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Abstract 

Effects of climate change on managed grassland carbon (C) fluxes and biomass production 

are not well understood. In this study, we investigated the individual and interactive effects of 

experimental warming (+3 ºC  above ambient summer daily range of 9-12 ºC), supplemental 

precipitation (333 mm +15%) and drought (333 mm -23%) on plant biomass, microbial 

biomass C (MBC), net ecosystem exchange (NEE) and dissolved organic C (DOC) flux in 

soil cores from two upland grasslands of different soil nitrogen (N) status (0.54% and 0.37%) 

in the UK. After one month of acclimation to ambient summer temperature and precipitation, 

five replicate cores of each treatment were subjected to three months of experimental 

warming, drought and supplemental precipitation, based on the projected regional summer 

climate by the end of the 21st Century, in a fully factorial design. NEE and DOC flux were 

measured throughout the experimental duration, alongside other environmental variables 

including soil temperature and moisture. Plant biomass and MBC were determined at the end 

of the experiment. Results showed that warming plus drought resulted in a significant decline 

in belowground plant biomass (-29 to -37%), aboveground plant biomass (-35 to -77%) and 

NEE (-13 to -29%), regardless of the N status of the soil. Supplemental precipitation could 
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not reverse the negative effects of warming on the net ecosystem C uptake and plant biomass 

production. This was attributed to physiological stress imposed by warming which suggests 

that future summer climate will reduce the C sink capacity of the grasslands. Due to the low 

moisture retention observed in this study, and to verify our findings, it is recommended that 

future experiments aimed at measuring soil C dynamics under climate change should be 

carried out under field conditions. Longer term experiments are recommended to account for 

seasonal and annual variability, and adaptive changes in biota.  

Keywords: climate change; warming; drought; carbon flux; grassland management; biomass 

productivity. 

 

1.  Introduction 

Ecosystem sequestration of atmospheric carbon (C) in terrestrial ecosystems is a function of 

the balance between C uptake by plants (gross primary productivity – GPP) and C loss via 

processes such as ecosystem respiration (ER) and leaching, and these processes are sensitive 

to climate, particularly precipitation and temperature (Albaladejo et al., 2013; Bellamy et al., 

2005; Rees et al., 2005). The global climate is warming and precipitation patterns are also 

changing, with regional differences reported (IPCC, 2013; Jenkins et al., 2009). Rising 

temperature and changing precipitation is also expected throughout the 21st Century, with 

global mean surface temperature projected to increase by 0.3 – 0.7 °C by 2035 and 1.7 – 4.8 

°C by 2100, relative to 1986 – 2005 baseline (IPCC, 2014).  

Climate change is expected to exert significant effects on terrestrial ecosystem C pools and 

their fluxes including plant biomass (Hartmann and Niklaus, 2012), microbial biomass (Rui 

et al., 2011), net ecosystem exchange (NEE, the difference between GPP and ER; De Boeck 

et al., 2007), and the leaching of dissolved organic C (DOC) (Hagedorn and Joos, 2014), with 
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possible feedbacks to climate change. A very useful method for investigating the response of 

these ecosystem processes to climate change is experimental manipulation of climate 

variables such as temperature and precipitation (Bloor et al., 2010). Climate manipulation 

experiments have been set up to explore the responses of plant productivity and ecosystem C 

fluxes to climate change in different ecosystems (e.g. Allison and Treseder, 2008; Baldwin et 

al., 2014; Beierkuhnlein et al., 2011). A synthesis of data from 85 of these experimental 

studies (Wu et al., 2011) in different ecosystems across the globe including forests, 

shrublands and grasslands shows that: 1) warming without manipulated precipitation 

enhanced both ecosystem photosynthesis and respiration with no effect on net C uptake, 2) 

increased precipitation without warming enhanced both ecosystem photosynthesis and 

respiration with an overall increase in net C uptake, and 3) decreased precipitation without 

warming suppressed both ecosystem photosynthesis and respiration with an overall decrease 

in net C uptake. Another recent synthesis of results of about l60 climate manipulation 

experiments in different ecosystems also revealed that warming increased both soil C input 

and loss with no significant effect on net C pool, whereas increased precipitation stimulated 

soil C input, and drought suppressed it (Ni et al., 2017). Thus, the balance of evidence 

indicates that altered precipitation patterns have greater control on net soil C store than 

warming.  

Past climate manipulation experiments in different terrestrial ecosystems (see reviews by Liu 

et al., 2016; Ni et al., 2017; Wu et al., 2011) have usually explored the individual effects of 

warming, supplemental precipitation and drought on net C uptake. The interactive effects of 

changing temperature and precipitation on C cycling have rarely been examined and remain 

poorly understood (Lei et al., 2016), although global meta-analyses indicate that the 

interactive effects of warming and altered precipitation differ from their simple additive 

effects (Ni et al., 2017; Wu et al., 2011). This means that adding up the reported individual 
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effects of manipulated climate variables will not give the true response of the ecosystem. The 

effects of experimental climate change on the terrestrial C cycle are also confounded by other 

site-specific characteristics and management practices such as vegetation type (Beierkuhnlein 

et al., 2011; Bloor and Bardgett, 2012; Miranda et al., 2009) and fertilizer application 

(Jonasson et al., 1999), especially nitrogen (N) fertilizers (Dukes et al., 2005). For example, 

Graham et al. (2014) found that the addition of 50 kg N/ha increased the positive effect of 

warming on soil C efflux by 12% in a New Zealand grassland. Thus, for an improved 

understanding of the response of managed ecosystems to climate change, there is need for 

multifactorial experiments where the interactive effects of management, warming, 

supplemental precipitation and drought will be investigated.  

Grasslands store a significant amount (34%) of the global terrestrial C and provide important 

ecosystem services such as climate change mitigation and forage for livestock production 

(White et al., 2000). In European grasslands, which are already net C sinks (Chang et al., 

2015), the majority of the climate manipulation experiments (see Tables A1 and A2) have 

focused on the effects of climate change on aboveground biomass (AGB) and soil respiration 

(SR), and less attention has been given to other important C cycling processes such as NEE 

and DOC leaching. In published studies (Table A1) the main effects were: 1) warming alone 

stimulated both an increase and a decrease in AGB; 2) increased precipitation alone resulted 

in both an increase and a decrease in AGB; 3) drought alone decreased AGB and SR; and 4) 

both positive and negative interactive effects were observed when warming was combined 

with either increased precipitation or drought. The lack of definitive pattern of response to 

climate change in these studies may be partly due to pre-existing differences in grassland 

productivity. This is possible because less productive grasslands tend to be more resistant to 

climate perturbations (Grime et al., 2000). Fertilizer is widely used to improve grassland 

productivity (Yue et al., 2016), hence it is likely to be a major confounding factor in 
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interpreting climate change effects. Whereas some grasslands are fertilised to increase 

vegetation biomass for livestock production, fertilizer application is discouraged in other 

grasslands due to environmental concerns such as protecting and enhancing biodiversity, or 

protecting water courses from pollution (Reed et al., 2009). The effects of climate change on 

fertilized and unfertilized grasslands need to be investigated. This will help inform future 

management decisions for targeted outcomes in the face of climate change. 

The need to investigate climate change effects on managed grasslands is a particular concern 

for UK uplands. These areas mainly occur at 250 – 300 m above sea level and have witnessed 

changes in climate that are much greater than in the lowlands (House et al., 2010). For 

example, between 1961 and 2000, minimum temperatures increased more than maximum 

temperatures in the uplands, whereas there was no difference in the changes between 

minimum and maximum temperatures in the lowlands (Burt and Holden, 2010). Morecroft et 

al. (2009) also found that temperature trends between 1993 and 2007 differed between upland 

and lowland sites in the UK, with an average temperature increase of 1.2 °C in the uplands 

and 0.7 °C in the lowlands. The UK upland grasslands are considered sensitive environments 

and have important conservation values because they contain species of plants that are scarce 

in Europe, and are breeding grounds for nationally rare birds and amphibians (English 

Nature, 2001). These upland grasslands are predominantly managed for livestock production 

(Stevens et al., 2008) under both extensive management regimes with no fertilizer 

application, and more intensive management regimes with fertilizer application to improve 

forage productivity for silage and grazing.  

Climate manipulation studies in the UK upland grasslands are few (e.g. Briones et al., 2009; 

Grime et al., 2008), and how grasslands under different management regimes might respond 

to warming and altered precipitation has not been considered. Briones et al. (2009) 

investigated the response of an unimproved acid grassland in Scotland to a 2-year soil 
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warming (+3.5 °C) and found an increase in both ER and root biomass, and a decrease in 

AGB. Similarly, Grime et al. (2008) studied the response of an unfertilized grassland in 

Buxton (northern England) to 13 years of winter warming (+3.0 °C), supplemental summer 

precipitation (+26%) and summer drought (-77%). Warming, increased precipitation and 

drought both separately and in combination, had little effect on the ecosystem, however, there 

was a reduction in AGB under all the treatments (Grime et al., 2008). It remains to be known 

how fertilised upland grasslands respond to climate change. Specifically, there is a dearth of 

information on the effects of warming and altered precipitation on the net C uptake by plants 

and soil microbes as well as DOC flux.  

The main aim of this study was to assess the individual and interactive effects of 

experimental warming, supplemental precipitation and drought on plant biomass, microbial 

biomass C (MBC), NEE, and DOC flux in two upland grassland fields of different soil N 

status in northern England. Earlier work (Eze et al., 2018a) showed that these grasslands 

store significant amount of soil organic C (SOC, 59 – 101 Mg ha-1) and that about 70% of 

these C stock is occluded within the soil mineral mass. Whereas Eze et al. (2018a) identified 

the relative size of current SOC fractions, in this study we are investigating how the main 

fluxes and labile ecosystem C pools respond to short term climate manipulation. Changes in 

the bulk soil C stock or the relatively stable mineral-occluded C can only be detected in the 

long term (e.g. 10 – 100 years) (Smith, 2004).  In contrast, changes in the less stable C pools 

such as the DOC, MBC and biomass accumulation, and C fluxes such as NEE, which are 

important indicators of changing environmental conditions, can be detected in the short term. 

The study was therefore based on the following hypotheses: 1) experimental warming and 

drought will separately and in combination reduce plant biomass, NEE, MBC, and DOC flux, 

2) supplemental precipitation alone and experimental warming plus supplemental 
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precipitation will stimulate higher plant biomass, NEE, MBC, and DOC flux, 3) the effects of 

experimental warming and altered precipitation will be greater in the high N field. 

 

2. Methodology 

2.1 Study area 

Soil mesocosms from upland grasslands in Nidderdale (54o09’N, 01o53’W; Figure 1), 

northern England, were used for this study. Detailed site characteristics and management 

information are as described by Eze et al. (2018a). Briefly, the site has cool and wet climate 

with mean annual temperature (MAT) of 7.4 °C and mean annual precipitation (MAP) of 

1550 mm (1981 – 2010). The soil is a sandy loam stagnohumic gley (Humic Gleysol in the 

World Reference Base), formed from clay drift with siliceous stone content. We selected two 

fields for this experiment. One field (high N field, HNF) receives inorganic N addition and 

has a significantly higher soil N (0.54%) and organic C stock (101 Mg/ha) than the low N 

field (LNF, total soil N = 0.37%, soil organic C stock = 59 Mg/ha). The herbaceous species 

common to the two fields are Ranunculus repens L. and Trifolium repens L. Other grasses in 

the HNF are Holcus lanatus L., Agrostis gigantea Roth, and Anthoxanthum odoratum L., 

whereas the LNF has Lolium perenne L. 
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     Figure 1: Map of North Yorkshire in the UK showing the area where soil cores were extracted.
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2.2 Soil core sampling, experimental design and setup 

We extracted 30 soil cores of 15 cm depth with intact vegetation (approx. 5 cm in height) 

from each of the two fields using un-plasticized polyvinyl chloride pipes (PVCu pipes, 11 cm 

diameter and 20 cm length). One end of each core was bevelled for ease of driving into the 

soil and the soil cores were extracted on the 31st of May 2017. After extraction, the cores 

were immediately taken to an environmental room in the School of Geography, University of 

Leeds.  

The experiment consisted of six climate treatments in a fully factorial design of two 

temperature (ambient air temperature, T0; ambient air temperature plus 3 °C, T3) and three 

precipitation (ambient precipitation, P0; ambient precipitation plus 15%, P+15; ambient 

precipitation minus 23%, P-23) conditions (Table 1). The six treatment combinations were 

applied to five replicated cores of each field type (LNF and HNF), resulting in a total of 60 

experimental cores. The 30-year (1981 – 2010) mean summer (June – August) precipitation 

and temperature (recorded at Malham Tarn station located 18 km from the site) were used as 

the P0 and T0. The warming (T3) and altered precipitation (P+15 and P-23) treatments were 

based on the most recent UK climate projection (UKCP09) for the latter part of the 21st 

Century (2070 – 2100) (http://ukclimateprojections.metoffice.gov.uk/). The changes 

projected for our site under medium emission scenarios and 50% probability are: 3.0 °C 

increase in mean winter temperature, 3.3 °C increase in mean summer temperature, 15% 

increase in mean winter precipitation and 23% decrease in mean summer precipitation. We 

chose the medium emission and 50% probability scenario because it represents the change in 

climate that is likely not to be exceeded (Jenkins et al., 2009). Although summer condition 

was the focus of our study, we included supplemental precipitation (P+15) in order to account 

for possible uncertainties in the prediction of seasonal precipitation, which is known to be 

highly variable (Jenkins et al., 2009).  

http://ukclimateprojections.metoffice.gov.uk/
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Table 1: Experimental design based on observed 30-year mean summer (June – August) air 

temperature and precipitation and their 2070 – 2100 projection.  

 Ambient summer temperature, T0         
(minimum = 9 °C,                     
maximum =  16 °C) 

Ambient summer temperature plus 
3 °C, T3, (minimum = 12 °C, 
maximum =  19 °C) 

Low nitrogen field 
(LNF) 

Ambient summer precipitation (P0, 
333 mm)       

Ambient summer precipitation (P0, 
333 mm)       

Drought (P-23, 256 mm)  Drought (P-23, 256 mm)  

Supplemental precipitation (P+15, 
383 mm)  

Supplemental precipitation (P+15, 
383 mm)  

High nitrogen field 
(HNF) 

Ambient precipitation (P0, 333 mm)      Ambient precipitation (P0, 333 mm)      

Drought (P-23, 256 mm)  Drought (P-23, 256 mm)  

Supplemental precipitation (P+15, 
383 mm)  

Supplemental precipitation (P+15, 
383 mm)  

 

The environmental room was set to T0 with diurnal changes from a minimum of 9 °C at 0200 

hr to a maximum of 16 °C at 1200 hr. In order to apply the two temperature treatments (T0 

and T3) within the environmental room, we constructed two environmental chambers, ECs, 

(200 cm height × 116 cm width) with wooden frames (Rough sawn timber, 25 mm thickness 

× 38 mm width) and Celotex insulation board (Celotex TB4025 General Application 

Insulation Board, 25 mm thickness × 1200 mm width). Each of the ECs was fitted with an 

LED growth light (Heliospectra RX30), an Ecoheater (1500 mm Slimeline Greenhouse & 

Shed Heater HHT315 – 190W), two axial fans (Sunon Maglev DC 12V HA series) and a 

humidity/temperature data logger (EXTECH RH10). The Heliospectra lights were 

programmed to simulate 16 hours of light and 8 hours of darkness, which corresponds to the 

average summer photoperiod of the site. Light intensity was set to simulate diurnal variation, 

increasing from the first light-hour (40 µmol m-2 s-1) to a maximum intensity at the ninth 

light-hour (850 µmol m-2 s-1) and then decreasing until it becomes dark. The 

photosynthetically active radiation (PAR) recorded on-site from June 2016 to May 2017 was 
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used to set the diurnal light intensity in the ECs. After setting up the lights, the environmental 

room temperature settings were adjusted to correct the increase in temperature resulting from 

heats generated by the lamps.  

Af ter the ECs were set up, wooden platforms (15 cm height) were placed on the floors of the 

chambers to support the soil cores. A total of 30 lysimeters, which served as the base for the 

soil cores, were arranged in five rows on the wooden platform. The lysimeters were made 

with 110 mm double socket PVCu couplers and plugs, fitted with high-density polyethylene 

funnels (Azlon FWC104, 300mL capacity). The top of the funnels were covered with 1 mm 

nylon mesh to keep soil particles in the cores intact and allow easy drainage of water. A 

transparent plastic container (125 ml) was placed directly underneath each lysimeter to 

collect leachates from the soil cores. To avoid any leachate loss, a silicone tubing (Food 

Grade Flexible Hose, 11 mm diameter) was connected to each funnel to direct leachates into 

the containers. Five replicate soil cores for each precipitation treatment and from each of the 

two Nidderdale fields (HNF and LNF) were placed on the lysimeters in a completely 

randomized design, resulting in 30 cores in each EC. One core from each replicated treatment 

combination was fitted with soil moisture and temperature sensors (5TM Decagon sensors) 

coupled to Arduino loggers (Kona 328 Arduino Uno compatible development board).  

 

2.3 Treatments and C flux measurement 

The soil cores were kept under control conditions (i.e. P0 and T0) for 30 days (1st to 30th June 

2017) for acclimation. Under the control condition, we applied 7.4 mm of artificial rain to the 

cores every other day. The frequency of rainfall was based on the average monthly summer 

rain-days for the site which was 14. In the absence of rainfall chemistry data for the site, the 

artificial rain was prepared in the laboratory using a published rainfall chemistry data from a 
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long-term monitoring site (Moor House – Upper Teesdale; 54°41' N, 2°23' W) about 60 km 

away (Table A3). After the acclimation period, the temperature of one EC was raised by 3 °C 

using the Ecoheater that had been fitted in the chamber. One-third of the soil cores in each 

chamber were still maintained under P0 treatment, whereas the remaining two-thirds of the 

soil cores were spilt between P+15 and P-23 treatments. For the P+15 and P-23 treatments, 8.5 

mm of synthetic rain was applied every other day. However, the drought treatment (P-23) 

received rain only in the first and the third months of the treatments. The one month of no 

rain in the P-23 treatment was used to simulate an extreme drought event of 30 days which is 

similar to the 100-year recurrent drought event in both the UK (Bloor and Bardgett, 2012) 

and Germany (Mirzaei et al., 2008). The treatments lasted for three months (1st July to 30th 

September 2017) after the acclimation period. Throughout the treatment period, we recorded 

air temperature and relative humidity (EXTECH RH10 data loggers) at 1 hr intervals, and 

soil moisture and temperature (5TM Decagon sensors) at 15 minutes intervals. We also 

collected leachates from the cores weekly, which were analyzed for DOC using thermal 

oxidation analysis of aqueous samples (Analytik Jena Multi N/C 2100). 

Weekly measurements of CO2 and CH4 fluxes were made throughout the experiment using an 

ultra-portable greenhouse gas (GHG) analyzer (Los Gatos Research UPGHGA, model 915-

0011, California). The gas measurements were separated into NEE, the CO2 exchange 

measured under light, and ER, the CO2 exchange measured when light was excluded. During 

each gas measurement, the soil cores were fitted with cylindrical covers 34 cm in height with 

internal diameter similar to those of the soil cores. The cover used for NEE measurement was 

constructed of transparent PVC pipe (110 mm diameter; > 90% light transmission), whereas 

opaque terracotta drainage pipe (110 mm diameter; 0% light transmission) was used to 

construct the cover used for ER measurement. The top of each cover was fitted with an inlet 

and outlet gas tubing connected to the gas analyser, an axial fan for headspace air mixing and 
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pressure equilibration gas bags. A pipe coupling (110 mm diameter) was attached to the base 

of each cover to ensure that it fitted tightly on the soil cores and prevent exchange of gases 

with the surrounding environment. 

CO2 and CH4 fluxes were measured from 48 (4 per treatment) out of the 60 soil cores as the 

remaining 12 cores had soil moisture and temperature sensors in them and could not be fitted 

with the covers. To measure NEE, the core was fitted with the transparent cover after being 

connected to the gas analyser. After 60 seconds of placing the transparent cover on the core, 

the CO2 concentration in the cover was measured continuously for a period of 120 seconds. 

To measure ER, the transparent cover was removed from the core immediately after taking 

the last NEE reading, the core was vented for 60 seconds and fitted with the opaque cover 

connected to the gas analyser. After 60 seconds of placing the opaque cover on the core, the 

CO2 and CH4 concentrations in the cover were measured continuously for a period of 120 

seconds. During each gas measurement, a respirator (3M 7501 Silicone half mask respirator) 

connected to the outside of the environmental room was worn to remove any exhaled CO2. 

This was done to prevent an increase in the CO2 concentration in the environmental room. 

We also recorded temperature and pressure of the chamber environment (Comet Thermo-

hygro-barometer), and PAR (Skye Quantum sensor) during each gas flux measurement.   

The fluxes of CO2 and CH4 were calculated based on the rates of increase or decrease in their 

concentrations (Denmead, 2008): 

ܨ ൌ ܣܸ ݐ݀ߩ݀                                                   ͳ 

 where F = flux density at the soil core surface (mg m-2 s-1), V = headspace volume (m3), A = 

internal area of soil core (m2), ȡ = mass concentration of the gas in the cylindrical cover 

headspace (mg m-3) and t = time (s). The CO2 and CH4 flux values in mg m-2 s-1 were 

converted to mg m-2 day-1 by multiplying with 86400 (i.e. the number of seconds in a day).  
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The gas fluxes were estimated as the slope of the linear regression of CO2 and CH4 

concentrations against time, after air temperature and pressure were corrected to standard 

values. Flux values were recorded if the slope of the linear regression was significant (p < 

0.05) and the coefficient of determination (R2) was equal to or greater than 0.75. The mean 

fluxes for each treatment combination were calculated by averaging the fluxes from four 

replicate soil cores. We adopted the atmospheric sign convention which defines a negative 

NEE as a net C uptake by the soil cores whereas positive NEE indicates C loss to the 

atmosphere (Imer et al., 2013).     

2.4 Modelling CO2 and CH4 fluxes 

After we calculated the fluxes of CO2 and CH4 using Equation 1, the CH4 fluxes were not 

significantly different from zero, hence only CO2 fluxes were modelled. To estimate CO2 flux 

for the treatment period (i.e. 3 months), we filled gaps in the daily time series based on the 

relationships between CO2 flux and meteorological variables. The GPP and ER for the 

treatment period were modelled for each of the 48 soil cores and NEE was calculated using 

Equation 2. 

ܧܧܰ                                     ൌ െ ܴܧ  ʹ                                   ܲܲܩ

 

 

2.4.1 Modelling GPP 

A rectangular hyperbolic saturation curve (Equation 3) is widely used for modelling GPP in 

grasslands (e.g. Dyukarev, 2017; Elsgaard et al., 2012; Huth et al., 2017).  

ܲܲܩ ൌ ሺߙ ൈ ൈ ܴܣܲ ߙሻሺݔܽ݉ܩ ൈ ൅ ܴܣܲ ሻݔܽ݉ܩ                                ͵ 
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 where Gmax refers to the theoretical maximum rate of photosynthesis at infinite PAR 

(photosynthetic capacity), Į is the initial slope of the hyperbolic equation (photosynthetic 

efficiency). To model GPP, we tested the performance of Equation 3 for predicting the GPP 

we measured (measured GPP was calculated with Equation 2 using measured NEE and ER). 

Equation 3 was fitted to PAR data recorded in the environmental chambers and the ‘Solver’ 

function in Microsoft Office Excel (2010 version) was used to estimate the best fit parameters 

for Į and Gmax based on values that produced the smallest error term (sum of the squared 

difference between measured GPP and the GPP predicted by the curve). Using best fit 

parameters for the equation, GPP values were predicted for the days with measured GPP. The 

predicted GPP were plotted against their corresponding measured GPP and a regression line 

fitted through the plots (e.g. Figure A1). The regression line had a relatively high slope (0.77) 

and coefficient of determination (R2 = 0.97), hence, Equation 3 was considered appropriate 

for modelling GPP. The parameters of Equation 3 derived for each of the 48 soil cores were 

then applied to a daily set of PAR data recorded in the environmental chambers. Daily GPP 

was generated for the period 1st July 2017 to 30th September 2017 and summed.  

2.4.2 Modelling ER 

To model ER, we tested the performance of two exponential models (Equations 4 and 5) that 

have been used to model ER in grassland studies (e.g. Du et al., 2014; Elsgaard et al., 2012; 

Huth et al., 2017).  

Arrhenius model:         ܴܧ ൌ  ܴଵ଴ ݁ாబሺ భ೅ೝ೐೑ష೅బି భ೅ష೅బሻ                                    Ͷ  

Multiplicative model:  ܴܧ ൌ  ܽ݁௕் ή ௖ܥܹܵ                                                     ͷ 

where T is soil temperature; R10 is ER rate at a reference temperature (Tref = 283.15 K); T0 is 

temperature when ER is zero, usually constrained to 227.13 K to avoid over-parameterisation 

(Elsgaard et al., 2012; Huth et al., 2017); E0 is temperature sensitivity coefficient; SWC is 
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soil volumetric water content; a, b, and c, are fitting parameters. We parameterised the two 

models using the same procedure for parameterising the rectangular hyperbolic curve in 

Section 2.4.1. The equations were fitted to soil temperature and moisture data recorded for 

our soil cores and the ‘Solver’ function in Microsoft Office Excel (2010 version) was used to 

estimate the best fit parameters for R10, E0, a, b, and c based on values that produced the 

smallest error term. Using best fit parameters for the two equations, ER values were predicted 

for the days with measured ER. The predicted ER were plotted against their corresponding 

measured ER and a regression line fitted through the plots.  

Compared to the Arrhenius model, the multiplicative model performed better in predicting 

measured ER as shown by its higher slope and coefficient of determination (Figures A2A and 

A2B). However, we found that the slope of the multiplicative model was always less than 

0.5.  We therefore tested the performance of a multiple linear regression based on soil 

temperature and soil moisture (Equation 6). The ER predicted by Equation 6 were plotted 

against their corresponding measured ER and a regression line fitted through the plot. The 

regression line had almost one-to-one slope (0.98), with a lower root mean square error 

(RMSE = 0.32) than that of the multiplicative model (slope = 0.38; RMSE = 1.43; Figure 

A2). We therefore used Equation 6 for modelling ER. The coefficients of Equation 6 derived 

for each of our soil cores were applied to the daily set of soil temperature and moisture data 

that we recorded. Generated daily ER from 1st July 2017 to 30th September 2017 were 

summed to get the ER for the treatment period.  

ܴܧ ൌ ܽܶ ൅ ൅ ܯܾ ܿ                              ͸ 

 where T is the soil temperature; M is the soil moisture content; a and b are slopes; c is the 

intercept. 
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2.5 Plant biomass measurement and soil analysis 

At the end of the treatment period, the experiment was dismantled and the cores were taken 

to the laboratory for biomass and soil analysis. Aboveground biomass (AGB) of each core 

was cut with scissors to the soil surface and was sorted into dead biomass (brown and yellow, 

DAGB) and live biomass (yellowish green and green, LAGB). The intact bulk soil in each 

core was carefully extruded into an empty semi-cylindrical core of similar diameter as the 

cores used for the experiment. The extruded soil was split vertically into two equal halves 

using a knife with serrated edge. Half of the soil removed after the split was used for the 

determination of soil properties such as MBC. The other intact half in the semi-cylindrical 

core was used for root or belowground biomass (BGB) determination. The soil sample for 

BGB determination was washed on sieves of different mesh sizes (50 µm to 2 mm) to 

separate roots from the soil, and the roots were collected on the sieves. The roots and AGB 

were dried in an oven at 65 °C for 48 hours and then weighed.  

Soil MBC was determined using the chloroform fumigation-extraction method (Vance et al., 

1987) after visible roots were removed. Fresh soil samples (25 g dry weight equivalent) from 

each of the 60 soil cores were fumigated for 24 hours with ethanol-free chloroform (CHCl3). 

After fumigation, residual CHCl3 vapour was removed by repeated evacuations using water 

aspirator pump and two-stage rotary oil pump. Additional un-fumigated soil samples of 

similar weight as the fumigated samples were used as controls. Fumigated and un-fumigated 

samples were extracted with 75 mL of 0.5M K2SO4 (1:3 soil/extractant ratio). The samples 

were shaken for 1 hour and filtered through Whatman GF 934-AH filter paper. The soluble C 

in the fumigated and un-fumigated samples were then determined using an aqueous analyzer 

(Analytik Jena Multi N/C 2100). MBC was calculated as the difference between extractable 

C in the fumigated and un-fumigated samples divided by a conversion factor, KEC, of 0.35. 
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2.6 Data analysis 

For each soil core, we calculated the total DOC flux and NEE for the three months of the 

experiment. Total NEE was calculated from modelled GPP and ER as explained in Section 

2.4. Total DOC flux was calculated by summing the weekly fluxes obtained by multiplying 

the concentration of DOC in analyzed aliquots by the volume of leachates collected. The 

normality and homogeneity of variance of the total DOC and NEE as well as MBC and plant 

biomass were established using Shapiro-Wilk normality test and Levene’s test. For each of 

the soil core type (LNF and HNF), a split-plot analysis of variance (ANOVA; with 

temperature as main plot factor and precipitation as sub-plot factor) was used to compare the 

means of DOC, NEE, MBC and plant biomass between treatments. The differences in mean 

values were separated using Tukey HSD post hoc test. Multivariate ANOVA (MANOVA) 

could not be used to assess the overall effect of each treatment on the C pools (MBC and 

plant biomass) and fluxes (DOC and NEE) due to multicollinearity. Moderate correlations 

between dependent variables are ideal for MANOVA, however, the correlations between our 

dependent variables were either too low (r < 0.3) or too high (r > 0.8). Other statistical 

analyses related to modelling were as described in Section 2.4, and all statistical analyses and 

modelling were carried out in Microsoft Excel (2010 version) and SPSS Statistics (version 

22). 

 

3. Results 

3.1 Effect of warming and altered precipitation on C pools 

Plant biomass and MBC were significantly affected by experimental warming and altered 

precipitation (Tables 2 and 3). The response of plant biomass to the climate manipulation was 

similar across HNF and LNF cores, whereas the response of MBC to climate manipulation 
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differed between the two core types (Figure 2). There was a warming-induced decline in 

BGB and TAGB by -26% and -14% in the LNF, and -29% and -22% in the HNF 

respectively. Across both LNF and HNF, warming plus drought led to significant reductions 

(-73% and -77%) in LAGB and a significant increase (+192% and +215%) in DAGB. 

Drought resulted in a significant increase (+75) in the DAGB and a significant decline (-63%) 

in the MBC of the LNF but had no significant effects on any of the C pools in the HNF. 

Warming alone and warming plus supplemental precipitation significantly enhanced MBC by 

+125% and +171% respectively in the HNF, with no significant effects in the LNF.       

3.2 Effects of warming and altered precipitation on C fluxes 

The NEE was the only component of the C flux that was significantly affected by climate 

manipulation as the DOC flux was not significantly affected in either HNF or LNF cores 

(Table 3). All the temperature and precipitation treatments, except supplemental precipitation 

in the LNF, resulted in the decline of NEE. In the LNF, supplemental precipitation led to a 

significant increase (+103%) in NEE, whereas in the HNF, drought significantly reduced 

NEE by -66% (Figure 3). In the LNF and HNF, warming plus drought reduced NEE by -29% 

and -13% respectively. Similarly, warming plus supplemental precipitation reduced NEE by -

14% and -24% respectively in the LNF and HNF, although this was not statistically 

significant. 
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Table 2: Mean ± standard error of plant biomass, microbial biomass carbon, net ecosystem exchange (NEE) and dissolved organic carbon after 

experimental warming and altered precipitation in cores of low (LNF) and high (HNF) nitrogen status (n = 5 for all parameters except NEE with 

n = 4).  

Soil 
core 

Temperature Precipitation Belowground 
biomass 
(g/m2) 

Dead 
aboveground 
biomass 
(g/m2) 

Live 
aboveground 
biomass 
(g/m2) 

Total 
aboveground 
biomass 
(g/m2) 

Microbial 
biomass 
carbon 
(mg/kg) 

NEE*        
(g CO2/m2) 

Dissolved 
organic 
carbon* 
(mg C) 

LNF Ambient Ambient 1403±53 394±93 2330±200 2724±227 163±32 -1256±436 5±1 

Drought 1804±157 690±106 2166±154 2856±145 60±19 -1238±90 5±1 

Supplemental 1585±238 392±120 2809±156 3201±224 76±26 -2546±574 9±3 

 Warming Ambient 1038±152 326±63 2020±171 2346±130 151±28 -967±121 4±1 

Drought 1001±126 1151±89 623±231 1775±183 85±55 -891±94 4±0 

Supplemental 1056±185 404±78 1969±208 2373±165 239±31 -1078±151 4±0 

HNF Ambient Ambient 1752±314 487±93 2387±73 2874±139 83±32 -1312±320 7±1 

Drought 2012±413 656±91 2145±111 2801±126 49±23 -451±117 11±3 

Supplemental 1988±224 439±53 2662±262 3100±258 91±42 -816±104 8±1 

 Warming Ambient 1241±144 484±67 1751±310 2234±252 187±49 -1120±103 5±1 

Drought 1110±235 1533±74 548±118 2081±187 72±23 -1147±111 5±1 

Supplemental 1292±449 491±113 1602±207 2093±137 225±75 -997±135 8±1 

* = sum of the daily values for the experimental period (1st July to 30th September 2017).   
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Table 3: Split-plot ANOVA result showing the individual and interactive effects of temperature and precipitation on plant biomass, microbial 

biomass C (MBC), net ecosystem CO2 exchange (NEE) and dissolved organic C (DOC) flux in cores of low (LNF) and high (HNF) nitrogen 

status (n = 5 for all parameters except NEE with n = 4). 

Soil core Source of 
variation 

    BGB    DAGB  LAGB    TAGB   MBC  NEE* DOC* 

F Sig. F Sig. F Sig. F Sig. F Sig. F Sig. F Sig. 

Low N Temp. 14.18 0.01 1.93 0.20 40.38 <0.01 33.50 <0.01 3.42 0.10 4.26 0.09 2.76 0.15 

 PPT. 0.74 0.49 32.55 <0.01 14.24 <0.01 3.00 0.08 5.16 0.02 7.48 0.01 2.00 0.18 

 Temp. × PPT 1.09 0.36 6.76 0.01 4.97 0.02 1.71 0.21 4.51 0.03 5.55 0.02 1.76 0.21 

High N Temp. 8.60 0.02 13.24 0.01 42.04 <0.01 20.40 <0.01 7.88 0.02 2.90 0.14 5.04 0.07 

 PPT. 0.10 0.91 48.80 <0.01 9.92 <0.01 0.41 0.67 2.27 0.14 3.29 0.07 0.91 0.43 

 Temp. × PPT 0.18 0.84 23.15 <0.01 3.02 0.08 0.59 0.57 0.72 0.50 3.48 0.06 1.54 0.25 

Temp. = temperature, PPT. = precipitation, BGB = belowground biomass, DAGB = dead aboveground biomass, LAGB = live aboveground 

biomass, TAGB = total aboveground biomass, * = sum of three months’ daily fluxes, Sig. = significant value at 5% probability level. Bold font 

indicates significant effect at p < 0.05. 
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Figure 2: The effects of warming, drought, supplemental precipitation (Supp. PPT) and their 

interactions on plant biomass (belowground – BGB, dead aboveground – DAGB, live 

aboveground – LAGB, total aboveground – TAGB) and microbial biomass C (MBC) in cores 

of (A) low nitrogen and (B) high nitrogen status (n = 5). Bars with asterisks represent 

significant change at 5% probability level in the C pool component of soil cores subjected to 

altered climate treatment compared to cores with ambient climate treatment. Error bars 

represent standard error (n = 5). 
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Figure 3: The effects of warming, drought, supplemental precipitation (Supp. PPT) and their 

interactions on the net ecosystem CO2 exchange (NEE) in the cores of low nitrogen and high 

nitrogen status (n = 4). Bars with asterisks represent significant change at 5% probability 

level in NEE of soil cores subjected to altered climate treatment compared to cores with 

ambient climate treatment. Error bars represent standard error (n = 4). 

 

4. Discussion 

A combination of warming and drought resulted in a significant reduction in plant biomass 

production regardless of the N status of the soil cores. This is consistent with our first 

hypothesis where we expected a decline in C uptake and storage due to warming and drought. 

The reduction in aboveground plant biomass (-28 to -35% or -793 to -949 g m-2) and NEE (-

13 to -29% or -165 to -365 g CO2 m-2) resulting from warming plus drought in our study is 

consistent with the findings of previous experimental climate change studies in the UK 

(Table A1), and a Europe-wide C flux study carried out after a heat wave and drought in 2003 

(Ciais et al., 2005). Our results are also consistent with the results of modelling studies (e.g. 

Thornley and Cannell, 1997) which indicate a decrease in net ecosystem C uptake and plant 

biomass production under warming scenarios in temperate grasslands.  
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In temperate ecosystems where plant growth is limited by low temperature (Wingler and 

Hennessy, 2016), particularly in upland environments, one would expect an increase in 

biomass production under elevated temperature. However, the results from our study indicate 

that the response of the temperate grassland ecosystem to rising temperature will depend on 

the level of stress imposed by a combination of warming and altered precipitation. Detailed 

interactive effects of warming and drought as well as warming and supplemental 

precipitation, and the implications of these for future grassland management are discussed in 

the following sections.     

4.1 Effects of warming and drought on net ecosystem C uptake and plant biomass production   

Consistent with our findings, previous studies have reported that drought conditions under 

experimental warming suppressed plant growth and reduced MBC (Ganjurjay et al., 2016; 

Liu et al., 2009). In extreme cases, the survival of some species of plant can be threatened by 

a combination of warming and drought (Xu et al., 2014). These negative interactive effects of 

warming and drought are attributable to physiological stress resulting from severe water 

deficits. By the end of the drought period, the soil cores in our study under warming and 

drought had less than half (5 – 12%) of the moisture content of soils under field conditions at 

our site during summer months (54 – 64%; Eze et al., 2018b), indicating that severe 

physiological stress was the likely cause of increased plant death (Figure 2). Severe moisture 

deficit has been shown to cause low stomatal conductance (Sanaullah et al., 2011), a decrease 

in the mobility of nutrients and reduced microbial access to substrates (Fuchsluege et al., 

2014). These impose stress on plants and soil microbes resulting in a significant reduction in 

C uptake by plants (Hasibeder et al., 2015), plant biomass (Hartmann and Niklaus, 2012), 

microbial activities (Liu et al., 2009), MBC (Shi et al., 2012), and an increase in the death of 

plants and microbes (Sanaullah et al., 2011).   
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Our findings suggest that under future summer climate change, particularly elevated 

temperature and drought, the C sink capacity of the grasslands we studied will be reduced, 

with likely similar effect on other temperate upland grasslands. This may lead to the 

ecosystem switching from being a net C sink to a net C source. It is however important to be 

cautious in extrapolating our results because other factors may dampen the negative effects 

reported. For example, the suppression of photosynthetic activity and plant growth, and 

increased senescence and mortality, resulting from the combination of warming and drought 

has been found to be partly alleviated by elevated atmospheric CO2 in greenhouse studies 

(Van De Velde et al., 2015; Xu et al., 2014). In some grassland field manipulative 

experiments where the climate change was simulated, elevated atmospheric CO2 alongside 

experimental warming led to an increase in the net C uptake by plants (Mueller et al., 2016; 

Ryan et al., 2017). In addition, we considered only summer conditions thus reflecting the 

current short growing season for mid-to-high latitude grasslands, but the effects of climate 

extremes such as drought can be carried over to other seasons (Niu et al., 2014). Under 

climate change, not only are lagged changes possible but the growing season may also be 

extended (Cleland et al., 2007; Xia et al., 2014) due to increased temperatures at either end of 

the summer. Hence multifactorial manipulative field experiments are needed that extend 

beyond the current growing season length, in order to determine the extent of ecosystem 

recovery from and resilience to multi-factor climatic stress (Van De Velde et al., 2015). 

 

4.2 Effects of warming and supplemental precipitation on net ecosystem C uptake and plant 

biomass productivity   

The lack of significant effects of warming plus supplemental precipitation on net ecosystem 

C uptake and plant biomass production is surprising. Although warming is known to increase 

the loss of water from grassland ecosystems via increased evapotranspiration, supplemental 
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precipitation recharges the ecosystem’s water storage, often leading to a decrease in soil 

temperature (e.g. -0.5°C in this study) due to the high heat capacity of water (Lal and Shukla, 

2004; Liu et al., 2009).  As a result, we had expected supplemental precipitation in this study 

to remove any water limitation imposed by elevated temperature, and at the same time 

minimize any direct warming-induced stress on plants and microbes possibly leading to 

increased C uptake. This was however not the case as only MBC increased under warming 

and supplemental precipitation whereas net C uptake and plant biomass productivity showed 

a non-significant decline. This indicates that supplemental precipitation may not sufficiently 

offset the negative effects of elevated temperature under severe warming-induced plant stress, 

at least in the short term. 

Seasonal precipitation in the UK is highly variable (Jenkins et al., 2009) and this makes the 

prediction of seasonal distribution of precipitation difficult. Although summer precipitation in 

the grasslands we studied is expected to decline in the future, including supplemental 

precipitation in this study helped to show that even if precipitation should increase in the 

future, it will not significantly reverse the negative effects of summer warming on net C 

uptake. A limitation of our work, however, is the short duration imposed by limited 

resources. The results reported here might have been different if the experiment was 

conducted for a longer period of time rather than restricted to growing season duration.  

Another aspect of our study that needs to be considered in extrapolating the results is the 

possibility that drainage from the cores was enhanced because of their open end. This most 

likely added to the stress caused by warming-induced evapotranspiration on both plants and 

soil microbes. Water storage capacity in the soil cores (15 cm in depth) was likely to be less 

than found in field conditions where soil depth averages 20 cm from the surface down to the 

subsoil. Even when the top soil layer (e.g. the rooting zone) is dry, water stored deeper in the 

profile is made available to plants via capillary action (Vervoort and Van Der Zee, 2008). 



27 
 

Also, plant roots grow more extensively during moisture stress which makes it possible for 

greater soil volume to be explored for water (Briones et al., 2009). These sources of water to 

plants were absent from our mesocosm experiment. It is also possible that CO2 might have 

been lost from the open bottom of the soil cores.  

4.3 Implication of experimental warming and altered precipitation for future land 

management  

Mesocosms from the two sites investigated here were both responsive to warming and altered 

precipitation, suggesting that the level of N addition in the HNF did not increase its 

sensitivity to climate change. The effects of altered precipitation on some components of the 

C cycle in the LNF and HNF differed slightly. For example, drought led to a significant 

increase in the death of AGB and a significant decline in MBC in the LNF, whereas in the 

HNF, drought significantly reduced NEE. The significant drought-induced death of AGB in 

the LNF may be connected to the presence of Lolium perenne L., which has been shown to be 

sensitive to drought (Aper et al., 2014). The death of plants in the LNF might subsequently 

have affected the rate of rhizodeposition thereby leading to the reduction in MBC (Bloor et 

al., 2018). On the other hand, the drought-induced reduction in the NEE of the HNF could be 

attributed to the reduction in GPP and an increase in ER (Figure A3), which limited the net C 

uptake by the plants. Despite the slight differences in the responses of LNF and HNF to 

altered precipitation, LNF and HNF had similar responses to both drought and supplemental 

precipitation when combined with warming. These findings were contrary to our third 

hypothesis where we expected greater effects of climate manipulation on the HNF that 

receives inorganic N addition. In an earlier UK study, Grime et al. (2000) reported that fertile 

grasslands with fast growing species were more sensitive to experimental climate change than 

less fertile and more matured grasslands. The site studied by Grime et al. (2000) that was 

considered fertile and more productive was a successional grassland converted from arable 
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land, whereas our fields have been managed for grazing animals for over 100 years. Hence, 

the differences in sensitivity to climate change reported by Grime et al. (2000) represented 

land use change and possibly a more extreme comparison than the relatively small 

differences in N application reported here, representing typical upland grazing management.  

Our results indicate that soil water management during the growing season may present a 

greater challenge to C uptake and biomass production than nutrient addition by the end of the 

21st Century. However, as explained earlier, the level of soil moisture loss recorded in our 

mesocosm experiment is likely to be higher than observed in field conditions. Our study was 

also short term making it difficult to account for adaptive changes in plant and microbial 

species’ physiology and community composition (Grime et al., 2000), which are detectable in 

the long term. Multi-year climate manipulative studies under field conditions are called for to 

inform and devise appropriate strategies for future grassland management that will be 

climate-smart. 

5. Conclusion 

A combination of warmer summer (+3 ºC) and drought (-23% precipitation) conditions led to 

a significant decline in the net ecosystem C uptake (-13 to -29%) and plant biomass 

production (-29 to -37% belowground biomass and -35 to -77% aboveground biomass) after 

three months of experimental manipulation. Supplemental summer precipitation (+15% 

precipitation) could not reverse the negative effects of warming on the net ecosystem C 

uptake and plant biomass production. Mesocosms representing grassland sites with differing 

N status (0.54% and 0.37%) were equally responsive to the experimental climate treatments, 

suggesting that differences in N management may not have significant influence on the 

response of the grasslands to climate change. The negative effects of the experimental climate 

change on the net ecosystem C uptake was attributed to physiological stress resulting from 

severe soil moisture deficits. However, in addition to water losses resulting warming-induced 
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evapotranspiration, the reduction in soil moisture might be partially attributable to open-

ended mesocosms used in this experiment. The cores have less volume and capacity to retain 

water than is possible in the field. This led to the recommendation that future experimental 

climate change studies in the upland grasslands should be carried out in the field. Also, due to 

the short term nature of our experiment, it is further recommended that long term studies 

should be conducted to account for adaptive changes in plant and soil microbial species that 

may result from changing temperature and precipitation regimes.  
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Table A1: Reported responses of plant biomass and C fluxes to experimental warming and altered precipitation in some European grasslands and 

their site characteristics. 

Location Altitude 
(m) 

MAT 
(°C) 

MAP 
(mm) 

Soil Exp.     
set-up 

Trt 
type 

Trt Duration 
(years) 

Effect 
on 
GPP 

Effect 
on ER 

Effect 
on 
AGB 

Effect 
on 
BGB 

Effect 
on 
DOC 

Authors 

Belgium  9.6 776 Silt loam Soil cores 
in sun-lit 
chambers 

W +3.0 °C  2 -12%  -7% 
AGR  

-30%    De Boeck et 
al., 2007 

Denmark  8.0 600 Sandy 
loam 

Field plots W +1.0 °C  1   +10%   Andresen et 
al., 2009 

Denmark  8.0 600 Sandy 
loam 

Field plots W +1.0 °C  3   +5%   Kongstad et 
al., 2012 

France 850 8.7 780 Cambisol Field 
monoliths 

W +3.5 °C  3   +7%   Bloor et al., 
2010 

UK 
(England) 

370 8.0 1300 Limestone 
derived 

Field plots W +3.0 °C 13   -9%   Grime et al., 
2008 

UK 
(England) 

150 10.0 680 Limestone 
derived  

Field plots W +3.0 °C  5   +2%   Grime et al., 
2000 

UK 
(Scotland) 

309 8.0 900 Brown 
earth 

Soil cores 
in exp. 
garden 

W +3.5 °C  2  +49%  -15%  +37%   Briones et al., 
2009 

UK 
(England) 

150 10.0 680 Limestone 
derived  

Field plots P +20% of 
summer ppt 

5   +33%   Grime et al., 
2000 

UK 
(England) 

370 8.0 1300 Limestone 
derived 

Field plots P +26% of 
summer ppt 

13   -3%   Grime et al., 
2008 
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Denmark  10.0 707 Loamy 
sand 

Field plots D -7% of MAP  3  -11% 
SR 

   Selsted et al., 
2012 

Denmark  8.0 600 Sandy 
loam 

Field plots D -8% of MAP  3   -5%   Kongstad et 
al., 2012 

UK 
(England) 

150 10.0 680 Limestone 
derived  

Field plots D -100% of 
July – August 
ppt 

5   -6%   Grime et al., 
2000 

UK 
(England) 

370 8.0 1300 Limestone 
derived 

Field plots D -77% of 
summer ppt 

13   -34%   Grime et al., 
2008 

Switzerland 393  9.8 1232 Cambisol 
(loamy 
clay) 

Field plots D -33% of 
MAP  

1  -17% 
SR 

  -58% Hagedorn and 
Joos, 2014 

Switzerland 982 7.7 1765 Cambisol 
(loamy 
clay) 

Field plots D -33% of 
MAP  

1  -24% 
SR 

  -42% Hagedorn and 
Joos, 2014 

Switzerland 1978 2.3 969 Leptosol 
(sandy 
loam) 

Field plots D -26% of 
MAP  

1  -38% 
SR 

  -81% Hagedorn and 
Joos, 2014 

Switzerland 393 9.6 1103 Cambisol Field plots D -31% of 
MAP  

3   -22%   Prechsl et al., 
2015 

Switzerland 1978 1.7 948 Cambisol Field plots D -26% of 
MAP  

2   -42%   Prechsl et al., 
2015 

UK 
(England) 

150 10.0 680 Limestone 
derived  

Field plots WP +3.0 °C; 
+20% of 
summer ppt 

5   +6%   Grime et al., 
2000 
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UK 
(England) 

370 8.0 1300 Limestone 
derived 

Field plots WP +3.0 °C; 
+26% of 
summer ppt 

13   -4%   Grime et al., 
2008 

Denmark  8.0 600 Sandy 
loam 

Field plots WD +1.0 °C; -8% 
of MAP  

3   +4%   Kongstad et 
al., 2012 

Denmark  10.0 707 Loamy 
sand 

Field plots WD +0.4 °C; -7% 
of MAP  

3  -20% 
SR 

   Selsted et al., 
2012 

UK 
(England) 

370 8.0 1300 Limestone 
derived 

Field plots WD +3.0 °C;  -
77% of 
summer ppt  

13   -25%   Grime et al., 
2008 

UK 
(England) 

150 10.0 680 Limestone 
derived  

Field plots WD +3.0 °C; -
100% of July 
– August ppt  

5   -32%   Grime et al., 
2000 

France 850 8.7 780 Cambisol Field 
monoliths 

WD +3.5 °C; -
20% of 
summer ppt 

3   -4%   Bloor et al., 
2010 

MAP= mean annual precipitation, MAT = mean annual temperature, Exp. = experimental, AGR = aboveground respiration, SR = soil 

respiration, AGB = aboveground biomass, BGB = belowground biomass, Trt = treatment, ppt = precipitation, W = warming, P= increased 

precipitation, D = drought, WP = warming and increased precipitation, WD = warming and drought. 
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Table A2: References for the studies in Table A1. 
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Table A3: Rainfall chemistry for Moor House – Upper Teesdale, UK (54° 41'N, 2° 23' W) 
from 4th June 2003 to 29th August 2012 (Rennie et al., 2015). In the absence of rainfall 
chemistry data for our site, the artificial rain used for our experiment was prepared in the 
laboratory using this published rainfall chemistry data from a long-term monitoring site about 
60 km away. 

Ion  10-year mean (mg/L) 10-year mean (meq/L) 

Ca2+ 0.2890 0.0144 

Mg2+ 0.0766 0.0063 

Na+ 0.6222 0.0271 

K+ 0.1378 0.0035 

Cl- 0.9722 0.02739 

SO4
2- 0.9946 0.0207 

NH4
+ 0.4885 0.0271 

NO3
- 0.2860 0.0046 

pH   5.36   

Rennie, S., Adamson, J., Anderson, R., Andrews, C., Bater, J., Bayfield, N., Beaton, K., 

Beaumont, D., Benham, S., Bowmaker, V., Britt, C., Brooker, R., Brooks, D., Brunt, J., 

Common, G., Cooper, R., Corbett, S., Critchley, N., Dennis, P., Dick, J., Dodd, B., Dodd, N., 

Donovan, N., Easter, J., Eaton, E., Flexen, M., Gardiner, A., Hamilton, D., Hargreaves, P., 

Hatton-Ellis, M., Howe, M., Kahl, J., Lane, M., Langan, S., Lloyd, D., McElarney, Y., 

McKenna, C., McMillan, S., Milne, F., Milne, L., Morecroft, M., Murphy, M., Nelson, A., 

Nicholson, H., Pallett, D., Parry, D., Pearce, I., Pozsgai, G., Rose, R., Schafer, S., Scott, T., 

Sherrin, L., Shortall, C., Smith, R., Smith, P., Tait, R., Taylor, C., Taylor, M., Thurlow, M., 

Turner, A., Tyson, K., Watson, H., Whittaker, M., 2015. UK Environmental Change Network 

(ECN) precipitation chemistry data: 1992-2012. NERC Environmental Information Data 

Centre. https://doi.org/10.5285/0cd4abd2-1bc9-48bc-b5c2-cebdeaa23ceb. 
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Figure A1: An example of linear relationships between measured and predicted GPP (using 

data from one soil core). 
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Figure A2: Examples of relationships between measured ER and the ER predicted using 

Equations 4 (A), 5 (B) and 6 (C). 
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Figure A3: The effects of warming, drought, supplemental precipitation (Supp. PPT) and 

their interactions on the gross primary productivity (A) and ecosystem respiration (B) in the 

low nitrogen and high nitrogen cores (n = 4). Bars with asterisks represent significant change 

at 5% probability level in GPP or ER of soil cores subjected to altered climate treatment 

compared to cores with ambient climate treatment. Error bars represent standard error (n = 4). 
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