
This is a repository copy of Synthesis of Probabilistic Models for Quality-of-Service
Software Engineering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130619/

Version: Accepted Version

Article:

Gerasimou, Simos, Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260 and
Tamburrelli, Giordano (2018) Synthesis of Probabilistic Models for Quality-of-Service
Software Engineering. Automated Software Engineering. ISSN 1573-7535

https://doi.org/10.1007/s10515-018-0235-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

Synthesis of Probabilistic Models for Quality-of-Service

Software Engineering

Simos Gerasimou · Radu Calinescu ·

Giordano Tamburrelli

Received: date / Accepted: date

Abstract An increasingly used method for the engineering of software sys-
tems with strict quality-of-service (QoS) requirements involves the synthesis
and verification of probabilistic models for many alternative architectures and
instantiations of system parameters. Using manual trial-and-error or simple
heuristics for this task often produces suboptimal models, while the exhaus-
tive synthesis of all possible models is typically intractable. The EvoChecker
search-based software engineering approach presented in our paper addresses
these limitations by employing evolutionary algorithms to automate the model
synthesis process and to significantly improve its outcome. EvoChecker can be
used to synthesise the Pareto-optimal set of probabilistic models associated
with the QoS requirements of a system under design, and to support the se-
lection of a suitable system architecture and configuration. EvoChecker can
also be used at runtime, to drive the efficient reconfiguration of a self-adaptive
software system. We evaluate EvoChecker on several variants of three systems
from different application domains, and show its effectiveness and applicability.

Keywords search-based software engineering · probabilistic model checking ·
evolutionary algorithms · QoS requirements

S. Gerasimou
Department of Computer Science, University of York
Tel.: +44(0)1904325198
E-mail: simos.gerasimou@york.ac.uk

R. Calinescu
Department of Computer Science, University of York
Tel.: +44(0)1904325166
E-mail: radu.calinescu@york.ac.uk

G. Tamburelli
lastminute.com
E-mail: tambug@gmail.com

2 Simos Gerasimou et al.

1 Introduction

Software systems used in application domains including healthcare, finance
and manufacturing must comply with strict reliability, performance and other
quality-of-service (QoS) requirements. The software engineers developing these
systems must use rigorous techniques and processes at all stages of the software
development life cycle. In this way, the engineers can continually assess the
correctness of a system under development (SUD) and confirm its compliance
with the required levels of reliability and performance.

Probabilistic model checking (PMC) is a formal verification technique that
can assist in establishing the compliance of a SUD with QoS requirements
through mathematical reasoning and rigorous analysis [12,34]. PMC supports
the analysis of reliability, timeliness, performance and other QoS requirements
of systems exhibiting stochastic behaviour, e.g. due to unreliable components
or uncertainties in the environment [69]. The technique has been successfully
applied to the engineering of software for critical systems [6,95]. In PMC, the
behaviour of a SUD is defined formally as a finite state-transition model whose
transitions are annotated with information about the likelihood or timing of
events taking place. Examples of probabilistic models that PMC operates with
include discrete and continuous-time Markov chains, and Markov decision pro-
cesses [70]. QoS requirements are expressed formally using probabilistic vari-
ants of temporal logic, e.g., probabilistic computation tree logic and continuous
stochastic logic [70]. Through automated exhaustive analysis of the underly-
ing low-level model, PMC proves or disproves compliance of the probabilistic
model of the system with the formally specified QoS requirements.

Recent advances in PMC reinforced its applicability to the cost-effective
engineering of software both at design time [11,25,72] and at runtime [26,40].
The design-time use of the technique involves the verification of alternative de-
signs of a SUD. The objectives are to identify designs whose quality attributes
comply with system QoS requirements and also to eliminate early in the design
process errors that could be hugely expensive to fix later [37]. Designs that
meet these objectives can then be used as a basis for the implementation of
the system. Alternatively, software engineers can construct probabilistic mod-
els of existing systems and employ PMC to assess their QoS attributes. Within
the last decade, PMC has also been used to drive the reconfiguration of self-
adaptive systems [14,28,42] by supporting the “analyse” and “plan” stages of
the monitor-analyse-plan-execute control loop [24,88] of these systems. In this
runtime use, PMC provides formal guarantees that the reconfiguration plan
adopted by the self-adaptive system meets the QoS requirements [20,26]. We
discuss related research on using PMC at runtime, including our recent work
from [23,50], in Section 8.

Notwithstanding the successful applications of PMC at both design time
and runtime, the synthesis and verification of probabilistic models that sat-
isfy the QoS requirements of a system remains a very challenging task. The
complexity of this task increases significantly when the search space is large
and/or the QoS requirements ask for the optimisation of conflicting QoS at-

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 3

tributes of the system (e.g. the maximisation of reliability and minimisation
of cost). Existing approaches such as exhaustive search and simple heuristics
like manual trial-and-error and automated hill climbing can only tackle this
challenge for small systems. Exhaustively searching the solution space for an
optimal probabilistic model is intractable for most real-world systems. On the
other hand, trial-and-error requires manual verification of numerous alterna-
tive instantiations of the system parameters, while simple heuristics do not
generalise well and are often biased towards a particular area of the problem
landscape (e.g. through getting stuck at local optima).

The EvoChecker search-based software engineering approach presented in
our paper addresses these limitations of existing approaches by automating the
synthesis of probabilistic models and by considerably improving the outcome
of the synthesis process. EvoChecker achieves these improvements by using
evolutionary algorithms (EAs) to guide the search towards areas of the search
space more likely to comprise probabilistic models that meet a predefined set
of QoS requirements. These requirements can include both constraints, which
specify bounds for QoS attributes of the system (e.g. “Workflow executions
must complete successfully with probability at least 0.98”), and optimisation
objectives (e.g. “The workflow response time should be minimised”).

Given this set of QoS requirements and a probabilistic model template that
encodes the configuration parameters (e.g., alternative architectures, parame-
ter ranges) of the software system, EvoChecker supports both the identification
of suitable architectures and configurations for a software system under design,
and the runtime reconfiguration of a self-adaptive software system.

When used at design time, EvoChecker employs multi-objective EAs to
synthesise (i) a set of probabilistic models that closely approximates the Pareto-
optimal model set associated with the QoS requirements of a software system;
and (ii) the corresponding approximate Pareto front of QoS attribute values.
Given this information, software designers can inspect the generated solutions
to assess the tradeoffs between multiple QoS requirements and make informed
decisions about the architecture and parameters of the SUD.

When used at runtime, EvoChecker drives the reconfiguration of a self-
adaptive software system by synthesising probabilistic models that correspond
to configurations which meet the QoS requirements of the system. To speed
up this runtime search, we use incremental probabilistic model synthesis. This
novel technique involves maintaining an archive of specific probabilistic models
synthesised during recent reconfiguration steps, and using these models as the
starting point for each new search. As reconfiguration steps are triggered by
events such as changes to the environment that the system operates in, the
EvoChecker archive accumulates “solutions” to past events that often resemble
new events experienced by the system. Therefore, starting new searches from
the archived “solutions” can achieve significant performance improvement for
the model synthesis process.

4 Simos Gerasimou et al.

The main contributions of our paper are:

– The EvoChecker approach for the search-based synthesis of probabilistic
models for QoS software engineering, and its application to the synthesis
of models that meet QoS requirements both at design time and at runtime.

– The EvoChecker high-level modelling language, which extends the mod-
elling language used by established probabilistic model checkers such as
PRISM [71] and Storm [39].

– The definition of the probabilistic model synthesis problem.
– An incremental probabilistic model synthesis technique for the efficient run-

time generation of probabilistic models that satisfy the QoS requirements
of a self-adaptive system.

– An extensive evaluation of EvoChecker in three case studies drawn from
different application domains.

– A prototype open-source EvoChecker tool and a repository of case studies,
both of which are freely available from our project webpage at http://

www-users.cs.york.ac.uk/simos/EvoChecker.

These contributions significantly extend the preliminary results from our
conference paper on search-based synthesis of probabilistic models [53] in sev-
eral ways. First, we introduce an incremental probabilistic model synthesis
technique that extends the applicability of EvoChecker to self-adaptive soft-
ware systems. Second, we devise and evaluate different strategies for selecting
the archived solutions used by successive EvoChecker synthesis tasks at run-
time. Third, we extend the presentation of the EvoChecker approach with ad-
ditional technical details and examples. Fourth, we use EvoChecker to develop
two self-adaptive systems from different application domains (service-based
systems and unmanned underwater vehicles). Finally, we use the systems and
models from our experiments to assemble a repository of case studies available
on our project website.

The rest of the paper is organised as follows. Section 2 presents the software
system used as a running example. Section 3 introduces the EvoChecker mod-
elling language, and Section 4 presents the specification of EvoChecker con-
straints and optimisation objectives using the QoS requirements of a software
system. Section 5 describes the use of EvoChecker to synthesise probabilistic
models at design time and at runtime. Section 6 summarises the implementa-
tion of the EvoChecker prototype tool. Section 7 presents the empirical evalu-
ation carried out to assess the effectiveness of EvoChecker, and an analysis of
our findings. Finally, Sections 8 and 9 discuss related work and conclude the
paper, respectively.

2 Running Example

We will illustrate the EvoChecker approach for synthesising probabilistic mod-
els using a real-world service-based system from the domain of foreign exchange
trading. The system, which for confidentiality reasons we anonymise as FX, is

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 5

Fig. 1: Workflow of the FX system (adapted from [53])

used by a European foreign exchange brokerage company and implements the
workflow in Figure 1.

An FX trader can use the system to carry out trades in expert or normal
mode. In the expert mode, the trader can provide her objectives or action
strategy. FX periodically analyses exchange rates and other market activity,
and automatically executes a trade once the trader’s objectives are satisfied.
In particular, a Market watch service retrieves real-time exchange rates of se-
lected currency pairs. A Technical analysis service receives this data, identifies
patterns of interest and predicts future variation in exchange rates. Based on
this prediction and if the trader’s objectives are “satisfied”, an Order service
is invoked to carry out a trade; if they are “unsatisfied”, execution control
returns to the Market watch service; and if they are “unsatisfied with high
variance”, an Alarm service is invoked to notify the trader about opportuni-
ties not captured by the trading objectives. In the normal mode, FX assesses
the economic outlook of a country using a Fundamental analysis service that
collects, analyses and evaluates information such as news reports, economic
data and political events, and provides an assessment of the country’s cur-
rency. If the trader is satisfied with this assessment, she can sell/buy currency
by invoking the Order service, which in turn triggers a Notification service to
confirm the successful completion of a trade.

The FX system uses mi≥1 functionally equivalent implementations of the
i-th service. For any service i, the j-th implementation, 1≤ j≤ mi is charac-
terised by its reliability rij ∈ [0, 1] (i.e., probability of successful invocation),
invocation cost cij ∈R+ and response time tij ∈R+.

FX is required to satisfy the QoS requirements from Table 1. For each
service, FX must select one of two invocation strategies by means of a config-
uration parameter stri ∈ {PROB, SEQ}, where

6 Simos Gerasimou et al.

Table 1: QoS requirements for the FX system

ID Informal description

R1 “Workflow executions must complete successfully with probability at least 98%”

R2 “The total service response time per workflow execution should be minimised”

R3 “The probability of a service failure during a workflow execution should be minimised”

R4 “The total cost of the third-party services used by a workflow execution should be
minimised”

• if stri = PROB, FX uses a probabilistic strategy to randomly select one of
the service implementations based on an FX-specified discrete probability
distribution pi1, pi2, . . . , pimi

; and

• if stri = SEQ, FX uses a sequential strategy that employs an execution
order to invoke one after the other all enabled service implementations
until a successful response is obtained or all invocations fail.

For the SEQ strategy, a parameter exi ∈ {1, 2, ...,mi!} establishes which
of the mi! permutations of the mi implementations should be used, and a
configuration parameter xij ∈ {0, 1} indicates if implementation j is enabled
(xij = 1) or not (xij = 0).

3 EvoChecker Modelling Language

EvoChecker uses an extension of the modelling language that leading model
checkers such as PRISM [71] and Storm [39] use to define probabilistic models.
This language is based on the Reactive Modules formalism [5], which models
a system as the parallel composition of a set of modules. The state of a module
is defined by a set of finite-range local variables, and its state transitions are
specified by probabilistic guarded commands that modify these variables:

[action] guard −> e1 : update1 + . . .+ en : updaten; (1)

where guard is a boolean expression over all model variables. If the guard is
true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability (for discrete-
time models) or rate (for continuous-time models) with which the updatei
change of the module variables occur. The action is an optional element of type
‘string’; when used, all modules comprising commands with the same action
must synchronise by performing one of these commands simultaneously. For
a complete description of the modelling language, we refer the reader to the
PRISM manual at www.prismmodelchecker.org/manual.

EvoChecker extends this language with the following three constructs that
support the specification of the possible configurations of a system.

1. Evolvable parameters. EvoChecker uses the syntax

evolve int param [min..max];
evolve double param [min..max];

(2)

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 7

to define model parameters of type ‘int’ and ‘double’, respectively, and accept-
able ranges for them. These parameters can be used in any field of command (1)
other than action.

2. Evolvable probability distributions. The syntax

evolve distribution dist [min1..max1] . . . [minn..maxn]; (3)

where [mini,maxi] ⊆ [0, 1] for all 1 ≤ i ≤ n, is used to define an n-element
discrete probability distribution, and ranges for the n probabilities of the dis-
tribution. The name of the distribution with 1, 2, . . . , n appended as a suffix
(i.e., dist1, dist2, etc.) can then be used instead of expressions e1, e2, . . . , en
from an n-element command (1).

3. Evolvable modules. EvoChecker uses the syntax

evolve module modName implementation1 endmodule

. . .
evolve module modName implementationn endmodule

(4)

to define n ≥ 2 alternative implementations of a module modName.

The interpretation of the three EvoChecker constructs within a probabilistic
model template is described by the following definitions.

Definition 1 (Probabilistic model template) A valid probabilistic model
augmented with EvoChecker evolvable parameters (2), probability distribu-
tions (3) and modules (4) is called a probabilistic model template.

Definition 2 (Valid probabilistic model) A probabilistic model M is an
instance of a probabilistic model template T if and only if it can be obtained
from T using the following transformations:

– Each evolvable parameter (2) is replaced by a ‘const int param = val;’ or
‘const double param = val;’ declaration (depending on the type of the pa-
rameter), where val ∈ {min, . . . ,max} or val ∈ [min..max], respectively.

– Each evolvable probability distribution (3) is removed, and the n occur-
rences of its name instead of expressions e1, . . . , en of a command (1)
are replaced with values from the ranges [min1..max1], . . . , [minn..maxn],
respectively. For a discrete-time model, the sum of the n values is 1.0.

– Each set of evolvable modules with the same name is replaced with a single
element from the set, from which the keyword ‘evolve’ was removed.

As the EvoChecker modelling language is based on the modelling language
of established probabilistic model checkers such as PRISM and Storm, our
approach can handle templates of all types of probabilistic models supported
by these model checkers. Table 2 shows these types of probabilistic models,
and the probabilistic temporal logics available to specify the QoS requirements
of the modelled software systems.

8 Simos Gerasimou et al.

Table 2: Types of probabilistic models supported by EvoChecker

Type of probabilistic model QoS requirement specification logic

Discrete-time Markov chains PCTLa, LTLb, PCTL*c

Continuous-time Markov chains CSLd

Markov decision processes PCTLa, LTLb, PCTL*c

Probabilistic automata PCTLa, LTLb, PCTL*c

Probabilistic timed automata PCTLa

aProbabilistic Computation Tree Logic [17,56] bLinear Temporal Logic [83]
cPCTL* is a superset of PCTL and LTL dContinuous Stochastic Logic [10,13]

Example 1 Figure 2 presents the discrete-time Markov chain (DTMC) proba-
bilistic model template of the FX system introduced in Section 2. The template
comprises a WorkflowFX module modelling the FX workflow, and two modules
modelling the alternative implementations of each service. These two service
modules correspond to the probabilistic invocation strategy and the sequential
invocation strategy, respectively. Due to space constrains, Figure 2 shows in
full only the MarketWatch module for the probabilistic strategy of the Market
watch service; the complete FX probabilistic model template is available on
our project webpage.

The local variable state from the WorkflowFX module (line 5 in Figure 2)
encodes the state of the system, i.e. the service being invoked, the success or
failure of that service invocation, etc. The local variable mw from the Mar-

ketWatch implementations (line 39) records the internal state of the Market
watch service invocation. The WorkflowFX module synchronises with the ser-
vice modules through ‘start’-, ‘failed’- and ‘succ’-prefixed actions, which are
associated with the invocation, failed execution, and successful execution of a
service, respectively. For instance, the synchronisation with the MarketWatch

module occurs through the actions startMW, failedMW and succMW (lines
9–11).

Each service module models a specific invocation strategy, e.g. a proba-
bilistic selection is made between three available Market watch service im-
plementations in line 41 of the first MarketWatch module. Then, the selected
service implementation is invoked (lines 43–45) and either completes success-
fully (line 47) or fails (line 48). The FX system continues with the rest of its
workflow (lines 12–31 from WorkflowFX) if the service executed successfully,
or terminates (line 32) otherwise.

All three EvoChecker constructs (2)–(4) are used by the FX probabilistic
model template:

– four evolvable parameters specify the enabled Market watch service im-
plementations and their execution order (lines 50–53) associated with the
sequential invocation strategy;

– an evolvable distribution specifies the discrete probability distribution for
the probabilistic invocation strategy of the firstMarketWatchmodule (line 36);

– two alternative implementations of the MarketWatch module are provided
in lines 37–49 and 54–57, respectively.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 9

1

2
3

4
5

6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31
32
33
34

35

36

37
38

39
40
41

42

43
44
45

46
47
48
49

50
51
52
53

54
55
56
57
58

dtmc

const double pExpert=0.66; const double pSat = 0.61; const double pNotSat = 0.28;
const double pTrade = 0.27; const double pRetry = 0.20;

module WorkflowFX
state: [0..15] init 0; // FX state

// Start: expert or normal mode
[fxStart] state=0 −> pExpert :(state’=1) + (1-pExpert):(state’=9);

//Service #1: Market Watch
[startMW] state=1 −> 1.0:(state’=2);
[failedMW] state=2 −> 1.0:(state’=5);
[succMW] state=2 −> 1.0:(state’=3);

//Service #2: Technical Analysis
[startTA] state=3 −> 1.0:(state’=4);
[failedTA] state=4 −> 1.0:(state’=5);
[succTA] state=4 −> pSat : (state’=1) + pNotSat : (state’=11) + (1-pSat-pNotSat) : (state’=7);

//Service #3: Alarm
[startAL] state=7 −> 1.0:(state’=8);
[failedAL] state=8 −> 1.0:(state’=5);
[succAL] state=8 −> 1.0:(state’=13);

//Service #4: Fundamental Analysis
[startFA] state=9 −> 1.0:(state’=10);
[failedFA] state=10 −> 1.0:(state’=5);
[succFA] state=10 −> pTrade : (state’=11) + pRetry : (state’=9) + (1-pTrade-pRetry) : (state’=0);

//Service #5: Order
[startOR] state=11 −> 1.0:(state’=12);
[failedOR] state=12 −> 1.0:(state’=5);
[succOR] state=12 −> 1.0:(state’=13);

//Service #6: Notification
[startNOT] state=13 −> 1.0:(state’=4);
[failedNOT] state=14 −> 1.0:(state’=5);
[succNOT] state=14 −> 1.0:(state’=15);

[failedFX] state=5 −> 1.0:(state’=5);
[succFX] state=15 −> 1.0:(state’=15);

endmodule

const double r11 = 0.998; const double r12 = 0.995; const double r13 = 0.996;

evolve distribution p1[0.1..0.3][0.3..0.5][0.2..0.6];

// Probabilistic invocation strategy for Service #1: Market Watch
evolve module MarketWatch
mw: [0..5] init 0; // MW state
// Probabilistic service selection
[startMW] mw=0 −> p11 : (mw’=1) + p12 : (mw’=2) + p13 : (mw’=3);

// Run services
[runMW1] mw=1 −> r11 : (mw’=4) + (1-r11): (mw’=5);
[runMW2] mw=2 −> r12 : (mw’=4) + (1-r12): (mw’=5);
[runMW3] mw=3 −> r13 : (mw’=4) + (1-r13): (mw’=5);

// End Market Watch service
[succMW] mw=4 −> 1.0:(mw’=0);
[failedMW] mw=5 −> 1.0:(mw’=0);

endmodule

evolve int x11[0..1];
evolve int x12[0..1];
evolve int x13[0..1];
evolve int ex1[1..6];

// Sequential invocation strategy for Service #1: Market Watch
evolve module MarketWatch
...

endmodule

...

Fig. 2: DTMC probabilistic model template for the FX system

10 Simos Gerasimou et al.

Table 3: QoS attributes for the FX system

QoS attribute Informal description Formula Φi

attr1 Workflow reliability P=?[F state=15]

attr2 Workflow response time Rtime

=?
[F state=15 ∨ state=5]

attr3 Workflow invocation cost RinvocationCost

=?
[F state=15 ∨ state=5]

4 EvoChecker Specification of QoS Requirements

4.1 Quality-of-Service Attributes

Given the probabilistic model template T of a system, QoS attributes such as
the response time, throughput and reliability of the system can be expressed
in the probabilistic temporal logics from Table 2, and can be evaluated by
applying probabilistic model checking to relevant instances of T . Formally,
given the probabilistic temporal logic formula Φ for a QoS attribute attr and
an instance M of T (i.e. a probabilistic model corresponding to a system
configuration being examined), the value of the QoS attribute is

attr = PMC (M,Φ), (5)

where PMC is the probabilistic model checking “function” implemented by
tools such as PRISM and Storm.

Example 2 The QoS requirements of the FX system from our running example
(shown in Table 1) are based on three QoS attributes. Requirements R1 and
R3 refer to the probability of successful completion (i.e. the reliability) of
FX workflow executions. This QoS attribute corresponds to the probabilistic
computation tree logic (PCTL) formula P=?[F state=15] from the first row of
Table 3. This PCTL formula expresses the probability that the probabilistic
model template from Figure 2 reaches its success state.

The QoS attributes for the other two requirements can be specified using
rewards PCTL formulae [7,64,69]. For this purpose, positive values are associ-
ated with specific states and transitions of the model template from Figure 2
by adding the following two rewards. . . endrewards structures to the template:

rewards “time” rewards “invocationCost”

[runMW1] true : t11; [runMW1] true : c11;
[runMW2] true : t12; [runMW1] true : c12;
[runMW3] true : t13; [runMW1] true : c13;
.

endrewards endrewards

These structures support the computation of the total service response time
for requirement R2 and of the workflow invocation cost for requirement R4.
To this end, the two structures associate the mean response time tij and the in-
vocation cost cij of the j-th implementation of FX service i with the transition

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 11

that models the execution of this service implementation. The corresponding
PCTL formulae, shown in the last two rows of Table 3, represent the reward
(i.e. the response time and cost, respectively) “accumulated” before reaching
a state where the workflow execution terminates. In these formulae, state=15
denotes a successful termination, and state=5 an unsuccessful one.

Before describing the formalisation of QoS requirements in EvoChecker,
we note that a software system has two types of parameters:

1. Configuration parameters, which software engineers can modify to select
between alternative system architectures and configurations. The EvoCheck-
er constructs (2)–(4) are used to define these parameters and their accept-
able values. The set of all possible combinations of configuration parameter
values forms the configuration space Cfg of the system.

2. Environment parameters, which specify relevant characteristics of the envi-
ronment in which the system will operate or is operating. These parameters
cannot be modified, and need to be estimated based on domain knowledge
or observations of the actual system. The set of all possible combinations
of environment parameter values forms the environment space Env of the
system.

A probabilistic model template T of a system with configuration space Cfg and
environment space Env corresponds to a specific combination of environment
parameter values e ∈ Env and to the entire configuration space Cfg . Further-
more, each instance M of T is associated with the same environment state
e and with a specific combination of configuration parameter values c ∈ Cfg .
We will use the notation M(e, c) to refer to this specific instance of T , and
the notation attr(e, c) for the value of a QoS attribute (5) computed for this
instance.

Example 3 The environment parameters of the FX system comprise:

– the probabilities pExpert , pSat , pNotSat , pTrade and pRetry from module
WorkflowFX in Figure 2;

– the success probabilities rij , response times tij and costs cij of the FX
service implementations.

The FX configuration parameters defined by the EvoChecker constructs from
Figure 2 are:

– the invocation strategies str i used for the i-th FX service;
– the probabilities pij of invoking the j-th implementation of service i when

the probabilistic invocation strategy is used;
– the xij and ex i parameters specifying which implementations of service i

are used by the sequential invocation strategy and their execution order.

4.2 Quality-of-Service Requirements

EvoChecker supports the engineering of software systems that need to satisfy
two types of QoS requirements:

12 Simos Gerasimou et al.

Table 4: Formal specification of QoS requirements for the FX system

ID Formal description Informal description Requirement type

R1 attr1 ≥ 0.98 workflow reliability greater than 98% constraint

R2 minimise attr2 minimise workflow reponse time optimisation objective

R3 minimise 1− attr1 minimise worklfow reliability optimisation objective

R4 minimise attr3 minimise workflow invocation cost optimisation objective

1. Constraints, i.e. requirements that specify bounds for the acceptable values
of QoS attributes such as response time, throughput, reliability and cost.

2. Optimisation objectives, i.e. requirements which specify QoS attributes that
should be minimised or maximised.

Formally, EvoChecker considers systems with n1 ≥ 0 constraints RC
1 , R

C
2 , . . .,

RC
n1
, and n2 ≥ 1 optimisation objectives RO

1 , R
O
2 , . . . , R

O
n2
. The i-th constraint,

RC
i , has the form

attr i ⊲⊳i bound i (6)

and, assuming that all optimisation objectives require the minimisation of QoS
attributes,1 the j-th optimisation objective, RO

j , has the form

minimise attrn1+j , (7)

where ⊲⊳i∈ {<,≤,≥, >,=} is a relational operator, bound i ∈ R, 0 ≤ i ≤ n1,
1 ≤ j ≤ n2, and attr1, attr2, . . . , attrn1+n2

represent n1 + n2 QoS attributes
(5) of the software system.

Example 4 The QoS requirements of the FX system (Table 1) comprise one
constraint (R1) and three optimisation objectives (R2–R4). Table 4 shows
the formalisation of these requirements for the design time use of EvoChecker
using the FX QoS attributes from Table 3.

5 EvoChecker Probabilistic Model Synthesis

EvoChecker supports both the selection of a suitable architecture and configu-
ration for a software system under design, and the runtime reconfiguration of
a self-adaptive software system. There are three key differences between these
two uses of EvoChecker.

First, the use of EvoChecker during system design requires the specification
of the (fixed) environment state that the system will operate in by a domain
expert, while for its runtime use the environment state is continually updated
based on monitoring information.

Second, the EvoChecker use at design time can handle multiple optimisa-
tion objectives and yields multiple Pareto-optimal solutions (i.e. probabilistic

1 This assumption simplifies the presentation of EvoChecker without loss of generality.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 13

models). In contrast, EvoChecker at runtime yields a single solution (as synthe-
sising multiple solutions is not useful without a software engineer to examine
them) by operating with a single optimisation objective (i.e. a “loss” function).

Finally, the use of EvoChecker for the design of a system is a one-off ac-
tivity, whereas for a self-adaptive system the approach is used to select new
system configurations on frequent intervals or after each environment change.
The latter use involves the incremental synthesis of probabilistic models by
generating each new configuration efficiently based on previously synthesised
ones.

Given these differences between the design time and runtime EvoChecker
uses, we present them separately in Sections 5.1 and 5.2, respectively.

5.1 Using EvoChecker at Design Time

5.1.1 Probabilistic Model Synthesis Problem

Consider a SUD with environment space Env , an environment state e ∈ Env
provided by a domain expert, and a probabilistic model template T associated
with the configuration space Cfg of the system. Given n1 ≥ 0 constraints (6)
and n2 ≥ 1 optimisation objectives (7), the probabilistic model synthesis prob-
lem involves finding the Pareto-optimal set PS of configurations from Cfg
that satisfy the n1 constraints and are non-dominated with respect to the n2

optimisation objectives:

PS = {c∈Cfg | ∄ c′∈Cfg • (∀0≤ i≤n1 • attr i(e, c) ⊲⊳i bound i∧

attr i(e, c
′) ⊲⊳i bound i) ∧ c′ ≺ c}

(8)

with the dominance relation ≺ : Cfg× Cfg→B defined by

∀c, c′ ∈ Cfg • c ≺ c′ ≡ ∀ n1 + 1 ≤ i ≤ n1 + n2 • attr i(e, c) ≤ attr i(e, c
′) ∧

∃ n1 + 1 ≤ i ≤ n1 + n2 • attr i(e, c) < attr i(e, c
′).

Finally, given the Pareto-optimal set PS , the Pareto front PF is defined by

PF = {(an1+1, an1+2, . . . , an1+n2
) ∈ Rn2 |

∃c ∈ PS • ∀n1 + 1≤ i≤n1 + n2 • ai = attr i(e, c)},
(9)

because the system designers need this information in order to choose between
the configurations from the set PS.

5.1.2 Probabilistic Model Synthesis Approach

Obtaining the Pareto-optimal set of a SUD, given by equation (8), is usu-
ally unfeasible, as the configuration space Cfg is typically extremely large or
(when the probabilistic model template T includes evolvable distributions or

14 Simos Gerasimou et al.

Table 5: EvoChecker gene encoding rules

Evolvable feature of the EvoChecker gene(s)

probabilistic model template Type Cardinality Value range Vi

evolve int param[min..max]; int 1 {min,...,max}

evolve double param[min..max]; double 1 [min..max]

evolve distribution dist [min1..max1] . . .
. . . [minn..maxn]; double n

[min1..max1]
. . . [minn..maxn]

evolve module mod implementation1

endmodule . . .
evolve module mod implementationm

endmodule

int 1 {1, 2, ...,m}

evolvable parameters of type double) infinite. Therefore, EvoChecker synthe-
sises a close approximation of the Pareto-optimal set by using standard multi-
objective evolutionary algorithms such as the genetic algorithms NSGA-II [38],
SPEA2 [100] and MOCell [81].

Evolutionary algorithms (EAs) encode each possible solution of a search
problem as a sequence of genes, i.e. binary representations of the problem vari-
ables. For EvoChecker, each use of an ‘evolvable’ construct (2)–(4) within the
probabilistic model template T contributes to this sequence with the gene(s)
specified by the encoding rules in Table 5. EvoChecker uses these rules to ob-
tain the value ranges V1, V2, . . . , Vk for the k≥1 genes of T , and to assemble
the SUD configuration space Cfg = V1 × V2 × · · · × Vk.

The high-level architecture of EvoChecker is shown in Figure 3. The prob-
abilistic model template T of the SUD is processed by a Template parser
component. The Template parser converts the template into an internal repre-
sentation (i.e. a parametric probabilistic model) and extracts the configuration
space Cfg as described above. The configuration space Cfg and the n1 QoS
constraints and n2 optimisation objectives of the SUD are used to initialise the
Multi-objective evolutionary algorithm component at the core of EvoChecker.
This component creates a random initial population of individuals (i.e. a set
of random gene sequences corresponding to different Cfg elements), and then
iteratively evolves this population into populations containing “fitter” individ-
uals by using the standard EA approach summarised next.

The EA approach involves evaluating different individuals (i.e., potential
new system configurations) through invoking an Individual analyser. This com-
ponent combines an individual and the parametric model created by the Tem-
plate parser to produce a probabilistic model M in which all configuration
parameters are fixed using values from the genes of the analysed individ-
ual. Next, the Individual analyser invokes a Quantitative verification engine
that uses probabilistic model checking to determine the QoS attributes attr i,
1 ≤ i ≤ n1 + n2, of the analysed individual. To this end, the Quantitative
verification engine analyses the model M and each of the probabilistic tem-
poral logic formulae Φ1, Φ2, . . . , Φn1+n2

corresponding to the n1 + n2 QoS

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 15

Multi-objective
evolutionary

algorithm

Individual
analyser

QoS constraints
and optimisation

 objectives

Formulae
Φ

1, Φ2, ... , Φn1+n2

Probabilistic
model

template T

Quantitative
verification

engine

Template
parser

Pareto front
approximation PF

Config. space
Cfg= V1x V 2x ... x V k

Parametric
model

In
di

vi
du

al

Q
oS

 a
tt
ri
bu

te
s

QoS attribute
 attri

Model M,
Formula Φi

Pareto-optimal set
approximation PS

at
tr 1

,..
.,a

tt
r n 1

+
n 2

Fig. 3: High-level EvoChecker architecture

attributes. These attributes are then used by the Multi-objective evolutionary
algorithm to establish whether the individual satisfies the n1 QoS constraints
and to assess its “fitness” based on the QoS attribute values associated with
the n2 QoS optimisation objectives.

Once all individuals have been evaluated, the Multi-objective evolutionary
algorithm performs an assignment, reproduction and selection step. During as-
signment, the algorithm establishes the fitness of each individual (e.g., its rank
in the population). Fit individuals have higher probability to enter a “mating”
pool and to be chosen for reproduction and selection. With reproduction, the
algorithm creates new individuals from the mating pool by means of crossover
and mutation. Crossover randomly selects two fit individuals and exchanges
genes between them to produce offspring with potentially higher fitness val-
ues. Mutation, on the other hand, introduces variation in the population by
selecting an individual from the pool and creating an offspring by randomly
changing a subset of its genes. Finally, through selection, a subset of the indi-
viduals from the current population and offspring becomes the new population
that will evolve in the next generation.

The Multi-objective evolutionary algorithm uses elitism, a strategy that di-
rectly propagates into the next population a subset of the fittest individuals
from the current population. This strategy ensures the iterative improvement
of the Pareto-optimal approximation set PS assembled by EvoChecker. Fur-
thermore, the multi-objective EAs used by EvoChecker maintain diversity in
the population and generate a Pareto-optimal approximation set spread as
uniformly as possible across the search space. This uniform spread is achieved
using algorithm-specific mechanisms for diversity preservation. One such mech-
anism involves combining the nondomination level of each evaluated individual
and the population density in its area of the search space.2

2 For example, NSGA-II [38] associates a nondominance level of 1 to all nondominated
individuals of a population, a level of 2 to the individuals that are not dominated when
level-1 individuals are ignored etc. Individuals not satisfying problem constraints receive a
default level of ∞. SPEA2 [100] evaluates population density as the inverse of the distance
to the k-th nearest neighbour of the individual.

16 Simos Gerasimou et al.

Probabilistic
model

template T

QoS constraints
and optimisation

 objective Software
system

Sensors

Effectors

Monitor
Formulae

Φ
1, Φ2, ... , Φn1+1

EvoChecker

System
configuration c

Environment
state e

Archive
of effective

configurations
with strategy σ

System
configurations Ce

Archived
configurations

Fig. 4: EvoChecker-driven reconfiguration of self-adaptive software system

The evolution of fitter individuals continues until one of the following ter-
mination criteria is met:

1. the allocated computation time is exhausted;
2. the maximum number of individual evaluations has been reached;
3. no improvement in the quality of the best individuals has been detected

over a predetermined number of successive iterations.

Once the evolution terminates, the set of nondominated individuals from the
final population is returned as the Pareto-optimal set approximation PS . The
values of the QoS attributes associated with the n2 optimisation objectives
and with each individual from PS are used to assemble the Pareto front ap-
proximation PF . System designers can analyse the PS and PF sets to select
the design to use for system implementation.

5.2 Using EvoChecker at Runtime

5.2.1 EvoChecker-based Self-adaptive Systems

The use of EvoChecker to drive the runtime reconfiguration of self-adaptive
software systems is illustrated in Figure 4. The approach uses system Sensors
to continually monitor the system and identify the parameters of the envi-
ronment it operates in. Changes in the environment state e lead to updates
of the probabilistic model template T used by EvoChecker and to the incre-
mental synthesis of a probabilistic model specifying a new configuration c that
enables the system to meet its QoS requirements in the changed environment.
This configuration is applied using an Effectors interface of the self-adaptive
system.

To speed up the search for a new configuration, the use of EvoChecker
at runtime builds on the principles of incrementality and exploits the fact
that changes in a self-adaptive system are typically localised [54]. As reported
in other domains [61,67], and also discussed in our related work section (Sec-
tion 8), an effective initialisation of the EA search can speed up its convergence
and can yield better-quality solutions. Accordingly, EvoChecker maintains an
Archive (cf. Figure 4) of “effective” configurations identified during recent re-
configurations of the self-adaptive system. This Archive is used to “seed” each

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 17

new search with a subset of recent configurations that encode solutions to
potentially similar environment states experienced in the past.

To fully automate the EvoChecker operation, its runtime use combines
the QoS requirements that target the optimisation of QoS attributes into a
composite single objective. Similar to other approaches for developing self-
adaptive systems [86], this objective requires the minimisation of a generalised
loss function given by

loss(e, c) =

n1+n2
∑

j=n1+1

wj · attr j(e, c), (10)

where wj ≥ 0 are weight coefficients and at least one of them is strictly posi-
tive.3

These weight coefficients express the desired trade-off between the j QoS at-
tributes. Fonseca and Fleming [45] show that for any positive set of coefficient
values, the identified solution is always Pareto optimal (compared to all other
solutions generated during the search). Selecting appropriate values for the
coefficients is a responsibility of system designers. To this end, they can use
domain knowledge to determine the value range of the QoS attributes com-
prising the loss function and assign appropriate coefficient values that reflect
their relative importance [35]. Note that although more complex, loss is just
another QoS attribute which can still be specified in the latest version of
the probabilistic temporal logic languages supported by model checkers like
PRISM [71], so it fits the definition of an attribute from equation (5).

Example 5 To use EvoChecker in a self-adaptive variant of the FX system from
our running example, the QoS attributes from Table 3 need to be combined
into a loss function (10) that the self-adaptive system should minimise, e.g.:

loss(e, c) = w1 · (attr1(e, c))
−1

+ w2 · attr2(e, c) + w3 · attr3(e, c),

with the weights w1, w2 and w3 chosen based on the value ranges and on the
relative importance of the three attributes. Note that the first attribute from
the loss function is actually the reciprocal of the reliability attribute attr1
from Table 3, as we want decreases in reliability to lead to rapid increases
in loss. Using the failure probability 1−attr1 as the first attribute is also an
option, although this choice yields a loss function that increases only linearly
with the failure probability.

5.2.2 Runtime Probabilistic Model Synthesis

When EvoChecker is used at runtime, the synthesis of probabilistic models is
performed incrementally, i.e. by exploiting previously generated solutions, to

3 Alternative loss functions include lexicographic ordering, criterion-based, ǫ-constrained
and aggregation-based (e.g., linear and nonlinear) functions of the relevant QoS at-
tributes [35].

18 Simos Gerasimou et al.

speed up the synthesis of new solutions. This incremental synthesis is enabled
by the Archive component shown in Figure 4.

The use of EvoChecker within a self-adaptive system starts with an empty
Archive, which is updated at the end of each reconfiguration step using an
archive updating strategy. This strategy selects individuals from the final EA
population synthesised by EvoChecker in the current reconfiguration step.
Several criteria are used to enable this selection:

① an individual that meets all n1 constraints is preferred over an individual
that violates one or more constraints;

② from two individuals that satisfy all constraints, the individual with the
lowest loss is preferred;

③ from two individuals that both violate at least one constraint, the individ-
ual with the lowest overall “level of violation” is preferred.4

While EvoChecker is not prescriptive about the calculation of the level of vio-
lation from the last criterion, the current version of our tool uses the following
definition.

Definition 3 (Constraints violation) For each combination of an environ-
ment state e ∈ Env and a configuration c ∈ Cfg of a self-adaptive system, the
level of violation of the n1 QoS constraints is given by

violation(e, c) =
∑

1≤i≤n1

¬(attri⊲⊳iboundi)

αi · |boundsi − attri(e, c)|, (11)

where αi > 0 is a violation weight associated the i-th attribute.

Note that according to this definition, violation(e, c) = 0 for all (e, c) combi-
nations that violate none of the n1 bounds.

Example 6 Consider the QoS requirements of the FX system from Table 1.
The only QoS constraint, R1, requires that workflow executions are at least
bound1 = 0.98 reliable. Hence, for any (e, c) ∈ Env × Cfg ,

violation(e, c) =

{

α1 · |0.98− attr1(e, c)|, if attr1(e, c) < 0.98
0, otherwise

The value of α1 (i.e., α1 = 100 in our experiments from Section 7.2) is pro-
vided to EvoChecker by simply annotating the constraint R1 with this value.
EvoChecker automatically parses all such annotations and constructs the vio-
lation function for the system.

EvoChecker employs a preference relation based on criteria ①-③ to select
configurations for storing in its archive. This relation and the EvoChecker
archive updating strategy are formally defined below.

4 In this scenario, the system might switch to a degraded, failsafe mode of operation. For
the FX system, a failsafe mode is to skip the Order service invocation so that the system
does not execute any trade that might be based on incorrect or stale data.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 19

Definition 4 (Preference relation) Let e ∈ Env be an environment state
of a self-adaptive system, and violation : Env × Cfg → R+ a function that
specifies the level of violation of the n1 QoS constraints for each combination
(e, c) ∈ Env × Cfg .5 Then, given two configurations c, c′ ∈ Cfg , configuration
c is preferred over configuration c′ (written c ≺ c′) iff

(

∀1 ≤ i ≤ n1 • attr i(e, c) ⊲⊳i boundsi ∧
∃1 ≤ i ≤ n1 • ¬(attr i(e, c

′) ⊲⊳i boundsi)
)

∨ ①
(

∀1 ≤ i ≤ n1 • attr i(e, c) ⊲⊳i boundsi ∧ attr i(e, c
′) ⊲⊳i boundsi

∧ loss(e, c) < loss(e, c′)
)

∨ ②
(

∃1≤ i, j≤ n1 • ¬(attr i(e, c)⊲⊳i boundsi) ∧ ¬(attr j(e, c
′)⊲⊳j boundsj)

∧ violation(e, c) < violation(e, c′)
)

③

Definition 5 (Archive updating strategy) Let Ce ⊆ Cfg be the set of
configurations synthesised for the new environment state e ∈ Env and Arch be
the archive before the change. Then an archive updating strategy is a function
σ : Cfg → B such that the updated archive at the end of the reconfiguration
step is given by

Arch ′ = {c ∈ Arch ∪ Ce | σ(c)} (12)

We formally define four archive updating strategies that we will use to
evaluate EvoChecker in Section 7:

1. The prohibitive strategy retains no configurations in the archive:

σ(c) = false, ∀c ∈ Arch ∪ Ce (13)

2. The complete recent strategy uses the entire population from the current
adaptation step and removes the previous configurations from the archive:

σ(c) =

{

true, if c ∈ Ce

false, otherwise
(14)

3. The limited recent strategy keeps the x, 0 < x < #Ce, best configurations
from the current adaptation step and removes the previous configurations
from the archive:

σ(c) =

{

true, if c ∈ Ce and position(c) ≤ x

false, otherwise
, (15)

where position : Ce → {1, 2, . . . ,#Ce} is a function that gives the position
of a configuration c ∈ Ce, i.e. position(c) = #{c′ ∈ Ce \ {c} | c′ ≺ c}+ 1.

5 For instance, for any (e, c) the violation function may count the number of violated
QoS constraints, i.e., violation(e, c) = #{1 ≤ i ≤ n1 | ¬ (attr i(e, c) ⊲⊳i boundsi)}, or may
quantify the magnitude of violation, i.e., violation(e, c) =

∑n1
i=1

(boundsi − attri(e, c)).

20 Simos Gerasimou et al.

4. The limited deep strategy accumulates the x, 0 ≤ x ≤ #Ce best configura-
tions from all previous adaptation steps, given by

σ(c) =

true, if c ∈ Ce and position(c) ≤ x

true, if c ∈ Arch

false, otherwise

(16)

As the limited deep strategy yields archives that grow in size after each
reconfiguration step, some of the archive elements must be evicted when the
archive size exceeds the size of the EA population. Possible eviction meth-
ods include: (i) discarding the “oldest” individuals (e.g. by implementing the
archive as a circular buffer of size equal to that of the EA population); and
(ii) performing a random selection.

Using the archive Arch to create the initial EA population is carried out by
importing configurations from the archive into the population (cf. Figure 4).
If a complete population cannot be created in this way (e.g. because Arch is
empty at the beginning of the first reconfiguration step and may not contain
sufficient individuals for a few more steps), additional individuals are generated
randomly to form a complete initial population.

The assignment, reproduction and selection operations applied during the
iterative evolution of the population, and the EA termination criteria are sim-
ilar to those from the design-time use of EvoChecker. However, a standard
single-objective (generational) evolutionary algorithm is used instead of the
multi-objective evolutionary algorithm, since there is only one optimisation
objective (10).

6 Implementation

To ease the evaluation and adoption of the EvoChecker approach, we have im-
plemented a tool that automates its use at both design time and runtime. Our
EvoChecker tool uses the leading probabilistic model checker PRISM [71] as its
Quantitative verification engine, and the established Java-based framework for
multi-objective optimization with metaheuristics jMetal [41] for its (Multi-
objective) Evolutionary algorithm component. We developed the remaining
EvoChecker components in Java, using the Antlr6 parser generator to build
the Template parser, and implementing dedicated versions of the Individual
analyser, Monitor, Sensor and Effector components.

The open-source code of EvoChecker, the full experimental results sum-
marised in the following section, additional information about EvoChecker and
the case studies used for its evaluation are available at http://www-users.

cs.york.ac.uk/simos/EvoChecker.

6 http://www.antlr.org

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 21

7 Evaluation

We performed a wide range of experiments to evaluate the effectiveness of
EvoChecker at both design time and runtime. The design-time use of Evo-
Checker employs multi-objective genetic algorithms (MOGAs), while the run-
time use of EvoChecker is based on a single-objective (generational) Genetic
algorithm (GA). Experimenting with other types of evolutionary algorithms
(e.g. evolution strategies, differential evolution) is part of our future work
(Section 9). In Sections 7.1 and 7.2, we describe the evaluation procedure and
the results obtained for the design-time and runtime use of EvoChecker, re-
spectively. For each use, we introduce the research questions that guided the
experimental process, we describe the experimental setup, we summarise the
methodology followed for obtaining and analysing the results, and finally, we
present and discuss our findings. We conclude the evaluation with a review of
threats to validity (Section 7.3).

7.1 Evaluating EvoChecker at Design Time

7.1.1 Research Questions

The aim of our evaluation was to answer the following research questions.

RQ1 (Validation): How does the design-time use of EvoChecker per-
form compared to random search?
We used this research question to establish if the application of EvoChecker
at design time “comfortably outperforms a random search” [59], as ex-
pected of effective search-based software engineering solutions.

RQ2 (Comparison): How do EvoChecker instances using different
MOGAs perform compared to each other?
Since we devised EvoChecker to work with any MOGA, we examined the
results produced by EvoChecker instances using three established such al-
gorithms (i.e., NSGA-II [38], SPEA2 [100], MOCell [81]).

RQ3 (Insights): Can EvoChecker provide insights into the tradeoffs
between the QoS attributes of alternative software architectures
and instantiations of system parameters?
To support system experts in their decision making, EvoChecker must
provide insights into the tradeoffs between multiple QoS objectives. To
address this question, we identified a range of decisions suggested by the
EvoChecker results for the software systems considered in our evaluation.

7.1.2 Experimental Setup

The experimental evaluation comprised multiple scenarios associated with two
software systems from different application domains. The first is the foreign
exchange (FX) service-based system described in Section 2. The second is

22 Simos Gerasimou et al.

Table 6: Analysed system variants for EvoChecker at design time

Variant Details Size Trun[s]

FX Small m1 = · · · = m4 = 3,m5 = m6 = 1 4.98E+31 0.0858
FX Medium m1 = · · · = m6 = 4 1.39E+65 0.1695
FX Large m1 = · · · = m8 = 4 7.22E+86 0.4162

DPM Small QmaxH,L∈{1, ..., 10}, m=2 2E+14 0.1050
DPM Medium QmaxH,L∈{1, ..., 15}, m=2 4.5E+14 0.2118
DPM Large QmaxH,L∈{1, ..., 20}, m=2 8E+14 0.3796

a software-controlled dynamic power management (DPM) system adapted
from [85,90] and described on our project webpage.

We performed a wide range of experiments using the system variants from
Table 6. The column ‘Details’ reports the number of third-party implementa-
tions for each service of the FX system7; and the capacity of the two request
queues (QmaxH and QmaxL) and the number of power managers available
(m = 2) for the DPM system. The column ‘Size’ lists the configuration space
size assuming a two-decimal points discretisation of the real parameters and
probability distributions of the probabilistic model template (cf. Table 5).
Given the nonlinearity of most probabilistic models, this is the minimum pre-
cision we could assume as an 0.01 increase or decrease in one of these parame-
ters can have a significant effect in the evaluation of a QoS attribute. Finally,
the column ‘Trun’ shows the average running time per system variant for eval-
uating a configuration. Note that the EvoChecker run time depends on the
size of model M and the time consumed by the probabilistic model checker to
establish the n1 + n2 QoS attributes from equation (5) and on the computer
used for the evaluation.

We conducted a two-part evaluation for EvoChecker. First, to assess the
stochasticity of the approach when different MOGAs are adopted and also
to eliminate the possibility that any observations may have been obtained by
chance, we used specific scenarios for the system variants from Table 6. For
the FX system variants, we chose realistic values for reliability, performance
and invocation cost of third-party services implementations, while the values
of parameters for the DPM system variants (i.e., power usage and transition
rates) correspond to the real-world system from [85,90]. Second, to mitigate
further the risk of accidentally choosing values that biased the EvoChecker
evaluation, we defined a set of 30 different scenarios per FX system variant
with varied services characteristics for each scenario.

7.1.3 Evaluation Methodology

We used the following established MOGAs to evaluate the use of EvoChecker
at design time: NSGA-II [38], SPEA2 [100] and MOCell [81].

7 The n = 8 services used by FX Large correspond to using two-part composite service
implementations for the Technical analysis and Fundamental analysis services from Figure 1.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 23

In line with the standard practice for evaluating the performance of stochas-
tic optimisation algorithms [9], we performed multiple (i.e., 30) independent
runs for each system variant from Table 6 and each multiobjective optimisa-
tion algorithm, i.e., NSGA-II, SPEA2, MOCell and random search. Each run
comprised 10,000 evaluations, each using a different initial population of 100
individuals, single-point crossover with probability pc = 0.9, and single-point
mutation with probability pm = 1/np, where np is the number of configuration
parameters for a particular system variant. All the experiments were run on a
CentOS Linux 6.5 64bit server with two 2.6GHz Intel Xeon E5-2670 processors
and 32GB of memory.

Obtaining the actual Pareto front for our system variants is unfeasible
because of their very large configuration spaces. Therefore, we adopted the es-
tablished practice [99] of comparing the Pareto front approximations produced
by each algorithm with the reference Pareto front comprising the nondomi-
nated solutions from all the runs carried out for the analysed system variant.
For this comparison, we employed the widely-used Pareto-front quality indi-
cators below, and we will present their means and box plots as measures of
central tendency and distribution, respectively:

Iǫ (Unary additive epsilon) [102]. This is the minimum additive term by
which the elements of the objective vectors from a Pareto front approxima-
tion must be adjusted in order to dominate the objective vectors from the
reference front. This indicator presents convergence to the reference front
and is Pareto compliant8. Smaller Iǫ values denote better Pareto front
approximations.

IHV (Hypervolume) [101]. This indicator measures the volume in the ob-
jective space covered by a Pareto front approximation with respect to the
reference front (or a reference point). It measures both convergence and
diversity, and is strictly Pareto compliant [98]. Larger IHV values denote
better Pareto front approximations.

IIGD (Inverted Generational Distance) [93]. This indicator gives an “er-
ror measure” as the Euclidean distance in the objective space between the
reference front and the Pareto front approximation. IIGD shows both di-
versity and convergence to the reference front. Smaller IIGD values signify
better Pareto front approximations.

We used inferential statistical tests to compare these quality indicators
across the four algorithms [9,60]. As is typical of multiobjective optimisa-
tion [99], the Shapiro-Wilk test showed that the quality indicators were not
normally distributed, so we used the Kruskal-Wallis non-parametric test with
95% confidence level (α=0.05) to analyse the results without making assump-
tions about the distribution of the data or the homogeneity of its variance. We
also performed a post-hoc analysis with pairwise comparisons between the al-
gorithms using Dunn’s pairwise test, controlling the family-wise error rate with
the Bonferroni correction pcrit=α/k, where k is the number of comparisons.

8 Pareto compliant indicators do not “contradict” the order introduced by the Pareto
dominance relation on Pareto front approximations [98].

24 Simos Gerasimou et al.

Table 7: Mean quality indicator values for a specific scenario of the FX system
variants (top) and DPM system variants (bottom) from Table 6.

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)
FX Small 0.6258 0.5083 0.6745 2.2274 +
FX Medium 1.6379 2.0105 2.0486 6.1529 +
FX Large 3.8528 5.2777 4.6366 13.0234 +

IHV (Hypervolume)
FX Small 0.611 0.628 0.608 0.593 +
FX Medium 0.719 0.725 0.702 0.606 +
FX Large 0.657 0.675 0.633 0.555 +

IIGD (Inverted Generational Distance)
FX Small 0.00123 0.00129 0.00125 0.00145 +
FX Medium 0.00192 0.00207 0.00200 0.00316 +
FX Large 0.00244 0.00255 0.00272 0.00395 +

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)
DPM Small 0.0209 0.0130 0.0242 0.1403 +
DPM Medium 0.0225 0.0123 0.0489 0.1996 +
DPM Large 0.0229 0.0147 0.0884 0.2497 +

IHV (Hypervolume)
DPM Small 0.4455 0.4458 0.4396 0.4022 +
DPM Medium 0.4487 0.4499 0.4386 0.3946 +
DPM Large 0.4528 0.4549 0.4395 0.3947 +

IIGD (Inverted Generational Distance)
DPM Small 0.00023 0.00018 0.00016 0.00062 +
DPM Medium 0.00024 0.00019 0.00028 0.00091 +
DPM Large 0.00024 0.00020 0.00038 0.00109 +

7.1.4 Results and Discussion

RQ1 (Validation). We carried out the experiments described in the pre-
vious section and we report their results in Table 7 and Figure 5. The ‘+’
from the last column of the table entries indicate that the Kruskal-Wallis test
showed significant difference among the four algorithms (p-value<0.05) for all
six system variants and all Pareto-front quality indicators.

For both systems, EvoChecker using any MOGA achieved considerably
better results than random search, for all quality indicators and system vari-
ants. The post hoc analysis of pairwise comparisons between random search
and the MOGAs provided statistical evidence about the superiority of the
MOGAs for all system variants and for all quality indicators. The best and,
when obtained, the second best outcomes of this analysis per system variant
and quality indicator are shaded and lightly shaded in the result tables, re-
spectively. This superiority of the results obtained using EvoChecker with any
of the MOGAs over those produced by random search can also be seen from
the boxplots in Figure 5.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 25

0.00

3.00

6.00

9.00

12.00

15.00

18.00

0.50

0.60

0.70

0.80

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

0.001

0.002

0.003

0.004

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

FX_Small FX_Medium FX_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

0.00

0.10

0.20

0.30

0.40

0.50

0.40

0.50

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

0.000

0.001

0.002

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

N
SG

A-
II

SP
EA
2

M
OC

el
l

Ra
nd
om

DPM_Small DPM_Medium DPM_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

Fig. 5: Boxplots for a specific scenario of the FX system variants (left) and
DPM system variants (right) from Table 6, evaluated with quality indicators
Iǫ, IHV and IIGD.

We qualitatively support our findings by showing in Figures 6 and 7 the
Pareto front approximations achieved by EvoChecker with each of the MOGAs
and by random search, for a typical run of the experiment for the DPM and
FX system variants, respectively. We observe that irrespective of the MOGA,
EvoChecker achieves Pareto front approximations with more, better spread
and higher quality nondominated solutions than random search.

As explained earlier, the parameters we used for the DPM system variants
(power usage, transition rates, etc.) correspond to the real-world system [85,
90]. In contrast, for the FX system variants we chose realistic values for the
reliability, performance and cost of the third-party services. To mitigate the
risk of accidentally choosing values that biased the EvoChecker evaluation, we
performed additional experiments comprising 300 independent runs per FX
system variant (900 runs in total) in which these parameters were randomly
instantiated. To allow for a fair comparison across the experiments comprising
the 30 different FX scenarios, and to avoid undesired scaling effects, we nor-
malise the results obtained for each quality indicator per experiment within
the range [0,1]. The results of this further analysis, shown in Table 8 and
Figure 8, validate our findings.

Considering all these results, we have strong empirical evidence that the
EvoChecker significantly outperforms random search, for a range of system
variants from two different domains, and across multiple widely-used MOGAs.
This also confirms the challenging and well-formulated nature of the multi-
objective probabilistic model synthesis problem we introduced in Section 5.1.1.

RQ2 (Comparison). To compare EvoChecker instances based on differ-
ent MOGAs, we first observe in Table 7 that NSGA-II and SPEA2 out-
performed MOCell for all system variant–quality indicator combinations ex-
cept DPM Small (IIGD). Between SPEA2 and NSGA-II, the former achieved
slightly better results for the smaller configuration spaces of the DPM system
variants (across all indicators) and for the IHV indicator (across all system

26 Simos Gerasimou et al.

0.96
0.92

1.00

3045607590

16

18

20

22

Relia
bilit

y

Cost

T
im

e
 [

s
]

NSGA-II

SPEA2

MOCell

Random

(a) FX Small

Relia
bilit

y0.96
0.92

1.00

20406080100

16

20

24

28

Cost

T
im

e
 [

s
]

NSGA-II

SPEA2

MOCell

Random

(b) FX Medium

0.96
0.92

1.00

6090120150

30

35

40

25

45

Relia
bilit

y

Cost

T
im

e
 [

s
]

NSGA-II

SPEA2

MOCell

Random

(c) FX Large

Fig. 6: Typical Pareto front approximations for the FX system variants and
optimisation objectives R2–R4 from Table 4.

0.80
1.20

1.60
2.00

0.00
0.03

0.06
0.09

0.12
0.0

2.5

5.0

7.5

Q
u

e
u

e
 l

e
n

g
th

q
H
 +

 q
L

SPEA2

Random

Lost requests Power use [W
]

(a) DPM Small

0.00
0.03

0.06
0.09

0.12
Lost requests

0.80
1.20

1.60
2.00

Power use [W
]

0

3

6

9

12
NSGA-II

Random

Q
u

e
u

e
 l
e
n

g
th

q
H
 +

 q
L

(b) DPM Medium

0.80
1.20

1.60
2.00

Power use [W
]

0.00
0.03

0.06
0.09

0.12
Lost requests

0

4

8

12

Q
u

e
u

e
 l

e
n

g
th

q
H
 +

 q
L

NSGA-II

SPEA2

MOCell

Random

(c) DPM Large

Fig. 7: Typical Pareto front approximations for the DPM system variants. The
DPM optimisation objectives involve minimising the steady-state power utili-
sation (“Power use”), minimising the number of requests lost at the steady
state (“Lost requests”), and minimising the capacity of the DPM queues
(“Queue length”).

variants), whereas NSGA-II yielded Pareto-front approximations with better
Iǫ and IIGD indicators for the larger configuration spaces of the FX system
variants (except the combination FX Small (Iǫ)).

Additionally, we carried out the post-hoc analysis described in Section 7.1.3,
for 9 system variants (counting separately the FX system variants with chosen
services characteristics and those comprising the adaptation scenarios) × 3
quality indicators = 27 tests. Out of these tests, 22 tests (i.e., a percentage of
81.4%) showed high statistical significance in the differences between the per-
formance achieved by EvoChecker with different MOGAs (Table 9). The five
system variant–quality indicator combinations for which the tests were unsuc-
cessful are: FX Medium (Iǫ), FX Small Adapt (Iǫ), FX Medium Adapt(Iǫ),
FX Small(IIGD) and FX Medium(IIGD).

These results show that if the probabilistic model synthesis problem can
be formulated as a multi-objective optimisation problem, then several MO-
GAs can be used to synthesise the Pareto approximation sets PF and PS
effectively. Selecting between alternative MOGAs entails using domain knowl-
edge about the synthesis problem, and analysing the individual strengths of
the MOGAs [59]. The results also confirm the generality of the EvoChecker
approach, showing that its functionality can be realised using multiple estab-
lished MOGAs.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 27

Table 8: Mean quality indicator values across 30 different scenarios for the FX
system variants from Table 6

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)

FX Small 0.2212 0.2209 0.2272 0.6200 +

FX Medium 0.3393 0.3664 0.3645 0.7568 +

FX Large 0.3396 0.3764 0.3625 0.7970 +

IHV (Hypervolume)

FX Small 0.9374 0.9914 0.9337 0.9016 +

FX Medium 0.9514 0.9848 0.9219 0.8138 +

FX Large 0.9467 0.9804 0.8962 0.7868 +

IIGD (Inverted Generational Distance)

FX Small 0.6365 0.5348 0.6390 0.8000 +

FX Medium 0.5919 0.5790 0.6114 0.7957 +

FX Large 0.5887 0.5622 0.6561 0.8884 +

0.00

0.20

0.40

0.60

0.80

1.00

I ǫ

0.70

0.80

0.90

1.00

I H
V

NS
GA
-II

SP
EA
2

M
OC

ell

Ra
nd
om

0.20

0.40

0.60

0.80

1.00

I I
G
D

NS
GA
-II

SP
EA
2

M
OC

ell

Ra
nd
om

NS
GA
-II

SP
EA
2

M
OC

ell

Ra
nd
om

FX_Small FX_Medium FX_Large

Fig. 8: Boxplots for the FX system variants (Table 6) across 30 different sce-
narios, evaluated using the quality indicators Iǫ, IHV and IIGD.

RQ3 (Insights). We performed qualitative analysis of the Pareto front ap-
proximations produced by EvoChecker, in order to identify actionable insights.
We present this for the FX and DPM Pareto front approximations from Fig-
ures 6 and 7, respectively.

First, the EvoChecker results enable the identification of the “point of
diminishing returns” for each system variant. The results from Figure 6 show
that configurations with costs above approximately 52 for FX Small, 61 for
FX Medium and 94 for FX Large provide only marginal response time and
reliability improvements over the best configurations achievable for these costs.
Likewise, the results in Figure 7 show that DPM configurations with power
use above 1.7W yield insignificant reductions in the number of lost requests,
whereas configurations with even slightly lower power use lead to much higher

28 Simos Gerasimou et al.

Table 9: System variants for which the MOGAs in rows are significantly better
than the MOGAs in columns

NSGA-II SPEA2 MOCell

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

N
S
G
A
-I
I

Iǫ ✓ ✓ ✓ ✓

IHV ✓ ✓ ✓ ✓ ✓ ✓ ✓

IIGD ✓ ✓

S
P
E
A
2 Iǫ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IHV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IIGD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M
O
C
e
ll

Iǫ
IHV

IIGD ✓ ✓ ✓

Key: 1:DPM Small, 2:DPM Medium, 3:DPM Large, 4:FX Small, 5:FX Medium,
6:FX Large, 7:FX Small Random, 8:FX Medium Random, 9:FX Large Random

request loss. This key information helps system experts to avoid unnecessarily
expensive solutions.

Second, we note the high density of solutions in the areas with low relia-
bility (below 0.95) for the FX system in Figure 6, and with high request loss
(above 0.09) for the DPM system in Figure 7. For the FX system, for instance,
these areas correspond to the use of the probabilistic invocation strategy, for
which numerous service combinations can achieve similar reliability and re-
sponse time with relatively low, comparable costs. Opting for a configuration
from this area will make the FX system susceptible to failures, as when the only
implementation invoked for an FX service fails, the entire workflow execution
will also fail. In contrast, reliability values above 0.995 correspond to expensive
configurations that use the sequential selection strategy; e.g., FX Small must
use the sequential strategy for the Market watch and Fundamental analysis
services in order to achieve 0.996 reliability.

Third, the EvoChecker results reveal configuration parameters that QoS
attributes are particularly sensitive to. For the FX system, for example, we no-
ticed a strong dependency of the workflow reliability on the service invocation
strategy and the number of implementations used for each service. Configura-
tions from high-reliability areas of the Pareto front not only use the sequential
strategy, but also require multiple services per FX service (e.g., three FX ser-
vice providers are needed for success rates above 0.99).

Finally, we note EvoChecker’s ability to produce solutions that: (i) cover a
wide range of values for the QoS attributes from the optimisation objectives of
the FX and DPM systems; and (ii) include alternatives with different tradeoffs
for fixed values of one of these attributes. Thus, for 0.99 reliability, the exper-
iment from Figure 6 generated four alternative FX Large configurations, each
with a different cost and execution time. Similar observations can be made
for a specific value of either of the other two QoS attributes. These results
support the system experts in their decision making.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 29

7.2 Evaluating EvoChecker at Runtime

7.2.1 Research Questions

We evaluated the runtime use of EvoChecker to answer the research questions
below.

RQ4 (Effectiveness): Can EvoChecker support dependable adapta-
tion? With this research question we examine whether our approach can
identify new effective configurations at runtime.

RQ5 (Validation): How does EvoChecker perform compared to ran-
dom search? Following the standard practice in search-based software
engineering [60], with this research question we aim to determine whether
our approach performs better than random search.

RQ6 (Archive-strategy comparison): How do EvoChecker instances
based on different archive updating strategies compare to each
other? We used this research question to analyse the impact of various
archive updating strategies in the performance of EvoChecker. To this end,
we study whether specific strategies improve the quality of a search and/or
help identifying faster an effective configuration. We also investigate possi-
ble relationships between archive updating strategies and specific adapta-
tion events.

7.2.2 Experimental Setup

For the experimental evaluation, we used two self-adaptive software systems
from different application domains. The first is the FX service-based system
from Section 2 and the second is an embedded system from the area of un-
manned underwater vehicles (UUVs) adapted from [23,50,51] and described
on our project webpage.

We applied EvoChecker at runtime to the system variants from Table 10,
aiming to assess its behaviour for multiple configuration space sizes. As before
(cf. Table 6), the column ‘Details’ shows for the UUV system the number of
sensors, their measurement rates and the UUV speed, while for the FX system
the number of third-party implementations for each service. The column ‘Size’
reports the size of the configuration space that an exhaustive search would need
to explore using two-decimal precision for the real parameters and probability
distributions of the probabilistic model template (cf. Table 5). Finally, the
column ‘Trun’ shows the average time required by EvoChecker to evaluate a
configuration on a 2.6GhZ Intel Core i5 Macbook Pro computer with 16GB
memory, running Mac OSX 10.9.

To evaluate EvoChecker at runtime, we identified several changes that can
cause each UUV and FX system variant to adapt. These changes cover a
wide range of the possible values that the environment parameters of each
system variant can take (Table 12). Due to these changes, the systems ex-
perience problems while providing service (e.g., service degradation, violation

30 Simos Gerasimou et al.

Table 10: Analysed system variants for the runtime EvoChecker

Variant Details Size Trun[s]

UUV Medium m = 5, r1, r2, . . . , r5 ∈ [0Hz, 8Hz], sp ∈ [0, 10m/s] 1.04E+19 0.0076
UUV Large m=10, r1, r2, . . . , r10∈ [0Hz, 8Hz], sp∈ [0, 10m/s] 1.09E+35 0.1622
FX Small m1 = · · · = m4 = 3,m5 = m6 = 1 4.98E+31 0.0312
FX Medium m1 = · · · = m6 = 4 1.39E+65 0.0953

Table 11: QoS requirements for the UUV system

ID Informal description

R1 “The UUV must take at least 500 accurate measurements for each 100m travelled”

R2 “The UUV sensors must not consume more than 1000 Joules per 100m travelled”

R3 “The speed with which the UUV travels should be maximised”

R4 “The energy consumed by the UUV sensors should be minimised”

of QoS requirements) and therefore are forced to adapt. Sensors in the UUV
variants, beyond normal behaviour, encounter periods of unexpected changes
(C1-C12) during which their rates change dramatically, including sensor fail-
ures and recovery from these failures, and significant variation in measurement
rates. Changes C1–C13 in FX comprise sudden minor or significant increase in
response time and decline in reliability of service implementations, and com-
plete failure or recovery of service implementations. For instance, change C7
in FX Small represents a deviation from the nominal reliability of the first and
third service implementations of the Market Watch service (cf. Figure 2): be-
fore the change, r11 = 0.98 and r13 = 0.993; and, after the change, r11 = 0.89
and r13 = 0.93. This is a significant change because the FX system cannot
meet the reliability requirement (Table 1) using only the degraded service im-
plementations (i.e., x11 = 1, x12 = 0, x13 = 1). Instead, a valid configuration
should always realise the functionality of the Market Watch service by se-
lecting its second service implementation (thus setting x12 = 1).9 We make
available the EvoChecker templates for the changes in Table 12 on our project
webpage.

Answering research question RQ1 entails making the configuration space
size tractable for exhaustive search. Searching exhaustively through the con-
figuration space of the UUV Medium variant (which has the smallest config-
uration space and the shortest average time per evaluation) would take an
estimated 2.19 ·1013 hours (given the 1.04 ·1019 configurations to analyse, and
a mean analysis time of 0.0076 seconds). Thus, we used the UUV Medium
variant but disabled three of its sensors, leaving just under 2.56 · 109 possible
configurations. We also disregarded the adaptation time, since it is too large
for exhaustive search. For the same reason, we performed this assessment on

9 Although the other service implementations have lower reliability, they are still func-
tional and can be used within the sequential strategy in conjunction with the second service
implementation to improve further the FX workflow reliability.

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 31

Table 12: Changes in environment state of UUV and FX system variants used
for evaluating EvoChecker at runtime

ID UUV Medium UUV Large FX Small FX Medium

C1 r1 ↔, ..., r5 ↔ r1 ↔, ..., r9 ↔ r11 ↔, ..., r61 ↔
t11↔, ..., t61 ↔

r11 ↔, ..., r64 ↔
t11↔, ..., t64 ↔

C2 r1 ↔, ..., r5 ↔ r1 ↔, ..., r9 ↔ r11 ↔, ..., r61 ↔
t11↔, ..., t61 ↔

r11 ↔, ..., r64 ↔
t11↔, ..., t64 ↔

C3 r1 ↓, r5 ↓ r1 ↓, r4 ↓ r9 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓
C4 r1↔, r5↔ r1↔, r4↔ r9↔ r11↔, r13↔ r11 ↔, r13 ↔,

r14↔
C5 r2 ↓, r4 ↓ r2 ↓, r4 ↓, r8 ↓, r10 ↓ r21 ↓, r22 ↓ r21 ↓, r22 ↓, r24 ↓
C6 r2↔, r4↔ r2 ↔, r4 ↔, r8 ↔,

r10↔
r21↔, r22↔ r21 ↔, r22 ↔,

r24↔
C7 r2 ↓ r8 ↓, r10 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓
C8 r2↔ r8↔, r10↔ r11↔, r13↔ r11 ↔, r13 ↔,

r14↔
C9 r1 ↓, r5 ↓ r1 ↓, r5 ↓ r9 ↓ t41 ↑, t42 ↑ t41 ↑, t42 ↑, t44 ↑
C10 r1↔, r5↔ r1↔, r5↔ r9↔ t41↔, t42↔ t41 ↔, t42 ↔,

t44↔
C11 r1 ↓, r3 ↓, r5 ↓ r1 ↓, r3 ↓, r5 ↓ r7 ↓,

r9 ↓, r10 ↓
t51 ↑, t52 ↓ t51 ↑, t52 ↑, t53 ↑

C12 r1 ↔, r3 ↔,
r5↔

r1 ↔, r3 ↔, r5 ↔
r7↔, r9↔, r10↔

t51↔, t52↔ t51 ↔, t52 ↔,
t53↔

C13 r11 ↓, r12 ↓, r21 ↓,
r22 ↓, r31 ↓, r33 ↓,
r42 ↓, r43 ↓

r11 ↓, r12 ↓, r13 ↓,
r21 ↓, r22 ↓, r31 ↓,
r33 ↓, r43 ↓, r44 ↓
r51 ↓, r52 ↓, r54 ↓
r62 ↓, r64 ↓

Key

↔: nominal value of environment characteristic (i.e., reliability, response time)
↓(↑): decrease(increase), i.e., a change, in value of environment characteristic
ri: sensor reliability for the UUV Medium and UUV Large variants from Table 10
rimi

(timi
): service reliability (response time) for the FX Small and FX Medium

variants from Table 10

a subset of the UUV changes (i.e. C1, C3, C4); these changes correspond to a
representative sample of the UUV changes from Table 12.

For using EvoChecker at runtime, we define the QoS optimisation objec-
tives as a loss function; see equation (10) in Section 5.2. We used the loss
function from Example 5 with w1 = 0.2, w2 = 0.004 and w3 = 0.016 for the
FX system variants, and a similarly defined loss function (provided on our
project webpage) for the UUV system variants.

Since EvoChecker at runtime employs a single optimisation objective, we
employ an elitist single objective GA. Recall that an elitist GA propagates
the best individuals to the next generation. With elitism, if the GA discovers
the best solution, then the entire population will eventually converge to this
solution [35].

To investigate whether different archive updating strategies (cf. Def. 5) can
improve the efficiency of EvoChecker, we realised the strategies from (13)–(16).
To this end, we created four different GA variants, each enhanced with one of
the following archive updating strategies:

32 Simos Gerasimou et al.

PGA: a prohibitive strategy (13) that does not keep any configurations in the
archive. Thus, a search for a new configuration starts without using any
prior knowledge.

CRGA: a complete recent strategy (14) that puts in the archive the entire
population from the current adaptation step and discards all previous con-
figurations.

LRGA: a limited recent strategy (15) that stores in the archive the two best
configurations (i.e. x = 2) from the current adaptation step, and removes
all the other configurations from the archive.

LDGA: a limited deep strategy (16) that accumulates in the archive the two
best configurations (i.e. x = 2) from all previous adaptation steps. If the
archive size exceeds the initial size of the GA population, then a random
selection is carried out to select the configurations that will comprise the
seed for the next search.

7.2.3 Evaluation Methodology

We adopted the established procedure in search-based software engineering for
the analysis of optimisation algorithms [9]. Thus, for each system variant from
Table 10 we carried out 30 independent runs per optimisation algorithm us-
ing the adaptation events (changes) in Table 12 sequentially. We assume that
the time interval between successive changes is long enough that enables run-
ning EvoChecker. All algorithms used a population of 50 individuals. The GAs
used single-point crossover with probability pc = 0.9 and single-point mutation
with probability pm = 1/nk, where nk is the number of system configuration
parameters from the configuration space Cfg. Each algorithm was executed
for 5000 iterations. When no improvement was detected for 1000 successive
iterations (i.e. 20% of the allocated evolution time), the evolution terminated
early. The solution corresponding to the best individual from the last popula-
tion was used to reconfigure the system. After normalisation, and for ease of
presentation, we assigned the maximum loss of 1.00 for each event in which
an algorithm failed to find a configuration satisfying the QoS constraints of
the system. We used the loss corresponding to the selected configuration as a
quality indicator to compare the effectiveness of the optimisation algorithms
and answer research questions RQ4–RQ6. Furthermore, we combined these
quality results with data about the number of iterations executed by the al-
gorithms (for all 30 independent runs) to assess their ability both to identify
good solutions and converge (or stagnate, if no effective solution was found
within the available time).

Following the standard advice for assessing the performance of optimisa-
tion algorithms, we used inferential statistical tests [9,35]. First, we analysed
the normality of data and confirmed its deviation from the normal distribution
using the Shapiro-Wilk test. Then, we used the non-parametric tests Mann–
Whitney and Kruskal-Wallis with 95% confidence level (α = 0.05) to analyse
the results without making assumptions about the data distribution or the
homogeneity of its variance. Also, to compare the EvoChecker instantiations

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 33

with different archive updating strategies, we ran a post-hoc analysis using
Dunn’s pairwise test, controlling the family-wise error rate using the Bonfer-
roni correction pcrit =α/k, where k is the number of comparisons.

Finally, when statistical significance exists, we establish the practical im-
portance of the observed effect. Therefore, we used the Varga and Delaney’s
effect size measure [94,9]. When comparing algorithms A and B, this measure
returns the probability AAB ∈ [0, 1] that algorithm A will yield better results
than algorithm B. For instance, if AAB = 0.5 then the algorithms are equiva-
lent, while if AAB = 0.8 then algorithm A will achieve better results 80% of
the time.

7.2.4 Results and Discussion

RQ4 (Effectiveness). We begin the presentation of our results by examining
whether EvoChecker at runtime can identify new effective configurations in
response to unexpected environment and/or system events. To answer this
research question we performed two types of experiments.

First, we used the UUV Medium system variant and assessed the effective-
ness of the selected configurations using PGA compared to those generated
by exhaustive search. We reduced the configuration space of UUV Medium,
using the process described in Section 7.2.2, to make it tractable for exhaus-
tive search. For all the events, the EvoChecker with PGA found configurations
satisfying system QoS constraints R1 and R2 (cf. Table 11) with average loss
not more than 9% of the optimal loss given by the configurations found by
exhaustive search. Both time and memory overheads incurred by exhaustive
search were approximately two orders of magnitude larger than PGA.

For the second experiment, we analysed how the events in FX Small sys-
tem variant from Table 12 affected its compliance with QoS requirement R1
(i.e. workflow reliability) and varied the loss before (using the current con-
figuration) and after (using the new configuration) each adaptation. Figure 9
depicts a typical run (timeline) of these changes and the impact of the con-
figurations selected by the no-archive version of EvoChecker (i.e. PGA) in
workflow reliability and loss.

Irrespective of the change in environment state, either being a serious de-
crease in workflow reliability or a moderate increase in response time, EvoChecker
always managed to successfully self-adapt the system by identifying configu-
rations that met QoS constraint R1 (cf. Table 1). Furthermore, EvoChecker
maintained a balanced system loss of approximately 0.845. Given that search-
ing exhaustively the configuration space is unfeasible and that the average
running time for evaluating a single configuration is less than 1s (cf. Ta-
ble 10), these experimental results indicate that our approach can support
system adaptation.

We also analysed changes C3, C5, C7 and C13, in which the system ex-
hibited a significant decrease in workflow reliability, caused by decrease in
reliability of the service implementations used at various points in time. Due
to this abrupt change, the currently used service implementations failed to

34 Simos Gerasimou et al.

0.7

0.8

0.9

1.0

W
o

rk
fl
o
w

 r
e

lia
b

ili
ty

R1 after adaptation

R1 before adaptation

R1 threshold

0.8

0.9

1.0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Change

L
o

s
s

Loss after adaptation

Loss before adaptation

Fig. 9: Variation in workflow reliability and system loss of the FX Small variant
due to the changes from Table 12 and system adaptation using EvoChecker
with no archive use (i.e. PGA).

meet requirement R1 and EvoChecker was invoked to carry out the search for
a new configuration. As an example, for change C13, the system experienced
a serious disruption in about 50% of the available service implementations. As
a result, workflow reliability fell to only 72%. The newly found configuration
restored compliance with R1 (i.e. approximately 98.5%), but increased the
probabilities of using more expensive implementations, yielding a significantly
higher expected loss of 0.935.

Another interesting observation concerns change C10 (cf. Table 12) in
which two previously under-performing service implementations (those with
increased response time t41 and t42) recover. Although no requirement vio-
lation occurs, i.e. workflow reliability R1 is not affected by this change, the
system loss corresponding to the new configuration selected by EvoChecker is
slightly higher compared to the configuration before the change. Since for each
change PGA starts a new search and does not use any knowledge gained from
previous adaptation steps, this is expected. As we explain in research ques-
tion RQ6, this issue can be addressed using one of the other archive updating
strategies which seed a new GA search with configurations from the archive.

RQ5 (Validation). To answer this research question we compared the no-
archive version of incremental EvoChecker (i.e. PGA) with random search
(RS). For conciseness, we include a representative sample of reconfiguration
events. Thus, Figures 10 and 11 show the evolution of the algorithms every
500 iterations (i.e., 10 generations) for the FX Small variant for changes C4,
C7, C11 and C13, and for the UUV Large variant for changes C7 and C12,
respectively. When an algorithm terminated early, we propagated the final loss
to the remaining evolution stages (i.e. until the 5000th iteration). An asterisk

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 35

0.70

0.71

0.70

0.71

0.72

0.695

0.700

0.705

0.710

0.715

0.7

0.8

0.9

1.0

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

#Iterations

L
o
s
s

LRGA LDGA PGA CRGA RS
Change C4 Change C7

Change C11 Change C13

Fig. 10: Boxplots for changes in environment state C4, C7, C11, C13 of the
FX Small system variant using LRGA, LDGA, PGA, CRGA, and RS. The as-
terisk next to each algorithm’s boxplot signifies when the algorithm terminated
for all 30 runs.

‘∗’ next to each algorithm’s boxplot denotes when the algorithm terminated
for all 30 runs.

For both variants of the FX and UUV systems and for all 25 events, the
EvoChecker employing PGA identified configurations that met QoS require-
ments and achieved lower loss than RS. We obtained statistical significance
(p-value<0.05) using the Mann-Whitney test for all system variants and for
all events, with the p-value being in the range [1.689E-02, 1.669E-11]. In fact,
as the size of the system increases (cf. Table 10), PGA’s ability to outperform
RS becomes more evident.

We also measured the improvement magnitude using the APGA,RS effect
size metric [94]. For all evaluated events and evolution stages, the effect size
was large with APGA,RS ∈ [0.696, 1.00]. Thus, PGA achieved better results
than RS at least 69.6% of the time, while in some events, especially for the
larger system variants FX Medium and UUV Large, the dominance reached
100%.

Another interesting finding concerns the evolution of the populations of
these algorithms. Despite the overall performance difference, at the beginning
of the evolution, i.e. 200-300 iterations, both the p-value and effect size are on
the lower end of their respective value ranges. During these iterations, PGA
operates pseudo-randomly and the impact of its selection and reproduction

36 Simos Gerasimou et al.

0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

L
o
s
s

LRGA LDGA PGA CRGA RS

#Iterations

Change C7 Change C12

Fig. 11: Boxplots for changes C7, C12 of the UUV Large system variant using
LRGA, LDGA, PGA, CRGA, and RS. The asterisk next to each algorithm’s
boxplot signifies when the algorithm terminated for all 30 runs.

mechanisms, i.e. crossover and mutation, are not strong yet. As the evolution
progresses, the performance gap between PGA and RS increases, reaching
eventually the upper end of the p-value and effect size ranges.

Considering these results, we conclude that EvoChecker instantiated with
GA-based algorithm that uses a prohibitive selection strategy (PGA) signifi-
cantly outperforms random search (RS) with large effect size in all adaptation
steps and for all FX and UUV system variants. Thus, the use of evolutionary
search-based approaches produces configuration with better quality.

RQ6 (Archive-strategy comparison). We analysed the system configu-
rations selected by a GA using the archive updating strategies – prohibitive
(PGA), complete recent (CRGA), limited recent (LRGA) and limited deep
(LDGA) – in order to identify actionable insights. Note that these strategies
are used on top of a basic GA and therefore have similar computation over-
heads (i.e. negligible CPU and memory use). Hence, the incurred overheads
from the use of these strategies are not discussed further. In the interest of
conciseness, we show a subset of these adaptation steps; similar reasoning ap-
plies to the other steps. Table 13 shows an excerpt of the pairwise comparisons
carried out to check for significant difference and, when the difference exists,
its effect size in parenthesis.

First, for change C1, i.e. the starting state of the examined systems (not
shown in Table 13), and for all FX and UUV variants, all examined archive
updating strategies identified configurations of comparable quality. No statis-
tical difference was detected in any evolution stage for this event. Since all
algorithms used a randomly generated initial population for change C1, this
observation was not surprising.

Second, we found that GA variants using the archive (LRGA, CRGA,
LDGA) performed significantly better than PGA for changes C2–C12 in FX
and for most events in UUV during the majority of the evolution stages. No
comparison showed statistical significance in favour of PGA for any change or
evolution stage. As expected, as the evolution progressed all the GA variants

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 37

Table 13: Pairwise comparison of archive selection strategies for various stages
of changes C4 and C11 of the FX variants showing the significantly better
strategy and effect size (in parenthesis); Key: S=Small, M=Medium, L=Large

C4 C11

Strategies 1000 2000 3000 4000 1000 2000 3000 4000

FX Small

RS vs PGA PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L)

PGA vs LRGA LRGA(L) LRGA(M) LRGA(M) LRGA(S) LRGA(L) LRGA(L) LRGA(L) LRGA(M)

PGA vs CRGA CRGA(L) CRGA(S) — — — — — —

LRGA vs CRGA — — — — LRGA(L) LRGA(L) LRGA(L) LRGA(L)

FX Medium

RS vs PGA PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L) PGA(L)

PGA vs LRGA LRGA(L) LRGA(M) LRGA(S) — LRGA(L) LRGA(M) LRGA(S) —

PGA vs CRGA CRGA(M) CRGA(S) — — — — — —

LRGA vs CRGA LRGA(S) LRGA(S) LRGA(S) LRGA(S) — — — —

had the opportunity to refine their solutions and the performance gap between
the algorithms decreased. More specifically, there was a distinct performance
gap favouring LRGA, CRGA and LDGA at the early evolution stages (p-
value ∈ [3.38E-5,1.67E-11]), while PGA was able to find configurations that
achieve similar cost towards the end of evolution (p-value ≈ 0.05 in some
cases). Looking at change C4 in Figure 10, for instance, PGA is significantly
worse until the 2500th iteration (i.e., 50 generations), but it approaches the
others after that.

Third, in changes with statistical difference between PGA and the other
variants, we observed a similar declining trend regarding the effect size. At
the beginning of the evolution, the effect size is mostly large ([0.69.0.88] and
[0.77,1.0] for UUV and FX, respectively), at the intermediate stages it changes
to medium/small before it becomes small/negligible towards the end. Given
these observations, we can state that using an archive updating strategy to
select configurations from the archive and seed the initial population produces
better configurations and faster, compared to a prohibitive strategy that ig-
nores the archive. Given sufficient time, however, PGA will potentially catch
up. Thus, archive-based GA variants are useful in the frequently encountered
situations where the reconfiguration time and/or computation resources are
limited.

Fourth, the archive-based GA variants (LRGA, CRGA, LDGA) identified
configurations of similar quality to each other, demonstrating effective use of
the archive. The post-hoc analysis, however, showed a performance difference
between the three variants. In particular, we obtained statistically significant
results in favour of LDGA against LRGA in 202 out of 500 tests (40.4%). For
most changes, this difference concerned the first few evolution stages; after
that LRGA performed similarly (e.g., C7 and C11 in Figure 10). Furthermore,
CRGA failed to produce better configurations than LDGA for any change
and system variant, whereas it was marginally better than LRGA (6.2%) in
changes that had similar characteristics to the preceding change. Like before,

38 Simos Gerasimou et al.

the performance difference involved only the initial stages. On the other hand,
both LRGA and LDGA outperformed CRGA in a range of changes and evolu-
tion stages. We obtained statistical difference favouring LRGA and LDGA in
18.2% (91/500) and 47.8% (239/500) of these tests, respectively. This differ-
ence occurs because CRGA’s population already identified good configurations
and/or converged to a particular area in the fitness landscape. Since population
variation is achieved only through crossover and mutation, CRGA finds diffi-
culties to evolve the population in successive generations and produce better
configurations. This leads to stagnation and early termination; see for instance
changes C7 and C11 in Figure 10 in which CRGA terminated in the 2500th
and 1500th iteration, respectively. Therefore, reusing the final population from
the current adaptation event does not offer a distinct advantage in producing
better configurations over the other strategies. However, exploiting a subset of
configurations from previous reconfiguration events (e.g, LDGA) could speed
up the search significantly.

Finally, we note the inability of any archive-based GA variant to deal effi-
ciently with disruptive change C13 affecting FX. For this event, about 50% of
the available service implementations suffered a serious service degradation (cf.
Table 12). For C13, we did not find any statistical significance between PGA,
CRGA, LRGA and LDGA in any evolution stage in both FX system variants
(Figure 10). Moreover, at the initial evolution stages, CRGA had difficulties
to select configurations that satisfy QoS requirements; its cost is close to the
maximum value. Hence, when a disruptive change occurs, it does not have
much impact which archive updating strategy is used. Using instead a popula-
tion that is not biased towards a particular area (due to previous experience)
would facilitate exploration of the fitness landscape.

We suppose that a hybrid approach which considers the types of changes
in the system and its environment would be more effective. In this hybrid
approach, some of the initial population would be derived from the archive
(to exploit knowledge gained from previous reconfiguration events) and some
would be randomly generated (to enable exploration of new events). The ratio
between exploration and exploitation should be based on the expected ratio
between small changes and radical changes in the environment.

7.3 Threats to Validity

Several construct, internal, and external validity threats could affect the va-
lidity of the experiments conducted in this work.

Construct validity threats correspond to the methodology adopted when
designing the experimental study and any underpinning assumptions. This in-
cludes any assumptions and simplifications made when modelling the DPM,
FX and UUV systems. To mitigate this threat, the DPM system, model and
QoS requirements are based on a validated real-world case study taken from
the literature [85,90], which we are familiar with from our previous work [28].
This is also the case for the UUV system, model and requirements [23,50,51].

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 39

For the FX system, the model and requirements were developed in close collab-
oration with a foreign exchange domain expert. Also, the environment changes
cover a wide range of system scenarios that could cause service degradation
and/or violation of QoS requirements, including minor changes and disruptive
events.

Internal validity threats might be due to any bias introduced when es-
tablishing the causality between our findings and the evolutionary algorithms
employed in our study. To mitigate this threat, we followed the established
practice in search-based software engineering [9,60]. In particular, we reported
results over 30 independent runs of each experiment and used inferential sta-
tistical tests to check for significant difference in the performance of the algo-
rithms. To this end, we evaluated whether the data conformed to the normal
distribution using the Shapiro-Wilk test and used the non-parametric tests
Mann-Whitney and Kruskal-Wallis to check for statistical significance. We also
conducted a post-hoc analysis using Dunn’s pairwise test. All these tests used
a 95% confidence level; hence, the probability of committing a Type I error is
0.05, which is the recommended value in empirical studies in this area. Finally,
we employed the Varga and Delaney’s effect size [94] measure to establish the
magnitude of an improvement.

External validity threats might be due to the difficulty of representing a
software system using the EvoChecker constructs (2)–(4), QoS attributes (5)
constraints (6), optimisation objectives (7) and loss (10). We limit this threat
by specifying the EvoChecker modelling language based on the modelling lan-
guage of established probabilistic model checkers (PRISM [71], Storm [39]).
Moreover, given the generality of the EvoChecker constructs (2)–(4), other
probabilistic modelling languages (e.g., those of the model checkers MRMC
[65] and Ymer [96]) can be naturally supported. Additionally, EvoChecker
supports a wide range of probabilistic models and temporal logics (Table 2).
We also examined various archive updating strategies, but other more sophis-
ticated strategies can be developed. Finally, to further reduce the risk that
EvoChecker might be difficult to use in practice, we validated it through ap-
plication to several variants of three realistic software systems with diverse
characteristics in terms of application domain, size, complexity and QoS re-
quirements. Nevertheless, our findings are not conclusive for all types of soft-
ware systems, and more experiments are needed to confirm the generality of
the EvoChecker approach and tool.

8 Related Work

The research underpinning EvoChecker spans the areas of probabilistic model
checking [69] and search-based software engineering (SBSE) [59,60]. The clos-
est work related to EvoChecker is [46], which uses policies of Markov decision
processes (MDPs) to synthesise Pareto front approximations. Nevertheless,
this approach requires fully specified MDPs and it is limited by the finite search
spaces that can be encoded as MDP policies. Furthermore, the approach cur-

40 Simos Gerasimou et al.

rently supports only up to three optimisation objectives and it is applicable
only to a subset of probabilistic computation tree logic (i.e., reachability and
expected total reward formulae). In contrast, EvoChecker deals with proba-
bilistic model templates that can encode infinite search spaces (due to evolv-
able double parameters and distributions) and supports all types of models
and temporal logics from Table 2. Additionally, the EAs used by EvoChecker
can generate Pareto front approximations for more than three optimisation
objectives.

Search-based techniques [60] have been successfully used in areas ranging
from project management [43,52,87,91], effort estimation [79] and testing [8,
48] to software repair and evolution [30,84], software product lines [57,89] and
software architectures [74]. A general survey on using SBSE within software
engineering is available in [59], while the comprehensive survey from [3] focuses
on the application of SBSE to software architecture design. However, the ap-
plication of SBSE to model checking is limited and related research focuses
on non-probabilistic models and design-time activities [59]. In [62,66], genetic
evolution is applied to synthesise model checking specifications, while in [1,2]
ant colony optimisation is used for generating counterexamples in medium–
large stochastic models.

Despite the increasing interest in dynamic adaptive search-based tech-
niques, their use in reconfiguring software systems based on QoS requirements
is rather limited [60]. Harman et al. [58] report that a combination of machine
learning and search-based techniques will enable software systems to adapt
while providing service. Early work in this direction is presented in [36]. The
only other approach that we are aware of in this area is Plato [86], which
employs genetic algorithms in the decision-making process of a self-adaptive
system and generates new configurations that balance functional and non-
functional requirements. However, Plato does not consider environment or sys-
tem stochasticity, as EvoChecker does with its probabilistic model template.
Also, Plato does not employ any knowledge acquired during system operation
to speed up the search, as EvoChecker at runtime does with its archive and
archive updating strategies.

Our work is also related to research that explores ways to incorporate
problem specific knowledge into an evolutionary algorithm through seeding its
initial population [55]. As advocated by recent research [67], if prior knowledge
is available or can be generated with reasonable computational effort, effec-
tive seeding may yield better quality solutions and lead to faster convergence.
The effect of various seeding options (between 25%-100% of the population
size) was studied in [82] for the travelling salesman and the job-shop schedul-
ing problems. The authors reported that seeding produced most of the time
significantly better solutions than no seeding, although a 100% seed did not
always generate better results. In the domain of search-based software testing,
Fraser and Arcuri [47] assessed the effectiveness of various seeding strategies
for generating test cases in object-oriented languages. They found that the
impact of effective seeding is heavier during the early stages of the search,
while weaker seeding strategies or no seeding will perform similarly from in-

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 41

termediate stages onwards. These observations validate our findings regarding
the impact of the archive updating strategies (13)–(16).

EvoChecker also partially overlaps with research on stochastic controller
synthesis, in which formally verified stochastic controllers are used to disable
certain (controllable) system behaviours or to vary the probability with which
these behaviours occur. Draeger et al. [40] propose the synthesis of a multi-
strategy controller that enables a set of actions at any state and which is
optimally permissive with respect to a penalty function. Irrespective of the
action carried out, the controller guarantees compliance with system require-
ments. However, unlike our work which covers the full PCTL and CSL, [40]
focuses only on probabilistic reachability and expected total rewards.

Moreno et al. [80] propose a controller synthesis approach by combining
lookahead and latency awareness. Lookahead projects the expected system
evolution over a limited horizon, while latency awareness considers the time
between making and realising an adaptation decision. The synthesised con-
troller performs a limited lookahead, but it ignores any previous knowledge
and thus fails to support incremental synthesis.

A complementary approach to controller synthesis is proposed by Ulusoy
et al. [92]. The key idea is based on partitioning the synthesis task into several
steps and then to refine the controller incrementally. Initially, the technique
considers a high-level system model and adds extra details as the synthesis
progresses, until a termination criterion is met (e.g., exhausted computational
resources). Unlike EvoChecker, though, which supports a variety of specifi-
cation logics (Table 2), this approach supports specifications defined only in
linear temporal logic.

Another research area related to EvoChecker is probabilistic model repair,
which automatically “repairs” a Markov model that violates a probabilistic
temporal logic formula [15]. Given this situation, probabilistic model repair
involves modifying the transition probabilities of the model to generate new
models that satisfy the formula and are “close” to the original model [15,33].
The proposed approaches have limited applicability since they consider only
a single temporal logic formula and modify only the transition probabilities
of the original model. In contrast, EvoChecker operates with multiple formu-
lae and uses multiobjective optimisation to evolve a set of probabilistic models
that approximates the Pareto-optimal model set corresponding to these formu-
lae. Furthermore, we replicated the results of the IPv4 Zeroconf Protocol [15]
and Network Virus Infection [33] case studies, demonstrating that EvoChecker
subsumes the capabilities of probabilistic model repair.

The concept of model repair has been also explored for non-probabilistic
models [18,19,97]. Similarly to probabilistic model repair, these approaches
can handle a single type of model and can repair a single temporal logic for-
mula [31,32,75].

Probabilistic model checking at runtime involves the continual verification
of Markov models to support the analyse and plan stages of the MAPE-K
control loop [68] of self-adaptive systems [28,27,26,42]. Recent research aims
to tackle the state explosion problem [13] and improve the efficiency of run-

42 Simos Gerasimou et al.

time probabilistic model checking. More specifically, compositional methods
use assume-guarantee reasoning to verify component-based systems one com-
ponent at a time [72], incremental methods establish the current verifica-
tion results using results obtained in previous verification runs [63,73,78], and
pre-computation-based methods transform temporal logic formulae into easy-
to-evaluate algebraic expressions [44]. For a detailed overview, see [24] and
Chapter 2 in [49]. These methods reduce the probabilistic model checking
overheads but they are only applicable to discrete-time models, can support
only the simplest structural changes in the verified model, and make limiting
assumptions (e.g., that the model can be partitioned into strongly connected
components each of which is much smaller than the original model). Our work,
on the other hand, is model and property agnostic.

In recent work, we integrated probabilistic model checking with established
efficiency-improvement methods from other software engineering areas, i.e.,
caching, limited lookahead and nearly-optimal reconfiguration [50]. Although
these methods reduce the overheads of PMC at runtime, they need to perform
(in the worst case) an exhaustive search through the entire configuration space
when selecting new configurations for self-adaptive systems. EvoChecker does
not suffer from this limitation and can search efficiently through configuration
spaces that are too large for exhaustive search.

Finally, the approach to developing distributed self-adaptive systems we
introduced in [23] operates with reduced overheads by only performing PMC at
component level, but relies on analysing all possible component configurations
at runtime. As such, this approach cannot handle very large (component)
configuration spaces, which is the challenge addressed by the runtime variant
of EvoChecker.

9 Conclusions

The synthesis of probabilistic models is key for the cost-effective engineering of
software. Nevertheless, techniques like exhaustive search, trial-and-error and
simple heuristics are insufficient, as they cannot deal with large configura-
tion spaces and produce models that may not represent satisfactory tradeoffs
between multiple QoS requirements.

Our EvoChecker search-based software engineering approach automates
this process and improves its outcome. EvoChecker can be used at design
time to identify suitable architectures and parameter values for a software sys-
tem under design. The design-time use of EvoChecker employs multi-objective
evolutionary algorithms to generate a set of probabilistic models that closely
approximates the Pareto-optimal model set associated with the QoS require-
ments and the corresponding approximate QoS Pareto front. EvoChecker can
be also used at runtime to support the reconfiguration of a self-adaptive soft-
ware system. This involves the incremental synthesis of probabilistic mod-
els using single-objective evolutionary algorithms. When used at runtime,
EvoChecker maintains an archive of configurations from recent adaptations,

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 43

and uses the archived historical configurations to seed the initial population
of a new search and, thus, to identify effective new configurations faster.

We evaluated EvoChecker on three case studies from the domains of un-
manned underwater vehicles [50], dynamic power-management [85] and service-
based systems. Our results indicate that the design-time use of EvoChecker
can generate Pareto-optimal approximation sets and help system experts to
make informed decisions (e.g., identify “point of diminishing returns”, find ar-
chitectures and configuration parameters that have significant impact on QoS
requirements). We also found that NSGA-II [38] and SPEA2 [100] performed
equally good in the considered case studies and for all analysed quality indi-
cators (i.e., hypervolume, epsilon, and inverted generational distance). Hence,
any of these algorithms is a good choice for instantiating the EvoChecker at
design time. For the use of EvoChecker at runtime, we observed that combin-
ing the external archive with a suitable updating strategy helps EvoChecker to
identify effective configurations much faster than EvoChecker instances that
do not use the archive. Thus, using an archive to store configurations from
recent adaptations and seeding a new population with archived historical con-
figurations can speed up the search, especially when similar environment states
are encountered often.

Our planned future work on EvoChecker is twofold. First, we aim to en-
hance the capabilities of the approach. To this end, we will extend the range of
modelling formalisms and verification logics that EvoChecker can support by
exploiting other established quantitative model checkers such as UPPAAL [16]
and MRMC [65]. We also plan to integrate the EvoChecker approach with our
recent work on runtime probabilistic model checking [21,23,29,50]. Further-
more, we intend to enhance the EvoChecker synthesis capabilities by sup-
porting other evolutionary and natured-inspired optimisation algorithms like
evolutionary strategies, particle swarm optimisation and ant-colony optimisa-
tion [35]. Finally, adapting techniques that analyse the fitness landscape of the
induced search space [4] is another possible extension for EvoChecker.

Second, we intend to evaluate the use of EvoChecker in other domains
and by other projects, in order to extract lessons, insights and best practices
from the practical application of the approach to real systems. This area of
future work was made possible by the recent adoption of our approach within
several projects carried out by teams that include researchers and engineers
not involved in the EvoChecker development. These projects have used or will
use EvoChecker to devise safe reinforcement learning solutions [76,77], to syn-
thesise robust designs for software-based systems [21,22], and to suggest safe
evacuation routes for communities affected by adverse events such as natural
disasters. This will show how easy it is to define and validate EvoChecker mod-
els and requirements in real applications, allowing us to improve the usability
of the approach.

44 Simos Gerasimou et al.

References

1. Alba, E., Chicano, F.: Finding safety errors with ACO. In: 9th International Conference
on Genetic and Evolutionary Computation (GECCO’07), pp. 1066–1073 (2007)

2. Alba, E., Chicano, F.: Searching for liveness property violations in concurrent systems
with ACO. In: 10th International Conference on Genetic and Evolutionary Computa-
tion (GECCO’08), pp. 1727–1734 (2008)

3. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architecture
optimization methods: A systematic literature review. IEEE Transactions on Software
Engineering 39(5), 658–683 (2013)

4. Aleti, A., Moser, I., Grunske, L.: Analysing the fitness landscape of search-based soft-
ware testing problems. Automated Software Engineering 24(3), 603–621 (2017)

5. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1),
7–48 (1999)

6. Alur, R., Henzinger, T.A., Vardi, M.Y.: Theory in practice for system design and
verification. ACM SIGLOG News 2(1), 46–51 (2015)

7. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In:
FORMATS 2003, vol. 2791, pp. 88–104 (2004)

8. Andrews, J., Menzies, T., Li, F.: Genetic algorithms for randomized unit testing. IEEE
Transactions on Software Engineering 37(1), 80–94 (2011)

9. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: 33rd International Conference on Software
Engineering (ICSE’11), pp. 1–10 (2011)

10. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous-time Markov
chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

11. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation and
model checking join forces. Commun. ACM 53(9), 76–85 (2010)

12. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
13. Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking of

continuous-time markov chains. In: 10th International Conference on Concurrency
Theory (CONCUR’99), pp. 146–161 (1999)

14. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-
time. In: Proceedings of the FSE/SDP workshop on Future of software engineering
research (FoSER’10), pp. 17–22 (2010)

15. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C., Smolka, S.: Model repair
for probabilistic systems. In: 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’11), vol. 6605, pp. 326–340.
Springer (2011)

16. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hendriks,
M.: UPPAAL 4.0. In: 3rd International Conference on the Quantitative Evaluation of
Systems (QEST’06), pp. 125–126 (2006)

17. Bianco, A., Alfaro, L.: Model checking of probabilistic and nondeterministic systems.
In: Foundations of Software Technology and Theoretical Computer Science, vol. 1026,
pp. 499–513. Springer (1995)

18. Bonakdarpour, B., Kulkarni, S.S.: Automated model repair for distributed programs.
ACM SIGACT News 43(2), 85–107 (2012)

19. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in verifi-
cation by AI techniques. Artificial Intelligence 112, 57–104 (1999)

20. Calinescu, R., Autili, M., Cmara, J., Di Marco, A., Gerasimou, S., Inverardi, P., Pe-
rucci, A., Jansen, N., Katoen, J.P., Kwiatkowska, M., Mengshoel, O., Spalazzese, R.,
Tivoli, M.: Synthesis and Verification of Self-aware Computing Systems, pp. 337–373.
Springer (2017)

21. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Designing
robust software systems through parametric Markov chain synthesis. In: 2017 IEEE
International Conference on Software Architecture (ICSA), pp. 131–140 (2017)

22. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: A
robust-design synthesis tool for probabilistic systems. In: 14th International Conference
on Quantitative Evaluation of Systems (QEST), pp. 304–308 (2017)

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 45

23. Calinescu, R., Gerasimou, S., Banks, A.: Self-adaptive software with decentralised
control loops. In: 18th Intl. Conf. on Fundamental Approaches to Software Engineering
(FASE’15), pp. 235–251 (2015)

24. Calinescu, R., Gerasimou, S., Johnson, K., Paterson, C.: Using runtime quantitative
verification to provide assurance evidence for self-adaptive software. In: Software En-
gineering for Self-Adaptive Systems III. Assurances, pp. 223–248. Springer (2017)

25. Calinescu, R., Ghezzi, C., Johnson, K., Pezz, M., Rafiq, Y., Tamburrelli, G.: Formal
verification with confidence intervals to establish quality of service properties of soft-
ware systems. IEEE Transactions on Reliability 65(1), 107–125 (2016)

26. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM 55(9), 69–77
(2012)

27. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS management and optimization in service-based systems. IEEE Transactions on
Software Engineering 37(3), 387–409 (2011)

28. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic
IT systems. In: 31st International Conference on Software Engineering (ICSE’09), pp.
100–110 (2009)

29. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engineer-
ing trustworthy self-adaptive software with dynamic assurance cases. IEEE Transac-
tions on Software Engineering PP(99), 1–31 (2017)

30. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: 7th International Conference on
Genetic and Evolutionary Computation (GECCO’05), pp. 1069–1075 (2005)

31. Carrillo, M., Rosenblueth, D.A.: CTL update of Kripke models through protections.
Artificial Intelligence 211(0), 51 – 74 (2014)

32. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract model
repair. In: NASA Formal Methods, pp. 341–355. Springer (2012)

33. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for markov decision processes. In: 7th Intl. Symp. on Theoretical Aspects of Software
Engineering (TASE’13), pp. 85–92 (2013)

34. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (1999)
35. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solv-

ing Multi-Objective Problems. Springer (2006)
36. Coker, Z., Garlan, D., Le Goues, C.: SASS: Self-adaptation using stochastic search.

In: 10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’15), pp. 168–174 (2015)

37. Damm, L.O., Lundberg, L.: Company-wide implementation of metrics for early soft-
ware fault detection. In: ICSE, pp. 560–570 (2007)

38. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

39. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern prob-
abilistic model checker. In: 29th International Conference on Computer Aided Verifi-
cation, pp. 592–600 (2017)

40. Draeger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive controller
synthesis for probabilistic systems. In: 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’14), vol. 8413, pp.
531–546 (2014)

41. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimization.
Advances in Engineering Software 42, 760–771 (2011)

42. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: 31st International Conference on Software Engineering
(ICSE’09), pp. 111–121 (2009)

43. Ferrucci, F., Harman, M., Ren, J., Sarro, F.: Not going to take this anymore: Multi-
objective overtime planning for software engineering projects. In: 35th Intl. Conf. on
Software Engineering (ICSE’13), pp. 462–471 (2013)

46 Simos Gerasimou et al.

44. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. Transactions on Software Engineering,
42(1), 75–99 (2016)

45. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization. Handbook of Evolutionary
Computation pp. C4.5:1–C4.5:9 (1997)

46. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model check-
ing. In: 10th International Symposium on Automated Technology for Verification and
Analysis (ATVA’12), vol. 7561, pp. 317–332 (2012)

47. Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in search-based software
testing. In: Fifth International Conference on Software Testing, Verification and Vali-
dation (ICST’12), pp. 121–130 (2012)

48. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. on Software Engi-
neering 39(2), 276–291 (2013)

49. Gerasimou, S.: Runtime quantitative verification of self-adaptive systems. Ph.D. thesis,
University of York, York, UK (2017)

50. Gerasimou, S., Calinescu, R., Banks, A.: Efficient runtime quantitative verifica-
tion using caching, lookahead, and nearly-optimal reconfiguration. In: 9th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’14), pp. 115–124 (2014)

51. Gerasimou, S., Calinescu, R., Shevtsov, S., Weyns, D.: Undersea: An exemplar for en-
gineering self-adaptive unmanned underwater vehicles. In: 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’17),
pp. 83–89 (2017)

52. Gerasimou, S., Stylianou, C., Andreou, A.S.: An investigation of optimal project
scheduling and team staffing in software development using particle swarm optimiza-
tion. In: 14th International Conference on Enterprise Information Systems (ICEIS’12),
pp. 168–171 (2012)

53. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilistic
models for quality-of-service software engineering. In: 30th Intl. Conf. on Automated
Software Engineering (ASE’15), pp. 319–330 (2015)

54. Ghezzi, C.: Evolution, adaptation, and the quest for incrementality. In: Large-Scale
Complex IT Systems. Development, Operation and Management, vol. 7539, pp. 369–
379 (2012)

55. Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms.
Genetic algorithms and simulated annealing pp. 42–60 (1987)

56. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

57. Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based
software engineering for software product line engineering: A survey and directions for
future work. In: 18th International Software Product Line Conference, pp. 5–18 (2014)

58. Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu, F.:
Genetic improvement for adaptive software engineering. In: 9th Intl. Symp. on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’14), pp. 1–4 (2014)

59. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys 45(1), 11:1–11:61 (2012)

60. Harman, M., McMinn, P., de Souza, J., Yoo, S.: Search based software engineering:
Techniques, taxonomy, tutorial. In: Empirical Software Engineering and Verification,
vol. 7007, pp. 1–59. Spinger (2012)

61. Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In:
10th International Conference on Parallel Problem Solving from Nature (PPSN’08),
pp. 889–898 (2008)

62. Johnson, C.: Genetic programming with fitness based on model checking. In: Genetic
Programming, vol. 4445, pp. 114–124. Spinger (2007)

63. Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework for
component-based software systems. In: 16th International Symposium on Component-
based Software Engineering (CBSE’13), pp. 33–42 (2013)

64. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Quan-
titative Evaluation of Systems (QEST’05), pp. 243–244 (2005)

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering 47

65. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90 –
104 (2011)

66. Katz, G., Peled, D.: Synthesis of parametric programs using genetic programming
and model checking. In: 15th International Workshop on Verification of Infinite-State
Systems (INFINITY’13), pp. 70–84 (2013)

67. Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for
evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC’14),
pp. 2585–2592 (2014)

68. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

69. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: 6th
Joint Meeting on European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering: Companion Papers (ESEC-
FSE’07), pp. 449–458 (2007)

70. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Formal
Methods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation (SFM’07), pp. 220–270. Springer (2007)

71. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: 23rd Intl. Conf. on Computer Aided Verification (CAV’11), pp.
585–591 (2011)

72. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for
probabilistic systems. In: 16th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’10), vol. 6015, pp. 23–37. Springer
(2010)

73. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for markov
decision processes. In: 41st Intl. Conf. on Dependable Systems Networks (DSN’11),
pp. 359–370 (2011)

74. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software
architecture models for performance, reliability, and cost using evolutionary algorithms.
In: First Joint WOSP/SIPEW International Conference on Performance Engineering,
WOSP/SIPEW ’10, pp. 105–116. ACM (2010)

75. Martinez-Araiza, U., Lopez-Mellado, E.: A CTL model repair method for Petri Nets.
In: World Automation Congress (WAC’14), pp. 654–659 (2014)

76. Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assured reinforcement learning
with formally verified abstract policies. In: 9th International Conference on Agents
and Artificial Intelligence (ICAART’17), vol. 2, pp. 105–117. SciTePress (2017)

77. Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assurance in reinforcement learning
using quantitative verification. In: Advances in Hybridization of Intelligent Methods:
Models, Systems and Applications, pp. 71–96. Springer (2018)

78. Meedeniya, I., Grunske, L.: An efficient method for architecture-based reliability evalu-
ation for evolving systems with changing parameters. In: 21st International Symposium
on Software Reliability Engineering (ISSRE’10), pp. 229–238 (2010)

79. Minku, L.L., Yao, X.: Software effort estimation as a multiobjective learning problem.
Transactions on Software Engineering and Methodology 22(4), 35:1–35:32 (2013)

80. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: A probabilistic model checking approach. In: 10th Joint Meeting on Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’15), pp. 1–12 (2015)

81. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: A cellular
genetic algorithm for multiobjective optimization. International Journal of Intelligent
Systems 24(7), 726–746 (2009)

82. Oman, S., Cunningham, P.: Using case retrieval to seed genetic algorithms. Interna-
tional Journal of Computational Intelligence and Applications 01(01), 71–82 (2001)

83. Pnueli, A.: In transition from global to modular temporal reasoning about programs.
In: Logics and Models of Concurrent Systems, vol. 13, pp. 123–144 (1985)

84. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective
search problem. IEEE Transactions on Software Engineering 37(2), 264–282 (2011)

48 Simos Gerasimou et al.

85. Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-
construction and optimization. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 20(10), 1200–1217 (2001)

86. Ramirez, A., Knoester, D., Cheng, B., McKinley, P.: Plato: a genetic algorithm ap-
proach to run-time reconfiguration in autonomic computing systems. Cluster Com-
puting 14(3), 229–244 (2011)

87. Ren, J., Harman, M., Di Penta, M.: Cooperative co-evolutionary optimization of soft-
ware project staff assignments and job scheduling. In: 3rd International Symposium
on Search Based Software Engineering (SSBSE’11), vol. 6956, pp. 127–141. Springer
(2011)

88. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

89. Sayyad, A., Ingram, J., Menzies, T., Ammar, H.: Scalable product line configuration:
A straw to break the camel’s back. In: 28th International Conference on Automated
Software Engineering (ASE’13), pp. 465–474 (2013)

90. Sesic, A., Dautovic, S., Malbasa, V.: Dynamic power management of a system with a
two-priority request queue using probabilistic-model checking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27(2), 403–407 (2008)

91. Stylianou, C., Gerasimou, S., Andreou, A.: A novel prototype tool for intelligent soft-
ware project scheduling and staffing enhanced with personality factors. In: 24th Intl.
Conf. on Tools with Artificial Intelligence (ICTAI’12), pp. 277–284 (2012)

92. Ulusoy, A., Wongpiromsarn, T., Belta, C.: Incremental controller synthesis in proba-
bilistic environments with temporal logic constraints. International Journal on Robotic
Research 33(8), 1130–1144 (2014)

93. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analy-
ses, and new innovations. Ph.D. thesis (1999)

94. Vargha, A., Delaney, H.D.: A Critique and Improvement of the CL Common Language
Effect Size Statistics of McGraw and Wong. Journal on Educational and Behavioral
Statistics 25(2), 101–132 (2000)

95. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009)

96. Younes, H.L.S.: Ymer: A statistical model checker. In: 17th International Conference
on Computer Aided Verification (CAV’05), vol. 3576, pp. 429–433. Srringer (2005)

97. Zhang, Y., Ding, Y.: CTL model update for system modifications. Journal of Artificial
Intelligence Research (JAIR) 31, 113–155 (2008)

98. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the de-
sign of Pareto-compliant indicators via weighted integration. In: 4th International Con-
ference on Evolutionary Multi-criterion Optimization (EMO’07), pp. 862–876 (2007)

99. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of Pareto set approximations.
In: Multiobjective Optimization, vol. 5252, pp. 373–404. Springer (2008)

100. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolu-
tionary algorithm. In: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems (EUROGEN’01), pp. 95–100 (2001)

101. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Compu-
tation 3(4), 257–271 (1999)

102. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance as-
sessment of multiobjective optimizers: an analysis and review. IEEE Transactions on
Evolutionary Computation 7(2), 117–132 (2003)

