
This is a repository copy of A methodology for efficient code optimizations and memory
management.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130673/

Version: Accepted Version

Proceedings Paper:
Kelefouras, V and Djemame, K orcid.org/0000-0001-5811-5263 (2018) A methodology for
efficient code optimizations and memory management. In: CF '18 Proceedings of the 15th
ACM International Conference on Computing Frontiers. ACM International Conference on
Computing Frontiers 2018, 08-10 May 2018, Ischia, Italy. ACM , pp. 105-112. ISBN
978-1-4503-5761-6

https://doi.org/10.1145/3203217.3203274

(c) 2018, ACM. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in 'CF '18
Proceedings of the 15th ACM International Conference on Computing Frontiers',
https://doi.org/10.1145/3203217.3203274

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A methodology for e�icient code optimizations and memory
management

Vasilios Kelefouras
University of Leeds

v.kelefouras@leeds.ac.uk

Karim Djemame
University of Leeds

K.Djemame@leeds.ac.uk

ABSTRACT

�e key to optimizing so�ware is the correct choice, order as well

parameters of optimizations-transformations, which has remained

an open problem in compilation research for decades for various rea-

sons. First, most of the compilation subproblems-transformations

are interdependent and thus addressing them separately is not e�ec-

tive. Second, it is very hard to couple the transformation parameters

to the processor architecture (e.g., cache size and associativity) and

algorithm characteristics (e.g. data reuse); therefore compiler de-

signers and researchers either do not take them into account at all

or do it partly. �ird, the search space (all di�erent transformation

parameters) is very large and thus searching is impractical.

In this paper, the above problems are addressed for data dom-

inant a�ne loop kernels, delivering signi�cant contributions. A

novel methodology is presented that takes as input the underlying

architecture details and algorithm characteristics and outputs the

near-optimum parameters of six code optimizations in terms of

either L1,L2,DDR accesses, execution time or energy consumption.

�e proposed methodology has been evaluated to both embedded

and general purpose processors and for 6 well known algorithms,

achieving high speedup as well energy consumption gain values

over gcc compiler, hand wri�en optimized code and Polly.

KEYWORDS

Code optimizations, data cache, register blocking, loop tiling, high

performance, energy consumption, data reuse

ACM Reference format:

Vasilios Kelefouras and Karim Djemame. 2016. A methodology for e�-

cient code optimizations and memory management. In Proceedings of ACM

Conference, Washington, DC, USA, July 2017 (Conference’17), 8 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Although signi�cant advances have been made in developing ad-

vanced compiler optimization and code transformation frameworks,

current compilers cannot compete hand optimized code in terms

of performance and energy consumption. Researchers tackle the

code optimization problem by using heuristics [12], empirical tech-

niques, iterative compilation techniques [11] and techniques that

simultaneously optimize only two transformations, e.g., register al-

location and instruction scheduling. �e most promising approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

is iterative compilation but is extremely expensive in terms of com-

pilation time; therefore researchers and current compilers try to

reduce compilation time by using i) both iterative compilation and

machine learning compilation techniques [20], ii) both iterative

compilation and genetic algorithms [11], iii) heuristics and em-

pirical methods [5], iv) both iterative compilation and statistical

techniques, v) exhaustive search [10]. However, by employing

these approaches, the remaining search space is still so large that

searching is impractical. �e end result is that seeking the optimal

con�guration is impractical even by using modern supercomputers.

�is is evidenced by the fact that most of the iterative compilation

methods use either low compilation time transformations only or

high compilation time transformations with partial applicability so

as to keep the compilation time in a reasonable level [9] [19] [13].

As a consequence, a very large number of solutions is not tested.

�is has led compiler researchers to use exploration prediction mod-

els focusing on bene�cial areas of optimization search space [5].

Our approach di�ers in three main aspects. First, the transforma-

tions are addressed in a theoretical basis; second, together as one

problem, and third by taking into account the Hardware (HW) ar-

chitecture and algorithm characteristics. �is way, the search space

is reduced by orders of magnitude and as a consequence the quality

of the end result is signi�cantly improved.

�e main steps of our methodology are as follows. First, we pro-

vide an e�cient register blocking and loop tiling algorithm; these

two algorithms consist of a) loop unroll, scalar replacement, register

allocation and b) loop tiling, data array layout, transformations,

respectively. A uni�ed framework is proposed to orchestrate the

aforementioned transformations, together as one problem (as they

are interdependent); the transformations are tailored to the target

processor architecture details and algorithm characteristics. Sec-

ond, we make an analysis of how the above transformations a�ect

Execution Time (ET) and Energy consumption (E) and for the �rst

time we provide a theoretical model describing a) the number of L1

data cache (L1dc), L2 cache (L2c) and main memory (MM) accesses

and b) the number of arithmetical instructions, as a function of the

aforementioned transformation parameters, processor architecture

details and algorithm input size; so, we are able to provide the trans-

formation parameters giving a number of memory accesses close

to the minimum. �ird, taking advantage of this model, we make

a �rst but important step towards correlating ET and E with the

aforementioned transformation parameters, processor architecture

details and algorithm input size.

�e proposed methodology has resulted in �ve contributions,

1) a single framework addressing the aforementioned transforma-

tions theoretically but most importantly as one problem, 2) a new

approach applying code optimizations (CO) by taking into account

the HW architecture and the application special memory access

Conference’17, July 2017, Washington, DC, USA V. Kelefouras et al.

pa�erns, 3) a theoretical model describing the number of mem-

ory accesses and arithmetical instructions, as a function of the

aforementioned optimization parameters, HW architecture and al-

gorithm input size, 4) a new approach correlating ET and Power

consumption (P) with the aforementioned transformation parame-

ters, HW architecture and algorithm input size, 5) a direct outcome

of contributions (1)-(4) is that the search space (to �ne-tune the

above optimizations) is reduced by many orders of magnitude.

Our obtained evaluation results which have been carried out

using two real processors, gem5 [3] and mcpat [14] simulators, are

reported in terms of L1/L2/DDR memory accesses, arithmetical

instructions, ET, P and E.

�e remainder of this paper is organized as follows. In Section 2,

the related work is reviewed. �e proposed methodology is pre-

sented in Section 3 while experimental results are discussed in

Section 4. Finally, Section 5 is dedicated to conclusions.

2 RELATED WORK

Iterative compilation methods provide the most e�cient approach

towards the code optimization problem. However, to the best of

our knowledge, there is no existing iterative compilation method

including all the transformations presented in this paper and all

di�erent transformation parameters, because the compilation time

becomes too large. Iterative compilation methods use either low

compilation time transformations only or high compilation time

transformations with partial applicability so as to keep the com-

pilation time in a reasonable level [9] [19]. As a consequence, a

very large number of solutions is not tested. In [19], loop tiling

is applied with �xed tile sizes. In [9], multiple levels of tiling are

applied but with �xed tile sizes. In [13], only loop unroll is applied.

[12] uses an arti�cial neural network to predict the best trans-

formation (from a given set) should applied. In [5], performance

counters are used to determine good compiler optimization se�ings.

In [20], a long-term learning algorithm that determines the best set

of heuristics is presented.

�e polyhedral model is a �exible and expressive representation

for loop transformations. In [17], a fundamental progress in the

understanding of polyhedral loop nest optimizations is made. Polly

is a high-level loop and data-locality optimizer and optimization

infrastructure for LLVM [6]. Pluto, which is used by Polly, is an

automatic parallelization tool based on the polyhedral model [4].

�ere has been signi�cant research on reducing the number of

data accesses in memory hierarchy by employing compiler trans-

formations and most commonly loop tiling such as [4] [15]. In [15],

a cache hierarchy aware tile scheduling algorithm for multicore

architectures is presented.

Code optimizations are also used to reduce energy consumption

in so�ware. In [1], a survey about energy reduction methods is

given. In [16], several transformation trade-o�s are discussed. In [2],

a compile-time approach to determine CPU frequency is proposed.

3 PROPOSED METHODOLOGY

In this paper, a novel methodology is presented that takes as input

the underlying processor architecture and loop kernel character-

istics and outputs the near-optimum parameters of the six afore-

mentioned transformations in terms of either L1,L2,DDR accesses,

Execution Time (ET) or Energy consumption (E).

Regarding target applications, this methodology considers a�ne

loop kernels; it considers both perfectly and imperfectly nested

loops, where all the array subscripts are linear equations of the

iterators (which stands in most cases). �is method is also applica-

ble to loop kernels containing SIMD instructions. �is method is

applicable to all modern single-core and shared cache multi-core

CPUs. Regarding shared cache processors, we use the so�ware

shared cache partitioning method given in our previous work [8].

No more than p threads can run in parallel (one to each core), where

p is the number of the processing cores (single threaded codes only).

An abstract representation of our method is illustrated in Fig. 1

and it is further explained in the following Subsections.

Input C-code

HW architecture

Apply code

optimizations

Generate all the

efficient transf.

parameters

Extract SW

characteristics

Couple the

execution behaviour

of HW components

to

the transf. params,

HW architecture &

input size
Execution time

model

Power consumption

Model (training)

Cost

Function
Find the best

transf. param. set

transf.

params

L1 acc. = f(transf., HW, input)

L2 acc. = f(transf., HW, input)

DDR acc. = f(transf., HW, input)

Int. instrs = f(transf., input)

FP instrs = f(transf., input)
Output C-code

Figure 1: Flow chart of the proposed methodology

3.1 Apply code optimizations

In this Subsection we provide an e�cient a) register blocking and

b) loop tiling algorithm. �e e�cient application of loop tiling is

not trivial and normally many di�erent implementations are tested,

since it a) depends on other transformations (e.g., data layout), b)

depends on the target memory architecture and data reuse, c) in-

creases the number of arithmetical instructions. �e application of

loop tiling for the Register File (RF) is even more complex (register

blocking). To our knowledge, no application independent algo-

rithm exists for register blocking; it is a mixture of loop tiling, loop

unroll, scalar replacement and register allocation transformations.

�e above CO are the key to high performance and low energy

consumption, especially for data dominant algorithms.

�e main steps of the proposed register blocking algorithm are

the following:

(1) Generate the subscript equations of all arrays

(2) Generate the RF inequality (Eq. 1) that provides all the

e�cient transformation parameters

(3) Extract a transformation set from Eq. 1

(4) Generate the code

De�nition 3.1. Subscript equations which have more than one

solution for at least one constant value, are named type2 equations.

All others, are named type1 equations.

For example, (A[2 ∗ i + j]) gives the following type2 equation

(2 ∗ i + j = c1), while (A[i][j]) gives the following type1 equation

(i = c21 and j = c22).

Each subscript equation de�nes the memory access pa�ern of

the speci�c array reference. Obviously, in our methodology type1

and type2 arrays are treated with di�erent policies as they access

data in di�erent ways.

A methodology for e�icient code optimizations and memory management Conference’17, July 2017, Washington, DC, USA

�e RF inequality (Eq. 1) gives the exact loops that loop unroll

is applied to, their unroll factor values and the number of vari-

ables/registers allocated for each array. Each subscript equation

contributes to the creation of Eq. 1, i.e., equation i gives Ari and

speci�es its expression. �e implementations that do not obey to

the extracted inequalities are discarded reducing substantially the

search space. �e RF inequality is given by

n + Sc ≤ Ar1 +Ar2 + ... +Arn + Sc ≤ FP (1)

where FP is the number of the �oating point (FP) registers, Sc

is the number of FP scalar variables and n is the number of the

array references. Without any loss of generality, we assume that

the arrays contain FP data only; in this case, the number of integer

variables used is always smaller than the number of integer registers.

�e upper bound of Eq. 1 derives from the fact that if more registers

than the available are used, data are spilled to L1dc, increasing the

number of L1 accesses. On the other hand, the lower bound value

is small because other constraints may be more critical. By using

a larger lower bound value, register utilization is increased and

therefore the number of L1 accesses is reduced; however, these

transformation parameters may con�ict to those minimizing the

number of MM or L2 accesses, which may be more critical.

�e number of variables/registers allocated for every array is

given by both Eq. 2 and the three bullets below (the bullet points

are given in order to assign variables according to data reuse).

Ari = unr 1′ × unr 2′ × ... × unr n′ (2)

where the integer unr i ′ are the unroll factor values of the iter-

ators exist in the array’s subscript, e.g., the C[i][j] array in Fig. 2

gives (ArC = 1×4 = 4) (r1−r4 variables) as the (i, j) iterator unroll

factor values are (1, 4), respectively.

• For the type1 arrays which contain all the loop kernel

iterators, only one register is needed (Ari = 1)

• For the innermost iterator always holds unr ′ = 1

• For the arrays i) containing more than one iterators and

one of them is the innermost and ii) all iterators which do

not exist in this array reference have unroll factor values

equal to 1, then only one register is needed for this array

(Ari = 1)

In the above three cases, a di�erent element is accessed in each

iteration (no data reuse being achieved) and thus wasting more

than one register is not e�cient, e.g., in Fig. 2, six registers are used,

i.e., (ArC = 1×4,ArA = 1×1,ArB = 1). Note that (ArB = 1) instead

of (ArB = 1× 4) because of the 3rd bullet above (a di�erent element

of B is accessed in each k iteration and therefore it is not e�cient

to waste more than one register).

Let us give an example, �rst box code in Fig. 2. Eq. 1 gives:
3 ≤ unri × unr j + unri + unr j ≤ F P, unri , 1&unr j , 1

3 ≤ unr j + 2 ≤ F P, unri = 1

3 ≤ unri + 2 ≤ F P, unr j = 1 (3)

�e 3rd bullet generates 3 branches while the 2nd gives (unrk =

1). �e code shown in the second box of Fig. 2 refers to a second

branch solution, i.e., (unri = 1 and unr j = 4) and therefore 6

registers are used.

�e main steps of the loop tiling algorithm are similar to those

of the register blocking algorithm, but a cache inequality (Eq. 4) is

generated for each cache memory; each inequality contains the it-

erators that loop tiling is applied to, the tile sizes and the data array

/* Execute MMM */ cnt_2=0; cnt=0;

for (kk=0;kk!=N;kk+=KK){ //Tiling for L2

for (ii=0;ii!=N;ii+=II){ cnt_1=cnt_2;//Tiling for L2

for (jj=0;jj!=N;jj+=JJ){ //Tiling for L1

for (i=ii;i!=ii+II;i++){ b=cnt_1;

for (j=jj;j!=jj+JJ;j+=4){ a=cnt+i*KK;

r1=0;r2=0;r3=0;r4=0;

for (k=kk;k!=kk+KK;k++){ r5=Atr[a]; r6=Btr[b];

r1+=r5*r6; r6=Btr[b+1];

r2+=r5*r6; r6=Btr[b+2];

r3+=r5*r6; r6=Btr[b+3];

r4+=r5*r6;

b+=4; a++; }

C[i][j]+=r1; C[i][j+1]+=r2;

C[i][j+2]+=r3; C[i][j+3]+=r4;

} } cnt_1+=KK * JJ; } } cnt_2+=KK * N; cnt+=N*KK; }

//change data layout of B

for (ii=0;ii!=N;ii+=KK)

for (jj=0;jj!=N;jj+=4)

for (i=ii;i!=ii+KK;i++)

for (j=jj;j!=jj+4;j++) {

Btr[cnt]=B[i][j]; cnt++; }

// After register blocking & loop tiling

//change data layout of A

cnt=0;

for (jj=0;jj!=N;jj+=KK)

for (i=0;i!=N;i++)

for (j=jj;j!=jj+KK;j++) {

Atr[cnt]=A[i][j]; cnt++; }

Tiling for L2 ʹ i and k are tiled

Tŝ͛͛сII, because i is tiled with tile size II

Tj͛͛сJJ, because jj has a smaller NLV than ii,kk

Tk͛͛сKK, because k is tiled with tile size KK

TC2сTŝ͛͛ǆTũ͛͛ǆϰǆϮ, TA2сTŝ͛͛ǆTŬ͛͛ǆϰǆϭ, TB2сTŬ͛͛ǆTũ͛͛ǆϰǆϮ

Tiling for L1 - only j is tiled

Ti͛сϭ, because i has a smaller NLV than j

Tj͛сJJ, because j is tiled with tile size JJ

Tk͛сKK, because k has a larger NLV than j

TC1сTŝ͛ǆTũ͛ǆϰǆϮ, TA1сTŝ͛ǆTŬ͛ǆϰǆϮ, TB1сTŬ͛ǆTũ͛ǆϰǆϭ

Register blocking ʹ r1-r6 registers

// Input Code

for (i=0;i!=N;i++)

for (j=0;j!=N;j++)

for (k=0;k!=N;k++)

C[i][j]+=A[i][k]*B[k][j];

C A B

r1-r4

Tile2 & Tile1

IIII
=

x

i i

j jk

k

Tile1 Tile1Tile2 Tile2

JJ JJr5 r6KK

KK

//After register blocking

for (i=0; i!=N; i++)

for (j=0; j!=N; j+=4) {

r1=0;r2=0;r3=0;r4=0;

for (k=0; k!=N; k++) {

r5=A[i][k]; r6=B[k][j];

r1+=r5*r6; r6=B[k][j+1];

r2+=r5*r6; r6=B[k][j+2];

r3+=r5*r6; r6=B[k][j+3];

r4+=r5*r6; }

C[i][j]+=r1; C[i][j+1]+=r2;

C[i][j+2]+=r3; C[i][j+3]+=r4;}

Figure 2: An example, Matrix-Matrix Multiplication (MMM)

layouts. �e implementations that do not obey to the extracted in-

equalities are automatically discarded by our methodology reducing

substantially the search space.

�e cache inequality is formulated as:

m ≤ ⌈
T ile1

Li /assoc
⌉ + ... + ⌈

T ilen
Li /assoc

⌉ ≤ assoc (4)

where Li is the corresponding cache size, assoc is the Li associa-

tivity value (e.g., for an 8-way associative cache, assoc = 8) andm

de�nes the lower bound of the tile sizes and it equals to the number

of arrays in the loop kernel. In the special case where the number

of the arrays is larger than the associativity value is not discussed

in this paper (normally, (assoc ≥ 8)). Tilei gives the tile size of the

ith array and is given by Eq. 5:

T ilei = T
′
1 ×T

′
2 ×T

′
n × type × s (5)

where type is the size of each array’s element in bytes and T ′
i

are the tile sizes of the iterators existing in the corresponding array

subscript. s is an integer and (s = 1 or s = 2); s de�nes how many

tiles of each array should be allocated in the cache. For the tiles

that do not achieve data reuse (a di�erent tile is accessed in each

iteration), we assign cache space twice the size of their tiles (s = 2

in Eq. 5). �is way, not one but two consecutive tiles are allocated

into the cache in order for the second accessed tile not to displace

another array’s tile. (⌈ T ile1
Li /assoc

⌉) is an integer representing the

number of Li cache lines with identical cache addresses used for

the tile of array1. Eq. 4 satis�es that the array tiles directed to

the same cache subregions do not con�ict with each other as the

number of cache lines with identical addresses needed for the tiles

is not larger than the (assoc) value.

All the tile elements in Eq. 4 must contain consecutive MM

locations, e.g., in Fig. 2, none of the tiles does. Otherwise, an

extra loop kernel is added for each array, likewise Atr and Btr

arrays in Fig. 2; new arrays are created which replace the default

ones (extra cost in L/S and arithmetical instructions). �ere are

Conference’17, July 2017, Washington, DC, USA V. Kelefouras et al.

some special cases where the arrays do not contain consecutive

memory locations but their layouts can remain unchanged in order

to avoid the cost of transforming the arrays; in that case, extra

cache misses occur and thus a larger error in approximating the

number of memory accesses occurs too (Fig. 4-Subsection 4.1). T ′
i

is given by one of the following three:

• T ′
i equals to the L1 tile size of i iterator, if tiling for L1 is

applied to the i iterator

• T ′
i equals to the unroll factor value of i iterator, if tiling

for L1 is not applied to the i iterator and i has a smaller

Nesting Level Value (NLV) than the iterator being tiled for

L1

• T ′
i equals to the upper loop bound value of i iterator, if

tiling for L1 is not applied to the i iterator and i has a larger

NLV than the iterator being tiled for L1

Assuming an 8-way 32kbyte L1dc and MMM (Fig. 2), Eq. 4 gives

(3 ≤ ⌈
TC1
4096 ⌉ + ⌈

TA1
4096 ⌉ + ⌈

TB1
4096 ⌉ ≤ 8). �e (TC1,TA1,TB1) values of

the C-code shown at the right of Fig. 2 are given in the bo�om

le� box (the NLV of k iterator is 6 while the NLV of kk is 1), also,

�oating point values are assumed, 4 bytes each.

In the shared cache case, Li in Eq. 4 is the corresponding shared

cache partition size used and each core uses only its assigned shared

cache space.

We have implemented an automated C to C tool just for the six

studied algorithms, but a general tool can be implemented by using

POET [18] tool.

3.2 Couple execution behaviour to CO,
processor architecture & input size

For all the Eq. 1 and Eq. 4 schedules, we compute the number of

L1dc, L2c and MM accesses as well as the number of arithmetical

instructions. �is problem is theoretically formulated by exploiting

the memory architecture details and the special memory access

pa�erns. In particular, one mathematical equation is generated for

each memory and for each loop kernel providing the correspond-

ing value. �is equation provides the number of memory accesses

while the transformation parameters and input size serving as the

independent variables of the equation. Loop tiling and loop unroll

transformations as well as the input size, are inserted directly to the

aforementioned equations while the data layouts, scalar replace-

ment and register allocation transformations as well as the HW

architecture, are inserted indirectly (they have been used in order to

create Eq.1-Eq.5). �is way, we are able to �nd the solution o�ering

a number of L1dc, L2c or MM accesses close to the minimum.

We are able to approximate the number of memory accesses

because no unexpected misses occur in the cache. We assume that

the underlying memory architecture consists of separate �rst level

data and instruction caches (modern architectures). In this case,

the program code typically �ts in L1 instruction cache; thus, it is

assumed that the shared cache or uni�ed cache (if any) is dominated

by data. For the reminder of this paper, we assume 2 levels of cache,

but more/less levels can be used, by slightly changing the following

equations.

�e equation approximating the number of L1dc accesses follows

L1.acc =

i=arrays∑

i=1

(

j=M∏

j=1

(upj − low j)

Tj
×

k=P∏

k=1

unrk + of f seti) + var (6)

where arrays is the number of arrays, M is the number of the

iterators that control the corresponding array and P is the number of

the iterators that loop unroll has been applied to (iterators that exist

in the subscript of the corresponding array only), e.g., regarding

the C array in the code at the right of Fig. 2, the �rst product of

Eq. 6 refers to all the iterators but k (array reference is outside k

loop) while the second product refers to j iterator only. (up, low)

give the bound values of the corresponding iterator (normally, they

de�ne the algorithm’s input size) and (T ,unr) refer to the tile size

and unroll factor value, respectively.

o f f set gives the number of L1dc of the new loop kernel added

in the case the data array layout is transformed. O�set is either

(o f f seti = 2×ArraySizei) or (o f f seti = 0) depending on whether

the data layout of the array is changed or not; in the case that the

layout is changed, the array has to be loaded and then wri�en again

to memory, thus it is (o f f seti = 2 × ArraySizei). (var) gives the

number of L1 accesses due to the scalar variables; we never use

more registers than available and thus the number of RF spills is

negligible (var ≈ 0).

Eq. 6 for the C-code at the right of Fig. 2 gives (N 3

4×KK ,
N 3

4 ,N
3) L1

accesses for (C,A,B) arrays, respectively, and in overall (L1.acc =
N 3

4×KK +
N 3

4 +N
3
+4×N 2). Here, the number of L1 accesses strongly

depends on the unroll factor value (N 3/4).

�e number of L2c accesses is approximated by Eq. 7; at this

step, only the new/extra iterators (introduced by loop tiling) must

be processed and not the initial iterators exist in the input code.

L2 Acc . =
∑i=type1
i=1 Type1 L2acc . +

∑i=type2
i=1 Type2 L2acc . + code (7)

where type1 and type2 is the number of type1 and type2 arrays,

respectively. In this paper, we don’t provide the equations for type2

arrays because of the limited paper size; however, in Section 4, FIR

and Gaussian Blur contain type2 arrays. code refers to the number

of source code accesses and always (Arrays acc . ≫ code) as a) the

code size of loop kernels is small and �ts in L1 instruction cache, b)

we are dealing with data dominant algorithms.

Type1 L2acc . = array size × ti + o f f set (8)

where array size is the size of the array and o f f set gives the

number of L2 accesses of the new loop kernel added in the case

the data array layout is transformed. ti gives how many times the

corresponding array is accessed from L2 memory and is given by

Eq. 9. Regarding the o f f set value, when the array size is bigger

or comparable to the cache size, then (o f f seti ≻ 2 ×ArraySizei).

�is is because the elements are always loaded in blocks (cache

lines) and many lines are loaded more than once (especially in the

column-wise case). �is is why we use a hand optimized code

changing the layout in an e�cient way, thus always achieving

(o f f seti ≈ 2 ×ArraySizei).

ti =
∏j=N

j=1
(upj−low j)

Tj
×
∏k=M

k=1
(upk−lowk)

Tk
(9)

where N is the number of new/extra iterators that a) do not exist

in the corresponding array and b) exist above of the iterators of the

corresponding array. M is the number of new/extra iterators that a)

do not exist in the array and b) exist between of the iterators of the

array, e.g., regarding (C,A,B) arrays in Fig. 2, the iterators referring

to the �rst and second product of Eq. 9 are (kk,none), (jj,none),

(none, ii), respectively, giving (tC =
N
KK), (tA =

N
J J) and (tB =

N
I I),

respectively. �e �rst and the second products of Eq. 9 give how

A methodology for e�icient code optimizations and memory management Conference’17, July 2017, Washington, DC, USA

many times the array is accessed due to the iterators exist above

the upper new iterator of this array and between the new iterators

of this array, respectively.

Eq. 7 for the code of Fig. 2 gives (L2.acc = N 3/KK + N 3/J J +

N 3/I I + 4 × N 2).

In the case that more than one thread run in parallel under a

shared cache, the overall number of cache accesses is extracted by

accumulating all the di�erent loop kernel equations.

�e number of MM accesses is given by an equation identical to

Eq. 7. Moreover, the number of MM accesses because of the type1

arrays is given by an equation identical to Eq. 8 and Eq. 9. However,

in Eq. 9, we refer only to the iterators created by applying tiling to

the last level cache, e.g., regarding (C,A,B) arrays of MMM (Fig. 2),

the iterators referring to the �rst and second product of Eq. 9 are

(kk,none), (none,none), (none, ii), respectively, giving (tC =
N
KK),

(tA = 1) and (tB =
N
I I), respectively.

�e number of integer and FP instructions is approximated by:

Arith . instr s =

i=iterators∑

i=1

(

j=i∏

j=1

upj − low j

Tj
× c j) + of f set (10)

where iterators is the total number of iterators and (up, low,T)

are their corresponding bound values, as in previous equations. c j is

the number of integer or FP assembly instructions measured inside

j loop (assembly instructions occur between the open and close

loop bracket). o f f set is the number of arithmetical instructions of

the extra loop kernels added (if the array layouts change).

(
∑i=iterators
i=1 (

∏j=i
j=1

upj−low j

Tj
) gives the number of loop itera-

tions in total while c j gives the number of assembly instructions

in loop j. Note that j iterator varies from (j = 1 - it corresponds

to the outermost iterator) to (j = iterators - it corresponds to the

innermost iterator), e.g., in Fig. 2, Eq. 10 gives ((N /KK) × c1 +

(N 2/(KK × I I)) ×c2+ (N 3/(KK × I I × J J)) ×c3+ (N 3/(KK × J J)) ×

c4 + (N 3/(KK × 4)) × c5 + (N 3/4) × c6); as it can be observed, the

number of arithmetical instructions is strongly a�ected by a) the

number of the loops being tiled (more terms are introduced), b) tile

size / unroll factor values of the innermost iterators (here, the unroll

factor value of j, i.e., 4, a�ects the number of instructions at the

most). �us, a larger unroll factor value would be more e�cient.

Given that the c values depend on the target compiler, they

cannot be approximated. �us, we measure the c values for one

transformation set and predict the c values of the others (where

possible), e.g., in Fig. 2, the c values (assembly instructions) almost

remain unchanged by changing the (KK , I I , J J) values (apart from

their maximum andminimum ones because in this case, the number

of the loops changes), but not by changing the (j) unroll factor

value or the number of the loops being tiled, because the loop body

changes and thus more/less assembly instructions are inserted.

In this work, we take advantage of the fact that the c values

almost remain unchanged for di�erent tile sizes, su�ce the array

layouts remain unchanged and the tile sizes do not take their maxi-

mum/minimum values; the c values are only slightly a�ected by

the compiler, even by using aggressive compilers and high opti-

mization levels. �e c values for di�erent unroll factor values and

data layouts are signi�cantly changed and cannot be predicted.
3.3 Performance Models

�e aforementioned transformations a�ect P and E in all HW com-

ponents and thus a di�erent power model is generated for each

1
.0

0
E

-0
4

1
.0

0
E

-0
3

1
.0

0
E

-0
2

1
.0

0
E

-0
1

1
.0

0
E

+
0

0

1
.0

0
E

+
0

1

1
.0

0
E

+
0

4
1

.0
0

E
+

0
5

1
.0

0
E

+
0

6
1

.0
0

E
+

0
7

Dynamic Power

consumption (log. scale)

N
u

m
b

e
r

o
f

L1
 d

a
ta

 c
a

ch
e

 a
cc

e
ss

e
s

L1
 d

a
ta

 c
a

ch
e

 p
o

w
e

r
co

n
su

m
p

ti
o

n
 m

o
d

e
l

(4
0

9
6

,1
6

,4
,4

,
2

,2
,

1
6

,1
)

(1
6

3
8

4
,3

2
,4

,4
,

2
,2

,
3

2
,1

)

(3
2

7
6

8
,6

4
,8

,4
,

2
,2

,
6

4
,1

)

(4
0

9
6

,6
4

,4
,1

,
2

,2
,

6
4

,1
)

1
.0

0
E

-0
1

1
.0

0
E

+
0

0

1
.0

0
E

+
0

1

1
.0

0
E

+
0

2

1
.0

0
E

+
0

4
1

.0
0

E
+

0
5

1
.0

0
E

+
0

6
1

.0
0

E
+

0
7

Dynamic Power

consumption (log. scale)

N
u

m
b

e
r

o
f

D
D

R
 d

a
ta

 c
a

ch
e

 a
cc

e
ss

e
s

D
D

R
 p

o
w

e
r

co
n

su
m

p
ti

o
n

 m
o

d
e

l

(4
,2

,4
)

(4
,1

,1
)

(2
,2

,2
)

(1
,1

,1
)

1
.0

0
E

-0
5

1
.0

0
E

-0
4

1
.0

0
E

-0
3

1
.0

0
E

-0
2

1
.0

0
E

-0
1

1
.0

0
E

+
0

0

1
.0

0
E

+
0

4
1

.0
0

E
+

0
5

1
.0

0
E

+
0

6
1

.0
0

E
+

0
7

Dynamic Power

consumption (log. scale)

N
u

m
b

e
r

o
f

L/
S

 i
n

st
rs

,
to

ta
l

in
st

rs
 a

n
d

 A
LU

 a
cc

e
ss

e
s,

 r
e

sp
e

ct
iv

e
ly

P
o

w
e

r
co

n
su

m
p

ti
o

n
 m

o
d

e
l

LO
A

D
Q

S
T

O
R

E
Q

In
st

r.
 B

u
ff

e
r

In
st

r.
 D

e
co

d
e

r

in
t

A
LU

s

Figure 3: Power consumption models

0

0
.51

1
.52

2
.53

3
.54

Error (%) -Number of

integer instructions

T
il

e
 s

iz
e

s

g
cc

 4
.8

.5
 c

o
m

p
il

e
r

-
C

P
U

 i
7

 6
7

0
0

m
m

m

m
v

m

fi
r

g
e

m
ve

r

d
io

tg
e

n

g
a

u
ss

ia
n

 B
lu

r

0

1
0

2
0

3
0

4
0

Error (%) -Number of

integer instructions

T
il

e
 s

iz
e

s

g
cc

 4
.8

.5
 c

o
m

p
il

e
r

-
C

P
U

 i
7

 6
7

0
0

 -
h

a
n

d
 w

ri
tt

e
n

 A
V

X

m
m

m

m
v

m

fi
r

g
e

m
ve

r

d
io

tg
e

n

g
a

u
ss

ia
n

 B
lu

r

012345678

L1
-R

e
a

d
s

L1
-W

ri
te

s
L2

-R
e

a
d

s
L2

-W
ri

te
s

D
D

R
-R

e
a

d
s

D
D

R
-W

ri
te

s

Error (%) -Number of

memory accesses

N
o

rm
a

l
ca

se
 -

 m
a

x
e

rr
o

r
N

o
rm

a
l
ca

se
-a

v
e

ra
g

e
 e

rr
o

r

S
p

e
ci

a
l

ca
se

-m
a

x
e

rr
o

r
S

p
e

ci
a

l
ca

se
-a

v
e

ra
g

e
 e

rr
o

r

Figure 4: Validation of Eq.6-Eq.10 (relative error)

di�erent processor and MM. An o�-line training phase is applied in

order to generate the power equations for the target processor and

MM (Fig. 3); the custom HW architecture is given as input to the

mcpat [14] simulator and a number of simulations takes place for

di�erent values of L1,L2,DDR accesses and integer, FP instructions.

�is way we generate P equations (Fig. 3); we show that memory

power values are linear to their number of memory accesses (Eq.6-

Eq.10). Moreover, LoadQ/StoreQ power values are linear to the

number of L/S instructions (Eq. 6). �e ALU, instruction bu�er

and instruction decoder power values are linear to the number of

ALU instructions and total number of instructions (Eq. 10+Eq. 6),

respectively (Fig. 3). Although this work can be extended to take

into account more HW architecture components, in this paper, we

approximate P by using Eq. 11; thus, according to mcpat we do not

take into account P on the renaming unit, instruction cache, RF,

TLBs, branch predictor and instruction scheduler.

Conference’17, July 2017, Washington, DC, USA V. Kelefouras et al.

P = PL1(f (L1.acc)) + PL2(f (L2.acc)) + PDDR (f (DDR .acc))+

PL/S Queue (f (L/S .instr s)) + PALU (f (ALU .instr s))+

Pinstr .buf f er (f (instr s)) + Pinstr .decoder (f (instr s))

(11)

As far as execution time (ET) is concerned, it cannot be approx-

imated by using a mathematical formula; however, we can use

current ET models in order to �nd/predict qualitatively the trans-

formation parameter set giving the fastest binary. Given that all

the candidate transformation parameter sets a) refer to the same

algorithm, b) the algorithm is static, in Subsection 4.1, we show that

we are able to select qualitatively a high quality transformation pa-

rameter set, even by using a simple execution time model (Average

Memory Access Time (AMAT) [7]). Although more accurate and

complex ET models exist like [22], where concurrency in memory

hierarchy is taken in account, the aim of this �rst version is to

validate and describe the theoretical background.

5
.0

0
E

+
0

6

1
.5

0
E

+
0

7

2
.5

0
E

+
0

7

3
.5

0
E

+
0

7

4
.5

0
E

+
0

7

Simulation time in cycles

M
M

M
 ʹ

e
xe

cu
ti

o
n

 t
im

e
x8

6

p
ro

p
.

E
q

.
(x

8
6

)

a
rm

p
ro

p
.

E
q

.
(a

rm
)

3
.0

0
E

-0
2

8
.0

0
E

-0
2

1
.3

0
E

-0
1

1
.8

0
E

-0
1

Energy Consumption

(Joules)

M
M

M
 ʹ

e
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

1
.2

0
E

+
0

0

1
.7

0
E

+
0

0

2
.2

0
E

+
0

0

2
.7

0
E

+
0

0

3
.2

0
E

+
0

0

3
.7

0
E

+
0

0

5
0

5
0

1
0

0
2

0
0

2
5

4
0

4
0

5
0

4
0

4
0

4
4

0

2
5

2
5

2
0

1
0

5
0

4
0

1
1

0
4

0
2

0
4

0
4

0

4
0

4
0

8
8

4
0

8
1

0
0

1
0

0
2

0
4

0
4

0
8

2
5

1
0

2
0

8
5

4
2

5
0

2
0

1
0

2
2

5
2

5
1

0
5

5
0

2
0

1
5

2
0

1
0

4
0

4
0

8
8

4
8

4
8

1
0

0
4

4
8

8
4

Dynamic Power consumption

(W)

T
ra

n
sf

o
rm

a
ti

o
n

 p
a

ra
m

e
te

rs

M
M

M
 ʹ

p
o

w
e

r
co

n
su

m
p

ti
o

n

Figure 5: Validation of the ET and Pmodels used (the results

for the other algorithms are similar)

3.4 Reduction of the search space - optimality

Although it is impractical to run all di�erent schedules in order to

prove that our methodology doesn’t discard e�cient schedules, a

theoretical explanation is given.

First, the schedules that don’t belong to Eq. 1, either use a larger

number of registers than available or they don’t take into account

data reuse (and therefore registers are wasted), while the schedules

that don’t belong to Eq. 4 either use larger tile sizes than the cache or

the tiles cannot remain in the cache. All the above refer to schedules

that register blocking and loop tiling have not been applied in an

e�cient way and therefore they give a high number of data accesses

through the whole memory hierarchy. Although Eq. 1 and Eq. 4

transformation parameters do not always provide near-optimum

performance as the corresponding transformations are not always

e�cient/desirable, Eq. 1 and Eq. 4 do provide all the e�cient register

blocking and loop tiling implementations, respectively. In other

words, if the target metric is to minimize the number of Li memory,

then the optimum solution will be included in the corresponding

inequality.
3.5 Putting it all together

�e proposed methodology is given in Algorithm 1. All the steps

have been explained in the previous subsections. All di�erent

combinations of loop interchange are generated as it a�ects Eq.1-

Eq.10.

In the case that the target metric is not ET or E, but the minimum

number of Li memory accesses, then Algorithm 1 is changed accord-

ingly, i.e., steps (1, 2, 5, 8), (1, 3, 5, 8) or (1, 4, 5, 8) are executed only,

respectively. It is important to note that in this case the number

of di�erent schedules that have to be further processed by Subsec-

tion 3.2 is smaller, i.e., the lower bound values of Eq. 1 and Eq. 4

are no longer needed to be that small. For example, by using a

larger lower bound value in Eq. 1, register utilization is increased

and therefore the number of L1 accesses is reduced; however, these

parameters may con�ict to those minimizing the number of MM

accesses, which may be more critical. �us, if the target metric is

just the L1dc accesses, there is no need to use such a small Eq. 1

lower bound value. �e same holds for L2c and MM too.

Algorithm 1 Proposed Methodology

Step 1. parsing

Step 2. apply proposed Register blocking algorithm

for (all di�erent RF sets) do

pick a RF transf. set

Step 3. apply loop tiling alg. to L1

for (all di�erent L1 sets) do

pick an L1 transf. set

Step 4. apply loop tiling alg. to L2

for (all di�erent L2 sets) do

pick an L2 transf. set

Step 5a. generate access equations - Eq. 6-Eq. 9 (all mems)

Step 5b. compute the num of accesses in memory hierarchy

Step 6. arithmetical instructions

if (the num of arith. instrs cannot be predicted for the current

set) then

generate C code (from C to C) for the current set

generate assembly code - cross compile

measure the num of FP and integer assembly instrs (get the c

values of Eq. 10)

else

predict the num of arith. instrs (Eq. 10)

end if

Step 7. compute the ET,P,E values for the current set

Step 8. store only the best set depending on the cost function

(ET,E,L1,L2,MM)

end for

apply loop interchange to L2 iterators and go to step4

end for

apply loop interchange to L1 iterators and go to step3

end for

4 EXPERIMENTAL RESULTS

�eexperimental results are obtained by using a) the quad-core Intel

i7 6700 CPU (CentoS-7 OS) by using both normal C-code and hand

A methodology for e�icient code optimizations and memory management Conference’17, July 2017, Washington, DC, USA

Table 1: Evaluation over gcc and hand written AVX code

MMM - ZYBO MVM - ZYBO

Binaries ET(sec) P (W) E (J) ET(sec) P (W) E (J)

default 1.38E+02 4.80E-01 6.62E+01 4.70E-01 4.10E-01 1.93E-01

best ET 1.55E+01 5.00E-01 7.75E+00 2.20E-01 3.50E-01 7.70E-02

best E 1.79E+01 3.80E-01 6.80E+00 2.20E-01 3.50E-01 7.70E-02

MMM - i7 6700 MVM - i7 6700

default 9.92E+00 4.80E+01 4.76E+02 1.02E-01 4.18E+01 4.25E+00

AVX 8.90E+00 4.66E+01 4.15E+02 8.43E-03 4.67E+01 3.94E-01

best ET 2.30E+00 4.60E+01 1.06E+02 3.30E-03 4.92E+01 1.62E-01

best E 2.40E+00 4.39E+01 1.05E+02 3.30E-03 4.92E+01 1.62E-01

FIR - ZYBO Diotgen - ZYBO

default 1.98E+00 5.75E-01 1.14E+00 3.90E+01 5.00E-01 1.95E+01

best ET 8.20E-01 5.00E-01 4.10E-01 1.60E+00 4.25E-01 6.80E-01

best E 8.60E-01 4.75E-01 4.09E-01 1.60E+00 4.25E-01 6.80E-01

FIR - i7 6700 Diotgen - i7 6700

default 1.33E-01 4.45E+01 5.94E+00 8.90E+00 4.81E+01 4.28E+02

AVX 1.30E-01 4.43E+01 5.76E+00 6.82E+00 4.68E+01 3.19E+02

best ET 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02

best E 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02

Gemver - ZYBO Gaussian Blur - ZYBO

default 4.90E-01 5.75E-01 2.82E-01 2.53E-01 4.10E-01 1.04E-01

best ET 2.10E-01 5.00E-01 1.05E-01 6.65E-02 3.50E-01 2.33E-02

best E 2.10E-01 4.75E-01 9.98E-02 6.65E-02 3.50E-01 2.33E-02

Gemver - i7 6700 Gaussian Blur - i7 6700

default 2.10E-03 4.47E+01 9.39E-02 2.60E-02 4.62E+01 1.20E+00

AVX 2.00E-03 3.70E+01 7.40E-02 6.10E-03 4.68E+01 2.85E-01

best ET 1.54E-03 3.65E+01 5.62E-02 5.40E-03 4.64E+01 2.51E-01

best E 1.54E-03 3.65E+01 5.62E-02 5.40E-03 4.64E+01 2.51E-01

wri�en code with AVX extensions, b) the embedded ARM Cortex-

A9 processor on a Zybo Zynq-7000 FPGA platform using petalinux

OS, c) the gem5 [3] and McPAT [14] simulators, simulating both a

generic x86 and an ARMv8-A CPU .

�e bench-suite used in this study consists of six well-known

data dominant static kernels taken from PolyBench/C benchmark

suite version 3.2 [21]. �ese are: Matrix-Matrix Multiplication

(MMM), Matrix-Vector Multiplication (MVM), Gaussian Blur (3 × 3

�lter), Finite Impulse Response �lter (FIR), a kernel containing

mixed vector multiplication and matrix addition (Gemver) and a

multiresolution analysis kernel (Diotgen). �e kernels are compiled

using gcc 4.8.5 and arm-linux-gnueabi-gcc 4.9.2 compilers, for

x86 and arm, respectively (’O3’). �e output of our method is

compiled with ’O2’ optimization level in order the compiler to be

less aggressive.

Table 2: Speedup over hand optimized code and Polly

Unroll Tiling Tiling Unroll & Prop. Polly

1 loop 1 loop 2 loops Tiling Meth. LLVM

MMM-i7(AVX) 1.11 1.53 1.82 1.90 3.93 1.41

MMM-ZYBO 1.71 2.23 2.78 3.07 8.62

MVM-i7(AVX) 1.08 1.09 1.09 1.10 2.32 0.97

MVM-ZYBO 1.18 1.11 1.10 1.13 2.14

FIR-i7(AVX) 1.42 1.11 1.11 1.44 3.85 1.38

FIR-ZYBO 1.31 1.52 1.50 1.63 2.48

Gemver-i7(AVX) 1.06 1.03 1.03 1.07 1.26 1.31

Gemver-ZYBO 1.33 1.04 1.04 1.35 2.34

Diotgen-i7(AVX) 1.16 1.53 1.60 1.65 3.91 1.26

Diotgen-ZYBO 1.34 2.69 3.05 3.38 30.63

G.Blur-i7(AVX) 1.02 1.00 1.00 1.02 1.17 1.02

G.Blur-ZYBO 1.62 1.00 1.00 1.62 3.81

4.1 Validation of Eq.6-Eq.10 (gem5)
First, a validation on the number of arithmetical instructions is

given (Eq. 10) for 2 di�erent compilers (’O2’ option). �e number

of integer instructions is measured for one transformation set and

then predicted for the others (2nd and 3rd �gure in Fig. 4); we take

advantage of the fact that the c values almost remain unchanged

for di�erent tile sizes. In Fig. 4, (T 1,TRF) represent the (tile, unroll

factor) values of the innermost iterator, respectively, (T 2,TRF) the

next innermost etc. �ere is a large error value in the case that the

tile size of the innermost iterator is twice its minimum value (this

is the only case we have faced this disunion); these parameter sets

are not e�cient in the majority of the cases and this is why the

compiler becomes so aggressive and therefore changes the code.

It is important to note that this disunion on the error values is

eliminated by using the ’O1’ option. �us, in order to use ’O2’

option, the (T1 = 2 × TRF) case has to be included in Step6 of

Algorithm 1. �e results on the FP instructions are similar.

Subsection 3.2 has also been validated on the number of L1,

L2 and MM accesses (1st �gure in Fig. 4). �e error values are

less than 3.5% in all cases (both processors) when the tiles contain

consecutive MM locations. However, as it was expected, for the

special cases that the array layouts remain unchanged, there is a

larger error.

4.2 Validation of execution time and power
consumption models (gem5 and McPAT)

Furthermore, a validation on the simple ET model used [7] is made

as well as on the P model derived by mcpat (Fig. 5). �e equa-

tions giving the execution time for the x86 and arm on Gem5 are

(ET = L1reads ∗ 2 + L2reads ∗ 20 + DDRreads ∗ 60) and (ET =

L1reads + L1writes + L2reads ∗ 20 + DDRreads ∗ 60), respectively.

�ese equations don’t take into account the concurrency in mem-

ory hierarchy and this is why the equations give larger ET values in

most cases. However, the above simple equations give very good re-

sults because a) all di�erent transformation parameters refer to the

same algorithm, b) the algorithms are static; apart from not taking

into account concurrency in memory hierarchy, any less accurate

measurements derive from the fact that the above ET equations

do not take into account instruction level parallelism. �e reason

that arm processor achieves less execution cycles than x86 in gem5

simulator is that a) unlike x86, arm compiler generates assembly

code with fused multiply-accumulate assembly instructions, b) x86

contains more registers than arm and thus the current transfor-

mation sets are more e�cient for arm. Regarding P, the proposed

model follows perfectly the trend in both arm and x86, but P is

more accurate on arm than on x86; x86 is more complex than arm

and therefore the HW components that we have not taken into

account consume more power.

4.3 Evaluation over gcc, hand tuning optimized
code & Polly (i7 6700 & ARMv8-A)

First, the proposed methodology is evaluated over gcc compiler on

two real processors (Table 1). Intel i7 processor supports SIMD unit

and therefore we have evaluated our methodology to C-code con-

taining AVX intrinsics; we have used handwri�en C-code with AVX

intrinsics as input to our tool. It is important to note that although

gcc supports auto-vectorization, hand wri�en AVX code is faster in

Conference’17, July 2017, Washington, DC, USA V. Kelefouras et al.

most cases (Table 1). MMM and Diotgen are the most data dominant

kernels and this is why they achieve the highest memory gains

and speedup/energy gains on both CPUs. �e proposed method-

ology achieves about (8.5, 30, 2.1, 2.5, 2.3, 3.8) times faster code,

for (MMM, diotgen, MVM, FIR, Gemver, Gaussian Blur), on ZYBO

and about (4.4, 3.9), (4, 4), (20, 2.3), (4, 3.8), (1.3, 1.2), (4.8, 1.15) on i7

comparing to the (gcc, hand optimized code), respectively. Regard-

ing energy gains, the proposed methodology achieves about (9.2,

40, 2.5, 2.7, 2.6, 5) times less energy on ZYBO and about (4.6, 4),

(4, 4), (20, 2.4), (3.7, 3.6), (1.6, 1.2), (4.8, 1.15) on i7 comparing to the

(gcc, hand optimized code), respectively. It is important to note that

smaller gain values are achieved on i7 processor because the input

C-code contains AVX intrinsics, either directly or indirectly (gcc

auto-vectorization). �e proposed methodology achieves smaller

gain values for SIMD input codes, because hand wri�en AVX-code

�rst, is at a lower level and thus more e�cient, second, in many

cases it already uses a signi�cant number of the available registers,

leaving less space for modi�cations and third, it is less friendly to

register blocking.

Moreover, our methodology is evaluated over hand wri�en opti-

mized code and Polly [6] (Table 2). A large number of experiments

has taken placewith 10 di�erent unroll factor values and 10 di�erent

loop tiling sizes in order to �nd the best (in Table 2, ’1 loop’ refers

to best loop and best tile size). We have used normal C-code for

ZYBO and hand wri�en C-code using AVX instrinsics for i7. As it

was expected, hand wri�en optimized code achieves be�er or equal

performance than gcc in all cases and likewise Table 1, our method

achieves smaller gain values on the codes using AVX intrinsics. It

is important to note that Polly includes other transformations too,

which our methodology does not.

5 CONCLUSION AND FUTUREWORK

In this paper, a novel methodology to six of the most popular and

important code optimizations is provided for data dominant static

algorithms. Instead of applying heuristics and empirical methods

we try to understand how so�ware runs on the target HW and

how CO a�ect ET and P. Moreover, we provide a theoretical model

correlating the number of memory accesses and arithmetical in-

structions with CO parameters, HW parameters and input size. To

this end, we make a �rst but important step towards correlating ET

and P with CO, HW architecture and input size.

Our future work includes more accurate and complex execution

time models such as [22] as well as extending the P model to the

remaining HW components. Moreover, it includes more loop trans-

formations such as loop merge and loop distribution and considers

nested loops where the array subscripts are not linear equations of

the iterators.

ACKNOWLEDGMENTS

�is work is partly supported by the European Commission under

H2020-ICT-20152 contract 687584 - Transparent heterogeneous

hardware Architecture deployment for eNergy Gain in Operation

(TANGO) project.

REFERENCES
[1] Antonio Arts, Jos L. Ayala, Jos Huisken, and Francky Ca�hoor. 2013. Survey of

Low-Energy Techniques for Instruction Memory Organisations in Embedded
Systems. Signal Processing Systems 70, 1 (2013), 1–19. h�p://dblp.uni-trier.de/db/
journals/vlsisp/vlsisp70.html

[2] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krishnamoorthy, Louis-
Noël Pouchet, Fabrice Rastello, and P. Sadayappan. 2016. Static and Dynamic
Frequency Scaling on Multicore CPUs. ACM Transactions on Architecture and
Code Optimization (TACO) 13, 4 (2016).

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. �e Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. DOI:h�p://dx.doi.org/10.1145/2024716.2024718

[4] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer. SIGPLAN
Not. 43, 6 (June 2008), 101–113. DOI:h�p://dx.doi.org/10.1145/1379022.1375595

[5] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,
and Olivier Temam. 2007. Rapidly Selecting Good Compiler Optimizations
Using Performance Counters. In International Symposium on Code Generation
and Optimization (CGO ’07). Washington, DC, USA, 185–197. DOI:h�p://dx.doi.
org/10.1109/CGO.2007.32

[6] Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly - Per-
forming Polyhedral Optimizations on a Low-Level Intermediate Representa-
tion. Parallel Processing Le�ers 22, 4 (2012). DOI:h�p://dx.doi.org/10.1142/
S0129626412500107

[7] John L. Hennessy and David A. Pa�erson. 2011. Computer Architecture, Fi�h
Edition: A�antitative Approach (5th ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[8] Vasilis Kelefouras, Georgios Keramidas, and Nikolaos Voros. 2017. Cache parti-
tioning + loop tiling: A methodology for e�ective shared cache management.
In IEEE Computer Society Annual Symposium on VLSI (ISVLSI 17). Bochum, Ger-
many.

[9] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay Ra-
jopadhye, and Michelle Mills Strout. 2007. Multi-level Tiling: M for the Price
of One. In ACM/IEEE Conference on Supercomputing (SC). ACM, New York, NY,
USA, Article 51, 12 pages. DOI:h�p://dx.doi.org/10.1145/1362622.1362691

[10] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and
Douglas Jones. 2004. Fast Searches for E�ective Optimization Phase Sequences.
SIGPLAN Not. 39, 6 (June 2004), 171–182. DOI:h�p://dx.doi.org/10.1145/996893.
996863

[11] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. Davidson.
2009. Practical Exhaustive Optimization Phase Order Exploration and Evaluation.
ACM Trans. Archit. Code Optim. 6, 1, Article 1 (April 2009), 36 pages. DOI:

h�p://dx.doi.org/10.1145/1509864.1509865
[12] Sameer Kulkarni and John Cavazos. 2012. Mitigating the Compiler Optimization

Phase-ordering Problem Using Machine Learning. SIGPLAN Not. 47, 10 (Oct.
2012), 147–162. DOI:h�p://dx.doi.org/10.1145/2398857.2384628

[13] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic Feature
Generation for Machine Learning Based Optimizing Compilation. In 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
Washington, USA, 81–91. DOI:h�p://dx.doi.org/10.1109/CGO.2009.21

[14] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 42). ACM, 469–
480. DOI:h�p://dx.doi.org/10.1145/1669112.1669172

[15] Jun Liu, Yuanrui Zhang, Wei Ding, and Mahmut T. Kandemir. 2011. On-chip
cache hierarchy-aware tile scheduling for multicore machines.. In International
Symposium on Code Generation and Optimization. 161–170. h�p://dblp.uni-trier.
de/db/conf/cgo/cgo2011.html

[16] Martin Palkovic, Francky Ca�hoor, and Henk Corporaal. 2009. Trade-o�s in
loop transformations. ACM Trans. Design Autom. Electr. Syst. 14, 2 (2009). DOI:
h�p://dx.doi.org/10.1145/1497561.1497565

[17] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ra-
manujam, P. Sadayappan, and Nicolas Vasilache. 2011. Loop Transformations:
Convexity, Pruning and Optimization. SIGPLAN Not. 46, 1 (Jan. 2011), 549–562.
DOI:h�p://dx.doi.org/10.1145/1925844.1926449

[18] Dan�inlan, You Haihang, Yi Qing, Richard Vuduc, and Keith Seymour. 2007.
POET: Parameterized Optimizations for Empirical Tuning. IEEE International
Parallel and Distributed Processing Symposium (2007).

[19] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. 2007. Parameterized Tiled Loops for Free. SIGPLAN Not.
42, 6 (June 2007), 405–414. DOI:h�p://dx.doi.org/10.1145/1273442.1250780

[20] Michele Tartara and Stefano Crespi Reghizzi. 2013. Continuous learning of
compiler heuristics. ACM Trans. Archit. Code Optim. 9, 4, Article 46 (Jan. 2013),
25 pages. DOI:h�p://dx.doi.org/10.1145/2400682.2400705

[21] Ohio State University. 2012. PolyBench/C benchmark suite. (2012). h�p://web.
cs.ucla.edu/∼pouchet/so�ware/polybench/

[22] Dawei Wang and Xian-He Sun. 2014. APC: A Novel Memory Metric and Mea-
surement Methodology for Modern Memory Systems. IEEE Trans. Comput. 63, 7
(July 2014), 1626–1639. DOI:h�p://dx.doi.org/10.1109/TC.2013.38

http://dblp.uni-trier.de/db/journals/vlsisp/vlsisp70.html
http://dblp.uni-trier.de/db/journals/vlsisp/vlsisp70.html
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/1379022.1375595
http://dx.doi.org/10.1109/CGO.2007.32
http://dx.doi.org/10.1109/CGO.2007.32
http://dx.doi.org/10.1142/S0129626412500107
http://dx.doi.org/10.1142/S0129626412500107
http://dx.doi.org/10.1145/1362622.1362691
http://dx.doi.org/10.1145/996893.996863
http://dx.doi.org/10.1145/996893.996863
http://dx.doi.org/10.1145/1509864.1509865
http://dx.doi.org/10.1145/2398857.2384628
http://dx.doi.org/10.1109/CGO.2009.21
http://dx.doi.org/10.1145/1669112.1669172
http://dblp.uni-trier.de/db/conf/cgo/cgo2011.html
http://dblp.uni-trier.de/db/conf/cgo/cgo2011.html
http://dx.doi.org/10.1145/1497561.1497565
http://dx.doi.org/10.1145/1925844.1926449
http://dx.doi.org/10.1145/1273442.1250780
http://dx.doi.org/10.1145/2400682.2400705
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://dx.doi.org/10.1109/TC.2013.38

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Apply code optimizations
	3.2 Couple execution behaviour to CO, processor architecture & input size
	3.3 Performance Models
	3.4 Reduction of the search space - optimality
	3.5 Putting it all together

	4 Experimental Results
	4.1 Validation of Eq.6-Eq.10 (gem5)
	4.2 Validation of execution time and power consumption models (gem5 and McPAT)
	4.3 Evaluation over gcc, hand tuning optimized code & Polly (i7 6700 & ARMv8-A)

	5 Conclusion and Future Work
	Acknowledgments
	References

