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ABSTRACT  
 

Very low permeability soils and rocks can act as a semi-permeable osmotic membrane, which will generate 

osmotic flow. Such complexities have been extensively studied, but dual chemical osmosis, the influence 

of sorption on chemical osmotic flow and the consequent influence on the stress/stain change remains 

unclear. This study extends mixture-coupling theory, by including chemical sorption entropy and chemical 

potential, and provides a new-coupled formulation for chemical transport in very low permeability rock. 

The classical Darcy’s Law and Fick’s Law have been modified to include the influence of chemical 

potential and sorption under relevant conditions, and dual chemical osmosis. The mechanical deformation 

has been coupled with the water and chemical flows using Helmholtz free energy. Finally, a coupled 

unsaturated hydro-mechanical-chemical model which considers dual chemical osmosis and sorption is 

presented. This mathematical model provides the possibility of using dual chemicals to control osmotic 

flow and chemical transport, which leads to important engineering applications such as those in the field of 

nuclear waste disposal.  

Keywords: Porous Media, Mixture Coupling Theory, Coupled modelling, Chemical Osmosis, Groundwater  
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1 INTRODUCTION 
 

Chemical osmosis is an important process in very low permeability soils and rocks when the hydraulic 

conductivity is less than 
1010 m/s [1]. Such soils and rocks can act as semi-permeable membranes and 

restrict the migration of large solute molecules.  Solutes in the subsurface, which are influenced by this 

process, originate from a diverse range of sources and industrial applications, including carbon geological 

storage and nuclear waste disposal. Single chemical osmosis has been studied within nuclear waste disposal 

and Darcy’s Law has been extended accordingly [2, 3]. However, dual coupled chemical osmosis, the 

influence of sorption, and its subsequent effect on solid consolidation has not received any attention. This 

knowledge is important because it provides a deeper understanding of chemical transport in very low 

permeability porous media; a better prediction of chemicals transport with consideration of molecular-

coupling of dual chemicals, and most importantly it potentially offers a new method to control specific 

chemicals (e.g. radionuclides) by using another non-harmful chemical.  

Several approaches have been developed to model the coupling between thermo-hydro-mechanical-

chemical components. These comprise :  (1) mechanics approach, based on classical consolidation theories 

of Terzaghi [4] and Biot [5, 6], in which considerable research has been done, including the development 

of hydro-mechanical coupled models , and theoretical analysis of thermal and/or chemo coupling [7, 8];  

(2) mixture theory approach, which was firstly developed by Truesdell [9] and further extended by Bowen 

[10-12], maintains the individuality of the solid and fluid phases [12, 13], with recent contribution by 

Rajagopal etc. [14-18]. A comprehensive review of this approach has been completed by Atkin and Craine 

[19]. This approach has the difficulties of obtaining information on the interaction between the phases as 

discussed by Rajagopal [15]; and (3) Mixture-Coupling theory approach, which combines the advantages 

of both former approaches, provides a smooth link between geophysics and geochemistry [3, 20-23]. 

Mixture coupling theory was formally known as Modified Mixture Theory and first proposed by [23] for 

saturated rocks. It was later extended to unsaturated conditions and non-isothermal conditions [20, 24-26]. 

As the name Modified Mixture Theory does not fully describe the core of this approach, and also does not 
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make clear distinctions from other “Modified Mixture Theory” such as [27], it is necessary to rename it as 

Mixture Coupling Theory [3], in this case, the coupling of both fluids and solids as multiphases is 

specifically addressed (with consideration of secondary phases arising from chemical reaction between 

groundwater and soils or rock in the future).   

The comparison between these three approaches has been summarized by [25]. The mechanics approach 

has the advantage of being able to deal with a hydro-mechanical coupled model. If chemical reactions are 

included, this approach has to use formulations from chemistry to interpret chemical transport, due to the 

knowledge gap between geochemistry and geophysics [28]. Mixture theory has difficulties in obtaining 

information on the interactions between solid/fluid phases, and also to deal with the coupling of chemicals 

[12, 13]. Mixture Coupling Theory has successfully overcome the challenges that the above domain 

approaches face, and has generated more advanced constitutive coupled equations for multiphase flow in 

deformable porous media [3, 25, 29].    

Couplings have been further classified into two groups by Chen and Hicks (2013); external (or structure 

coupling) and internal coupling. External coupling is a macro-level coupling, whereas, internal coupling 

may be viewed as micro-level coupling (e.g. chemical transport coupled with groundwater). Mixture 

Coupling Theory has great potential to deal with internal coupling. It links the force analysis for external 

coupling and the energy analysis for internal coupling, by using continuum thermomechanics and non-

equilibrium thermodynamics [22, 23, 30].  

In this paper, Mixture Coupling Theory has been extended to dual chemicals coupling. In particular, 

Darcy’s Law, Fick’s Law and Biot’s equation have been modified by including chemical potential and 

sorption, and a new fully-coupled formulation derived.   

 
2 FUNCTION OF BALANCE LAWS FOR AN OPEN SYSTEM 

An arbitrary sub-region   is chosen in the rock or soil and   is the boundary which is assumed to be 

attached to the solid phase to ensure no solid moves across the boundary. To simplify the discussion, two 
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assumptions are made: (1) there are only two solutes, one is a non-sorbing chemical and the other could be 

absorbed during transport.  The chemical potential of the solutes and water are 
sc and 

Nc and w , 

respectively; (2) the continuous gas in the unsaturated zone is at atmospheric pressure, and Patm equals zero. 

[31, 32].  

 

2.1 Flux definition  

The flux is given as : 

 ( );     or s w c     I v v%  (1)  

in which  

 Iȕ is the flux and vȕ  is the velocity, respectively.  

 %  is the fluid density of the water (ȕ=w) or chemical (ȕ=c) component, relative to the unit 

volume of the fluid-solid mixture. If chemicals are divided into non-adsorbed (Nc ) and adsorbed 

fractions ( Sc ), then equation (1) may be interpreted as : 

  
N N N S S S

( );  ( ) ;   ( )w w w s c c c s c c c s       I v v I v v I v v% % %  (2) 

             where  
S Nc c c   % % % .  

 

Specifically, the relationship between fluid mass density %  and the true mass density   can be 

described as   

     %  (3) 

where   is the volume fraction of the relevant fluid component.  

 

If  wS is the saturation of the fluid, the relationship between   and the porosity of the medium   is given 

by : 
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 wS   (4) 

Equation (4) is based on the assumption that gas transport is ignored here.   

 

2.2 Mass and energy balance  

(1) Solid balance equation: In a continuous porous medium, as there is no solid mass flux into the region 

  (note here, it is assumed that sorption will not change the solid mass of the region), the balance 

equation for the solid can be described as :  

 0s

D
d

Dt




 
  

 
   (5) 

where the solid density is denoted by s . The material time derivative is given by ; 

 s

D

Dt t


  


v  (6) 

 

(2) Fluid balance equation: Because   is an open system, which leads to the exchange of fluid mass 

(water and non-adsorbed chemical), the balance equation for the fluid (water and chemical, no reaction 

assumption) can be expressed as  

 
D

d d
Dt  

 

 
     

 
  I n%  (7) 

However, if the ith chemical may be created or destroyed (reaction term or source term) with the rate Q , 

measured in mass per unit volume of porous medium per unit time, equation (7) can be rewritten as [33] : 

 
D

d d Q d
Dt   

  

 
       

 
  I n%   (8) 
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where Q is the adsorbed chemical density. Q depends on x,y,z and t through its dependence on % ; it 

can measure an adsorption rate, a decay rate, a rate of consumption in a chemical reaction, or even a growth 

or death rate if the tracer is biological.   

 

(3) Helmholtz free energy balance equation:   

 
N N S S

( )s w w c c c c

D
d d d T d

Dt
    

   

 
            

 
   ın v I I I n  (9) 

where ı  is the Cauchy stress tensor, ȥ is the Helmholtz free energy density, T is the constant temperature, 

n  is the outward unit normal vector and  is the entropy production per unit volume.  

 
2.3 Transport theorem for local zone  
 
Reynold’s transport theorem is adopted to give the local balance equations.  

The balance equation for the solid mass is :  

 0s s s    v&  (10) 

The balance equation for a fluid component is ; 

 0s Q
t


  





      


v I

%
%  (11) 

Note that it is assumed that Qw and QCN are zero, as there no loss of water and non-adsorbed chemical 

during the transport process.  

 

The balance equation for the free energy is : 

 
N N S S

( ) ( ) 0s s w w c c c c T             v ıv I I I&  (12) 

 
3 SORPTION AND DISSIPATION ENTROPY  
 
Previous studies for Mixture Coupling Theory have assumed that only one dissipation mechanism exists 

when fluid moves through the porous media [20, 25, 34]. However, the entropy of this system may also 



8 

 

change as chemical mass may be stabilized on the surface of the porous media from the fluid condition in 

the process of sorption. The reasons for entropy change, including the sorption, may be summarized as: (1) 

friction generated at the solid/water boundary; (2) two processes operate for the chemicals in the fluid: the 

dissipation between the chemical fluids/solid boundary, which is covered in process (1), and partitioning 

of the chemicals during the sorption process.  Non-equilibrium thermodynamics has been used to derive 

the dissipation and sorption function [34], which is : 

 
N N S S

0 w w c c c c qT Q             I I I  (13) 

 

where Q can be positive or negative, representing dissolution, sorption or chemical reaction of a substance. 

q represents the change of chemical potential after reducing/increasing freedom of molecules.  

To focus on the coupling of the two chemicals, and simplify the discussion, the term 
S Sc cQ  , which 

shows the sorption process, could influence the diffusion process, and has been ignored in the analysis. 

Thus, equation (13) can then be rewritten as : 

 
N N S S

0 w w c c c cT          I I I  (14) 

 
Equation (14) has presented the relationship between flux and chemical potential.  

The total fluid mass density,f% , can be defined as : 

 
N Sf w c c     % % % % (15) 

The fluid barycentric velocity, which is a velocity of one body relative to the center of mass of a system, 

is defined as the mass flux divided by the mass density, as in :  

 N N S Sc c c cw w
f

f f f

 
  

  
v vv

v
% %%

% % %
 (16) 

Since the diffusion fluxes of the water and chemical relative to the barycentric motion can be written as : 
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 ( )f   J v v%  (17) 

the relationship between I  and J  is : 

 ( )f s    J I v v%  (18) 

 

As the Darcy velocity can also be described through the equation : 

 ( )D w f sS  u v v  (19) 

the entropy production of the fluid  (equation (14) ) can be rearranged as : 

 
N N S S

0 ( )D w w c c c cT p            u J J J  (20) 

Using the Gibbs-Duhem equation for the fluid leads to :    

 
N N S Sw w c c c c pp            (21) 

where pp  is the pore fluid pressure of the fluid mixture (i.e. the water and chemical combined) [35].  

 

As there are only two independent diffusion fluxes within the three fluxes system:  

 
N S

0w c c  J J J  (22) 

the entropy production equation (20) can be further rearranged 

 
N N S S

0 ( ) ( )D p c c w c c wT p             u J J  (23)  

in which : 

D pp u  shows the water flow driven by internal water potential difference; 

N N
( )c c w  J  describes non-sorption chemical diffusion into water, and 

S S
( )c c w  J  represents sorption-chemical diffusion into water.  
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4 COUPLED DIFFUSION LAW AND DARCY’S LAW 
 
Equation (23) explains the entropy contribution of flow and relative driving force. Each driving force of a 

specific flux may also have a coupling influence on other fluxes, which leads to the discussion of 

interactions between flow and driving force by using “Phenomenological equations”. Such equations 

expressed the linear dependence of the three flows on their corresponding forces. The coupling between the 

three flows, f D u , 
NcJ  and 

ScJ , and the major three driving forces, pp  and 
N

( )c w   , 
S

( )c w  

, can be obtained from :  

 
N S

11
12 13( ) ( )f D p c w c w

f

L
p L L    



 
          

 
u  (24) 

 
N N S

21
22 23( ) ( )c p c w c w

f

L
p L L   



 
          

 
J  (25) 

 
S N S

31
32 33( ) ( )c p c w c w

f

L
p L L   



 
          

 
J   (26) 

in which ijL  denotes a set of phenomenological coefficients. Here, mass transport is assumed to be through 

an isotropic medium. 

The discussion of Phenomenological equations and Onsager Coefficients is explained in recent studies [36].  

 
Equations (24), (25) and (26) describe the coupled diffusion fluxes and water flow with coupled influence 

of water pressure and chemical potential difference. However, chemical concentration is easier to measure 

in practice than chemical potential. The following discussion will establish the relationship between 

chemical potential with chemical concentration.  

 
The Gibbs-Duhem equation describes the link between the change of chemical potential with temperature 

and pressure. In this paper, it is assumed that an isothermal and constant pressure condition exists for the 

mixture at the local region scale.  Thus, the relationship between chemical potential and mass fraction is 

derived as:    
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S S N N
( ) ( ) ( ) 0c c p c c p w w pC d C d C d      (27) 

in which  cC  and wC  are the solute and diluent mass fractions, respectively,  which can be further 

defined as  

 N N S S

N
;   ;   c c c cw w

w c c

f f f f f f

C C C
    

     
     

% %%

% % %
 (28) 

Also, chemical potential can be interpreted by using standard non-equilibrium thermodynamics as 

 S

S S S

S

1
( ) ( ) c

c w c w p c

w c

v v p C
C C


 


      


 (29) 

 N

N N N

N

1
( ) ( ) c

c w c w p c

w c

v v p C
C C


 


      


 (30) 

in which 
N

N N

1
c

c c

v
C 

 
     

, 
S

S S

1
c

c c

v
C 

 
     

 and 
1

w

w w

v
C 

 
    

 presents the partial specific volumes 

of the solute (non-sorption and sorption ) and diluent, respectively. These quantities should follow the 

thermodynamic identities,   

 N

N

c

cv
p





, S

S

c

cv
p





, w

wv
p





 (31) 

Additionally, equations (24) and (25) can be rewritten if ( ) 1f fc fwv v   , as  

 N S

N N S S

N S

c cf frw
D p c c c c

w c w c

k
p r C r C

C C C C

  


  
          

K
u   (32) 

 N

N N N N-S S

c f

c p f c c f c c

p

L
p C C

p


      J D D  (33) 

 
S S-N N S S

f
c p f c c f c c

p

L
p C C

p


      J D D  (34) 

 

in which 
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     

       

N S N S

N S S S

N S S-N N-S

N S S S

21 313111 21
2 2 2

11 11

33 23 3222
2 2 2 2

;   ;  ; ;  ;   

; ;  ;  ;  

p prw
c c c c

w f f f

c c c c

c c c c

c c c cw f w f w f w f

L p L pk LL L
r r L L

L L

L L LL
D D D D

C C C CC C C C

   

   

   

      

   
   

   

K

 

                                                                                                                                                         (35) 

and w  is the water’s dynamic viscosity.  

 

In equation (35), 11L  links to the typical Darcian model,  L22 to the Fickian model, 21

11

L

L
 to the reflection 

coefficient which shows the coupled influence of chemical concentration on water flow, and 
 

21
2
p

f

L p
L


  

represents the fluid pressure influence on chemical diffusion, which may exist in conditions of very high 

fluid pressure gradients, or in gas transport.   

 

From the above analysis of equations (32), (33) and (35), Darcy’s Law and Fick’s Law have been modified 

from a thermodynamic point of view, with the coupled influence between groundwater flow and chemical 

diffusion. The modification of the Darcy velocity includes the effect of the chemical concentration in Eq. 

(27). By studying this model, one will realize that the effect of the chemical concentration is actually to 

reduce or increase the Darcian contribution. The change of the Darcian contribution also has a consequent 

influence on mechanical preformation, which will be discussed later.  The modification of the Fickian 

model includes the effect of dual chemical coupling and water pressure. By extension of this model, one 

will realize that chemical diffusion can be changed by other chemical diffusion processes, and increasing 

water pressure acts to reduce the diffusion process.  

 

Onsager’s symmetry theorem [37], which is a rigorous description of thermal influences on the electrical 

current and vice versa, is not used here, as it is based on an assumption of a balanced energy flow between  
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a few subsystems by neglecting the loss during heat conduction and energy conversion and relation. It is 

validated in an ideal system only with an equilibrium condition. However, soils and rock systems create a 

strongly irreversible and non-equilibrium process, in which Onsager's symmetry may not be applicable.  

 
5 STRESS AND STRAIN RESPONSE 

 
5.1 Helmholtz free energy of the system  

After discussion of coupled fluxes in section 4, attention is now given to link physical deformation of porous 

media with the fluxes inside. By assuming that the rock maintains mechanical equilibrium ( 0  ı ) and 

using equations (12) and (13),   can be derived as   

  
S S N N

: 0s s w w c c c c                 v v I I I&     (36) 

Continuum mechanics has defined the state of the porous media deformation, which will be used in this 

paper [38] as follows:  

 ( , )t





x
F X

X
, 

1
( )

2
 TE F F I , 

0

d
J





, sJ J  v& , 1J  -TT F ıF  (37) 

where X  is an arbitrary reference configuration with a position x  at timet , E  is green strain, F is 

deformation gradient, T is second Piola-Kirchhoff stress  and J  is the Jacobian of F ) .  

 

By using equations (36) and (37), the free energy in the reference configuration,  , can be derived as   

N N S S
tr w w c c c cm m m        TE& & & & & , (38) 

where   

  ;   J m J J         % . (39) 

in which m is the mass density of the fluid in the reference configuration.  

5.2 Pore fluid  

Fluids may exist both in the pore spaces as the bulk phase, or in clay platelets as molecular-scale entities 

[3] and surface of the solids (for sorption).  Thermodynamic relationships can not be used for molecular 
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scale forces, but can be used for the bulk fluids in the pore spaces. Hence pore  (the Helmholtz free energy 

density of the pore fluid) can be obtained as  

 
N N S Spore p c c c c w wp            (40) 

in which pp  is the pore fluid pressure. From the Gibbs-Duhem equation, the relationship between 

pressure change and chemical concentration can be obtained by    

 
N N S Sp c c w w c cp        & & &&  (41) 

Equation (40) may be further rearranged by as  

 
N N S S N N S Spore p c c c c w w c c c c w wp                   & & & && & & &&         (42) 

Thus by substituting equation (41) into equation (42), this leads to   

 
N N S Spore c c c c w w        & & & &  (43) 

 

5.3 “Wet” matrix  

The free energy of the “wet matrix”, including solid and surface molecular entities, can not be directly 

derived because non-equilibrium thermodynamics is not applicable to potential molecular force. Thus the 

free energy may be found by subtracting the contribution poreJ , due to the pore fluid, from the total free 

energy  . If  J   is the pore volume per unit reference volume, the free energy density of the wet 

matrix may be written as   

  
S S S Npore tr[ ] p c c c c w wJ p m m m

t
    


      


TE& & & & &  (44) 

To simply the discussion, 
S S S Nc c c c w wm m m   & & &  is assumed to be one fluid and described as bound 

fluid with chemical potential b and mass density bm .  
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The dual potential, W , which is employed in the following discussion for reasons of convenience, can be 

described as  ( )pore p b bW J p m        (45) 

If  W is expressed as a function of E , pp  b , the expressions for T  and    bm  can be obtained. From 

the implication of Equation (45), the time derivative of ( , , )p bW E p   satisfies the following relationship: 

 ( , , ) ( )b p b bW p tr p m    E TE && & &  (46) 

so that ijT ,  and bm can be derived as  

 
,p b

ij

ij p

W
T

E


 
    

, 
,ij b

p E

W

p



 

     
, 

,ij p

b

b E p

W
m


 

    
 (47) 

and also equation (46) can be rearranged as  

 ( , , )
ijp ij

p b ij p b

ij p b Ep E

W W W
W p E p

E p
 



       
                

E && & &  (48) 

 

By differentiating equations (47) with respect to time, the evolution of stress, pore volume fraction and 

bound fluid can be given as  

 ij ijkl kl ij p ij bT L E M p S    && & &  (49) 

 ij ij p bM E Qp B    &&& &  (50) 

 b ij ij p bm S E Bp Z   &&& &  (51) 

where the parameters ijklL , ijM  and Q , B , andZ are defined in the following equations :  

 
, ,p b p b

ij kl
ijkl

kl ijp p

T T
L

E E
 

   
          

 

 
, ,ij b p b

ij
ij

p ijE p

T
M

p E
 

    
            
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,ij b

p E

Q
p



 
    

 (52) 

 
, ,p ij p b

ij b
ij

b ijp E p

T m
S

E




   
          

 

, ,ij p ij p

b

b pE p E p

m
B

p




   
          

 

,ij p

b

b E p

m
Z


 

   
 

 

6 THE INFLUENCE OF CHEMICAL POTENTIAL ON TRANSPORT 

6.1 Chemical potential  

Three chemical components are present in this paper including solute (conservative transport of chemical, 

and chemical with sorption function) and diluent (water). Using Eq (41) results in   

 
N N S Sp w w c c c cp        & & &&  (53) 

and then  

  
N N S S

1
w p c c c c

w

p    


 
   
 

& & &&  (54) 

The solute chemical potential may be described as [34] : 

 ( , ) lnc c c

c

T
g p T a

M


 
   

 

R
 (55) 

where  

 cg  is assumed to be ignored because of the week dependence of  c  on cg .    

 cM  is the molar mass and R is the universal gas constant 

  ca  is the activity of the solute.  
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The relationship between ca and cx (the mole fraction) can be described as  

  c c ca r x  (56) 

where cr  is the activity coefficient. For an ideal solution, equation (56) leads to  

 c ca x  (57) 

Thus, the chain relationship between cx and the solute mass fraction cC  is given through 

 
(1 )
c c

c

c c c w

x M
C

x M x M


 
 (58) 

  

6.2 Reactive and non-reactive chemical transport  
 
The general chemical transport equation can be derived by using the mass density equation (3) and the 

partial mass equation (11), and substituting equation (18) and employing the Euler identity:   

 ( ) ( ) 0w DS J J Q
t     


       


u J%  (59) 

By assuming the fluid is incompressible and introducing the mass fraction 
f

C 





 , equation (59) can 

be further rearranged as    

 ( ) ( ) 0w f f DS C C Q
t     


       


u J  (60) 

 

As the fluid fraction and diffusion flux follows the restriction of 1C
  and 0

 J , 

respectively, by summation of all the fluid components, equation (60) can be derived as : 

 ( ) ( ) 0w f f DS Q
t   


    


u  (61) 

By invoking equation (61), equation (60) can be derived as   
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 0w f f D

C
S C Q

t


   


     


u J  (62) 

 
 

7 GOVERNING FIELD EQUATIONS 
 

The average pore pressure p is used in the paper.  In the condition of mechanical equilibrium, p  is 

assumed to equal the pore pressure pp . The relationship between pp , p ,  wp and gp is given by 

 p w gw g w wp p S p S p S p     (63) 

The time derivation of equation (63) is  

 w w
w w

p p
p S p

t t




 
 

 
&  (64) 

Lewis and Scherefler (1987) has discussed equation (64), and   is the specific moisture content (related to 

pressure).  Note that the potential chemical effects on specific moisture have been ignored here to simplif y 

the discussion.   

 

7.1 Solid matrix deformation 

The general constitutive equations (49) and (50) describes the changes in solid stress and volume fraction 

in the coupling with pore pressure, chemical concentration and strain. These two equations can be further 

simplified by using the following assumptions.  

 Small strain assumption:  Green Strain tensor ijE  and the Piola-Kirchhoff stress ijT  can be 

replaced by strain tensor ij  and Cauchy stress ij , that is : 

 ij ijE  , ij ijT   (65) 

where  , ,

1
( )

2ij i j j iu u   , in which  ( 1, 2,3)iu i 
 is the displacement component.  
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Under the mechanical equilibrium condition, the following relationship can be obtained to simplif y the 

discussion 

 0ij

jx





 (66) 

  Physical and geometrical linearization: The parameters ijklL , ijM , Q  are assumed to be material-

dependent constants, so that the non-linearity is then of a geometrical nature and associated with 

large deformations. 

 Material isotropy: for isotropic materials the tensor ijM  is diagonal, so that it can be written in the 

form of the scalar  , called the Biot coefficient :  

 ij ijM   (67) 

and the elastic stiffness ijklL  can be formed as a fourth-order isotropic tensor : 

 
2

( )
3ijkl ik jl il jk ij kl

G
L G K          

 
 (68) 

in which G is the rock shear modulus and K is the bulk modulus. 

 

From the above simplification, the respective equations for the solid matrix and pore volume fraction can 

be derived as  

 
2

2
3ij kk ij ij ij

G
K G p          

 
&& &&  (69) 

 ii Qp   && &  (70) 

where, in a poro-elastic manner,   has a relationship with the bulk moduli, K  and sK , as:  

 1
s

K

K
    (71) 

in which sK  is the bulk modulus of the solid matrix. The void compressibility, Q , can be described as    
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s

Q
K

 
  (72) 

Note that the swelling term bm& , which describes the mass density change in the “wet” matrix, has been 

ignored to simplif y the discussion and focus on the dual chemical osmosis.  

Thus, equation (49) can be rearranged as   

 2 ( ) 0
1 2

G
G p


          

u u && &  (73) 

By substituting the definition of average pressure from (57) into (66), equation (73) can be further 

developed as : 

 2 ( ) 0
1 2 w w w

G
G S p p




 
                   

u u& & &    (74) 

 
7.2 Water transport coupled with deformation and dual chemical osmosis   
From equations (61) and (70), and by introducing equation (55) and (58), this leads to  



N N S S

N N S S

1 1
0

fw rw
w f w f f w Tf w

f c c f c c

c c w c c w

S k
S S Qp S p

t t

RT RT
r C r C

M C C M C C


     



 

 
           


   

K
u &&

 (75) 

Equation (75) shows that the dual chemical osmosis will have a strong influence on the pore water pressure 

change. It can be further reformed with consideration of the rate of change of saturation and the water 

density function [39] : 

 fw w w w w w w

Tf w w

S S p S p S p

t t t K t K t


    


     

          
 (76) 

where wK is the bulk modulus of water, such that equation (75) can be derived as   

s N

N N

s s N N

1 1 0Tf c Tf crw w
w c c w w w

c c w c c w w

r RT r RTk p
p C C S S Q p

M C C M C C K t

   


 

       
                              

K
u&

  (77) 
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7.3 Chemical transport with coupled dual chemical osmosis 
 
From equations (32), (33) and (62) the chemical transport equation of a non-sorbing chemical with coupled 

dual chemical osmosis can be obtained as    

 

S

S

S S

21
0N

N N N

N N

c Tf cTfrw
w c w w c c c

w c c w c c w

C r RTrRTk
L p D C S p C C C

p t M C C M C C






   
                        

K
 

  (78) 
 
And for the sorbing chemicals the equation is given as  

   

S S

S S S

S S

21
0

N

N N

c Tf c Tfrw
w c w w c c c

w c c w c c w

C r RT rRTk
L p D C S p C C C Q

p t M C C M C C

 




   
                         

K

  (79) 
 
where (1 )S(t)Q      [33], in which tS is the mass of solute absorbed. By assuming instantaneous 

kinetics and reaction equilibrium, this leads to 

  S
st d ck C  (80) 

The term S could also be expressed as linear, Langmuir, Freundlich, Quadratic, Generalized Langmuir and 

exponential, based on a microscopic sorption mechanics analysis. Further details can be found in  [33]. As 

this paper is focused on the osmosis and entropy function, such details will not be discussed.  

 
7.4 Discussion and summary 

 

The function of dual osmosis has been incorporated within chemical transport equations. This shows that 

multiple chemicals may have a combined influence on both water and chemical transport. Equation (78) 

and (79) are new formulations of chemical transport which consider dual chemical osmosis 

( S

S

S S

N

N N

Tf c Tf
c c

c c w c c w

r RT rRT
C C

M C C M C C

 
    ), and also include the influence of pressure (

1
w

w

L p
p

 
  
 

) on 

chemical transport. The general chemical transport equation in groundwater [33] is a special case of these 
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two equations, which does not consider the two osmotic couplings. This general equation will lead to an 

incorrect prediction of chemicals transport in a very low permeability porous media, as osmotic and 

diffusion processes are the dominant forces driving the movement of water and chemicals    

 

Equation (77) has further extended Darcy’s Law by including a dual chemical osmosis term. Without 

considering this, equation (77) resolves to the same term for single chemical osmosis presented in [25]. 

Equation (74) shows the influence of pore water pressure on mechanical deformation, which indirectly links 

the influence of chemical dual osmosis. The equation is the same as in [25]. Equation (74) can also be 

obtained as approximations with confined boundary conditions from mixture theory that has been 

rigorously developed [14, 15].   

 
8 Conclusion  
In this study the concept and mathematical equation of dual chemical osmosis has been presented. Mixture 

Coupling theory has been further extended, resulting in a new constitutive unsaturated coupled hydro-

mechanical-chemical model for very low permeability porous media. The potential of Mixture Coupling 

theory to bridge geophysics and geochemistry under a single unified theory has been demonstrated. The 

mechanical, water and chemical energy has been combined for the analysis. Dual chemical osmosis and 

sorption in an unsaturated condition may have important engineering applications, such as nuclear waste 

disposal or biological tissue engineering, in which the function of a semi-permeable membrane exists. The 

new mathematical formulation presented in this paper provides a more accurate modelling tool for such 

engineering problems. Further research is needed to study the dual chemical osmosis influence on swelling 

rocks, given that clays and claystones have great swelling potential.   
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