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ABSTRACT

Very low permeability soils and rocks can act as a semi-ganla osmotic membrane, which will generate
osmotic flow. Such complexities have been extensively stubdigdjual chemical osmosis, the influence
of sorption on chemical osmotic flow and the consequent imflei@n the stress/stain change remains
unclear. This study extends mixture-coupling theory, by includiegnical sorption entropy and chemical
potential, and provides a new-coupled formulation for chahtiansport in very low permeability rock.
The classical Darcy’s Law and Fick’s Law have been modified to include the influence of chemical
potential and sorption under relevant conditions, and dual chessicesis. The mechanical deformation
has been coupled with the water and chemical flows using hédfree energy. Finally, a coupled
unsaturated hydro-mechanical-chemical model which considerscdealical osmosis and sorption is
presented. This mathematical model provides the possibilitying ulsial chemicals to control osmotic
flow and chemical transport, which leads to important engimgapplications such as those in the field of

nuclear waste disposal.
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1 INTRODUCTION

Chemical osmosis is an important process in very low ity soils and rocks when the hydraulic

conductivity is less thaﬂnUlO m/s [1]. Such soils and rocks can act as semi-permeadnebranes and
restrict the migration of large solute molecules. Solutaténsubsurface, which are influenced by this
process, originate from a diverse range of sources and irdlagiglications, including carbon geological
storage and nuclear waste disposal. Single chemical osmosishagumied within nuclear waste disposal
and Darcy’s Law has been extended accordingly [2, 3]. However, dual coupled chemical osmosis, the
influence of sorption, and its subsequent effect on solid ddasioh has not received any attention. This
knowledge is important because it provides a deeper understandihgroical transport in very low
permeability porous media; a better prediction of chemicatspiat with consideration of molecular-
coupling of dual chemicals, and most importantly it ptiédlg offers a new method to control specific

chemicals (e.g. radionuclides) by using another non-harmfulicaem

Several approaches have been developed to model the couplimgemethermo-hydro-mechanical-
chemical components. These comprise : (1) mechanics appbeael, on classical consolidation theories
of Terzaghi [4] and Biot [5, 6], in which considerable reskdras been done, including the development
of hydro-mechanical coupled models , and theoretical sisabf thermal and/or chemo coupling [7, 8];
(2) mixture theory approach, which was firstly developed by Trule@]end further extended by Bowen
[10-12], maintains the individuality of the solid and fluid phases [LZ], with recent contribution by
Rajagopal etc. [14-18A comprehensive review of this approach has been completedinyatid Craine
[19]. This approach has the difficulties of obtaining infation on the interaction between the phases as
discussed by Rajagopal [15]; and (3) Mixture-Coupling theory appredibh combines the advantage
of both former approaches, provides a smooth link between gaophgnd geochemistry [3, 20-23]
Mixture coupling theory was formally known as Modified Mixture Theand first proposed by [23] for
saturated rocks. It was later extended to unsaturated conditidnson-isothermal conditions [20, 24-26]

As the name Modified Mixture Theory does not fully describectire of this approach, and also does not
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make clear distinctions from other “Modified Mixture Theory” such as [27], it iS hecessary to rename it as
Mixture Coupling Theory [3], in this case, the coupling of bdthd§ and solids as multiphases is
specifically addressed (with consideration of secondary pleagssg from chemical reaction between

groundwater and soils or rock in the future).

The comparison between these three approaches has been sedhimarfi25]. The mechanics approach
has the advantage of being able to deal with a hydro-mieath@oupled model. If chemical reactions are
included, this approach has to use formulations from chensinterpret chemical transport, due to the
knowledge gap between geochemistry and geophysics [28]. Mixtureythas difficulties in obtaining
information on the interactions between solid/fluid pbasad also to deal with the coupling of chemicals
[12, 13]. Mixture Coupling Theory has successfully overcome the ogalethat the above domain
approaches face, and has generated more advanced congtitufiled equations for multiphase flow in

deformable porous media [3, 25, 29].

Couplings have been further classified into two groups by @hdrHicks (2013); external (or structure
coupling) and internal coupling. External coupling is a maevell coupling, whereas, internal coupling
may be viewed as micro-level coupling (e.g. chemicalsfrart coupled with groundwater). Mixture
Coupling Theory has great potential to deal with intecaalbling. It links the force analysis for external
coupling and the energy analysis for internal coupling, by usimginuum thermomechanics and non-

equilibrium thermodynamics [22, 23, 30]

In this paper, Mixture Coupling Theory has been extended to dualicdle coupling. In particular,
Darcy’s Law, Fick’s Law and Biot’s equation have been modified by including chemical potential and

sorption, and a new fully-coupled formulation derived.

2 FUNCTION OF BALANCE LAWS FOR AN OPEN SYSTEM
An arbitrary sub-regiom2 is chosen in the rock or soil amdis the boundary which is assumed to be

attached to the solid phase to ensure no solid moves acrossitftabyo To simplify the discussion, two
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assumptions are made: (1) there are only two solutes, one issanamg chemical and the other could be
absorbed during transport. The chemical potential of theéesoand water arg, and ch and &, ,

respectively; (2) the continuous gas in the unsaturated zonatm@gpheric pressure, ang.fequals zero.

[31, 32]

2.1 Flux definition

The flux is given as :
|, =p/h(v,-V,); B=worc 1)
in which
e |gis the flux ands is the velocity, respectively.

. ,8@ is the fluid density of the watef£w) or chemical #=c) component, relative to the unit
volume of the fluid-solid mixture. If chemicals are dividatbinon-adsorbedc ) and adsorbed
fractions (Cg), then equation (1) may be interpreted as :

L, =B0(v, -Vl =80 (v, —v); I ;=08 V) 2)

where 56 = 80 + 80 .

Specifically, the relationship between fluid mass denﬁi;ryand the true mass density, can be

described as
IB? = ¢ﬁpﬁ 3)

whereg, is the volume fraction of the relevant fluid component.

If S,is the saturation of the fluid, the relationship betwgerand the porosity of the mediugh is given

by :



2.9 =S4 (4)

Equation (4) is based on the assumption that gas transport isdgmene.

2.2 Mass and energy balance
(1) Solid balance equation: In a continuous porous medisthgere is no solid mass flux into the region
Q (note here, it is assumed that sorption will not changedli@ mass of the region), the balance

eqguation for the solid can be described as :

%(Ipsd9]=0 (5)

where the solid density is denoted py. The material time derivative is given by ;

R:QJFVS-V (6)
Dt ot

(2) Fluid balance equation: Becaugeis an open system, which leads to the exchange of fluid mass
(water and non-adsorbed chemical), the balance equatitimeffiuid (water and chemical, no reaction

assumption) can be expressed as

%[Iﬁ@dﬂ}=—jlﬂ-ndr (7)

However, if the ith chemical may be created or destroyezt{ion term or source term) with the rQe,

measured in mass per unit volume of porous medium per unitdguation (7) can be rewritten as [33] :

DEI(I,B@dQJ:—IIﬁ-ndF+IQﬂCK2 (8)



whereQ, is the adsorbed chemical densiy, depends on x,y,z and t through its dependencﬁ’)gnit

can measure an adsorption rate, a decay rate, a raesoiaption in a chemical reaction, or even a growth

or death rate if the tracer is biological.

(3) Helmholtz free energy balance equation:
D
EU'/’dQ}:_I"“'Vsdr__[(fwlefquIqq +& I )ndl - TI;/dQ 9)
Q r r Q

wheree is the Cauchy stress tensgris the Helmholtz free energy densifly,is the constant temperature,

n is the outward unit normal vector ands the entropy production per unit volume.

2.3 Transport theorem for local zone
Reynold’s transport theorem is adopted to give the local balance equations.

The balance equation for the solid mass is :

/8§+psv'vszo (10)
The balance equation for a fluid component is ;
o
a—f+ﬁ@V-vs+V-lﬂ+Qﬂ:0 (11)

Note that it is assumed that,@nd Qn are zero, as there no loss of water and non-adsorbedoethemi

during the transport process.

The balance equation for the free endasgy

et yV-v —V-(ov)+V-(EJ,+& I +& 1. )=-Ty<0 (12)

3 SORPTION AND DISSIPATION ENTROPY
Previous studies for Mixture Coupling Theory have assumed thatoael dissipation mechanism exists

when fluid moves through the porous media [20, 25, 34]. Howevekgntnepy of this system may also



change as chemical mass may be stabilized on the surfacepoirtius media from the fluid condition in
the process of sorption. The reasons for entropy changegiimgline sorption, may be summarized as: (1)
friction generated at the solid/water boundary; (2) two m®e®operate for the chemicals in the fluid: the
dissipation between the chemical fluids/solid boundary, wisicdovered in process (1), and partitioning
of the chemicals during the sorption process. Non-equilibrhemodynamics has been used to derive

the dissipation and sorption function [34], which is :
0<Ty=-1,-VG,-I. V& —-1.-V&. -Q -A¢, (13)

whereQ can be positive or negative, representing dissolution, sorpticimennical reaction of a substance.

A, represents the change of chemical potential after reduntngésing freedom of molecules

To focus on the coupling of the two chemicals, and simpti& discussion, the terl@cS -A&_, which

shows the sorption process, could influence the diffusion proaedshas been ignored in the analysis.

Thus, equation (13) can then be rewritten as :

0<Ty=-1,-VE,~1, V& ~1 V&, (14)

Equation (14) has presented the relationship between fluxh@mtical potential.
The total fluid mass densit@p, can be defined as :
b= B+ B + B (15)

The fluid barycentric velocity, which is a velocity of dmedy relative to the center of mass of a system,

is defined as the mass flux divided by the mass density, as in :

. AT A (16)
% s b

Since the diffusion fluxes of the water and chemical redath the barycentric motion can be written as :



Jp=Pp(v,—vy) (17)

the relationship betweeh, andJ , is:

Jﬂzlﬂ_l%(vf _Vs) (18)

As the Darcy velocity can also be desedithrough the equation :
Up = S8(V¢ — Vo) (19)
the entropy production of the fluid (equation (14an be rearranged as :
0<Ty =-u,-Vp-(QJ,-VSE,+J, V& +J.-VE,) (20)
Using the Gibbs-Duhem equation for the fluid leads to :
PV Sut P Ve, +P VS, =VD, (21)

where p, is the pore fluid pressure of the fluid mixture (i.e. the watel chemical combined) [35]

As there are only two independent diffusion fluxes within thestfitxes system:
J,+J., +J, =0 (22)
the entropy production equation (20) can be further rearranged
0<Ty=-Uy-Vp,—J. -V, —€u)—J V(6 —SW (23)
in which :
—Uu,, - Vp, shows the water flow driven by internal water potentitiérince;

J., V(& — &) describes non-sorption chemical diffusion into water, and

J. V(& —<.) represents sorption-chemical diffusion into water.



4 COUPLED DIFFUSION LAW AND DARCY’S LAW

Equation (23) explains the entropy contribution of flow andtig driving force. Each driving force of a
specific flux may also hava coupling influence on other fluxes, which leads to the discussion
interactions between flow and driving force by using “Phenomenological equatichsSuch equations

expressed the linear dependence of the three flows on thesmmmoing forces. The coupling between the

three flows, p,u,,, J. andJ_, and the major three driving forcéép, andV(S, -S,), V(S -<,)

Cn

, can be obtained from

pPiUp = _(%vap - lev(ch - gw) - LlSv(éCs N §W) (24)
JcN - % Vpp - I‘zzv(é:m _gw) - LZSV(é:% _g"") (25)
Jcs - % vpp_ Lszv(ch _gw)_ L33V(§fs _ézw) (26)

inwhich L; denotes a set of phenomenological coefficients. Here, mass titaagssumed to be through

an isotropic medium.

The discussion of Phenomenological equations and Onsager Cotffisierplained in recent studies [36]

Equations (24)(25) and (26) describe the coupled diffusion fluxes and watenlitvcoupled influence
of water pressure and chemical potential difference. Haweliemical concentration is easier to measure
in practice than chemical potential. The following discussidlh establish the relationship between

chemical potential with chemical concentration.

The Gibbs-Duhem equation describes the link between the chiolgemical potential with temperature
and pressure. In this paper, it is assumed that an isoth@noh@onstant pressure condition exists for the
mixture at the local region scale. Thus, the relationshipdegtvehemical potential and mass fraction is
derived as:
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C.(d&,),+C, (d, )+ CL k) ,=0 27)
in which C, andC,, are the solute and diluent mass fractions, respectiveiych can be further

defined as

W ’ C = ) c ="a, (28)
Py PP “ope PP P A

Also, chemical potential can be interpreted by using stantam-equilibrium thermodynamics as

1 0¢

V(& =) = (Ve —VW)VperC—WﬁVC% (29)
1 0,

V(& —Su) = (Vg —VW)VP,#C—W@VCCN (30)

1 : .
in which v_ :i 1 Vv :i 1 andv,, :i — | presents the partial specific volumes
" oC, | A, s oC_\ o, oC, \ p,

w

of the solute (non-sorption and sorption ) and diluent, respbctiVhese quantities should follow the

thermodynamic identities,

_%a %, 0% (31)

\ ’ v Yw
“oop S op op

Additionally, equations (24) and (25) can be rewriitem, (v, —v,,) <<1, as

Kk Py 08, Pr 0S,

U, =——m>|yp —r, —-2%yC —r ZL_325vyC 32

D U [ pp Oy waCcN Ry %CWaC% & ( )
Lchf

J,, =——Vp,-pD, -VC, —pD._-VC, (33)
p

3 Py D .VC -pD -VC 34

s p Ppo=PD¢q, - o Pile” o (34)

in which
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L22 gCN L33 aércs . L 23 ag“s _ L 32 ag%
D, = 2 5C D, 20C. " e 26C D = 25C.
Cw(pf) o C (pf) S G Pf) 3 Q\/(pf) (S
(35)

and x,, is the water’s dynamic viscosity.

In equation (35) L, links to the typical Darcian model,.4to the Fickian modek=2t to the reflection
11
L21pp

coefficient which shows the coupled influence of chemical eotnation on water flow, andl = ( )2
P

represents the fluid pressure influence on chemical diffusioichwhay exist in conditions of very high

fluid pressure gradients, or in gas transport.

From the above analysis of equations (823) and (35), Daty’s Law and Fick’s Law have been modified
from a thermodynamic point of view, with the coupled infioe between groundwater flow and chemical
diffusion. The modification of the Darcy velocity includes #ffect of the chemical concentration in Eq.
(27). By studying this model, one will realize that the effedhef chemical concentration is actually to
reduce or increase the Darcian contribution. The chandpe @arcian contribution also has a consequent
influence on mechanical preformation, which will be discddater. The modification of the Fickian
model includes the effect of dual chemical coupling and wassure. By extension of this model, one
will realize that chemical diffusion can be changed by othemical diffusion process and increasing

water pressure acts to reduce the diffusion process.

Onsager’s symmetry theorem [37], which is a rigorous description of thermal influenceshendlectrical
current and vice versa, is not used here, as it is basedassamption of a balanced energy flow between
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a few subsystems by neglecting the loss during heat conduction agg eaeversion and relation. It is
validated in an ideal system only with an equilibrium ¢ood. However, soils and rock systems create a

strongly irreversible and non-equilibrium process, in which Omsaggmmetry may not be applicable.

5 STRESS AND STRAIN RESPONSE

5.1 Helmholtz free energy of the system

Atfter discussion of coupled fluxes in section 4, attention isgigren to link physical deformation of porous
media with the fluxes inside. By assuming that the rock mmstmechanical equilibriumM-6 =0) and

using equations (12) and (13) can be derived as
ety V-V (o VV )+ E V-1 +&E VAl +& Vol =0 (36)
Continuum mechanics has defined the state of the porous mediandibn, which will be used in this

paper [38] as follows:

an—X(X,t), Ezi(FTF—”. J :d_Q’ \&: JV.VS, T=JF"6F" (37)
oX 2 Q

0
where X is an arbitrary reference configuration with a positiorat timet, E is green strainfF is

deformation gradient] is second Piola-Kirchhoff stress addis the Jacobian oF ) .

By using equations (36) and (37), the free energy in the refepemtiguration,¥ , can be derived as
\&:tr[Té}+§Wr&,+§cN&cN +5. 8 (38)
where
¥Y=Jdy; m=730= B,p,. (39)
in which m, is the mass density of the fluid in the reference conftgama

5.2 Porefluid
Fluids may exist both in the pore spaces as the bulk phase, ay iplatelets as molecular-scale entities

[3] ard surface of the solids (for sorption). Thermodynamic relatipgscannot be used for molecular
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scale forces, but can be used for the bulk fluids in the porespdencey . (the Helmholtz free energy
density of the pore fluid) can be obtained as
Voore=—Ppt e Pe +EP TSP (40)
in which p, is the pore fluid pressure. From the Gibbs-Duhem equationetétéonship between
pressure change and chemical concentration can be oblbgined
B =8&p +&p +& p. (41)
Equation(40) may be further rearranged by as
e =Bt & p +&p +8p s e RSP, (42)
Thus by substituting equation (41) into equation (42), this leads to

lv‘ﬁﬁore:é:g&g_’_é:g&g—i_g\ﬁm (43)

5.3 “Wet” matrix
The free energy of the “wet matrix”, including solid and surface molecular entitiean not be directly

derived because non-equilibrium thermodynamics is not applicapletéatial molecular force. Thus the

free energy may be found by subtracting the contribufigy ., due to the pore fluid, from the total free

energy¥ . If v=J¢ is the pore volume per unit reference volume, the freeggragnsity of the wet

matrix may be written as

g(\P_J¢l//pore)=tr[Téq+ Pt & B+ S 8 +C A, (44)

To simply the discussior,_&,_+& . +& &, is assumed to be one fluid and described as bound

fluid with chemical potentiak, and mass densiti, .
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The dual potentialWv , which is employed in the following discussion for reasons of convesjean be

described as W=(Y-J¢y o) — PP —&,m, (45)

If Wis expressed as a function &f, p, ¢,, the expressions fof and v m, can be obtainedrrom

the implication of Equation (45)he time derivative oW (E, p,,&,) satisfies the following relationship:
VHE, p.&,) = tr (TE) - Bo-&m, (46)

so thatT, ,v andm, can be derived as

ow
V(2] 2] () -
8Eij Pp&o app Ej .4 éb Eij’pp

p

and also equation (46) can be rearranged as

v&(E,pp,éb){%J @U{%J ﬁw(M] & (48)
E; E

ij

By differentiating equations (47) with respect to time,dhelution of stress, pore volume fraction and

bound fluid can be given as
Bl -M g+ & (49)
8= M, B + QR + B (50)
=S B+ B+ 2% (51)

where the parametets,, , M, andQ, B, andZ are defined in the following equations :

L - (ij _ {%J
ki
aEkI Pp b 85] Pp.&n
M- _Lﬂj _ {5_UJ
i
app ST aE" Pp 6o
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ov
=| — 52
0 (ap] )

6 THE INFLUENCE OF CHEMICAL POTENTIAL ON TRANSPORT
6.1 Chemical potential
Three chemical components are present in this paper incladiage (conservative transport of chemical,

and chemical with sorption function) and diluent (wateging Eq (41) results in
8 =p &+, & +p.& (53)

and then

&

Ls-ng-nt) 59

The solute chemical potential may be described as [34] :

RT

& =9.0p, T)+[M—] In a, (55)

C

where

e (. isassumed to be ignored because of the week dependerdgeoof g, .
e M, is the molar mass arld is the universal gas constant
e Q. is the activity of the solute
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The relationship betweea_and X, (the mole fraction) can be described as

a, =rx (56)
wherer, is the activity coefficient. For an ideal solution, equa(tef) leads to

a = X (57)
Thus, the chain relationship betwegpand the solute mass fracti€s), is given through

XCMC
C. =
XM_ +(@Q-x )M,

(58)

6.2 Reactive and non-reactive chemical transport
The general chemical transport equation can be derived bythsimgass density equation (3) and the

partial mass equation (11), and substituting equali8nand employing the Euler identity

%(smpﬂn IV (Bjug)+ M-, - Q=0 (59)

By assuming the fluid is incompressible and introducing the fraston C, = &, equation (59) can
Ps

be further rearranged as

S(S89,C))+ V- (p, Gig)+V -3, = Q =0 (60)

As the fluid fraction and diffusion flux follows the restriction Eﬂcﬂ =1 and Z/;J,B =0,

respectively, by summation of all the fluid components, éou#60) can be derived as :
0
E(USpr)"'v'(pqu)_Qﬁ:O (61)

By invoking equation (61), equation (60) can be derived as

17



aC
swupfa—tﬁ+pqu-vcﬂ+v-Jﬂ—QH=o (62)

7 GOVERNING FIELD EQUATIONS

The average pore pressupeis used in the paper. In the condition of mechanical equitihrp is
assumed to equal the pore presspre The relationship betweep , p, P, and p,is given by

P=R=SR+38~ %P (63)

The time derivation of equation (63) is

_ oo 0 OR,
é—%ﬁt+¢m6t (64)

Lewis and Scherefler (1987) has discussed equation (64§ @mthe specific moisture content (related to
pressure). Note that the potential chemical effects orifigpeisture have been ignored here to sifiypl

the discussion

7.1 Solid matrix defor mation
The general constitutive equations (49) and (50) describes the chasgéd stress and volume fraction
in the coupling with pore pressure, chemical concentratidrstrain. These two equations can be further

simplified by using the following assumptions

e Small strain assumption: Green Strain ten&pr and the Piola-Kirchhoff stresg, can be
replaced by strain tenser; and Cauchy stress; , that is :

Ei=¢.T =0 (65)

where g; = %(q ; Tu.),inwhichu, (i=1,2,3)is the displacement component.

18



Under the mechanical equilibrium condition, the followingtienship can be obtained to sinfiplthe

discussion

g (66)
ox.

J

* Physical and geometrical linearization: The paramdtgrs M, Q are assumed to be material-

ij *
dependent constants, so that the non-linearity is then of a geaiheature and associated with

large deformations.

» Material isotropy: for isotropic materials the tenddy is diagonal, so that it can be written in the

form of the scalax , called the Biot coefficient :

M, = as, (67)
and the elastic stiffnesk,, can be formed as a fourth-order isotropic tensor :
2G
LijkI:G(éi‘ké‘jl + Ié;k)+ K‘? Q@ (68)

in which G is the rock shear modulus akds the bulk modulus.

From the above simplificatigrthe respective equations for the solid matrix and pore wluaction can

be derived as
@:(K-%}@kaﬂ +2G& —a By (69)

8= a& +QF (70)
where, in a poro-elastic manner, has a relationship with the bulk modul, and K, as:

K
a=1-— 71
” (71)

S

in which K is the bulk modulus of the solid matrix. The void compressibi@, can be described as

19



Q=—— (72)

Note that the swelling term, , which describes the mass density change in the “wet” matrix, has been

ignored to simpfy the discussion and focus on the dual chemical osmosis

Thus, equation (49) can be rearranged as

2 G . — —
GV l&+[1 ZVJV(V &) —aVE=0 (73)

By substituting the definition of average pressure from (57) intq éfjation (73) can be further

developeds:

2 G % _
GV l&+(1 ZVJV(V-&)—aKSNJrE QVHV&ZJV—O (74)

7.2 Water transport coupled with defor mation and dual chemical osmosis
From equations (61) and (70), and by introducing equation (5568hdthis leads to

op K
f +p]_f [_Vﬁ(v p_
t u

S0 ¢V B S0, Gbrapy g 5

(75)
RT 1 RT 1
VCCN —Ps I‘CSM— VCCSJ}=O

Piley
M, C.C, . C.C,

Equation (75) shows that the dual chemical osmosis will hatt®ag influence on the pore water pressure
change. It can be further reformed with consideration ofrdihe of change of saturation and the water
density function [39] :

S, ,#8.% _,0R ,, 990 _(,,, %1|0R
A o ot 0% % _[9+¢ ]a 7o

where K, is the bulk modulus of water, such that equation (75) can be dersve

r RT r. RT
_ v.K_krW va_pﬁ#vcc _pﬁ#vc +Sav-8+ S, 1+Q n |+ 1+i aﬂzo
7 MCSCCSCW N MCNCCNCW o ¢ K ot

(77)
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7.3 Chemical transport with coupled dual chemical osmosis
From equations (32§33) and (62) the chemical transport equation of a non-sorbimgjcdlevnith coupled

dual chemical osmosis can be obtained as

oC rRT r. RT
CN_K_krwv _'D”—vcc_'onchCs VG =0
ot M, C.C. ™ M. CLC,

(78)

-LV [inWJ_ DV*C, +S¢
p N

w

And for the sorbing chemicals the equation is given as

1 oC Kk P RT P TRT
-LV|—Vp, |-DV?C_ +Sgp—-|—%|Vp-——=—VGC ——2" \Y VG-Q0
( \ pWJ ot S ot { u ( R M.C.C, < M, C. C, S @~ @

(79)
whereQ = —p(1—¢)S(t) [33], in which S, is the mass of solute absorbed. By assuming instantaneous

kinetics and reaction equilibrium, this leads to

S =k,C; (80)
The termS could also be expressed as linear, Langmuir, Freundlich, @i@adeeneralized Langmuir and

exponential, based on a microscopic sorption mechanics anddysther details can be found in [33]. As

this paper is focused on the osmosis and entropy function, stadls eéll not be discussed.

7.4 Discussion and summary

The function of dual osmosis has been incorporated within chemical transport equations. This shows that
multiple chemicals may have a combined influence on both water and chemical transport. Equation (78)

and (79) are new formulations of chemical transport which consider dual chemical osmosis

Pl RT Ve Py RT

o ——VCCN ), and also include the influence of pressure ( LV inW ) on
M CSC CSCW M o C N C., p

w

chemical transport. The general chemical transport equation in groundwater [33] is a special case of these
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two equations, which does not consider the two osmotic couplings. This general equation will lead to an
incorrect prediction of chemicals transport in a very low permeability porous media, as osmotic and

diffusion processes are the dominant forces driving the movement of water and chemicals

Equation (77) has further extended Darcy’s Law by including a dual chemical osmosis term. Without
considering this, equation (77) resolves to the same term for single chemical osmosis presented in [25].
Equation (74) shows the influence of pore water pressure on mechanical deformation, which indirectly links

the influence of chemical dual osmosis. The equation is the same as in [25]. Equation (74) can also be
obtained as approximations with confined boundary conditions from mixture theory that has been
rigorously developed [14, 15].

8 Conclusion

In this study the concept and mathematical equation of dual chlemsimosis has been presented. Mixture
Coupling theory has been further extended, resulting in a newitatmst unsaturated coupled hydro-
mechanical-chemical model for very low permeability poroudiaelhe potential of Mixture Coupling
theory to bridge geophysics and geochemistry under a single uthiiedy has been demonstrated. The
mechanical, water and chemical energy has been combindtefanalysis. Dual chemical osmosis and
sorption in an unsaturated condition may have importanheagng applications, such as nuclear waste
disposal or biological tissue engineering, in which the funaifansemi-permeable membrane exists. The
new mathematical formulation presented in this paper prewadeore accurate modelling tool for such
engineering problems. Further research is needed to study trehdmacal osmosis influence on swelling

rocks, given that clays and claystones have great swelliegtjad.
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