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Abstract

This paper presents the Matlab implementation of the Sequential Element Rejection and Admission (SERA) method for topology
optimization of structures and compliant mechanisms. The lines comprising this code include definition of design domain, finite
element analysis, sensitivity analysis, mesh-independency filter, optimization algorithm and display of results. Extensions and
changes in the algorithm are also included in order to solve multiple load cases, active and passive elements and compliant
mechanisms design. The code is intended for educational purposes and introduces an alternative approach to traditional structural
topology optimization algorithms. The complete code is provided in the Appendix.

Keywords Topology optimization - SERA method - Matlab - Compliant mechanisms

1 Introduction

Topology optimization is a computational approach that opti-
mizes material distribution within a fixed design domain and
for a given set of loads and boundary conditions such that the
resulting layout meets a prescribed set of the design require-
ments. It is an expanding research field of computational me-
chanics which has been growing very rapidly and has
attracted the interest of numerous applied mathemati-
cians and engineering designers, becoming extremely
popular in the last years. Topology optimization has
interesting applications in mechanics, multiphysics and
micro- and nanotechnologies, allowing for efficient de-
signs with minimal preconceived decisions.
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The first work on topology optimization was published
over a century ago by Michell (1904). Since the landmark
paper of Bendsoe and Kikuchi (1988), where a so-called mi-
crostructure and homogenization based approach was used,
numerical methods for topology optimization have been in-
vestigated extensively. At present the most popular topology
optimization method is the SIMP method, which stands for
“Solid Isotropic Material with Penalization”, proposed in the
late eighties by Bendsoe (1989). In this approach, the vari-
ables are the element relative densities which are assumed to
be constant within each element of the discretized design do-
main. It is well known that the optimal solution of the topol-
ogy optimization problem depends on the discretization level,
as observed in many applications based on the finite element
method. In order to avoid checkerboards and mesh-
dependencies some sort of restriction on the resulting design
must be introduced, combining the power law approach with,
e.g., a perimeter constraint (Haber et al. 1996), a gradient
constraint (Borrvall 2001) or with filtering techniques
(Sigmund 1994). A number of papers have also appeared on
solving the topology optimization problem as an integer prob-
lem (Beckers 1999) and other non-gradient or semi-random
methods like genetic algorithms (Hajela and Lee 1995).
During last years Level Set Methods have emerged as an
attractive and promising alternative to perform structural
shape and topology optimization, inspired in the work on
topological derivatives by Sokolowski and Zochowski
(1999) and the paper by Sethian and Wiegman (2000).
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Apart from above mentioned approaches, a number of heu-
ristic or intuition based approaches have effectively addressed
a variety of size, shape and topology optimization problems.
An important branch of these approaches for topology opti-
mization is the evolutionary structural optimization approach
(ESO) by Xie and Steven (1993). The initial concept was that
by systematically removing inefficient materials (elements
with lowest strain energy density), the structure evolves to-
wards an optimum. Its application in topology optimization of
continuum media is quite extensive, see e.g., Xie and Steven
(1997). Although initially solely based on intuition, this basic
idea has developed from simple hard-kill strategies to more
efficient soft-kill bi-directional schemes (BESO), which allow
efficient materials to be added in addition to the inefficient
ones being removed (Querin 1997). The newer BESO method
has demonstrated its strength in solving a variety of topology
optimization problems (Querin et al. 1998; Yang et al. 1999),
but as it is presently defined, it uses a power law (SIMP)
parametrization strategy and standard filtering techniques sim-
ilar to those used in the density approach in order to stabilize
results (Huang and Xie 2010), so it could be categorized as a
discrete update version of the standard SIMP scheme
(Sigmund and Maute 2013). On the other hand, the ESO/
BESO approaches have been criticized for failing in certain
situations and lead to entirely non-optimal solutions (Zhou
and Rozvany 2001; Rozvany 2009). Rozvany and Querin
proposed some improvements of this method under the term
SERA (Sequential Element Rejection and Admission) where
a “virtual material” was introduced, without the use of any
intermediate densities or power law interpolations (Rozvany
and Querin 2004). Additionally, two separate criteria are con-
sidered in the topology optimization process by SERA meth-
od, where the sensitivity numbers of ‘real’ and ‘virtual’ mate-
rial present in the domain are sorted out separately. It was
demonstrated that elements that are added or removed are
not the same when a single list of sensitivity numbers is used
to perform the optimization, because elements actual
material status is not taken in consideration. These ideas
were developed for fully stressed design (Brodie 2007)
and extended to most of the classical problems in struc-
tural topology optimization and compliant mechanisms
design (Alonso et al. 2013, 2014a, b).

Concerning educational articles with implementations of
topology optimization algorithms, there have been a number
of readily available educational computer tools for MATLAB.
The popular 99-line Matlab code published by Sigmund
(2001) played a very important role in general acceptance of
topology optimization methods. This code has been optimized
later for speed and compactness by Andreassen et al. (2011),
who presented a faster 88-line program with improved
assembly and filtering strategies. Also for Matlab, Allaire
(2012) and Challis (2010) implemented programs making
use of the level-set method with continuous and discrete
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variables, respectively. Three-dimensional topology optimiza-
tion codes can be found in the work presented by Liu and
Tovar (2014), including extensions for multiple load cases,
active and passive elements, continuation strategy, synthesis
of compliant mechanisms and heat conduction problems.
Changing a handful of lines in the aforementioned 99-line
code, the BESO scheme was implemented in Matlab by
Huang and Xie (2010). Recently Matlab codes with exten-
sions to Pareto strategies (Suresh 2010) and alternative ele-
ment discretizations using polygonal finite elements (Talischi
etal. 2012a, b) have been presented. Polygonal finite elements
were used by Pereira et al. (2016) for fluid flow topology
optimization. Recently, a methodology for ground structure
based topology optimization in arbitrary 2D and 3D domains
have been implemented using Matlab (Zegard and Paulino
2014, 2015). Finally, bridging topology optimization and ad-
ditive manufacturing technologies, a new tool named
TOPslicer was developed in Matlab to generate suitable out-
puts for additive manufacturing (Zegard and Paulino 2016).

The present paper explains the implementation and use of a
Matlab program that incorporates the strategies for topology
optimization based on the Sequential Element Rejection and
Admission (SERA) method. The proposed code is very sim-
ilar to the 99-line paper except for the material update subrou-
tine, where the optimality criterion has been replaced by the
SERA algorithm. This program can be effectively used in
personal computers for educational purposes of engineering
students or newcomers interested in the field of topology op-
timization, both as an educational tool in courses on topology
optimization, but also as a platform for research and develop-
ment of alternative topology optimization approaches. The
rest of this paper is organized as follows. Section 2 briefly
reviews the mathematical formulation of the topology optimi-
zation problem for compliance minimization of statically
loaded structures. The optimization problem is solved using
the Sequential Element Rejection and Admission (SERA)
procedure with the addition of a mesh independent filter.
Section 3 discusses details of the Matlab implementation for
the algorithm and the use of the code is demonstrated through
several benchmark examples in section 4. These examples
include problems with different boundary conditions, multiple
load cases, passive elements and compliant mechanisms de-
sign. Section 5 offers some closing thoughts. Finally, the
Appendix provides the complete Matlab code for the pro-
posed approach.

2 The topology optimization problem
2.1 Problem formulation

The topology optimization problem for maximum stiffness
structural design is defined as the minimization of the
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compliance, where the objective is to find the material density
distribution that minimizes the structure’s deformation
under the prescribed support and loading conditions,
subjected to a volume constraint. This optimization
problem can be written as:

. N
min: - ¢(p)UTKU = e; U'K, U,
: Vie) _ & p.Ve
subject to: =3y —=——<fp,
/ Vo egl Vo I
={pmin,1}e=1,....N KU=F (1)

where U and F are the global displacement and force
vectors, K is the global stiffness matrix, U, and K, are
the element displacement vector and stiffness matrix,
respectively, p is the vector of design variables, N is
the number of elements used to discretize the design
domain, and V(p) and V, are the material volume and
design domain volume, respectively. V, corresponds to
each finite element volume and f is the prescribed vol-
ume fraction. The global stiffness matrix K is assembled
from the element stiffness matrices K., which are ob-
tained multiplying the element isotropic stiffness matrix
K by the density of the element, since Young’s moduli
are assumed to depend linearly on the density variable,
i.e., Ke(pe)= pcKo. These design variables are discrete in
the SERA method, so density can only be zero or one.
Nevertheless, in order to avoid obtaining a singular
stiffness matrix, a non-zero lower bound is assigned to
density (p,.;,) as shown in (1). The minimum non-zero
relative density has been set to p,,, = 107°, in order to
avoid the optimizer in taking advantage of low density
regions and to comply with the stiffness ratio between
solid and void elements applied in the 99 line code.

2.2 Sequential element rejection and admission
procedure

The SERA topology optimization method is bi-directional in
nature and considers two separate material models: 1) ‘Real’
material and 2) “Virtual’ material with negligible stiffness
(Rozvany and Querin 2002a, b). Two separate criterions of
rejection and admission of elements allow material to be in-
troduced and removed from the design domain by changing
its status from ‘virtual’ to ‘real’ and vice versa (Fig. 1), so that
the final topology is made of all the ‘real’ material present at
the end of the optimization. A sensitivity analysis is performed
and the resulting elemental sensitivity numbers obtained are
the ones that define the elements rejection and admission
criteria. ‘Real’ and ‘virtual’ elements are sorted according to
their sensitivity value from highest to lowest. ‘Real’ elements
are changed to ‘virtual’ if their sensitivity number is below a
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Fig. 1 ‘Real’ and ‘virtual’ material models

defined threshold rejection value and ‘virtual’ elements are
transformed into ‘real’ if their sensitivity is higher than a de-
fined threshold admission value. The steps that drive the
SERA method are given below.

1. Define the design problem. The maximum design do-
main must be defined and discretized for finite element
analysis. All boundary constraints, loads and the target
volume fraction f must also be specified.

2. Calculate the variation of the volume fraction in the ith
iteration which consists of the volume fraction to be
added and removed.

3. Carry out a finite element analysis to compute elemental
and global stiffness matrices as well as the displacement
vector.

4. Calculate the elemental sensitivity numbers.

5. Apply a mesh independent filtering to the sensitivity
numbers.

6. Separate the sensitivity numbers into ‘real’ and ‘virtual’®

materials.

Define the threshold values for ‘real” and ‘virtual’material.

Remove and add elements.

Calculate the volume of the ‘real’ material in the domain.

10. Calculate the stopping criterion

11. Repeat steps (2) through (10) until the target volume is

reached and the optimization converges. The final

0 00 =
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topology is represented by the ‘real” material in the de-
sign domain.

2.3 Material rejection, addition and re-distribution

Material is added and removed from the design domain in a
two stage process: 1) Different amounts of material are added
and removed in each iteration until the target volume fraction f’
is reached. 2) Once the target volume fraction is reached,
material re-distribution takes place by both adding and remov-
ing the same amount of material until the problem converges.

The target volume fraction VF(i) of stage 1) can be calcu-
lated using (2). The fraction of material to be removed in the
ith iteration is then given by (3). This value is then separated
into the volume fraction that will be added AVF,44(i) and the
volume fraction that will be removed AVF, (7). These terms
are given in (4) and (5). Figure 2 describes the scheme of the
material removal and addition starting from a full design do-
main, where each iteration consists of two sub-steps which
add and remove material from the design domain. As it can
be shown in Fig. 2, initially a larger amount than the strictly
required is removed. The second step adds material so that the
final change is exactly the amount given in (3).

VF (i) = max(VF(i-1)-(1-PR), f)
AVF (i) = | VF(i)-VF(i-1) |

AVF (i) = AVF(i)-(SR-1)
AVF (i) = AVF(i)-SR

=
.S
2
& f
[}
g
=
=]
>
0
iteration
VE(i)
AVF(i)
AVFI"Em(l)
VFE(@i+1) Ny
AVF 44(1)
i i+l

Fig. 2 Material removal and addition scheme
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where PR is the Progression Rate, with typical values ranking
between 0.01 and 0.05 and SR is the Smoothing Ratio, with
typical values in the range between 1.2 and 1.4.

Both PR and SR control the changes that can happen at
each iteration step and are adjustable for efficiency of the
method. Higher values can speed up the optimization but con-
vergence and optimum solution could be compromised.

The process of material re-distribution that takes place in
stage 2) consists of both adding and removing the same
amount of material from the design domain, and can be ob-
tained with the following equation:

In (6) B is the material re-distribution fraction, with typical
values ranging between 0.001 and 0.005. In order to remove
or add the amount of volume defined for each iteration, thresh-
old values oy, and oV, of sensitivity numbers are calculated
(Fig. 3). Material redistribution stage only starts when the
volume fraction constraint is accurately satisfied. Therefore,
if the volume fraction of the structure differs by more than
0.001 from the target volume fraction, the Progression Rate
value is reduced by 70% and stage 1) is repeated until the right
volume fraction is reached.

2.4 Sensitivity analysis

The sensitivity number «, in each element that determines
which elements are removed or added so that the objective
function gets minimized is obtained with the following ex-
pression (Alonso et al. 2013):

REAL MATERIAL, aR VIRTUAL MATERIAL, oV

max
o, aemax
44— AVF,
— I A%

Op

| ~ A\/Frem _> ]

min min
e - %e

Fig. 3 Lists with sensitivity numbers of ‘real” and ‘virtual’ materials
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a, = -UT'AK,U, (7)

where U, is the displacement vector of element e and AK, is
the variation of the elemental stiffness matrix. The sensitivity
number for the eth finite element o, (7) is a function of the
variation between two iterations in the stiffness matrix of that
element (8).

AK, = K, (i)~K.(i-1) (8)

where K (i) is the stiffness matrix in the ith iteration for the eth
finite element and K(i—1) is the stiffness matrix in the (i—1)th
iteration for the same finite element. If an element is added,
K.(i)=K, and K_(i—1)=0, so the variation of the elemental
stiffness matrix is AK,=K,. But if an element is removed,
K.()) =0 and K (i-1)~K,, so AK,=-K,. Therefore the ele-
mental sensitivity numbers for the ‘real’ and “virtual’ material
are given by (9) and (10), respectively:

(10)

As the objective is to minimize the compliance of the struc-
ture, the elements with the lower values of sensitivity number
are the ones to be added and removed. It must be noted that the
addition of elements with lower values of sensitivities is
equivalent to the addition of elements with higher values if
the sign of the corresponding sensitivity number is inverted in
(7). In this case, the sensitivity number can be calculated using
the same (9) regardless of the material model, which simplifies
its Matlab implementation. This material redistribution strate-
gy and the lists of ‘real’ and ‘virtual’ material sensitivities are
shown in Fig. 3.

2.5 Filtering of sensitivities and stopping criterion

The mesh independent filter is based on the technique pro-
posed by Sigmund and Petersson (1998) and modifies the
sensitivity number of each element based on a weighted aver-
age of the element sensitivities (11) in a fixed neighbourhood
defined by a minimum radius 7,y

= rmin—dist(e, i), {ien/dist(e,i)<rmn} (11)
where «, is the eth element filtered sensitivity number, 7 is the
number of elements which are inside of the filter radius, p; is
the density of element i. The weighting factor w; for element i
decreases linearly the further element i is from element e, and
for all elements outside the filter radius its value is equal to

zero. Finally, «; is the ith element sensitivity value, r,;, is the
filter radius specified by the user and dist(e, i) represents the
distance between the centers of both elements.

The stopping criterion is defined as the change in the ob-
jective function in the last 20 iterations (12), which is consid-
ered an adequate number of iterations for the convergence
study. It implies that the process will have a minimum of 20
iterations as the criterion is not applied until the iteration num-
ber has reached 20.

i-10 i
2 GG
g = i—19 i -9 (12)
2. Ci
i-9

where ¢; is the stopping criterion, with typical values ranging
between 0.0001 and 0.001.

3 Matlab implementation

The main program of the code in Appendix can be called from
the Matlab prompt with the following line

sera(nelx,nely,volfrac,rmin)

where nelx and nely are the number of elements in the hori-
zontal and vertical directions, respectively, volfrac is the vol-
ume fraction and rmin represents the filter size. Additional
variables like termination criteria, material model, boundary
conditions and plot style are defined in the code itself and can
be edited if needed. The input line is similar to the original 99
line code by Sigmund (2001), except that the penalization
power can be ignored in this case. These details of the
Matlab code are discussed in the following subsections and
several examples are shown in section 4 to demonstrate the
application of the code with its extension to multiple load
cases, passive elements and compliant mechanism design.

3.1 Main program

The main program starts initializing the iteration number and
the variable that takes account of the change in the objective
function. Then a full rectangular design domain (initially all
elements are “real” material) with nelx elements in the hori-
zontal direction and nely elements in the vertical direction is
defined. The Progression Ratio PR, the Smoothing Ratio SR,
and the re-distribution ratio B are set at the beginning of the
main program as well. The main loop stars calculating the
target volume fraction of the next iteration and the finite ele-
ment subroutine is called in line 12. This function returns the
displacement vector U, the global stiffness matrix K and the
element stiffness matrix Ko, which is the same for all ‘real’
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material elements. The displacement vector and the global
stiffness matrix are used to determine the objective function
(line 13) and sensitivity numbers for all elements are obtained
extracting the element displacement vector Ue from the global
displacement vector U (line 19). Following this loop there is a
call to the mesh-independency filter (line 23) and the SERA
optimization algorithm (line 25). Finally, in line 27 a new
volume fraction is calculated for the current iteration and the
change in the objective function is obtained (line 30). The
intermediate results are printed and plotted (lines 33-36) in
the same way as in the previously cited 99 line code. The
change in the objective function and the number of added
and removed elements are also displayed. The optimization
loop is terminated if the relative change of the objective func-
tion in the last 20 iterations is less than 0.0001 (variable
Change is computed in line 30), otherwise above steps are
repeated. The proposed code includes additional lines as de-
scribed in the 99 line code to account for different boundary
conditions, multiple load cases, and passive elements. Load
and support conditions are changed in chapter 4 in order to
solve several optimization problems. Finally the compliance
minimization problem is converted to a compliant mechanism
synthesis case by changing a few lines of the code.

The finite element routine included in the 99-line code may
be indeed slow for very fine discretizations, since it uses a
sparse assembly strategy that is easy to read but highly ineffi-
cient for large problem. This code was much improved for
speed in the 88-line code by Andreassen et al. (2011). In this
paper, the analysis routine in the 99-line has been replaced by
a very efficient code where assembly is also performed using a
list of triplets (Nobel-Jorgensen and Barentzen 2016). A dra-
matic speed-up is obtained with this substitution.

3.2 Optimization algorithm

Obviously the optimization algorithm is the most important
difference as compared to the original 99 line paper, where the
classical SIMP approach was used. The optimization loop
begins in line 25 with a call to the SERA Update function.
The algorithm starts by sorting the “real” and “virtual” ele-
ments, whose sensitivities are stored in two different matrixes,
alfa R and alfa_V, respectively. The next step depends on the
actual volume fraction of the design. If “real” material volume
fraction is larger than the specified volume fraction f, the new
target volume fraction DeltaV(i) is calculated as well as the
number of elements to be removed, NumElem Rem (line
114). If iteration counter is bigger than 2 the number of ele-
ments to add, NumElem_Add (line 117), is also obtained. If
“real” material has already reached the specified volume frac-
tion, material re-distribution takes place, where the same
amount of material is added and rejected (lines 123-127).
Before the redistribution loop starts, it is checked if the vol-
ume fraction constraint is accurately satisfied (line 121).
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When the volume fraction of the structure differs by more than
0.001 from the target volume fraction, material update is
skipped and the iteration starts all over again after reducing
the Progression Rate value by 70%, repeating the process until
the right volume fraction is reached.

Independently of the actual material volume, the same sub-
routines are called in both stages to remove and add material
(Update R, defined in line 131 and Update V, defined in line
138). The first subroutine sorts elements with ‘real’ material
according to their sensitivity number from highest to lowest,
and defines a threshold value (line 133) depending on the
number of elements that should be removed (alfa R th).
“Real” elements are transformed into ‘virtual” if their sensitiv-
ity is lower than the previously defined threshold value. In
order to avoid numerical issues and unsymmetrical results this
condition is specified in relative terms (line 134). The function
called Update V works in the same manner, but transforming
“virtual” elements into “real” when their sensitivity number is
higher than the corresponding threshold value, alfa V_th (line
140). The optimization loop terminates when the stopping
criteria is met, which means that material re-distribution stage
does not further improve the value of the objective function.

4 Numerical examples

The following examples demonstrate the application of the
Sequential Rejection and Admission (SERA) method for min-
imum compliance problems and its extension to multiple load
cases, passive elements and compliant mechanism design.

4.1 Minimum compliance

The proposed Matlab code was used to optimize the so-called
MBB beam, which has been extensively studied in topology
optimization (Fig. 4). The load is applied vertically in the
upper left corner and there is a symmetric boundary condition
along the left edge and the structure is supported horizontally
in the lower right corner. The beam’s dimensions are 60 x 20
elements and correspond to half of the structure. The volume
fraction limit is 50% and two different filter radii were used:
1.5 and 3.0. Figure 5a and b show the structures obtained with
the following inputs, respectively:

sera(60,20,0.5,1.4) sera(60,20,0.5,3.5)

It can be seen from the solutions shown in Fig. 5 that opti-
mized topologies are comparable with the optimum designs
obtained by other methods such as SIMP.

The next example is a short cantilever beam with the design
domain, boundary conditions, and external load shown in
Fig. 6a. The mesh employed consists of 30 x 20 elements
and the filter radius equals 1.5 times the size of the finite
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Fig. 4 Design model for the topology optimization of the MBB-beam

element, with the volume constraint set to 40%. The load is
applied at the bottom right corner of the design domain while
the left side is clamped. In order to solve this optimization
problem boundary conditions specified in lines 67 and 68
should be changed in the following way:

67 F(Q*(nely + 1)*(nelx + 1),1) =—1.0;
68 fixeddofs =[1:2%(nely +1)];

The input line for this case is
sera(32,20,0.4,1.5)

The example in Fig. 6b corresponds to another cantilever
beam but with a different aspect ratio. It must be noted that
most of the examples shown in this paper present coarse
discretizations to comply with the 99-line paper but for all
practical applications much finer discretizations should be
used. In this case the design domain is discretized with a much
more refined mesh of 200 x 50 elements and the load is ap-
plied at the middle point of the right edge. The prescribed

b

Fig. 5 Resulting topologies for the MBB-beam with different filtering

(?

NN\

b

Fig. 6 Design models for short and long cantilever beams

volume fraction is taken to be 0.55 and the radius filter is set
to 1.4. Lines 67 and 68 have to be changed to:

67 F(Q2*(nely + 1)*(nelx + 1)-nely,1) =—1.0;
68 fixeddofs =[1:2%(nely +1)];

This solution is obtained running the code with the following
command line input:

sera(200,50,0.55,1.4)

Figure 7 shows the optimum topologies for both cantilever
beams. Moreover, it can be seen in Fig. 7b that the algorithm
succeeds in achieving a symmetric solution with respect to the
horizontal axis of the beam.

4.2 Multiple load cases

Extending the algorithm to account for multiple load cases can
be done by making minor changes to a few lines. If two load
cases are considered, force and displacement vectors must
become two-column vectors (lines 47 and 48):

b

Fig. 7 Topology optimized cantilever beams
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47  F =sparse(2*¥(nely + 1)*(nelx + 1),2);
48 U =zeros(2*(nely + 1)*(nelx + 1),2);

The objective function should be defined as the sum of
compliances for each load case, i.c.

c(p) =1, 3 /KU, (13)
=
where m is the number of load cases and w; represents the
weighting factor for each load case. The sum of compliances
for two load cases using the same weight for both cases can be
computed by modifying line 13 in the Matlab program:

13 ¢(i)=UG,1)#K* UG,1) + UG2)*K* UG:,2);

If only two load cases are considered, lines 17-19 must be
substituted in the following way:

17b  alfa(ely,elx) = 0.0;

17¢  for j=1:2

18 Ue =U([2*n1-1;2*n1; 2*n2-1;2*%n2;2%n2 +
1;2#n2 +2;2%*n1 + 1;2%n1 + 2],j);

19 a Ifa(ely,elx) = alfa(ely,elx) + Ue’*Ko*Ue;

19b  end.

To solve the two-load problem of the cantilever beam in-
dicated in Fig. 8a the loading condition in line 67 is changed
correspondingly and a unit upward load in the top-right corner
is added:

67 F(Q*(nelx + 1)*(nely + 1),1) =—1.0;
67b F(2*(nelx)*(nely + 1) + 2,2)=1.0;
68 fixeddofs =[1:2*(nely +1)];

This example is promoted by the line
Fig. 8 Topology optimization of

cantilever beam using one and
two load cases

sera(30,30,0.4,1.5)

Figure 8b shows the optimum design for the cantilever when
topology is optimized considering only one load case and Fig.
8c corresponds to the two load case. It can be noticed that
obtained topologies agree well with the solutions published
in the paper by Sigmund (2001) using the SIMP method.

4.3 Passive elements

In some cases the designer may desire some elements to be
void permanently. This can be done by defining the nely x
nelx array, called passive, with zeros at elements free to
change and ones at elements fixed to be always virtual. This
array should be transferred to the SERA Update function in
line 25 and added to the list of parameters in line 105. The
following line must be added also inside this subroutine after
line 110.

110b alfa_V(passive > () = alfa_min;

This statement assigns the minimum value to the sensitivity
numbers of ‘virtual’ elements included in the passive array.
This way, passive elements are moved to the tail of the alfa_V
vector so that they are never selected to change from ‘virtual’
to ‘real’. Finally, the following line added after the SERA
update subroutine looks for passive elements and sets their
density equal to the minimum density:

25b x(find(passive)) = 1e-9;

To solve the problem shown in Fig. 9a, the following passive
elements need to be defined after line 5, where a circle with
radius nely/3 and center in (nely/2, nelx/3) is considered as

void region:

for ely =1:nely

@ Springer




A sequential element rejection and admission (SERA) topology optimization code written in Matlab 1305

Fig. 9 Design domain and %
optimum topology for a cantilever
beam with a fixed hole

()9

for elx =1:nelx
if sqrt((ely-((nely + 0)/2))"2 + (elx-((nelx)/3))"2) < (nely/3)
passive(ely,elx) =1;
x(ely,elx) = 1e-9;
else
passive(ely,elx) = 0;
end
end
end

The boundary conditions of the problem are the same as in the
short cantilever example of chapter 4.1. Figure 9b shows the
optimum structure that includes the fixed hole, obtained with
the following input.

sera(45,30,0.5,1.5)

4.4 Compliant mechanisms

The Matlab code for compliance minimization given in the
previous sections can be easily changed to solve compliant
mechanisms topology optimization problems. Actually, fewer
changes than in the original 99 line code need to be made. A
compliant mechanism optimum design involves two loading
cases: input loading case and dummy (or adjoint) loading
case. The allocation of force and displacement vectors for
‘real’ and adjoint load cases is similar to the two load case
problem of section 4.2. Instead of calculating the compliance
of the structure, we will compute the output displacement,
substituting line 13 with the following code (Saxena and
Ananthasuresh 2000):

13 ()= U1 *K*U(,2);

Sensitivities are obtained in terms of the solutions to the ‘real’
case and the adjoint loading case, which correspond to the first
and second column of the displacement matrix U. The sign in
the values of the sensitivities must be inverted as well, since
we are trying to maximize the output displacement in this

case, instead of minimizing the compliance. Therefore, lines
18 and 19 are substituted in the following way:

18 Uel=U([2*n1-1;2%*n1; 2*n2-1;2%n2; 2%*n2 +
1;2#n2 +2;2%n1 + 1;2%n1 +2],1);

18b Ue2=U([2*n1-1;2*n1; 2¥n2-1;2%*n2; 2*n2 +
1;2#n2 +2;2*n1 + 1;2*n1 + 2],2);

19  alfa(ely,elx) =-Uel’*Ko*Ue2;

Finally, we will define the boundary conditions and the
input and dummy loads for the inverter problem consid-
ered in Fig. 10a. External springs are also added with a
default value of 0.1 to the input and output points of
the design domain. Input and output port degrees of
freedom are labeled as din and dout, respectively.
Below the necessary changes to the Matlab code are
listed, in order to define the necessary boundary condi-
tions of the inverter problem for topology optimization
of compliant mechanisms design (lines 67 and 68
should be substituted with the following code):

din=1;

dout =2%nelx*(nely + 1) + 1;

K(din,din) = K(din,din) + 0.1;

K(dout,dout) = K(dout,dout) + 0.1;

F(din,1)=1;

F(dout,2)=-1;

fixeddofs = union([2:2*(nely + 1):2%*(nely + 1)*(nelx +
D],[2*(nely + 1):-1:2%(nely + 1)-3]);

The progression, smoothing and material redistribution
ratios in the SERA algorithm may need to be adjusted
in some cases to stabilize and improve convergence of
the problem. The convergence time and final topologies
of compliant mechanisms are more sensitive to the
values of these parameters than the maximum stiffness
structures (Alonso et al. 2013). Anyhow, if problems
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Fig. 10 Half design domain and
solution of the inverter compliant Z

mechanism

_

input
load

RVl vall v 7
output

displacement
[ J

were encountered it should usually be enough to de-
crease the value of the progression ratio PR by approx-
imately 0.01 and the smoothing ratio SR by no more
than 0.1.

Figure 10b corresponds to the optimum material distribu-
tion in the inverter problem when the Matlab code is called
with the following input line:

sera(40,20,0.3,1.1)

5 Conclusions

This paper describes the numerical implementation in
Matlab of the Sequential Rejection and Admission
(SERA) method for minimum compliance problems
and its extension to multiple load cases, passive ele-
ments and compliant mechanism design. The main dif-
ference of this method with respect to other bi-
directional methods which add and remove elements
from the design domain is that ‘real’ and ‘virtual’ ma-
terials are treated separately so that the addition and
removal of elements have separate criteria. The code is
inspired by the work presented by Sigmund (2001) and

@ Springer

its objective is to provide students with an academic
implementation of the SERA topology optimization
strategy. The main differences with respect to the orig-
inal 99 line code are the material rejection, addition and
re-distribution subroutines that substitute the classical
optimality criteria optimizer, where special care has
been taken not to affect the readability of the code.
The use of the implemented code is demonstrated
through several numerical examples. We hope that the
code given in the appendix will be useful for students
and professors working in the area of structural
optimization.
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Appendix - Matlab code

O J o U W
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51
52
53

$%%%%%%%%% SERA TOPOLOGY OPTIMIZATION CODE $%$%%%%%%%%%
function sera(nelx,nely,volfrac, rmin)
% INITIALIZE
i=1;Change=1;
x(l:nely,l:nelx)=1.0;
VF (i) =ceil (sum(sum(x)))/ (nelx*nely) ;
PR = 0.03;SR=1.3;B=0.003;
% START ITERATION
while Change>0.0001
i=1+1;
VF (i)=max (VF (i-1) * (1-PR) ,volfrac);
[U,Ko,K]=FE (nelx,nely, x);
c(i)=U'"'"*K*U;
for ely=l:nely
for elx=1:nelx
nl=(nely+l) * (elx-1)tely;
n2=(nely+l) *elxtely;
Ue=U([2*nl-1;2*nl;2*n2-1;2*n2;2*n2+1;2*n2+2;2*nl+1;2*nl+2],1);
alfa(ely,elx)=Ue'*Ko*Ue;
end
end
FILTERING TECHNIQUE
[alfa]=Filter (nelx,nely,rmin,x,alfa);
DESIGN UPDATE
[x,NumElem Add,NumElem Rem, PR]=SERA Update (nelx,nely,alfa, x,VF,
volfrac, i, SR,B,PR);
VF (i) =ceil (sum(sum(x)))/ (nelx*nely) ;
STOPPING CRITERION
if i>20
Change=abs ( (sum(c (1i-19:1-10))-sum(c (i-9:1))) /sum(c(i-9:1)));
end
PRINT RESULTS
disp([' Iteration: ' sprintf('$4i', (i-1)) ' Volume fraction: '
sprintf ('%$6.4f', VF(i)) ' Compliance: ' sprintf('%6.6f',c(i)) '
Change: ' sprintf('%7.5f', Change) ' Removed: ' sprintf('%5i',
NumElem Rem) ' Added: ' sprintf('s5i', NumElem Add)])
PLOT DENSITIES
colormap (gray); imagesc(-x); axis equal; axis tight;
axis off; pause(le-6)
end
$%%%%%%%%% FE-ANALYSIS %%%%%%%%%%
function [U,Ko,K]=FE (nelx,nely, x)
[Ko] = 1lk;
(
(

o°

o°

o°

o

o\

=

I=zeros (nelx*nely*64,1);
J=zeros (nelx*nely*64,1);
X=zeros (nelx*nely*64,1);
F=sparse (2* (nely+l) * (nelx+1l),1);
U=zeros (2* (nely+l) * (nelx+1),1);
ntriplets=0;
for elx = l:nelx
for ely = 1l:nely
nl = (nely+l)*(elx-1)+ely;
n2 = (nely+l)* elx +ely;
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
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edof = [2*nl-1 2*nl 2*n2-1 2*n2 2*n2+1 2*n2+2 2*nl+l 2*nl+2];

for krow = 1:8
for kcol = 1:8
ntriplets = ntriplets+1l;
I (ntriplets) edof (krow) ;
J(ntriplets) edof (kcol) ;
X (ntriplets) = x(ely,elx) *Ko (krow,kcol);
end
end
end
end
K=sparse (I,J,X,2* (nelx+l)* (nely+l),2* (nelx+l)* (nely+1));
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F(2,1) = -1;
fixeddofs = union([1l:2:2* (nely+1)], [2* (nelx+l)* (nely+1)1]1);
alldofs = [1l:2* (nely+l) * (nelx+1)];
freedofs = setdiff (alldofs, fixeddofs) ;
% SOLVING
U (freedofs, :) = K(freedofs, freedofs) \ F(freedofs, :);
U(fixeddofs,:) = 0;
$%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%%%%
function [Ko] = 1lk
E=1; nu = 0.3;
=[1/2-nu/6;1/8+nu/8;-1/4-nu/12;-1/8+3*nu/8;
-1/4+4+nu/12;-1/8-nu/8;nu/6;1/8-3*nu/8]

Ko = E/ (1-nu”2) *
[k(1),k(2),k(3),k(4),k(5),k(6),k(7),k(8);
k(2),k(1),k(8),k(7),k(6),k(5),k(4),k(3);
k(3),k(8),k(1),k(6),k(7),k(4),k(5),k(2);
k(4),k(7),k(6),k(1),k(8),k(3),k(2),k(5);
k(5),k(6),k(7),k(8),k(1),k(2),k(3),k(4);
k(6),k(5),k(4),k(3),k(2),k(1),k(8),k(7);
k(7),k(4),k(5),k(2),k(3),k(8),k(1),k(6);
k(8),k(3),k(2),k(5),k(4),k(7),k(6),k(1)];
$%%%%%%%%% MESH-INDEPENDENCY FILTER $%%%%%%%%%

function [alfaNew]=Filter(nelx,nely,rmin,x,alfa)
alfaNew=zeros (nely,nelx);

for 1 = 1l:nelx
for j= l:nely
sum=0.0;
for k = max(i-floor(rmin),1l) : min(i+floor (rmin),nelx)
for 1 = max(j-floor(rmin),1l) : min(j+floor (rmin),nely)

sum = sumt+max (0, rmin-sgrt ((i-k)*2+(j-1)"2));
alfaNew(j,1i) = alfaNew(j,1i) +
max (0, rmin-sqrt ( (i-k) "2+ (J-1)"2)) *x(1,k) *alfa(1l,k);
end
end
alfaNew (j,1) = alfaNew(j,i)/x(j,1)/sum;
end
end
$%%%%%%%%% SERA UPDATE %%%%%%%%%%
function [x,NumElem Add,NumElem Rem, PR]=SERA Update (nelx,nely,
alfa,x,VF,volfrac, i, SR, B, PR)
alfa min=min(min(alfa));alfa max=max (max(alfa));
alfa V=alfa;alfa R=alfa;
alfa R(x<1.0)=alfa max; alfa V(x>le-9)=alfa min;
NumElem Add=0;NumElem Rem=0;
if VF(i)>volfrac B
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112 DeltaV (i)=abs (VF (i) -VF (i-1));

113 DeltaV_Rem=DeltaV (i) * (SR) ;

114 NumElem Rem=max (1, floor (nelx*nely*DeltaV Rem)) ;
115 [x,NumElem Rem]=Update R(nelx,nely,x,alfa R,NumElem Rem) ;

116 if i>2

117 NumElem Add=max (1, floor (NumElem Rem* (SR-1)));

118 [x,NumElem Add]=Update V(nelx,nely,x,alfa V,NumElem Add) ;
119 end

120 else

121 if (VF(i-1)-volfrac)>=0.001 PR=PR*0.7;

122 else

123 DeltaV_Rem=B*volfrac;

124 NumElem Rem=max (1, floor (nelx*nely*DeltaV Rem)) ;

125 [x,NumElem Rem]=Update R(nelx,nely,x,alfa R,NumElem Rem) ;
126 NumElem Add=NumElem Rem;

127 [x,NumElem Add]=Update V(nelx,nely,x,alfa V,NumElem Add) ;
128 end

129 end

130 $%%%%%%%%% UPDATE R %%%%%%%%%%

131 function[x,NumElem Rem]=Update R(nelx,nely,x,alfa R,NumElem Rem)
132 alfa R vec=sort (reshape(alfa R, (nelx*nely),1), 'descend’);

133 alfa R th=alfa R vec((nelx*nely)-NumElem Rem,1);

134 Elem Rem=((alfa R-alfa R th)/abs(alfa R th))<le-6;

135 NumElem Rem=sum(sum(Elem Rem)) ;

136 x(Elem Rem)=1e-9;
137 %%%%%%%%%% UPDATE V %%%%%%%%%%
138 function

[x,NumElem Add]=Update V(nelx,nely,x,alfa V,NumElem Add)
139 alfa V vec=sort (reshape(alfa V, (nelx*nely),1),

'descend') ;

140 alfa V th=alfa V vec(NumElem Add,1);
141 Elem Add=((alfa V-alfa V th)/abs(alfa V th))>-le-6;

142 NumElem Add=sum(sum(Elem Add)) ;

143 x(Elem Add)=1.0;

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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