gi) ≥ i
µ ·
(

1− 1
n

)n ·
(

µ−i
µ

)w

≥ i
4µ ·

(

µ−i
µ

)w

since it suffices to select

one out of i individuals and to create a copy of the selected individual, and to select w times
individuals from the remaining µ − i individuals. On the other hand, a bad event Bi is to create
an 1n individual in one generation. This probability is clearly bounded by Prob(Bi) ≤ 1

n as every
individual with at least one zero bit has to flip said bit to create 1n. Together, the probability that
the good event Gi happens before the bad event Bi is

Prob(Gi | Gi ∪Bi) ≥
Prob(Gi)

Prob(Gi) + Prob(Bi)
≥

i
4µ ·

(

µ−i
µ

)w

i
4µ ·

(

µ−i
µ

)w

+ 1
n

= 1−
1
n

i
4µ ·

(

µ−i
µ

)w

+ 1
n

≥ 1− 4µ

in · ((µ− i)/µ)w
.

The probability that the i individuals take over the population before 1n is found is therefore at
least

µ
∏

i=1

Prob(Gi | Gi ∪Bi) ≥
µ
∏

i=1

(

1− 4µ

in · ((µ− i)/µ)w

)

.

Using 4µ
n ≤ 1

2 and 1− x ≥ e−2x for x ≤ 1
2 , we obtain

µ
∏

i=1

(

1− 4µ

in · ((µ− i)/µ)w

)

≥
µ
∏

i=1

exp

(

− 8µ

in · ((µ− i)/µ)w

)

= exp

(

−8µ

n
·
µ−1
∑

i=1

1

i · ((µ− i)/µ)w

)

= exp

(

−8µ

n
· µw

µ−1
∑

i=1

1

i · (µ− i)
w

)

.
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Note that the summands are non-increasing with w. So the worst case is having the smallest
possible w ≥ 2, so we can bound this sum from above in the following way:

µ−1
∑

i=1

1

i · (µ− i)2
≤

⌊µ/2⌋
∑

i=1

1

i · (µ− i)2
+

µ−1
∑

i=⌈µ/2⌉

1

i · (µ− i)2

≤
⌊µ/2⌋
∑

i=1

1

i · (µ/2)2 +

µ−1
∑

i=⌈µ/2⌉

1

µ/2 · (µ− i)2

≤ 4

µ2

⌊µ/2⌋
∑

i=1

1

i
+

2

µ

∞
∑

i=1

1

i2
= O

(

1

µ

)

as
∑⌊µ/2⌋

i=1
1
i = O(logµ) and

∑∞
i=1 1/i

2 = π2/6. Together we have

µ
∏

i=1

Prob(Gi | Gi ∪Bi) ≥ exp

(

−8µ

n
· µw ·O

(

1

µ

))

≥ 1−O

(

µw

n

)

.

Once the population consists only of copies of 0n, a mutation has to flip all n bits to find the
1n optimum. This event has probability n−n and, by the union bound, the probability of this
happening in a phase consisting of nn−1 generations is at most 1

n = O(µw/n). The sum of all
failure probabilities is O(µw/n), which proves the first claim. For the second claim, observe that
the conditional expected optimization time is nn once the population has collapsed to copies of 0n

individuals. As this situation occurs with probability at least 1−O(µw/n) = Ω(1) if the constant
ε in µ ≤ εn1/w is sufficiently small, the unconditional expected optimization time is Ω(nn).

4 Experiments

We provide an experimental analysis as well in order to see how closely the theory matches the
empirical performance for reasonable problem sizes, and to investigate a wider range of parameters,
where the theoretical results are not applicable. Our analysis is focused on the (µ+1) EA with
probabilistic crowding and RTS for the Twomax function. We consider exponentially increasing
population sizes µ = {2, 4, 8, . . . , 1024} for a problem size n = 100 and for 100 runs.

Since we are interested in proving how good/bad all algorithms are, we define the following
outcomes and stopping criteria for each run. Success, both optima of Twomax have been reached,
i. e., the run is stopped if the population contains both 0n and 1n in the population. Failure, once
the run has reached 10µn lnn generations and the population does not contain both optima. By
Lemma 3.3, this time period is long enough to allow any reasonable (µ+1) EA variant to find one
or two global optima with high probability (unless the best fitness on a branch drops frequently).
We report the mean of successes and failures for the 100 runs.

For probabilistic crowding (Algorithm 1), and as proved in Theorem 2.2, for all µ sizes, the
method is not able to optimise Twomax. In all runs the algorithm failed to reach even one
optimum, let alone reaching both. Since the algorithm is not able to find any optimum of Twomax,
we ran additional experiments for n = {32, 64, 128, . . . , 16384} and population size µ = 32 to
observe how far the best lineages evolve from n/2 and/or how close the best individuals get to
reach an optimum. In Figure 1, we show the best individuals obtained in each of the 100 runs and
its variance. As soon as n increases, the best fitness in the population starts to concentrate around
n/2 and reaching a fitness of (1 + ε)n/2 becomes very difficult for all constants ε > 0 as n grows.
Even the best outliers start to get closer and closer to the average of the population.

In the case of RTS (Algorithm 2), we ran experiments for w = {1, 2, 4, 8, . . . , 1024}, however we
only plot results up to w = 128 as the results for large w were very similar. Figure 2 shows that
for small values of w and µ the algorithm is not able to maintain individuals on both branches of
Twomax for a long period of time, as predicted by Theorem 3.4. It is only when the population
size is set to µ = 1024 (where Theorem 3.4 does not apply any more since µ > n/8) the algorithm
is able to maintain individuals on both branches before the takeover happens. When setting, for
example, w ≥ 8 and µ ≥ 32 the algorithm was able to find both optima with both genotypic and
phenotypic distances. It is possible to observe a trade-off between w and µ: larger w allow for a
smaller population size µ to be used. Such a trade-off was also indicated by the probability bound
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Figure 1: The normalised best fitness Twomax/n reached among 100 runs at the time both
optima were found or the t = 10µn lnn generations have been reached on Twomax for n =
{32, 64, 128, . . . , 16384} by the (µ+1) EA with probabilistic crowding with µ = 32.

O(µw/n) from Theorem 3.4. Our experiments show that RTS works well for much smaller window
sizes than those required in Theorem 3.1. As a final remark, the method seems to behave fairly
similarly with respect to both distance functions.

5 Conclusions

We have examined theoretically and empirically the behaviour of two different niching mechanisms
embedded into a simple (µ+1) EA on Twomax. We rigorously proved that probabilistic crowding
fails miserably; it is not even able to evolve search points that are significantly better than those
found by random search, even when given exponential time. The reason is that fitness-proportional
selection for survival selection works very similar to uniform selection, and then the algorithm
performs an almost blind search on µ independent lineages.

Our results highlight the importance of scaling the fitness, as done in [1, 14, 15]. An open
question is whether fitness scaling would enable probabilistic crowding to find both optima on
Twomax, and if so, how much the fitness needs to be scaled. A proof where fitness scaling has
helped for a variant of the Simple GA on Onemax was given in [16]. We are confident that the
proof arguments used here can also be used to analyse more advanced versions of crowding [7, 15].

The performance of restricted tournament selection seems to vary a lot with the parameters
involved. We have shown that if µ and w are set too small, one subpopulation may get extinct.
But if w is large enough then RTS behaves similarly to deterministic crowding. For both the
probability of finding both optima is close to 1 − 2−µ+1, hence converging to 1 very quickly as
µ grows. It still an open problem to theoretically analyse the population dynamics of RTS for
intermediate values for w. Our experiments show that RTS can optimise Twomax for smaller w
than the one required in Theorem 3.1.
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Figure 2: The number of successful runs measured among 100 runs at the time both optima were
found on Twomax or t = 10µn lnn generations have been reached for n = 100 with the (µ+1) EA
with restricted tournament selection with µ = {2, 4, 8, . . . , 1024}, w = {1, 2, 4, 8, . . . , 128}, geno-
typic and phenotypic distance.
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