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Abstract Chlorine atoms (Cl) are highly reactive toward hydrocarbons in the Earthˈs troposphere,

including the greenhouse gas methane (CH4). However, the regional and global CH4 sink from Cl is poorly

quantified as tropospheric Cl concentrations ([Cl]) are uncertain by ~2 orders of magnitude. Here we describe

the addition of a detailed tropospheric chlorine scheme to the TOMCAT chemical transport model. Themodel

includes several sources of tropospheric inorganic chlorine (Cly), including (i) the oxidation of chlorocarbons

of natural (CH3Cl, CHBr2Cl, CH2BrCl, and CHBrCl2) and anthropogenic (CH2Cl2, CHCl3, C2Cl4, C2HCl3, and

CH2ClCH2Cl) origin and (ii) sea-salt aerosol dechlorination. Simulations were performed to quantify

tropospheric [Cl], with a focus on the marine boundary layer, and quantify the global significance of Cl atom

CH4 oxidation. In agreement with observations, simulated surface levels of hydrogen chloride (HCl), the most

abundant Cly reservoir, reach several parts per billion (ppb) over polluted coastal/continental regions, with

sub-ppb levels typical in more remote regions. Modeled annual mean surface [Cl] exhibits large spatial

variability with the largest levels, typically in the range of 1–5× 104 atoms cm�3, in the polluted northern

hemisphere. Chlorocarbon oxidation provides a tropospheric Cly source of up to ~4320 Gg Cl/yr, sustaining a

background surface [Cl] of <0.1 to 0.5 × 103 atoms cm�3 over large areas. Globally, we estimate a

tropospheric methane sink of ~12–13 Tg CH4/yr due the CH4+Cl reaction (~2.5% of total CH4 oxidation).

Larger regional effects are predicted, with Cl accounting for ~10 to >20% of total boundary layer CH4

oxidation in some locations.

1. Introduction

Atmospheric chlorine chemistry rose to prominence in the 1970s when it was discovered that Cl atoms,

released from chlorofluorocarbons and other long-lived anthropogenic compounds, could catalyze ozone

loss in the stratosphere [Molina and Rowland, 1974]. In contrast to the stratosphere, scientific understanding

of chlorine sources/impacts in the troposphere, and the broader significance of halogen chemistry on tropo-

spheric composition, has yet to be fully established [Saiz-Lopez and von Glasow, 2012; Simpson et al., 2015].

The importance of tropospheric chlorine is based primarily on the reactivity of Cl atoms toward various

climate-relevant gases, including dimethyl sulfide, CH4, and other volatile organic compounds (VOCs). Rate

constants for the reaction of Cl with a range of VOCs exceed those of analogous VOC+OH reactions by up

to several orders of magnitude [Atkinson et al., 2006], making atomic Cl a potentially important tropospheric

oxidant. For example, several studies have shown that in high NOx regions, peroxy radicals (e.g., HO2 and

others) produced from Cl-initiated VOC oxidation contribute to ozone production at the surface, which impli-

cates chlorine chemistry in urban air pollution [e.g., Sarwar et al., 2012]. In addition, Lawler et al. [2011] have

suggested that Cl atoms may account for up to 15% of CH4 oxidation in certain regions.

Sources of tropospheric inorganic chlorine (Cly) are varied. Primary emissions of HCl occur from industrial

activities, including coal combustion and incineration [McCulloch et al., 1999] and also from biomass burning

[Lobert et al., 1999]. HCl is also released from sea-salt aerosol through acid displacement reactions involving
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HNO3 and H2SO4 [e.g., Eriksson, 1959]. More photolabile forms of Cly, such as gaseous Cl2 and nitryl chloride

(ClNO2), may be produced from the oxidation of aerosol-bound chloride (Cl�; R1–3), as evidenced by numer-

ous experimental studies [e.g., Finlayson-Pitts et al., 1989; Timonen et al., 1994; Caloz et al., 1996; Gebel and

Finlayson-Pitts, 2001; Roberts et al., 2009], depending on local conditions. For example, Cl2 production from

R2 is expected to be efficient at low pH and is thereby most relevant on acidic particles.

ClONO2 þ Cl� →Cl2þNO3
� (1)

ClNO2 þ Cl�→ Cl2þNO2
� (2)

N2O5 þ Cl� →ClNO2þNO2
� (3)

Bromine and iodinemay also play an important role in Cl� activation within acidic aerosol solutions [e.g., Vogt

et al., 1996, 1999] through hypohalous acids (HOX, where X = Cl, Br, I: R4).

HOX þ Cl� þ Hþ
→ XCl þ H2O (4)

In the marine boundary layer (MBL), where Cl� in sea salt is abundant, production and photolysis of Cl2,

ClNO2, BrCl, etc. provides a daytime Cl source. Significant Cl concentrations ([Cl]) may also be sustained

through HCl oxidation, particularly in polluted coastal regions with elevated NOx, despite the comparatively

slow HCl +OH→Cl +H2O reaction [e.g., Singh and Kasting, 1988; Keene et al., 2007; Pechtl and von Glasow,

2007]. As direct measurements of Cl in the troposphere have not yet been made, and because observations

of Cl precursors are sparse, tropospheric [Cl] is uncertain. Indirect methods have been used to infer typical

MBL [Cl] levels of ~103 to 105 atoms cm�3 [Saiz-Lopez and von Glasow, 2012, and references therein]. Better

constraint on global [Cl] is needed to fully determine the significance of chlorine chemistry on tropospheric

composition. Notably, the global CH4 sink due to Cl atom oxidation in the troposphere is poorly quantified.

Current estimates, based on extrapolation of indirectly inferred regional [Cl] levels, are in the range of 13–

37 Tg CH4/yr [Platt et al., 2004; Allan et al., 2007].

In addition to the above inorganic Cl precursors, chlorocarbons such as dichloromethane (CH2Cl2) and chloro-

form (CHCl3) are present in the troposphere. These so-called very short lived substances (VSLSs) have, in

recent years, been a major topic of stratospheric ozone-focused research, because industrial emissions of cer-

tain VSLS (not controlled by the UN Montreal Protocol) are increasing [e.g., Hossaini et al., 2015a]. Previous

model studies that have included CH2Cl2 and CHCl3 have assumed instantaneous release of Cl atoms upon

initial source gas oxidation [e.g.,Ordóñez et al., 2012; Schmidt et al., 2016]. However, various moderately stable

and intermediate-organic product gases, most of which are subject to deposition processes, may be formed

[Hossaini et al., 2015b]. The validity of this assumption is therefore unclear, and more broadly, the contribu-

tion of VSLS to tropospheric Cly is poorly quantified based on present-day VSLS loadings.

Motivated by the above, we have developed and implemented a chlorine chemistry scheme in the TOMCAT

chemical transport model (CTM), incorporating the oxidation of chlorocarbons and a simplified treatment of

sea-salt dechlorination. Simulations were performed to (i) examine the significance of VSLS as a tropospheric

Cly source, (ii) compare tropospheric Cly production from organic versus inorganic sources, (iii) quantify tro-

pospheric [Cl], and (iv) estimate the contribution of Cl atoms to CH4 oxidation. Simulations were also per-

formed to test the sensitivity of [Cl] to the choice and complexity of the chlorocarbon oxidation scheme. A

description of TOMCAT is given in section 2.1. Section 2.2 details the chlorine scheme, including the sources

and sinks of tropospheric Cly, gas-phase chemistry, and our simple treatment of sea-salt dechlorination.

Results are presented in section 3 and conclusions given in section 4.

2. Model and Experiments

2.1. Chemical Transport Model

TOMCAT is a three-dimensional off-line CTM [Chipperfield, 2006] widely used for studies of tropospheric

chemistry and transport [e.g., Monks et al., 2012; Richards et al., 2013]. The model runs off-line and uses pre-

scribed 6 hourly wind, temperature, and humidity fields from the European Centre for Medium-Range

Weather Forecasts ERA-Interim reanalysis [Dee et al., 2011]. The CTM includes a treatment of convection,

described by Stockwell and Chipperfield [1999], and recently evaluated by Feng et al. [2011], based on the

mass flux scheme of Tiedtke [1989]. In the boundary layer, turbulent mixing follows the non-local scheme
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of Holtslag and Boville [1993]. For tracer advection, the CTM uses the conservation of second-order moment

scheme of Prather [1986]. The CTM was run with a horizontal resolution of ~2.8° longitude by ~2.8° latitude

and with 31 hybrid sigma-pressure (σ-p) levels (surface to ~30 km).

2.1.1. Benchmark Chemistry and Emissions

TOMCAT contains a comprehensive tropospheric chemistry scheme, including Ox-HOx-NOx-CO-CH4, C2–C4
hydrocarbons [Monks et al., 2016], bromine [Breider et al., 2010, 2015], and iodine [Breider, 2010] chemistry.

Photolysis rates are calculated online using the code of Hough [1988], which considers direct and scattered

radiation, surface albedo, monthly mean climatological cloud fields, and ozone and temperature profiles.

The model considers wet deposition of soluble gases in both convective and large-scale precipitation

[Giannakopoulos et al., 1999]. Dry deposition is calculated using diurnally and seasonally varying surface-type

specific deposition velocities, with weighting applied by monthly land cover. Here the model used an

extended degradation mechanism for VOCs, incorporating monoterpene oxidation, based on the Model for

Ozone and Related chemical Tracers (MOZART, version 3) model [Kinnison et al., 2007], and toluene, acetone,

methanol, and acetaldehyde based on the Extended Tropospheric Chemistry scheme [Folberth et al., 2006].

Isoprene oxidation follows the Mainz Isoprene Mechanism [Pöschl et al., 2000]. This TOMCAT configuration

is described and evaluated in Monks et al. [2016] and has been used previously to examine the tropospheric

ozone budget [e.g., Richards et al., 2013] and in several halogen-focused studies [e.g., Hossaini et al., 2015b].

Surface emissions of anthropogenic NOx, CO, and the aforementioned hydrocarbons are the same as those

used in the POLar study using Aircraft, Remote Sensing, surface measurements andmodels of Climate, chem-

istry, Aerosols, and Transport (POLARCAT) Model Intercomparison Project [Emmons et al., 2015]. These emis-

sions are based on the Streets version 1.2 inventory [Zhang et al., 2009], were updated for POLARCAT, and are

appropriate for the year 2008. For biomass burning and natural wildfire emissions of these gases, data from

the Global Fire Emissions Database version 3.1 [van der Werf et al., 2006] were used, averaged over the 1997–

2010 period. Natural isoprene and monoterpene emissions based on the Model of Emissions of Gases and

Aerosols from Nature (version 2.1), as originally implemented by Emmons et al. [2010], were also used. All

other natural emissions were prescribed from the POET data set [Granier et al., 2005]. A common problem

in global models is dealing with CH4 which has a relatively long lifetime (~10 years) and therefore requires

a very long spin-up time. To overcome this in TOMCAT, CH4 is emitted and then scaled to give a surface global

mean mixing ratio equal to 1800 ppb. Aircraft NOx emissions were specified according to the

Intergovernmental Panel on Climate Change Fifth Assessment Report data, and lightning NOx production

is parameterized based on cloud height and surface type.

2.1.2. Aerosol

TOMCAT calculates heterogeneous reaction rates according to Jacob [2000]. Aerosol surface areas, calculated

from the aerosol size distribution, are supplied from the Global Model of Aerosol Processes (GLOMAP) aerosol

microphysics model [Spracklen et al., 2005]. The GLOMAP simulation used considered five aerosol compo-

nents (sulfate, sea salt, black carbon, organic carbon, and dust). A recent description of the GLOMAP aerosol

model is given in Mann et al. [2010]. Prescribed reactive uptake coefficients (γ) for heterogeneous reactions

were taken from the literature. For N2O5 hydrolysis, γ for the aerosol types given above was calculated using

the scheme of Evans and Jacob [2005], with the exception of dust, for which γ is based onMogili et al. [2006].

Most relevant to this study are heterogeneous reactions involving sea salt, which liberates particulate chlor-

ide into the gas phase and constitutes a net source of Cly (see section 2.2.2).

2.1.3. Bromine and Iodine Simulations

TOMCAT includes a treatment of bromine and iodine chemistry (coupled to Cl through species such as BrCl

and ICl and reactions of ClO with BrO and IO). The bromine scheme was described and evaluated by Breider

et al. [2010, 2015] and has been shown to provide a good simulation of measured BrO at various sites. Briefly,

it considers bromine release from explicit sea-salt emissions, based on the parameterization of Yang et al.

[2005]. This parameterization incorporates observed size-dependent bromide depletion factors in sea-salt

aerosol [Sander et al., 2003] and, in TOMCAT, is extended to account for the effects of aerosol acidification

[Alexander et al., 2005]. In addition, TOMCAT considers oceanic emissions of the brominated VSLS, CHBr3,

CH2Br2, CHBr2Cl, CH2BrCl, and CHBrCl2 [e.g., Hossaini et al., 2013], some of which constitute a source of chlor-

ine (see section 2.2.1). TOMCAT also includes a comprehensive treatment of tropospheric iodine including all

major Iy species; gas-phase chemistry; heterogeneous recycling of HOI, INO2, and IONO2 on aerosol; and

production/loss of higher iodine oxides (e.g., I2O2 and I2O4), following Saiz-Lopez et al. [2014]. Ocean
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emissions of various iodine-containing VSLS (e.g., CH3I, CH2I2, CH2ICl, and CH2IBr), along with a parameteriza-

tion of oceanic emissions of HOI and I2 [Carpenter et al., 2013; MacDonald et al., 2014], are considered.

Emissions of the halogenated VSLS are prescribed from the global inventories of Ordóñez et al. [2012], with

the exception of CHBr3which uses the Ziska et al. [2013] inventory. This model configuration has been shown

to provide good agreement to a range of VSLS observations [e.g., Hossaini et al., 2013, 2016].

2.2. Chlorine Sources and Chemistry

Building on Hossaini et al. [2015b], a chlorine chemistry scheme has been developed and implemented in

TOMCAT. The scheme includes 10 Cly species (Cl, ClO, OClO, Cl2, HCl, HOCl, ClONO2, ClNO2, BrCl, and ICl) that

participate in more than 40 gas-phase reactions (Table 1). The Cly scheme is a reduced reaction mechanism

formulated from the more detailed reaction mechanism of the 1-D MISTRA model [e.g., von Glasow et al.,

2002]. It incorporates the Cl atom oxidation of alkanes (CH4, C2H6, C3H8, and C4H10), aldehydes (HCHO,

CH3CHO, and C2H5CHO), and other organic compounds. Reactions of Cl atoms with alkenes, which generally

proceed through chlorine addition, are not considered. Kinetic data were taken from International Union of

Pure and Applied Chemistry or NASA Jet Propulsion Laboratory data evaluations [Atkinson et al., 2006, 2007,

2008; Sander et al., 2011; Burkholder et al., 2015], where available. Otherwise, kinetic data from the Master

Chemical Mechanism (MCM; version 3.3.1) were used (http://mcm.leeds.ac.uk/MCM/). Several Cly species

are subject to wet and/or dry deposition in TOMCAT (Table 2). Henryˈs law data were taken from Sander

[2015], where possible. Estimated dry deposition velocities were taken from Ordóñez et al. [2012].

Sources of tropospheric chlorine in TOMCAT include chlorocarbons, for which a detailed oxidation scheme is

described in section 2.2.1, and sea-salt dechlorination; our simplified treatment of which is described in

section 2.2.2. The model also considers primary HCl emissions from industry [McCulloch et al., 1999] and bio-

mass burning [Lobert et al., 1999], which provide ~6.6 and ~6.4 Tg Cl/yr, respectively. We make an upper limit

assumption that all chlorine emitted from biomass burning occurs as HCl. Note that the HCl emission inven-

tories were developed in the late 1990s and in the absence of more recent global data should be

considered uncertain.

2.2.1. Organic Chlorine Sources

Ten chlorocarbons are included in this tropospheric TOMCAT configuration. This includes the five VSLS

CH2Cl2, CHCl3, tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane (CH2ClCH2Cl).

With the exception of CHCl3, emissions of these VSLS are dominated by anthropogenic sources. Following

Hossaini et al. [2015b], a latitude-dependent surface boundary condition for these VSLS was prescribed, based

on 2014 surface measurements from the National Oceanic and Atmospheric Administration (NOAA) and

Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring networks. Surface volume mixing

ratios (VMRs) were assigned in five latitude bands (>60°N, 30–60°N, 0–30°N, 0–30°S, and>30°S) and are sum-

marized in Table 3. As recent surface measurements of CH2ClCH2Cl and C2HCl3 are not available from the

above networks, their latitude-dependent surface VMR was prescribed from boundary layer measurements

obtained during the 2009–2011 HIPPO aircraft mission [Wofsy et al., 2011]. TOMCAT also considers the rela-

tively long-lived source gas, methyl chloride (CH3Cl), constrained at the surface in a similar fashion. For the

natural ocean-emitted VSLS CHBrCl2, CHBr2Cl, CH2BrCl, and CH2ICl we used the top-down global emissions

inventory from Ordóñez et al., 2012, instead of imposing a surface mixing ratio boundary condition. This

inventory considers the varying geographical distribution of the sea-to-air flux of these compounds, with

emissions weighted in the tropics toward observed chlorophyll a concentrations and with hemispheric lati-

tudinal dependent distributions between 20 and 50°N/S as well as above 50°N/S. The annual mean surface

VMR of these VSLS in TOMCAT is also shown in Table 3.

Most previous model studies have assumed an instantaneous release of all Cl atoms in a molecule, upon

chlorocarbon oxidation [e.g., Ordóñez et al., 2012]. For the relatively minor (least abundant) naturally emitted

VSLS CHBrCl2, CHBr2Cl, CH2BrCl, and CH2ICl, this approach is also adopted here. However, we have implemen-

ted a detailed tropospheric degradation scheme in TOMCAT for the more abundant chlorine-containing

gases CH3Cl, CH2Cl2, CHCl3, and CH2ClCH2Cl that consider organic product gases (Table 4). Oxidation of

the above chlorocarbon source gases share a number of common steps, with loss proceeding via hydrogen

abstraction following reaction with OH or Cl (G53–60; Table 4). The initial radical products (CH2Cl, CHCl2, CCl3,

and CH2ClCHCl) are rapidly oxidized under tropospheric conditions to peroxy radicals (i.e., CH2ClO2, CHCl2O2,

CCl3O2, and CH2ClCHClO2, respectively). These peroxy radicals may react with NO, HO2, other peroxy species
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(e.g., CH3O2), or with themselves [e.g., Catoire et al., 1996; Biggs et al., 1999]. The expected major organic

products from oxidation of the above source gases are (i) phosgene (CCl2O), following CHCl3 oxidation,

and (ii) formyl chloride (CHClO), following CH3Cl, CH2Cl2, and CH2ClCH2Cl oxidation [e.g., Catoire et al.,

1997; Bilde et al., 1999; Ko et al., 2003]. In the troposphere, CCl2O is long lived against gas-phase oxidation

Table 1. Reactions and Kinetic Data for the TOMCAT Inorganic Chlorine Chemistry Scheme

Number Reaction Rate Constant
a

Reference
b

Bimolecular

G1 Cl + O3→ ClO +O2 2.3 × 10
�11

exp (�200/T) JPL15

G2 ClO + HO2→HOCl + O2 2.6 × 10
�12

exp (290/T) JPL15

G3 Cl + HO2→HCl + O2 1.4 × 10
�11

exp (270/T) JPL15

G4 Cl + HO2→ ClO +OH 3.6 × 10
�11

exp (�375/T) JPL15

G5 HCl + OH→ Cl + H2O 1.8 × 10
�12

exp (�250/T) JPL15

G6 ClO + NO→ Cl + NO2 6.4 × 10
�12

exp (290/T) JPL15

G7 ClO + ClO→ Cl + Cl + O2 3.0 × 10
�11

exp (�2450/T) JPL15

G8 ClO + ClO→ Cl2 +O2 1.0 × 10
�12

exp (�1590/T) JPL15

G9 Cl2 +OH→HOCl + Cl 2.6 × 10
�12

exp (�1100 T) JPL15

G10 ClO +OH→ Cl + HO2 7.4 × 10
�12

exp (270/T) JPL15

G11 ClO + IO→ ICl + O2 0.2 × 4.7 × 10
�12

exp (280/T) IUPAC

G12 ClO + IO→ Cl + I + O2 0.25 × 4.7 × 10
�12

exp (280/T) IUPAC

G13 ClO + IO→OClO + I 0.55 × 4.7 × 10
�12

exp (280/T) IUPAC

G14 ClO + BrO→OClO + Br 1.6 × 10
�12

exp (430/T) IUPAC

G15 ClO + BrO→ Br + Cl + O2 2.9 × 10
�12

exp (220/T) IUPAC

G16 ClO + BrO→ BrCl + O2 5.8 × 10
�13

exp (170/T) IUPAC

G17 HOCl + OH→ ClO + H2O 3.0 × 10
�12

exp (�500/T) JPL15

G18 ClONO2 +OH→HOCl + NO3 1.2 × 10
�12

exp (�330/T) IUPAC

G19 ClONO2 + Cl→ Cl2 +NO3 6.2 × 10
�12

exp (145/T) IUPAC

G20 ClNO2 +OH→HOCl + NO2 2.4 × 10
�12

exp (�1250/T) IUPAC

G21 Cl + CH4 +O2→HCl + CH3O2 7.3 × 10
�12

exp (�1280/T) JPL11

G22 Cl + C2H6→HCl + EtOO 7.2 × 10
�11

exp (�70/T) JPL15

G23 Cl + C3H8→HCl + n-C3H7O2 6.54 × 10
�11

exp (60/T) JPL15

G24 Cl + C3H8→HCl + i-C3H7O2 8.12 × 10
�11

exp (�90/T) JPL15

G25 Cl + C4H10→HCl + C4H9O2 2.05 × 10
�10

IUPAC

G26 Cl + HCHO (+O2)→HCl + HO2 + CO 8.1 × 10
�11

exp (�30/T) JPL15

G27 Cl + CH3CHO (+O2)→HCl + CH3CO3 8.0 × 10
�11

IUPAC

G28 Cl + EtCHO→HCl + EtCO3 1.3 × 10
�10

IUPAC

G29 Cl + CH3OH (+O2)→HCl + HO2 + HCHO 5.5 × 10
�11

JPL15

G30 Cl + CH3OOH→HCl + HCHO+OH 5.9 × 10
�11

IUPAC

G31 Cl +MeCO2H→HCl +MeO2 2.65 × 10
�14

IUPAC

G32 Cl + HCOOH→HCl + HO2 1.9 × 10
�13

IUPAC

G33 Cl + CH3NO3→HCl + HCHO +NO2 2.4 × 10
�13

IUPAC

G34 ClO + CH3O2 (+O2)→ Cl + HCHO+HO2

+O2

3.3 × 10
�12

exp (�115/T) JPL11

G35 Cl + (CH3)2S→ products 3.3 × 10
�10

IUPAC

Termolecular

G36 ClO + NO2 +M→ ClONO2 +M k0 = 1.8 × 10
�31

(T/300)
�3.4

kinf = 1.5 × 10
�11

(T/

300)
�1.9

JPL15

G37 Cl + NO2 +M→ ClNO2 +M k0 = 1.8 × 10
�31

(T/300)
�2.0

kinf = 1.0 × 10
�10

(T/

300)
�1.0

JPL15

Photolysis

G38 ClO + hν→ Cl + O(
3
P)

c
JPL11

G39 HOCl + hν→ Cl + OH
c

JPL11

G40 ClONO2 + hν→ ClO + NO2
c

JPL11

G41 ClONO2 + hν→ Cl + NO3
c

JPL11

G42 ClNO2 + hν→ Cl + NO2
c

JPL11

G43 Cl2 + hν→ Cl + Cl
c

JPL11

G44 OClO + hν→ ClO +O(
3
P)

c
JPL11

G45 BrCl + hν→ Br + Cl
c

JPL11

G46 ICl + hν→ I + Cl
c

JPL11

a
Rate constant units: bimolecular (cm

3
molecules

�1
s
�1

), termolecular (k0 units: cm
6
molecules

�2
s
�1

, kinf units:
cm

3
molecules

�1
s
�1

).
b
JPL11 [Sander et al., 2011], JPL15 [Burkholder et al., 2015], and IUPAC [Atkinson et al., 2004, 2007].

c
Absorption cross sections from reference.
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and is not readily photolyzed at

wavelengths available in the tro-

posphere. Its residence time is

estimated to be ~70 days, with

hydrolysis in cloud water being

the principal sink [Kindler et al.,

1995]. The atmospheric fate of

CHClO is uncertain. Its reaction

with OH has a rate constant of

<5× 10�13 cm3molecules�1 s�1 at

300 K, and its photolysis rate is on

the order of 1 × 10�8 s�1 at 5 km alti-

tude [Ko et al., 2003]. We assumed a

CHClO Henryˈs law constant (based

on analogous bromine species) of

74M/atm. This order of magnitude

seems reasonable compared to other

carbonyl compounds [e.g., Zhou and

Mopper, 1990]. Large Henryˈs law

constants for a number of chlori-

nated organic products suggest that

wet deposition could provide an efficient sink for these compounds (Table 2).

2.2.2. Sea-Salt Dechlorination and Recycling of Cly
A number of heterogeneous reactions involving chlorine were implemented in TOMCAT, including the

hydrolysis of ClONO2 on sea-salt (SS) and sulfate (SUL) aerosols:

ClONO2 þ H2O→ HOCl þ HNO3 (5)

Recycling of Cly species and SS dechlorination occur through several heterogeneous reactions involving

chlorine, bromine, iodine, and odd nitrogen species. Such reactions provide a net source of tropospheric

Cly (particularly to the MBL) in the form of Cl2, BrCl, ICl, ClNO2, and HCl [e.g., Vogt et al., 1999; Sander et al.,

1999]. Our approach to implementing these reactions follows that of recent Community Atmosphere

Table 3. Chlorocarbons in TOMCAT and Their Surface Boundary Condition
a

Chlorocarbon Formula

Latitude Band
b

>60°N 30–60°N 0–30°N 0–30°S <30°S Origin
c

Lifetime
d
(Days)

Methyl chloride CH3Cl 518.6 545.1 571.6 551.8 522.0 N(A) 573

Dichloromethane CH2Cl2 60.6 63.3 56.1 20.0 17.0 A(N) 109

Chloroform CHCl3 13.0 8.6 6.7 5.4 5.7 N(A) 112

Tetrachloroethene C2Cl4 2.3 3.4 1.7 0.6 0.5 A 67

Trichloroethene C2HCl3 0.5 0.5 0.5 0.2 0.2 A 5

1,2-Dichloroethane CH2ClCH2Cl 15.0 15.0 10.0 3.0 2.0 A 47

Bromodichloromethane
e

CHBrCl2 0.14 0.16 0.17 0.13 0.08 N 41

Dibromochloromethane
e

CHBr2Cl 0.06 0.06 0.1 0.1 0.07 N 32

Bromochloromethane
e

CH2BrCl 0.18 0.19 0.23 0.22 0.19 N 103

Chloroiodomethane
e

CH2ICl 0.03 0.06 0.11 0.09 0.03 N 0.1

a
Expressed as a latitude-dependent volume mixing ratio (ppt). See main text.
b
CH3Cl, CH2Cl2, CHCl3, and C2Cl4 from surface observations of the NOAA and AGAGE global monitoring networks in

2014. C2HCl3 and CH2ClCH2Cl from boundary layer observations during HIPPO aircraft mission (2009–2011). See main
text.

c
“A” denotes anthropogenic origin, “N” natural origin “A(N)” predominately anthropogenic with minor natural source,

and “N(A)” predominately natural with relatively minor anthropogenic source.
d
CH3Cl, lifetime with respect to OH oxidation in the troposphere. VSLS, annual mean local lifetime (against OH oxida-

tion and photolysis) appropriate for the tropical (25°N–25°S) boundary layer [Carpenter et al., 2014]. CH2ICl lifetime from
Ko et al. [2003].

e
CHBrCl2, CHBr2Cl, CH2BrCl, and CH2ICl are emitted using the top-down inventory of Ordóñez et al. [2012]. Modeled

annual mean surface mixing ratios within each latitude band are shown for comparison with the other species.

Table 2. Henryˈs Constants (KH) Used to Calculate Wet Deposition Rates
a

Species

KH
(M/atm)

�ΔsolnH/R

(K) Reference

HCl 1.2
b

9001 Brimblecombe and Clegg [1988]

HOCl 670 5862 Huthwelker et al. [1995]

Cl2 0.086 2000 Kavanaugh and Trussell [1980]

ClONO2 ∞ - Sander [2015]

ClNO2 0.024 - Behnke et al. [1997]

BrCl 0.94 5600 Bartlett and Margerum [1999]

ICl 110 5600
c

Wagman et al. [1982]

CH2ClOOH 2.5 × 10
3c

- Krysztofiak et al. [2012]

CHCl2OOH 2.2 × 10
4c

- Krysztofiak et al. [2012]

CCl3OOH 1.9 × 10
5c

- Krysztofiak et al. [2012]

CH2ClOH 2.0 × 10
3c

- Krysztofiak et al. [2012]

CHCl2OH 1.7 × 10
4c

- Krysztofiak et al. [2012]

CCl3OH 1.5 × 10
5c

- Krysztofiak et al. [2012]

CHClO 74.0
c

- Krysztofiak et al. [2012]

CCl2O 0.059 3800 de Bruyn et al. [1995]

a
The enthalpy of solution (ΔsolnH) is used to describe the temperature

dependence of KH [e.g., Sander, 2015].
b
Considering acid dissociation constant of 1.7 × 10

6
.

c
Assume the value from analogous brominated compound.
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Table 4. Reactions and Kinetic Data in TOMCATˈs Tropospheric Degradation Scheme for Chlorocarbons
a

Number Reaction
b

Rate Constant
c

Notes Reference

Loss of chlorinated source gases

G47 CHBrCl2 +OH→ Br + 2Cl + H2O 9.4 × 10
�13

exp (�510/T) - JPL15

G48 CHBrCl2 + hν→ Br + 2Cl - - JPL11

G49 CHBr2Cl + OH→ 2Br + Cl + H2O 9.0 × 10
�13

exp (�420/T) - JPL15

G50 CHBr2Cl + hν→ 2Br + Cl - - JPL11

G51 CH2BrCl + OH→ Br + Cl + H2O 2.4 × 10
�12

exp (920/T) - JPL11

G52 CH2ICl + hν→ I + Cl - - JPL11

G53 CH3Cl + OH +O2→ CH2ClO2 + H2O 2.1 × 10
�12

exp (�1210/T)
d

IUPAC

G54 CH3Cl + Cl + O2→ CH2ClO2 + HCl 1.8 × 10
�11

exp (�1081/T)
d

IUPAC

G55 CH2Cl2 +OH +O2→ CHCl2O2 + H2O 1.8 × 10
�12

exp (�860/T)
d

IUPAC

G56 CH2Cl2 + Cl + O2→ CHCl2O2 + HCl 5.9 × 10
�12

exp (�850/T)
d

IUPAC

G57 CHCl3 +OH +O2→ CCl3O2 + H2O 1.8 × 10
�12

exp (�850/T)
d

IUPAC

G58 CHCl3 + Cl + O2→ CCl3O2 + HCl 2.4 × 10
�12

exp (�920/T)
d

IUPAC

G59 CH2ClCH2Cl + OH +O2→ CH2ClCHClO2 + H2O 8.7 × 10
�12

exp (�1070/T)
d

IUPAC

G60 CH2ClCH2Cl + Cl + O2→ CH2ClCHClO2 + HCl 1.3 × 10
�12 d j

G61 C2Cl4 +OH +O2→ C2Cl4(OH)O2 3.5 × 10
�12

exp (�920/T)
d

IUPAC

G62 C2Cl4 + Cl +M +O2→ C2Cl5O2 +M k0 = 1.4 × 10
�28

(T/300)
�8.5

kinf = 4.0 × 10
�11

(T/300)
�1.2 d

JPL15

G63 C2HCl3 +OH→ C2HCl3(OH)O2 3.0 × 10
�13

exp (565/T)
d

IUPAC

G64 C2HCl3 + Cl + O2→ C2HCl4O2 7.2 × 10
�11 d k

Loss of chlorinated peroxy radicals

G65 CH2ClO2 +NO→ CH2ClO + NO2 7.0 × 10
�12

exp (300/T)
e

JPL15

G66 CH2ClO2 +NO3→ CH2ClO + NO2 +O2 2.3 × 10
�12 e

MCM

G67 CH2ClO2 + HO2→ CH2ClOOH+O2 3.2 × 10
�13

exp (820/T) 0.3 IUPAC

G68 CH2ClO2 + HO2→ CHClO + H2O+O2 3.2 × 10
�13

exp (820/T) 0.7 IUPAC

G69 CH2ClO2 + CH3O2 +O2→ CH2ClO + HCHO+HO2 + 2O2 2.5 × 10
�12

0.6 IUPAC

G70 CH2ClO2 + CH3O2→ CH2ClOH+ HCHO+O2 2.5 × 10
�12

0.2 IUPAC

G71 CH2ClO2 + CH3O2→ CHClO + CH3OH+O2 2.5 × 10
�12

0.2 IUPAC

G72 CH2ClO2 + CH2ClO2→ 2CH2ClO +O2 1.9 × 10
�13

exp (870/T) - IUPAC

G73 CHCl2O2 +NO→ CHCl2O+NO2 4.0 × 10
�12

exp (360/T)
e

MCM

G74 CHCl2O2 +NO3→ CHCl2O+NO2 2.3 × 10
�12 e

MCM

G75 CHCl2O2 + HO2→ CHCl2OOH+O2 5.6 × 10
�13

exp (700/T) 0.0 IUPAC

G76 CHCl2O2 + HO2→ CCl2O+H2O+O2 5.6 × 10
�13

exp (700/T) 0.7 IUPAC

G77 CHCl2O2 + HO2→ CHClO + HOCl + O2 5.6 × 10
�13

exp (700/T) 0.3 IUPAC

G78 CHCl2O2 + CH3O2→ CHCl2O+HCHO+HO2 2.0 × 10
�12

0.6 MCM

G79 CHCl2O2 + CH3O2→ CHCl2OH+HCHO+O2 2.0 × 10
�12

0.2 MCM

G80 CHCl2O2 + CH3O2→ CCl2O+ CH3OH+O2 2.0 × 10
�12

0.2 MCM

G81 CHCl2O2 + CHCl2O2→ 2CHCl2O+O2 7.0 × 10
�12

-
l

G82 CCl3O2 +NO→ CCl3O+NO2 7.3 × 10
�12

exp (270/T)
e

JPL15

G83 CCl3O2 +NO3→ CCl3O+NO2 +O2 2.3 × 10
�12 e

MCM

G84 CCl3O2 + HO2→ CCl3OOH+O2 4.7 × 10
�13

exp (710/T) 0.0 IUPAC

G85 CCl3O2 + HO2→ CCl2O+HOCl + O2 4.7 × 10
�13

exp (710/T) 1.0 IUPAC

G86 CCl3O2 + CH3O2→ CCl3O+ CH3O+O2 6.6 × 10
�12

0.5 IUPAC

G87 CCl3O2 + CH3O2→ CCl3OH +HCHO+O2 6.6 × 10
�12

0.5 IUPAC

G88 CCl3O2 + CCl3O2→ 2CCl3O+O2 3.3 × 10
�13

exp (740/T) - IUPAC

G89 CH2ClCHClO2 +NO+O2→ CH2ClO2 + HCl + CO +NO2 9.0 × 10
�12 f j

G90 C2Cl4(OH)O2 +NO→ CCl3O2 + Cl + NO2 +OH 4.0 × 10
�12

exp (360/T)
g

MCM

G91 C2Cl4(OH)O2 +NO3→ CCl3O2 + Cl + NO2 +OH 2.3 × 10
�12 g

MCM

G92 C2Cl5O2 +NO→ CCl3O2 + 2Cl + NO2 6.2 × 10
�12 g m

G93 C2HCl3(OH)O2 +NO+O2→ CHClO + COCl2 + HO2 +NO2 4.0 × 10
�12

exp (360/T)
h

MCM

G94 C2HCl4O2 +NO+O2→ CHClO + CCl3O2 +NO2 4.0 × 10
�12

exp (360/T)
h

MCM

Loss of chlorinated hydroperoxides

G95 CH2ClOOH +OH→ CH2ClO2 + H2O 1.9 × 10
�12

exp (190/T) - MCM

G96 CH2ClOOH + hν→ CH2ClO +OH -
i

JPL

G97 CHCl2OOH+OH→ CHCl2O2 + H2O 1.9 × 10
�12

exp (190/T) - MCM

G98 CHCl2OOH+ hν→ CHCl2O+OH -
i

JPL11

G99 CCl3OOH+OH→ CCl3O2 + H2O 1.9 × 10
�12

exp (190/T) - MCM

G100 CCl3OOH+ hν→ CCl3O+OH -
i

JPL11

Loss of chlorinated alcohols

G101 CH2ClOH+OH→ CHClO + HO2 + H2O 1.08 × 10
�12

- MCM

G102 CHCl2OH+OH+O2→ CCl2O+HO2 + H2O 9.34 × 10
�13

- MCM

G103 CCl3OH+OH→ CCl3O+H2O 3.6 × 10
�14

- MCM
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Model with Chemistry (CAM-Chem)model studies [Fernandez et al., 2014; Saiz-Lopez et al., 2014], whereby it is

assumed that (i) the rate-limiting step of the chlorine recycling process is the uptake of the gaseous reactant

to the aerosol surface and (ii) that the concentration of SS chloride is sufficient to enable the heterogeneous

reaction to proceed until the aerosol is physically removed by deposition processes. A summary of SS

dechlorination reactions and prescribed reactive uptake coefficients (γ values) are given in Table 5.

A particular focus of recent research has been on the role of N2O5 in chlorine activation. Several experimental

studies have observed production of ClNO2 following the uptake of N2O5 onto deliquesced SS droplets [e.g.,

Stewart et al., 2004]. In the northern hemisphere, ClNO2 mixing ratios ranging from several tens to several

hundred parts per trillion (ppt) have been detected in both polluted coastal and continental regions [e.g.,

Osthoff et al., 2008; Phillips et al., 2012]. The branching ratio (or yield) of ClNO2 (φClNO2) from H12 (Table 5)

is determined by competition between N2O5 hydrolysis (to give HNO3) and its reaction with aerosol Cl�.

Table 4. (continued)

Number Reaction
b

Rate Constant
c

Notes Reference

Loss of chlorinated carbonyls

G104 CHClO +OH→ Cl + CO+H2O 3.2 × 10
�13

- IUPAC

G105 CHClO + Cl→HCl + Cl + CO 8.1 × 10
�12

exp (�710/T) - IUPAC

G106 CHClO + NO3→ Cl + CO +HNO3 1.4 × 10
�12

exp (�1860/T) - MCM

G107 CHClO + hν +O2→ Cl + CO +HO2 - - JPL11

G108 CCl2O+OH→ 2Cl + OH + CO 5.0 × 10
�15

- IUPAC

G109 CCl2O+O(
1
D)→ Cl + ClO + CO 2.2 × 10

�12
exp (30/T) - JPL11

G110 CCl2O+ hν→ 2Cl + CO - - JPL11

a
Branching ratios where applicable are given in the Notes column.
b
For some reactions a full balance in terms of C atoms is not easily achieved and is therefore neglected.

c
Rate constant units: bimolecular (cm

3
molecules

�1
s
�1

), termolecular (k0 units: cm
6
molecules

�2
s
�1

, kinf units: cm
3
molecules

�1
s
�1

).
d
H abstraction (G53–G60). Cl/OH addition (G61–G64). Initial products (CH2Cl, CHCl2, CCl3, etc.) add O2 rapidly.

e
Assumed instantaneous: CH2ClO +O2→ CHClO + HO2, CHCl2O→ CHClO + Cl, and CCl3O→ CCl2O+ Cl.

f
Based on HCl elimination mechanism outlined in Wallington et al. [1996].
g
Assumed products based on ab initio study of Christiansen and Francisco [2010a] and consistent with experimentally observed end products of CCl4 oxidation

[e.g., Thüner et al., 1999].
h
Assumed products based on ab initio study of Christiansen and Francisco [2010b] and consistent with experimentally observed end products of C2HCl3 oxida-

tion [e.g., Catoire et al., 1997].
i
Photolysis rates calculated assuming absorption cross sections of CH3OOH.
j
Wallington et al. [1996].
k
Catoire et al. [1997].
l
Biggs et al. [1999].
m
Olkhov and Smith [2004].

Table 5. Summary of Heterogeneous Reactions Used to Model the Dechlorination of Sea-Salt Aerosol in TOMCAT and

Their Reactive Uptake Coefficient (γ)

Number Reaction Uptake Coefficient (γ)
a

H1 ClONO2→ Cl2 0.02

H2 ClNO2→ Cl2 0.02

H3 HOCl→ Cl2 0.1

H4 IONO2→ 0.5ICl + 0.25I2 0.01

H5 INO2→ 0.5ICl + 0.25I2 0.02

H6 HOI→ 0.5ICl + 0.25I2 0.06

H7 BrONO2→ 0.35BrCl + 0.325Br2 0.08

H8 BrNO2→ 0.35BrCl + 0.325Br2 0.04

H9 HOBr→ 0.35BrCl + 0.325Br2 0.1

H10 HNO3→HCl 0.5

H11 OH→ 0.5Cl2 0.24

H12 N2O5→ φClNO2 + (2-φ)HNO3 0.03
b

a
H1–H9: values from CAM-Chem model [Saiz-Lopez et al., 2014; Fernandez et al., 2014]. Originally from THAMO 1-D

model [Saiz-Lopez et al., 2008]. H10: reported γ of 0.5 (�0.2) for deliquesced NaCl [Guimbaud et al., 2002; Stemmler
et al., 2008]. H11: γ of 0.24 from model study of von Glasow [2006].

b
γ = 0.005 (RH< 60%) or γ = 0.03 (RH> 60%). Based on Evans and Jacob [2005].
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Here fixed values of φClNO2 were used, and we tested the sensitivity of our results to the assumed value (see

section 2.3).

ClNO2 production is also thought to occur on non-SS surfaces, where the Cl� is supplied through condensa-

tion of gas-phase HCl [e.g., Osthoff et al., 2008]. Therefore, an effective reaction producing ClNO2 on SUL is

necessary (R6). A simple parameterized scheme following Yang et al. [2010] was employed, whereby the het-

erogeneous reaction rate is dependent on the concentration of the locally limiting reactant and is set to the

slower of the two half reactions (N2O5+ aerosol or HCl + aerosol). This approach assumes no chlorine accu-

mulation on SUL and that the reaction occurs instantaneously on the substrate. In principle, the approach

is also valid for several other reactions that may recycle Cly on SUL. Therefore, the reactions R7 to R10 were

treated in a similar manner. We assumed γ values of 0.1, 0.3, 0.2, 0.2, and 0.2, for uptake of HCl, ClONO2,

BrONO2, HOCl, and HOBr on SUL, respectively.

N2O5 þ HCl→ClNO2 þ HNO3 (6)

ClONO2 þ HCl→ Cl2 þ HNO3 (7)

BrONO2 þ HCl→BrCl þ HNO3 (8)

HOCl þ HCl→ Cl2 þ H2O (9)

HOBr þ HCl→ BrCl þ H2O (10)

2.3. Simulations

We performed a series of model experiments (Table 6) designed to (i) assess the relative contribution of

organic versus inorganic sources to tropospheric Cly, (ii) examine the sensitivity of our results to the complex-

ity of the chlorocarbon degradation scheme, and (iii) explore the relative importance of heterogeneous reac-

tions involving chlorine on sulfate aerosol. ORG1 considered CH3Cl only. ORG2 was identical to ORG1 but also

considered the natural and anthropogenic chlorinated VSLSs (summarized in Table 3). In addition to chloro-

carbons, simulations HET1 and HET2 considered sea-salt dechlorination through the reactions given in

Table 5, and we included industrial and biomass burning HCl emissions. In these two experiments, φClNO2
was assigned values of 0.5 and 0.75, respectively. The simulations FULL1 and FULL2 were identical to HET1

and HET2, respectively, but also included Cly recycling on sulfate (e.g., R6–10). The full chlorocarbon oxidation

scheme (Table 4) was used in each of the above simulations.

Given mechanistic and parametric uncertainties in the fate of organic chlorinated product gases, two further

sensitivity experiments were performed. These were identical to experiments ORG2 and FULL1 described

above but with a simple treatment of the breakdown of chlorocarbons. Rather than using the full comprehen-

sive oxidation scheme (Table 4), these runs assumed instantaneous release of all Cl atoms following the oxi-

dation of CH3Cl and VSLS (i.e., the reaction is assumed to proceed in a single step, e.g., CH3Cl +OH→Cl and

CH2Cl2+OH→ 2Cl), thereby neglecting chlorinated organic product gases (i.e., CCl2O and CHClO). These

experiments are labeled with the suffix “Sim.” All simulations included bromine and iodine chemistry. After

Table 6. Summary of Model Experiments and the Tropospheric Chlorine Source Considered in Each

Experiment CH3Cl VSLS

Heterogeneous

Cl
a

φClNO2

Primary HCl

Emissions
b

Chlorocarbon Oxidation

Scheme
c

ORG1 Yes No No - No Full

ORG2 Yes Yes No - No Full

HET1 Yes Yes Yes, SS 0.50 Yes Full

HET2 Yes Yes Yes, SS 0.75 Yes Full

FULL1 Yes Yes Yes, SS + SUL 0.50 Yes Full

FULL2 Yes Yes Yes, SS + SUL 0.75 Yes Full

ORG2Sim Yes Yes No - No Simple

FULL1Sim Yes Yes Yes, SS + SUL 0.50 Yes Simple

a
SS: sea-salt dechlorination via heterogeneous reactions in Table 5. SUL: HCl recycling on sulfate aerosol (see main

text).
b
HCl emissions from industry and biomass burning.

c
Chlorocarbon oxidation scheme. Full: considering organic intermediates. Simple: instantaneous production of Cl

atoms.
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allowing the model to spin-up for 5 years (2000–2005), each simulation ran for a further 3 year period. We

analyzed and present results from the year 2008. Note that the analyzed simulation year used 2008 meteor-

ology and the anthropogenic emissions of CH4, CO, NOx, etc. are also appropriate for 2008 (see section 2.1.1).

However, the chemical boundary conditions of some halogenated compounds were based on 2014 surface

observations (Table 3). For this reason, our analysis is not meant to be wholly representative of a specific year

but is broadly appropriate for recent atmospheric conditions.

3. Results and Discussion

Sections 3.1 and 3.2 examine the chlorocarbons as a tropospheric Cly source. Section 3.3 evaluates the mod-

eled HCl against observations. Section 3.4 quantifies the MBL [Cl] and examines the Cl atom precursors. The

impact of Cl atoms on tropospheric CH4 oxidation is discussed in section 3.5. Note that throughout this study

we employ a chemical tropopause definition, with the stratosphere defined as the region above an O3 thresh-

old of 150 ppb.

3.1. Distribution of Chlorinated Organic Compounds

We first consider the tropospheric distribution of chlorocarbon source gases and intermediate product gases.

Latitude-altitude cross sections of simulated CH3Cl and VSLS are shown in Figure 1. Owing to its relatively

long lifetime of around 1 year [Carpenter et al., 2014], CH3Cl is well mixed in the troposphere. The largest

CH3Cl mixing ratios, specified from observed surface data, occur in the tropical (�20°) boundary layer

(~525–570 ppt), where vertical profile gradients, between the surface and tropopause (~17 km), are up to

~10%. Given their comparatively far shorter tropospheric lifetimes (typically several months), the tropo-

spheric distributions of VSLS exhibit larger inhomogeneity and a clear difference in the distribution of anthro-

pogenic and naturally emitted VSLS is apparent. Owing to industrial sources, the largest mixing ratios of

anthropogenic VSLS (e.g., C2Cl4 and CH2ClCH2Cl) occur in the northern hemisphere (NH), and hemispheric

gradients are pronounced. Surface mixing ratios of CH2Cl2, the most abundant (anthropogenic) chlorinated

VSLS, are >60 ppt in the NH. This is far larger than the global mean surface mixing ratios assumed in recent

modeling work [Schmidt et al., 2016], which seem inconsistent with the most recent surface observations of

CH2Cl2. In contrast, the largest mixing ratios of the oceanic chlorocarbons (Figures 1g–1i) occur in the tropics.

Recall from section 2.2.1 that for CH3Cl, CH2Cl2, CHCl3, and C2Cl4, the model uses a latitude-dependent sur-

face boundary condition based on NOAA and AGAGE measurements. Compared to independent observa-

tions of these compounds, from the HIPPO aircraft mission [Wofsy et al., 2011, 2016], the model captures

hemispheric gradients well and absolute values are generally in close agreement (Figure 2). Note that for

CH2Cl2 the apparent highmodel bias in the NH (Figure 2a) is to be expected as our prescribed surface bound-

ary condition is appropriate for 2014. The HIPPO data were obtained between 2009 and 2011, and CH2Cl2 has

increased significantly in this intervening period [Hossaini et al., 2015a, 2015b].

The total organic chlorine contained in source gases (Figure 3) is greatest between 30 and 60°N, where it

approaches around 800 ppt Cl at the surface (here, VSLS account for around ~25% of this total). The VSLS

contribution exhibits a strong hemispheric asymmetry as shown in Figure 3b. On this basis, it seems appro-

priate that global models that impose surface mixing ratio boundary conditions for VSLS consider latitudi-

nal gradients (i.e., do not assume a single and uniform global mean value at the surface). Vertical gradients

(i.e., amount lost) in total organic chlorine from VSLS, between the surface and tropical tropopause, are up

to ~30%. The breakdown of VSLS (and CH3Cl) produces a range of chlorinated organic products. CCl2O and

CHClO are the most abundant organic products, with simulated tropospheric mixing ratios of all others

<1 ppt. Latitude-altitude cross sections of CCl2O, CHClO, and total organic chlorine in product gases

(reasonably approximated as 2 × CCl2O+CHClO) are shown in Figure 4. Previous studies have considered

CCl2O and CHClO as potential carriers of chlorine to the stratosphere [e.g., Wild et al., 1996; Hossaini

et al., 2015b]. CCl2O is an oxidation product of CHCl3 and C2Cl4. It is only sparingly soluble in water but

is very rapidly hydrolyzed once in solution [e.g., Kindler et al., 1995]. The latter effect, which can occur in

cloud, was not considered here, and thus, modeled tropospheric CCl2O mixing ratios shown in Figure 4

are likely to be upper limits.

As far as we know, no atmospheric observations of CHClO exist. The largest simulated CHClO mixing ratios

(~15 ppt) are in the NH, where its main precursor (CH2Cl2) is most abundant. Recent MCM modeling has
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shown that CHClO may also be produced following the addition of Cl atoms to alkenes (not considered

here) [Riedel et al., 2014]. To our knowledge, the same study did not consider CH2Cl2 oxidation as a

CHClO source but concluded that CHClO photolysis could provide an atomic Cl source comparable to that

of HOCl photolysis. We calculate partial tropospheric mean CHClO lifetimes of 32, 372, and 865 days against

reactions with OH and NO3 and due to photolysis, respectively. The partial lifetime against oxidation with Cl

was>20 years. Our overall tropospheric CHClO lifetime with respect to these processes (~1month) is similar

to the estimate of 26 days reported by Libuda et al. [1990]. It has also been suggested that CHClO may be

lost via uptake to aerosol, with reactions on sea salt potentially producing HCl [Toyota et al., 2004]. Given

the uncertainty in such a process and a lack of information in the literature, we did not consider it here.

Besides, by performing simulations using both the comprehensive and simple chlorocarbon oxidation

schemes, uncertainties in the atmospheric fate of organic product gases, such as CHClO, are captured in

our ensemble of experiments.

3.2. Inorganic Chlorine Derived From Chlorocarbons

While sea-salt dechlorination is likely the largest source of tropospheric Cly [e.g., Graedel and Keene, 1995],

chlorocarbon oxidation provides an additional contribution. This contribution from chlorocarbons is poorly

quantified in the present day as (i) previous assessments have not considered all VSLSs present in the atmo-

sphere and (ii) the concentrations of several anthropogenic VSLS have changed substantially in recent years.

Based on simulations using the full chlorocarbon oxidation scheme, CH3Cl oxidation (ORG1) maintains a small

(<5 ppt) background level of Cly (HCl +HOCl + ClNO2+ClONO2+ 2×Cl2+OClO+BrCl + ICl) throughout most

of the free troposphere, with larger levels present in the upper troposphere (Figure 5a). When VSLS oxidation

is alsoconsidered (ORG2), around8–12 pptofCly is present in largeareasof the free troposphere (i.e., Figure5b).

Larger Cly mixing ratios of >20 ppt in the free troposphere are predicted from ORG2Sim (Figure 5c). The

sensitivityof simulatedCly fromCH3Cl + VSLS to thechlorocarbonoxidationscheme isgreatest in theNH,where

Figure 1. Annual and zonal mean latitude-altitude cross sections of (a) CH3Cl, (b) CH2Cl2, (c) CHCl3, (d) C2Cl4, (e) CH2ClCH2Cl, (f) C2HCl3, (g) CHBrCl2, (h) CHBr2Cl, and

(i) CH2BrCl volume mixing ratio (ppt) in the troposphere. Note the differing color scales. The location of the tropopause (150 ppb O3) is marked by a thick black line.

Model output from experiment ORG2.
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anthropogenic VSLSs are most prevalent. Tropospheric Cly in simulation ORG2Sim is up to ~10 ppt larger than

that fromORG2as shown inFigure5d. Thecontributionof chlorocarbonoxidation to the totalmodeledClyfield

(i.e., including inorganic chlorine sources) is variable depending on location. Figure S1 in the supporting infor-

mation shows that the initial oxidation of chlorocarbons can account for between near zero and ~10% of total

Figure 2. Observed boundary layer surface volume mixing ratio (ppt) of (a) CH3Cl, (b) CH2Cl2, (c) CHCl3, (d) C2Cl4, (e)

CH2ClCH2Cl, and (f) C2HCl3 as a function of latitude. Observed values (circles) are a compilation of measurements

obtained during the 2009–2011 NSF HIPPO campaign [Wofsy et al., 2011]. Also shown is the imposed surface mixing ratio

boundary condition in TOMCAT (dashed line; see main text).

Figure 3. Annual and zonal mean latitude-altitude cross sections of total organic chlorine (ppt Cl) in sources gases for (a)

CH3Cl + VSLS and (b) VSLS only. Model data for Figure 3a are from experiment ORG2, while for Figure 3b the data are

calculated from ORG2�ORG1.
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Cly in the boundary layer, between 20 and 30% in the free troposphere, and up to ~50% in the upper tropo-

sphere—reflecting a diminishing influence of the chlorine source from sea salt and industry/biomass burning,

with altitude. Note that we considered CH3Cl and chlorinated VSLS only. The stratosphere-to-troposphere

exchange of Cl-rich air (from the breakdown of CFCs, HCFCs, and other gases) wouldmean that the actual rela-

tive contribution of all chlorocarbons present in the atmosphere to upper tropospheric Cly would likely be

greater. In addition,wenote that in theORG simulations, inwhich sea-salt chlorine is not included, the lifetimes

of CH3Cl and VSLS against Cl atom oxidation in the troposphere (particularly in the MBL) are likely overesti-

mated. However, as loss of these compounds occurs predominately through OH oxidation, this effect is

expected to be fairly minor.

Previous assessments of tropospheric Cly have not considered organic intermediates in the oxidation chain of

chlorocarbons. In terms of Cly production from chlorocarbon oxidation, an appropriate comparison to those

studies can therefore be made from experiment ORG2Sim. Of the chlorocarbons considered, CH3Cl oxidation

provides the largest Cly source of 2299GgCl/yr—within ~10% of the previous estimates (Table 7). The

summed Cly source from all VSLS (2023GgCl/yr) is comparable to that from CH3Cl, with the anthropogenic

VSLS, CH2Cl2, making the single largest contribution (1044GgCl/yr). Tropospheric levels of CH2Cl2 have

doubled in the last decade [Hossaini et al., 2015a, 2015b]. Our estimate of Cly production from CH2Cl2 is, there-

fore, a factor of ~2 greater than that of previous assessments [Keene et al., 1999; Schmidt et al., 2016] that were

either unable to or did not account for this growth. Our results for C2Cl4 (106Gg Cl/yr) and C2HCl3 (150GgCl/

yr) are significantly lower than those of Keene et al. [1999], as levels of these anthropogenic VSLS have

declined in recent years [e.g., Simmonds et al., 2006; Hossaini et al., 2015b]. Compared to anthropogenic

VSLS, naturally emitted CHBrCl2, CHBr2Cl, and CH2BrCl are minor tropospheric Cly sources, providing around

12GgCl/yr in total.

We find that the total tropospheric Cly production from chlorocarbons is sensitive to the choice of chlorocar-

bon oxidation scheme. Cly production in ORG2Sim (4322GgCl/yr) is around a factor of 3 larger than that from

ORG2 (1403GgCl/yr). This is because, as previously noted, a number of chlorinated organic products

Figure 4. Annual and zonal mean latitude-altitude cross sections of (a) CCl2O and (b) CHClO volume mixing ratio (ppt) in

the troposphere. (c) Total chlorine (ppt Cl) in organic product gases (defined as 2 × CCl2O+ CHClO + other minor organic

products; see main text). (d) Equivalent to Figure 4c but shows summed chlorine in organic products arising from VSLS

oxidation only (i.e., excluding contributions derived from CH3Cl). Model data for Figures 4a–4c are from experiment ORG2,

while for Figure 4d the data are calculated from ORG2�ORG1.
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(produced in ORG2 but not ORG2Sim) are subject to deposition processes and CCl2O, a major product of sev-

eral chlorocarbon source gases (such as CHCl3), is long-lived (e.g. CCl2O can be transported to the strato-

sphere and release Cly as part of the stratospheric budget). Therefore, the assumption of instantaneous

release of Cl atoms from chlorocarbons, as in recent model studies [e.g., Ordóñez et al., 2012; Sherwen

et al., 2016], will likely lead to an overestimation of tropospheric Cly. However, we acknowledge that there

are clearly both mechanistic and kinetic uncertainties related to the chlorocarbon oxidation chain, and note

that we did not include possible heterogeneous/multi-phase processing of CHClO and CCl2O. The signifi-

cance of these findings for MBL [Cl] and CH4 oxidation is later discussed. Note that in principle Cly released

from chlorocarbons could, in the MBL, activate further chlorine from sea salt (i.e., due to the reactions in

Table 5). However, as the objective here is to quantify Cly production solely from chlorocarbon oxidation,

the above analysis and values from ORG2Sim in Table 7 are based on the loss rate of the chlorocarbons only

and do not include such an effect.

Table 7. Global Tropospheric Source of Cly (Gg Cl/yr) From Chlorocarbon Oxidation

Source This Work (ORG2) This Work (ORG2Sim) Keene et al. [1999] Sherwen et al. [2016]

CH3Cl - 2299 2400 2100

CH2Cl2 - 1044 490 570

CHCl3 - 232 410 250

C2Cl4 - 106 440 -

C2HCl3 - 150 350 -

CH2ClCH2Cl - 386 - -

CHBrCl2 - 6 - -

CHBr2Cl - 3 - -

CH2BrCl - 3 - -

CH2ICl - 93 - -

Total Cly production 1403 4322 4090 2920

Figure 5. Annual and zonal mean latitude-altitude cross sections of inorganic chlorine (Cly; ppt) derived from (a) CH3Cl

(ORG1), (b) CH3Cl + VSLS (ORG2), and (c) CH3Cl + VSLS (ORG2Sim, i.e., simple organic oxidation scheme). (d) The Cly differ-

ence (ORG2Sim�ORG2) and therefore the difference arising from use of the simple and full chlorocarbon oxidation schemes.
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3.3. Boundary Layer HCl

Most Cly in the troposphere resides as HCl, which is directly emitted from combustion processes [e.g.,

McCulloch et al., 1999], released from sea-salt aerosol through acid displacement (e.g., Table 5, H10), and pro-

duced following the reaction of atomic Cl with VOCs (e.g., Table 1). However, measurements of HCl through-

out the global troposphere are generally sparse. Most HCl measurements have been obtained in polluted

coastal or continental regions at the surface, where HCl mixing ratios can exhibit extremely large variability

and often exceed several parts per billion [e.g., Bari et al., 2003; Keene et al., 2007; Crisp et al., 2014]. At remote

and semi-remote sites, HCl levels are generally lower and of the order of several tens to several hundred parts

per trillion [e.g., Sanhueza and Garaboto, 2002; Sander et al., 2013].

Figure 6 shows the simulated annual mean surface distribution of HCl. Considering CH3Cl and VSLS only (i.e.,

ORG2), annual mean surface HCl is <10 ppt in most regions. As expected, far greater HCl mixing ratios are

generated when inorganic sources (i.e., sea-salt dechlorination and industry/biomass burning emissions)

are also considered. Recall from section 3.2 that chlorocarbon oxidation provides a source of up to

~4320GgCl/yr in TOMCAT. For comparison, the sea-salt dechlorination reactions in Table 5, excluding acid

displacement of HCl by HNO3 (see discussion below), provide a source of ~5550GgCl/yr. This order of mag-

nitude seems reasonable when compared to the recent estimate of 6050GgCl/yr reported in the modeling

study of Schmidt et al. [2016]. Our model predicts the largest HCl mixing ratios (up to several parts per billion)

over continental regions, particularly over Europe, the East Coast of the U.S., and over both central and East

Asia. Elevated levels of HCl over these polluted regions are due to acid displacement of HCl from sea-salt

aerosol, following uptake of HNO3 (reaction H10 in Table 5), as also shown in several measurement- [e.g.,

Keene et al., 2007] and model-based [e.g., Pechtl and von Glasow, 2007] studies. In addition, primary HCl emis-

sions from combustion are greatest in these regions [McCulloch et al., 1999]. Note that reaction H10 in Table 5

provides a source of ~90 Tg Cl/yr in TOMCAT. This is a larger source than the range of ~37–73 Tg Cl/yr due to

HCl acid displacement estimated by Graedel and Keene [1995], possibly due to the different time period over

which our study examines. However, we note that TOMCAT reproduces MBL HCl measurements at various

locations well (see below). We find that larger maximum HCl levels are generated in experiment HET2 com-

pared to HET1, owing to the larger ClNO2 yield in the former.

Figure 6. Annual mean surface volume mixing ratio (ppt) of HCl from (a) ORG1 (CH3Cl only), (b) ORG2 (CH3Cl + VSLS), (c)

HET1 (organic + inorganic Cl sources; φClNO2 = 0.5), (d) HET2 (as HET1 but φClNO2 = 0.75), (e) FULL1 (as HET1 with HCl

recycling on sulfate), and (f) FULL2 (as HET2 with HCl recycling on sulfate). Maximum values are annotated. Note the change

in scale from Figures 6a and 6b to 6c–6f.
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Figure 7. Comparison of modeled annual mean surface HCl (ppt) at continental locations with observed values. In some sites,

a mean value was not reported and just the range is given. Model output from experiment HET2. Measurement data: Young

et al. [2013], Crisp et al. [2014], Dasgupta et al. [2007], Bari et al. [2003], Matsumoto and Okita [1998], Maben et al. [1995],

Puxbaum et al. [1985], Lindgren et al. [1992], Keuken et al. [1988],Harrison and Allen [1990],Grosjean [1990], Johnson et al. [1987],

John et al. [1988], Appel et al. [1991], Iwasaki et al. [1985], Dimmock and Marshall [1987], Gounon and Milhau [1986],Matusca et

al. [1984], Spicer [1986], Marché et al. [1980], Rahn et al. [1979], Erisman et al. [1988] and Allegrini et al. [1984].

Figure 8. Same as in Figure 7 but for remote and semi-remote locations. Measurement data: Lawler et al. [2009], Sander et al.

[2003], Sanhueza and Garaboto [2002], Jourdain and Legrand [2002], Kim et al. [2008], Pszenny et al. [1993, 2004], Keene and

Savoie [1998] and Keene et al. [1990].
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A comparison of model surface HCl to measurements obtained in continental and remote/semi-remote loca-

tions is given in Figures 7 and 8, respectively. The observed data are based on a recent HCl measurement

compilation [Crisp et al., 2014]. These comparisons reveal that the simulated abundance of HCl is generally

realistic. At the majority of sites, modeled HCl falls within the measured range and TOMCAT generally cap-

tures the spatial variability of HCl, with greatly elevated levels in polluted continental regions and far lower

values in remote/semiremote regions (e.g., Cape Verde). Based on HCl measured in Antarctica [Jourdain

and Legrand, 2002], the model may underestimate chlorine production at high latitudes in the southern

hemisphere. However, broadly, the spatial HCl distribution and hemispheric asymmetry are in agreement

with the model study of Erickson et al. [1999], which also reported the largest HCl production in the NH, espe-

cially in the North Atlantic and in regions downwind of Asian sources of acidic gases.

3.4. Chlorine Atoms and Photolabile Precursors

Figure 9 shows the simulated annual mean surface [Cl]. We find that CH3Cl oxidation provides a small [Cl]

background of around 0.5–2× 102 atoms cm�3 throughout most of the global boundary layer. When VSLSs

are also considered (i.e., ORG2), annual mean [Cl] reaches a maximum of 0.5 × 103 atoms cm�3 in some coastal

regions of the NH. Note that the local lifetime of VSLS exhibits significant seasonal variability and surface [Cl]

in ORG2 exceeds 1 × 103 atoms cm�3 in some locations during summer months (not shown). Similarly, many

Cl precursors (e.g., Cl2 and BrCl) are readily photolyzed; thus, [Cl] exhibits a marked diurnal cycle. Daytime [Cl]

is larger than the annual averages shown in Figure 9 (see modeled midday [Cl] in Figure S2).

As expected, the largest [Cl] levels (note the scale change) are generated when inorganic chlorine sources are

also considered. In all HET and FULL experiments, [Cl] is >1× 104 atoms cm�3 over large coastal/continental

regions of the polluted NH (and exceeds 105 atoms cm�3 in some regions at midday; Figure S2). As discussed

in section 3.3, HCl is abundant in these regions due to the combined influence of acid displacement from sea

salt (owing to elevated HNO3) and due to primary HCl emissions. Where HCl is abundant, oxidation of HCl sus-

tains the relatively large [Cl] levels, and further release of Cly from aerosol—an autocatalytic process—is

initiated. Other factors contribute to elevated [Cl] in the polluted NH, including the production of ClNO2

(see later discussion), and the recycling of HCl on sulfate aerosol. The effect of the latter can be seen by

Figure 9. Annual mean surface [Cl] (atoms cm
�3

) from (a) ORG1, (b) ORG2, (c) HET1, (d) HET2, (e) FULL1, and (f) FULL2.

Maximum values are annotated. Note the difference in scales between Figures 9a and 9b and 9c–9f.
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comparing Figures 9c and 9d with 9e

and 9f. Maximum [Cl] levels are larger,

reaching >5 × 104 atoms cm�3, when

HCl recycling on sulfate aerosol is

considered, compared to simulations

considering heterogeneous chlorine

chemistry on sea-salt aerosol only.

Several previous studies have reported

[Cl] of this order in polluted coastal air

[e.g., Keene et al., 2007]. Overall, the link

demonstrated in our global model

between anthropogenic pollution

sources and active chlorine chemistry

is consistent with the same notion

previously established by several

measurement- and 1-D model-based

studies [e.g., Pechtl and von Glasow,

2007; Lawler et al., 2009, 2011].

Accordingly, our results indicate a strong

hemispheric gradient in [Cl]. Someof the

lowest [Cl] levels are predicted over the

Southern Ocean (assumed 60°S–80°S),

where modeled surface [Cl] ranges from

near zero to around 1×103 atomscm�3.

Broadly, this is in agreement with Wingenter et al. [1999], who inferred [Cl] levels of around of 720 (�100)

atoms cm�3 in this region. Overall, [Cl] levels in TOMCAT seem realistic and fall within the large range of pre-

viousmeasurement-based estimates, 103 to 105 atoms cm�3 [Saiz-Lopez and von Glasow, 2012, and references

therein]. The air mass-weighted tropospheric mean [Cl] is 1.3 × 103 atoms cm�3 from simulation FULL1.

We also examined the sensitivity of surface [Cl] to the choice of chlorocarbon oxidation scheme. Figure 10

compares the annual mean surface [Cl] from FULL1 and FULL1Sim, in absolute and percent terms. The simple

oxidation scheme yields larger [Cl] levels, with typical differences of 0.1–0.2 × 103 atoms cm�3 in the tropical

MBL (where the lifetime of VSLS is shortest) and >0.5 × 103 atoms cm�3 in some coastal regions. Regionally,

such differences would appear to be quite significant, given that a lower limit of MBL [Cl] is generally

regarded as on the order of 103 atoms cm�3 [Saiz-Lopez and von Glasow, 2012]. In percent terms, [Cl] in

FULL1Sim is ~10% to >100% larger, depending on region. The assumptions made regarding chlorocarbon

oxidation in models, therefore, need to be considered when evaluating uncertainty in model-derived [Cl]

estimates and intermodel differences.

Observations of (non-HCl) Cl atom precursors are generally sparse, although in recent years ClNO2 detection

has been a major focus of a number of campaigns. ClNO2 mixing ratios of typically several hundred parts per

trillion have been observed in coastal [e.g.,Osthoff et al., 2008; Riedel et al., 2012] and continental regions [e.g.,

Thornton et al., 2010; Mielke et al., 2011] of the U.S. and Canada and over Europe [Phillips et al., 2012; Bannan

et al., 2015]. These measurements highlight a strong ClNO2 diurnal cycle related to nocturnal production from

N2O5, with maximum ClNO2 concentrations generally observed before sunrise. Figure 11 compares the mod-

eled annual mean ClNO2 at the surface from experiments HET2 (no ClNO2 production on sulfate) and FULL2

(with ClNO2 production on sulfate). ClNO2 production in TOMCAT is limited to high NOx regions and is largest

in East Asia. Large differences between the HET2 and FULL2 simulations are apparent, with maximum ClNO2

levels in the latter up to ~4X greater. This highlights the importance of ClNO2 production on sulfate, following

HCl condensation, and is consistent with current understanding of ClNO2 production frommeasurement and

modeling studies [e.g., von Glasow, 2008; Thornton et al., 2010; Long et al., 2014]. The magnitude of surface

ClNO2 in TOMCAT is similar to that of the global model study of Long et al. [2014]—i.e., annual mean values

on the order of 80–120 ppt in the above NH regions. Figure S3 shows the modeled mean surface ClNO2

mixing ratio at 5 A.M. local time (for assumed φClNO2 of 0.5). Before sunrise, modeled ClNO2 mixing ratios

Figure 10. Difference in surface [Cl] between runs FULL1Sim and FULL1 in

(a) absolute (10
3
atoms cm

�3
) and (b) percentage (%) terms.
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of up to several hundred parts per tril-

lion are typical of measured values

reported in recent work [e.g., Simpson

et al., 2015, and references therein]. For

example, Bannan et al. [2015] reported

a mean ClNO2 diurnal cycle over

London that peaked between 4 A.M.

and 5 A.M. and with mean ClNO2mixing

ratios of ~150 ppt at this time. Here the

modeled mean ClNO2 mixing ratio over

London at 5 A.M. is 200 ppt.

Over the U.S., TOMCAT predicts the lar-

gest surface ClNO2 mixing ratios along

the East Coast. Here the regional-

focused model study of Sarwar et al.

[2012] predicted mean daily maximum

ClNO2 mixing ratios typically in the

range of ~240–480 ppt in February.

The equivalent TOMCAT ClNO2 field

(mean of daily maximum in February)

is shown in Figure S4. Along the East

Coast of the U.S., modeled ClNO2

exceeds 350 ppt in some regions.

However, the model appears to signifi-

cantly underestimate ClNO2 over the

West Coast where, for example, a mean nighttime value of 120 ppt has been reported off the Californian coast

[Riedel et al., 2012]. The model of Sarwar et al. [2012] predicted mean daily maximum ClNO2 mixing ratios of

>400 ppt in the months of February and September over Southern California. The equivalent TOMCAT values

in this region rarely exceed several tens of parts per trillion, although values of ~60 ppt are present along the

West Coast in winter (Figure S4). The reason for this apparent underestimation of ClNO2 is unclear, but it is

potentially due to a combination of (i) an underestimation of regional NOx emissions, although at the global

scale NOx emissions in TOMCAT are reasonable [Monks et al., 2016]; (ii) an underestimation of localized chlor-

ine sources (e.g., swimming pools and power plants) and/or sea-salt/sulfate aerosol that would increase

ClNO2 production (e.g., through R6; section 2.2.2); or finally, (iii) the assumed ClNO2 yield following N2O5

uptake to aerosol. On the latter point, our model assumes that φClNO2= 0.5 or 0.75, although values approach-

ing 1.0 for coarse particulate matter over Coastal California have been predicted [Sarwar et al., 2012]. The

resolution of the global model may also be a reason for underestimating ClNO2 hot spot regions considering

the spatial variability of the above processes.

Limited measurements of Cl2 in the MBL have also been reported. Finley and Saltzman [2006, 2008] detected

~2–26 ppt of Cl2 in coastal air in California. Cl2 mixing ratios >100 ppt have been observed in coastal sites

experiencing polluted continental outflow [Spicer et al., 1998; Lawler et al., 2009]. The simulated annual mean

surface mixing ratio of Cl2 is shown in Figure S5. Cl2 exhibits a very similar spatial pattern to that shown in

Figure 11 (i.e., coincident with elevated ClNO2), with mixing ratios less than 5 ppt over most of the globe

but with levels reaching several tens of parts per trillion in polluted regions and, in a small number of model

grid boxes over East Asia, up to ~200 ppt.

3.5. Methane Oxidation

The column-integrated CH4 loss rate due to OH and Cl (summed over the depth of the troposphere) is shown

in Figure 12 (experiment FULL1). Globally, oxidation by OH is the dominant chemical sink of CH4, and in

TOMCAT, the chemical CH4 lifetime with respect to tropospheric OH (τOH) is 10 years (Table 8). This is in rea-

sonable agreement to the multimodel mean estimate of 9.3 (�0.9) years reported by Voulgarakis et al. [2013],

which used the same tropopause definition (i.e., 150 ppb ozone threshold), and is also consistent with the

Figure 11. Annual mean ClNO2 surface mixing ratio (ppt) from model

experiments (a) HET2 and (b) FULL2.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,289



recent measurement-based estimate

of 11.2 (�1.3) reported by Prather

et al. [2012]. In percent terms, the

contribution of Cl to the total CH4

chemical sink (i.e., from both OH

and Cl) in the boundary layer, and

also for the entire tropospheric col-

umn, is shown in Figure 13. Cl

accounts for up to several percent of

total CH4 oxidation throughout most

of the boundary layer and between

10 and 20% over large areas of the

polluted NH and over the Southern

Ocean. In a small number of model

grid boxes values up to ~34% occur.

Previously, Lawler et al. [2011] esti-

mated that Cl atoms could account

for 10–15% of total CH4 oxidation at

the Cape Verde Atmospheric

Observatory, based on data-

constrained box model simulations.

They inferred the largest percentage

Cl contributions at times when the

site experienced aged polluted air

from mainland Europe. In the vicinity

of Cape Verde, our modeled contri-

bution (around 6%) is lower on average than the estimate of Lawler et al. [2011], though within the range of

5.4–11.6% reported by the model study of Sommariva and von Glasow [2012]. We note that we would not

expect to capture the specific conditions under which themeasurements of Lawler et al. [2011] were obtained.

Further, their estimate of 10–15% is compatible with our estimates in other coastal regions that experience

polluted conditions. Overall, the significance of the CH4+Cl sink is likely to vary substantially with region.

Few estimates of the global significance of the CH4+Cl sink have been reported. Lawler et al. [2009] esti-

mated that Cl could account for up to 7% of global CH4 oxidation by extrapolating inferred levels of [Cl] at

Cape Verde. This estimate assumed that [Cl] levels, derived at the site under polluted conditions, were repre-

sentative of the whole tropical MBL. A smaller contribution of 2% was derived for “clean” conditions. Our

results (Table 8) suggest that Cl atoms account for around 2.5–2.7% of the global total CH4 oxidation in

the troposphere and are therefore in reasonable agreement with the lower, clean case, reported by Lawler

et al. [2009]. By examining the observed apparent kinetic isotope effect (KIE) of the CH4 atmospheric sink,

Allan et al. [2007] estimated a global CH4 sink of 13–37 Tg CH4/yr due to Cl in the troposphere. Similarly,

Platt et al. [2004] analyzed the observed isotope effects in methane and estimated a sink of 19 TgCH4/yr.

Our analogous estimates are around 12–13 Tg CH4/yr and are therefore at the lower limit of those studies.

In our experiments the assumed ClNO2 yield (i.e., assumed φClNO2 of either 0.5 or 0.75), following N2O5 uptake

to aerosol, and details of the chlorocarbon oxidation scheme both introduce an uncertainty of

around 1 Tg CH4/yr.

Figure 12. Annual mean tropospheric column-integrated reaction rate

(molecules cm
�2

s
�1

) for (a) CH4 +OH and (b) CH4 + Cl. Note the difference

in scales. Model output from experiment FULL1.

Table 8. Summary of Modeled Tropospheric Mean CH4 Burden, CH4 Sinks due to Tropospheric OH and Cl and CH4
Chemical Lifetime (τ)

Experiment

CH4 Burden

(Tg)

CH4 +OH Sink

(Tg CH4/yr)

CH4 + Cl Sink

(Tg CH4/yr)

Percent of Total CH4
Oxidation from Cl

τOH

(Years)

τCl

(Years)

FULL1 4595 460.2 12.0 2.5 10.0 384.4

FULL1Sim 4595 460.0 12.9 2.7 10.0 355.6

FULL2 4594 463.0 13.1 2.7 9.9 351.5
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Given uncertainties in both the KIE

approach and our process-based

modeling, it is difficult to fully recon-

cile the different estimates discussed

above. Notably, there is a large differ-

ence (around a factor of 3) between

our estimate of 12–13 TgCH4/yr and

the upper limit of 37 Tg CH4/yr

reported by Platt et al. [2004]. Our

model estimate may be too conser-

vative given that TOMCAT does not

consider all tropospheric Cly sources

that may be significant. These are

potentially numerous and include

the persistent degassing of quiescent

volcanoes [e.g., Halmer et al.,

2002; Aiuppa et al., 2007]; chlorine

emissions from terrestrial ecosystems

[e.g., Keene et al., 1999]; and relatively

localized emissions from, for exam-

ple, cooling towers and swimming

pools [Sarwar and Bhave, 2007]. As

the focus of this work was on Cly ori-

ginating in the troposphere, any

influx of Cly from the stratosphere

[e.g., von Hobe et al., 2011] was also

not considered. This source has been

estimated at 430GgCly/yr [Sherwen et al., 2016] and is small in comparison to the total Cly supplied from the

breakdown of CH3Cl + VSLS (Table 7) and sea-salt dechlorination (section 3.3) considered in our work. On this

basis and given that the lower and free troposphere are the regions which make the largest contribution to

CH4 oxidation [Bloss et al., 2005], the exclusion of a tropospheric Cly source due to input of stratospheric air is

expected to have a relatively small impact on our results. However, the regional and global significance of the

above Cly sources for tropospheric [Cl] will be investigated in future work (combined, it is anticipated that

their inclusion would increase [Cl] and thereby also the CH4 sink). We also note that the measurement-based

estimates of the CH4+Cl sink discussed above rely on extrapolation of fairly localized data and therefore carry

significant uncertainty. On balance, we suggest that a sink of around 12–13 Tg CH4/yr from Cl, from this work,

constitutes a reasonable conservative estimate, considering that (i) TOMCAT provides a realistic simulation of

HCl—the most abundant Cly reservoir (section 3.3)—and (ii) that simulated [Cl] is within the expected, albeit

large, range from previous evaluations. Overall, the tropospheric loss of CH4 from Cl is small compared to

uncertainty in the tropospheric CH4 sink from OH, which is >100 Tg CH4/yr based on bottom-up estimates

for 2000–2009 period [Kirschke et al., 2013].

4. Conclusions

We have implemented a detailed representation of tropospheric chlorine chemistry and sources into the

TOMCAT global 3-D chemical transport model. The model incorporates the oxidation of chlorocarbons,

including various natural and anthropogenic VSLSs, industrial and biomass burning HCl emissions, and a

simplified treatment of sea-salt dechlorination. Model simulations were performed to quantify tropospheric

[Cl] and to estimate the regional and global importance of Cl atoms as a tropospheric CH4 sink. We find that

tropospheric Cly production from chlorocarbons is sensitive to the implementation of chlorocarbon oxida-

tion. When organic chlorine-containing product gases, produced from CH3Cl, CH2Cl2, CHCl3, C2Cl4,

CH2ClCH2Cl, and C2HCl3, are considered, total Cly production from chlorocarbons (~1400GgCl/yr) is approxi-

mately a factor of 3 lower compared to a model run in which all Cl atoms are instantaneously released from

Figure 13. Annual average contribution of Cl atoms to CH4 oxidation (%) for

(a) boundary layer (<1 km) and (b) tropospheric column. Model output from

experiment FULL1.
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the above gases upon initial oxidation (~4320GgCl/yr). Therefore, the assumption of instantaneous Cly

release from chlorocarbons will likely lead to an overestimate of tropospheric Cly production in models.

Further work is needed to assess the atmospheric fate of CHClO, which is an organic end product in the

oxidation chain of most of the above species and for which no atmospheric observations exist. Based on

the chlorine sources considered in our model, we estimate chlorocarbon oxidation accounts for between

near zero and 50% of tropospheric Cly, depending on altitude.

Compared to the limited observational data, the model provides a realistic simulation of the major chlorine

reservoir HCl at numerous sites. In general, boundary layer HCl exceeds several parts per billion at polluted

continental sites due to both acid displacement from sea-salt and industrial emissions, though is far lower

—typically several hundred parts per trillion—in more remote MBL regions. Simulated tropospheric [Cl] also

seems reasonable in comparison to measurement-based estimates, i.e., within the range of 103 to

105 atoms cm�3 [Saiz-Lopez and von Glasow, 2012, and references therein]. Chlorocarbon oxidation provides

a small annual mean global [Cl] background of <0.1 to 0.5 × 103 atoms cm�3 in the boundary layer, with

larger concentrations of up to ~1.0 × 103 atoms cm�3 in some regions during summer months. When both

organic and inorganic chlorine sources are considered in the model, simulated surface [Cl] levels exceed

1.0 × 104 atoms cm�3 over large areas of the NH. In addition to sea-salt dechlorination, our results show an

important role for heterogeneous chlorine reactions on sulfate aerosol which recycle HCl to more reactive

forms. With these reactions included, we estimate a tropospheric mean [Cl] (weighted by air mass) of

around 1.3 × 103 atoms cm�3.

We estimate a tropospheric CH4 sink of 12–13 Tg CH4/yr due to the CH4+Cl reaction. This is likely a conser-

vative estimate as not all tropospheric chlorine sources were considered and is at the lower limit of previous

measurement-derived estimates. In our simulations, Cl atoms account for 2.5 to 2.7% of total tropospheric

CH4 oxidation. This sink is small compared to uncertainty in the global CH4 sink from OH but nonetheless

important to quantify for a thorough understanding of the global methane budget. However, regionally,

we calculate that Cl atoms can account for >20% of boundary layer CH4 oxidation in some areas. Further

constraint on tropospheric [Cl] would be beneficial to help close the atmospheric CH4 budget and to evaluate

the wider role of chlorine in tropospheric chemistry (e.g., as a sink of nonmethane hydrocarbons). Finally, our

global model results underpin the notion that active chlorine chemistry is strongly coupled to anthropogenic

pollution, as suggested by several regionally focused studies [e.g., Lawler et al., 2009]. On this basis, it seems

probable that tropospheric [Cl], and possibly the impact of chlorine chemistry on tropospheric composition,

may have changed during the Anthropocene. Given the reactivity of Cl atoms to a wide range of climate-

relevant gases, such an area should be examined from a climate forcing perspective in future research.

References
Aiuppa, A., A. Franco, R. von Glasow, A. G. Allen, W. DˈAlessandro, T. A. Mather, D. M. Pyle, andM. Valenza (2007), The tropospheric processing

of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations, Atmos. Chem. Phys., 7(5),

1441–1450, doi:10.5194/acp-7-1441-2007.

Alexander, B., R. J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W. Lee, and M. H. Thiemens (2005), Sulfate formation in sea-salt

aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659.

Allan, W., H. Struthers, and D. C. Lowe (2007), Methane carbon isotope effects caused by atomic chlorine in themarine boundary layer: Global

model results compared with southern hemisphere measurements, J. Geophys. Res., 112, D04306, doi:10.1029/2006JD007369.

Allegrini, I., F. Santis, A. Febo, A. Liberti, and M. Possanzini (1984), Evaluation of atmospheric acidity—Sampling and analytical techniques, in

Physico-Chemical Behaviour of Atmospheric Pollutants, edited by B. Versino and G. Angeletti, pp. 12–19, Springer, Netherlands, doi:10.1007/

978-94-009-6505-8_2.

Appel, B., Y. Tokiwa, V. Povard, and E. Kothny (1991), The measurement of atmospheric hydrochloric acid in Southern California, Atmos.

Environ. Gen. Top., 25(2), 525–527.

Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe (2004), Evaluated kinetic and

photochemical data for atmospheric chemistry: Volume I—Gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4(6),

1461–1738, doi:10.5194/acp-4-1461-2004.

Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and I. U. P. A. C. Subcommittee

(2006), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—Gas phase reactions of organic species, Atmos.

Chem. Phys., 6(11), 3625–4055, doi:10.5194/acp-6-3625-2006.

Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe (2007), Evaluated kinetic and

photochemical data for atmospheric chemistry: Volume III—Gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7(4),

981–1191, doi:10.5194/acp-7-981-2007.

Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and T. J. Wallington (2008),

Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV—Gas phase reactions of organic halogen species, Atmos.

Chem. Phys., 8(15), 4141–4496, doi:10.5194/acp-8-4141-2008.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,292

Acknowledgments

This work was supported by the Natural

Environment Research Council (NERC)

through the TropHAL project (NE/

J02449X/1) and a NERC IRF (NE/

N014375/1). R.H. thanks NERC for a

research fellowship. M.P.C. thanks the

Royal Society for a Wolfson Research

Merit Award. The modeling work was

performed using the Archer and Leeds

ARC2 high-performance computing

facilities. The HIPPO data [Wofsy et al.,

2016] used in this paper are publically

available at http://www.eol.ucar.edu/

projects/hippo. Model output is avail-

able from Ryan Hossaini.



Bannan, T. J., et al. (2015), The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in

the summer of 2012, and an investigation of the role of Cl atom oxidation, J. Geophys. Res. Atmos., 120, 5638–5657, doi:10.1002/

2014JD022629.

Bari, A., V. Ferraro, L. Wilson, D. Luttinger, and L. Husain (2003), Measurements of gaseous HONO, HNO3,SO2, HCl, NH3, particulate sulfate and

PM2.5 in New York, NY, Atmos. Environ., 37(20), 2825–2835, doi:10.1016/S1352-2310(03)00199-7.

Bartlett, W. P., and D. W. Margerum (1999), Temperature dependencies of the Henryˈs law constant and the aqueous phase dissociation

constant of bromine chloride, Environ. Sci. Technol., 33(19), 3410–3414, doi:10.1021/es990300k.

Behnke, W., C. George, V. Scheer, and C. Zetzsch (1997), Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl

solution: Bulk and aerosol experiments, J. Geophys. Res., 102(D3), 3795–3804, doi:10.1029/96JD03057.

Biggs, P., C. E. Canosa-Mas, C. J. Percival, D. E. Shallcross, and R. P. Wayne (1999), A study of the self reaction of CH2ClO2 and CHCl2O2 radicals

at 298 k, Int. J. Chem. Kinet., 31(6), 433–444, doi:10.1002/(SICI)1097-4601(1999)31:6<433::AID-KIN5>3.0.CO;2-E.

Bilde, M., J. J. Orlando, G. S. Tyndall, T. J. Wallington, M. D. Hurley, and E. W. Kaiser (1999), FT-IR poduct studies of the Cl-initiated oxidation of

CH3Cl in the presence of NO, J. Phys. Chem. A, 103(20), 3963–3968, doi:10.1021/jp984523t.

Bloss, W. J., M. J. Evans, J. D. Lee, R. Sommariva, D. Heard, and M. J. Pilling (2005), Coupling of field measurements of OH and a global

chemistry transport model, Faraday Discuss., 130, 425–436, doi:10.1039/B419090D.

Breider, T. J. (2010), Coupled halogen-sulfur-aerosol modelling in a 3D chemical transport model, PhD thesis, University of Leeds.

Breider, T. J., M. P. Chipperfield, G. W. Mann, M. T. Woodhouse, and K. S. Carslaw (2015), Suppression of CCN formation by bromine chemistry

in the remote marine atmosphere, Atmos. Sci. Lett., 16(2), 141–147, doi:10.1002/asl2.539.

Breider, T. J., M. P. Chipperfield, N. A. D. Richards, K. S. Carslaw, G. W. Mann, and D. V. Spracklen (2010), Impact of BrO on dimethyl sulfide in

the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868.

Brimblecombe, P., and S. L. Clegg (1988), The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem., 7(1), 1–18,

doi:10.1007/BF00048251.

Burkholder, J. B., et al. (2015), Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation number 18, JPL

Publication 15-10, Jet Propulsion Laboratory.

Caloz, F., F. F. Fenter, and M. J. Rossi (1996), Heterogeneous kinetics of the uptake of ClONO2 on NaCl and KBr, J. Phys. Chem., 100(18),

7494–7501, doi:10.1021/jp953099i.

Carpenter, L., et al. (2014), Ozone-depleting substances (ODSs) andother gases of interest to theMontreal Protocol, in: ScientificAssessment of

Ozone Depletion: 2014, in Global Ozone Research and Monitoring Project, Report No. 55 chap. 1, World Meteorol. Organ., Geneva,

Switzerland.

Carpenter, L. J., S. M. MacDonald, M. D. Shaw, R. Kumar, R. W. Saunders, R. Parthipan, J. Wilson, and J. M. C. Plane (2013), Atmospheric iodine

levels influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6(2), 108–111, doi:10.1038/NGEO1687.

Catoire, V., R. Lesclaux, W. F. Schneider, and T. J. Wallington (1996), Kinetics and mechanisms of the self-reactions of CCl3O2 and CHCl2O2

radicals and their reactions with HO2, J. Phys. Chem., 100(34), 14,356–14,371, doi:10.1021/jp960572z.

Catoire, V., P. A. Ariya, H. Niki, and G. W. Harris (1997), FTIR study of the Cl- and Br-atom initiated oxidation of trichloroethylene, Int. J. Chem.

Kinet., 29(9), 695–704, doi:10.1002/(SICI)1097-4601(1997)29:9<695::AID-KIN7>3.0.CO;2-P.

Chipperfield, M. P. (2006), New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer

experiments, Q. J. R. Meteorol. Soc., 132(617), 1179–1203, doi:10.1256/qj.05.51.

Christiansen, C. J., and J. S. Francisco (2010a), Atmospheric Oxidation of Tetrachloroethylene: An Ab Initio Study, J. Phys. Chem. A, 114(34),

9177–9191, doi:10.1021/jp103845h.

Christiansen, C. J., and J. S. Francisco (2010b), Atmospheric Oxidation of Trichloroethylene: An Ab Initio Study, J. Phys. Chem. A, 114(34),

9163–9176, doi:10.1021/jp103769z.

Crisp, T. A., B. M. Lerner, E. J. Williams, P. K. Quinn, T. S. Bates, and T. H. Bertram (2014), Observations of gas phase hydrochloric acid in the

polluted marine boundary layer, J. Geophys. Res. Atmos., 119, 6897–6915, doi:10.1002/2013JD020992.

Dasgupta, P. K., S. W. Campbell, R. S. Al-Horr, S. M. R. Ullah, J. Li, C. Amalfitano, and N. D. Poor (2007), Conversion of sea salt aerosol to NaNO3

and the production of HCl: Analysis of temporal behaviour of aerosol chloride/nitrate and gaseous HCl/HNO3 concentrations with AIM,

Atmos. Environ., 41(20), 4242–4257, doi:10.1016/j.atmosenv.2006.09.054.

de Bruyn, W. J., J. A. Shorter, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb (1995), Uptake of haloacetyl and carbonyl halides by

water surfaces, Environ. Sci. Technol., 29(5), 1179–1185, doi:10.1021/es00005a007.

Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc.,

137(656), 553–597, doi:10.1002/qj.828.

Dimmock, N., and G. Marshall (1987), The determination of hydrogen chloride in ambient air with diffusion/denuder tubes, Anal. Chim. Acta,

202, 49–59, doi:10.1016/S0003-2670(00)85901-2.

Emmons, L. K., et al. (2010), Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci.

Model Dev., 3(1), 43–67, doi:10.5194/gmd-3-43-2010.

Emmons, L. K., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): Overview and evaluation with observations, Atmos.

Chem. Phys., 15, 6721–6744, doi:10.5194/acp-15-6721-2015.

Erickson, D. J., C. Seuzaret, W. C. Keene, and S. L. Gong (1999), A general circulation model based calculation of HCl and ClNO2 production

from sea salt dechlorination: Reactive chlorine emissions inventory, J. Geophys. Res., 104, 8347–8372, doi:10.1029/98JD01384.

Eriksson, E. (1959), The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part 1,

Tellus, 11(4), 375–403.

Erisman, J.-W., A. W. Vermetten, W. A. Asman, A. Waijers-Ijpelaan, and J. Slanina (1988), Vertical distribution of gases and aerosols—The beha-

viour of ammonia and related components in the lower atmosphere,Atmos. Environ., 22(6), 1153–1160, doi:10.1016/0004-6981(88)90345-9.

Evans, M. J., and D. J. Jacob (2005), Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen

oxides, ozone, and OH, Geophys. Res. Lett., 32 L09813, doi:10.1029/2005GL022469.

Feng, W., M. P. Chipperfield, S. Dhomse, B. M. Monge-Sanz, X. Yang, K. Zhang, and M. Ramonet (2011), Evaluation of cloud convection and

tracer transport in a three-dimensional chemical transport model, Atmos. Chem. Phys., 11(12), 5783–5803, doi:10.5194/acp-11-5783-2011.

Fernandez, R. P., R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez (2014), Bromine partitioning in the tropical tropopause layer:

Implications for stratospheric injection, Atmos. Chem. Phys., 14(24), 13,391–13,410, doi:10.5194/acp-14-13391-2014.

Finlayson-Pitts, B., M. Ezell, and J. Pitts (1989), Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles

with gaseous N2O5 and ClONO2, Nature, 337(6204), 241–244, doi:10.1038/337241a0.

Finley, B. D., and E. S. Saltzman (2006), Measurement of Cl2 in coastal urban air, Geosphs. Res. Lett., 33, L11809, doi:10.1029/2006GL025799.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,293



Finley, B. D., and E. S. Saltzman (2008), Observations of Cl2, Br2, and I2 in coastal marine air, J. Geophys. Res., 113, D21301, doi:10.1029/

2008JD010269.

Folberth, G. A., D. A. Hauglustaine, J. Lathière, and F. Brocheton (2006), Interactive chemistry in the Laboratoire de Météorologie Dynamique

general circulation model: Model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry, Atmos. Chem.

Phys., 6(8), 2273–2319, doi:10.5194/acp-6-2273-2006.

Gebel, M. E., and B. J. Finlayson-Pitts (2001), Uptake and reaction of ClNO2 on NaCl and synthetic sea salt, J. Phys. Chem. A, 105(21), 5178–5187,

doi:10.1021/jp0046290.

Giannakopoulos, C., M. Chipperfield, K. Law, and J. Pyle (1999), Validation and intercomparison of wet and dry deposition schemes using

Pb-210 in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104, 23,761–23,784, doi:10.1029/

1999JD900392.

Gounon, J., and A. Milhau (1986), Incinerator emissions of heavy metals and particulates specialized seminar analysis of inorganic pollutants

emitted by the City of Paris garbage incineration plants, Waste Manage. Res., 4(1), 95–104, doi:10.1177/0734242x8600400111.

Graedel, T. W., andW. C. Keene (1995), Tropospheric budget of reactive chlorine,Global Biogeochem. Cycles, 9, 47–77, doi:10.1029/94GB03103.

Granier, C., J. Lamarque, A. Mieville, J. Muller, J. Olivier, J. Orlando, J. Peters, G. Petron, G. Tyndall, and S. Wallens (2005), POET, a database of

surface emissions of ozone precursors. [Available at http://www.aero.jussieu.fr/projet/ACCENT/POET.php.]

Grosjean, D. (1990), Liquid-chromatography analysis of chloride and nitrate with negative ultraviolet detection: Ambient levels and relative

abundance of gas-phase inorganic and organic acids in Southern California, Environ. Sci. Technol., 24(1), 77–81, doi:10.1021/es00071a007.

Guimbaud, C., F. Arens, L. Gutzwiller, H. W. Gäggeler, and M. Ammann (2002), Uptake of HNO3 to deliquescent sea-salt particles: A study

using the short-lived radioactive isotope tracer
13
N, Atmos. Chem. Phys., 2(4), 249–257, doi:10.5194/acp-2-249-2002.

Halmer, M., H.-U. Schmincke, and H.-F. Graf (2002), The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A

global data set for the past 100 years, J. Volcanol. Geotherm. Res., 115(34), 511–528, doi:10.1016/S0377-0273(01)00318-3.

Harrison, R., and A. Allen (1990), Measurements of atmospheric HNO3, HCl and associated species on a small network in eastern England,

Atmos. Environ. Gen. Top., 24(2), 369–376, doi:10.1016/0960-1686(90)90116-5.

Holtslag, A., and B. Boville (1993), Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim., 6(10), 1825–1842.

Hossaini, R., et al. (2013), Evaluating global emission inventories of biogenic bromocarbons, Atmos. Chem. Phys., 13(23), 11,819–11,838,

doi:10.5194/acp-13-11819-2013.

Hossaini, R., M. P. Chipperfield, S. A. Montzka, A. Rap, S. Dhomse, and W. Feng (2015a), Efficiency of short-lived halogens at influencing cli-

mate through depletion of stratospheric ozone, Nat. Geosci., 8, 186–190, doi:10.1038/ngeo2363.

Hossaini, R., et al. (2015b), Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol, Geophys. Res.

Lett., 42, 4573–4580, doi:10.1002/2015GL063783.

Hossaini, R., et al. (2016), A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): Linking oceanic

emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine, Atmos. Chem. Phys.,

16, 9163–9187, doi:10.5194/acp-16-9163-2016.

Hough, A. (1988), The Calculation of Photolysis Rates for Use in Global Tropospheric Modelling Studies, AERE Report R-13259, HMSO, London.

Huthwelker, T., T. Peter, B. P. Luo, S. L. Clegg, K. S. Carslaw, and P. Brimblecombe (1995), Solubility of HOCl in water and aqueous H2SO4 to

stratospheric temperatures, J. Atmos. Chem., 21(1), 81–95, doi:10.1007/BF00712439.

Iwasaki, Y., N. Yoshiharu, and N. Tanikawa (1985), High concentration of hydrogen chloride in the atmosphere, Tokyo-to Kogai Kankyusho

Nenpo, pp. 3–6, Tokyoto Kogai Kankyusho, Tokyo.

Jacob, D. J. (2000), Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34(1214), 2131–2159, doi:10.1016/S1352-2310(99)

00462-8.

John, W., S. M. Wall, and J. L. Ondo (1988), A new method for nitric acid and nitrate aerosol measurement using the dichotomous sampler,

Atmos. Environ., 22(8), 1627–1635, doi:10.1016/0004-6981(88)90390-3.

Johnson, C., L. Sigg, and J. Zobrist (1987), Case studies on the chemical composition of fogwater: The influence of local gaseous emissions,

Atmos. Environ., 21(11), 2365–2374, doi:10.1016/0004-6981(87)90371-4.

Jourdain, B., and M. Legrand (2002), Year-round records of bulk and size-segregated aerosol composition and HCl and HNO3 levels in the

Dumont Dˈurville (coastal Antarctica) atmosphere: Implications for sea-salt aerosol fractionation in the winter and summer, J. Geophys.

Res., 107, 4645, doi:10.1029/2002JD002471.

Kavanaugh, M. C., and R. Trussell (1980), Design of aeration towers to strip volatile contaminants from drinking water, J. Am. Water Works

Assoc., 72(12), 684–692.

Keene, W. C., and D. L. Savoie (1998), The pH of deliquesced sea-salt aerosol in polluted marine air, Geophys. Res. Lett., 25, 2181–2184,

doi:10.1029/98GL01591.

Keene, W. C., A. A. P. Pszenny, D. J. Jacob, R. A. Duce, J. N. Galloway, J. J. Schultz-Tokos, H. Sievering, and J. F. Boatman (1990), The geochemical

cycling of reactive chlorine through the marine troposphere, Global Biogeochem. Cycles, 4, 407–430, doi:10.1029/GB004i004p00407.

Keene, W. C., et al. (1999), Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive chlorine

emissions inventory, J. Geophys. Res., 104, 8429–8440, doi:10.1029/1998JD100084.

Keene, W. C., J. Stutz, A. A. P. Pszenny, J. R. Maben, E. V. Fischer, A. M. Smith, R. von Glasow, S. Pechtl, B. C. Sive, and R. K. Varner (2007),

Inorganic chlorine and bromine in coastal New England air during summer, J. Geophys. Res., 112, D10S12, doi:10.1029/2006JD007689.

Keuken, M., C. Schoonebeek, A. Vanwensveenlouter, and J. Slanina (1988), Simultaneous sampling of NH3, HNO3, HCl, SO2 and H2O2 in

ambient air by a wet annular denuder system, Atmos. Environ., 22(11), 2541–2548, doi:10.1016/0004-6981(88)90486-6.

Kim, S., et al. (2008), Airborne measurements of HCl from the marine boundary layer to the lower stratosphere over the North Pacific Ocean

during INTEX-B, Atmos. Chem. Phys. Discuss., 8(1), 3563–3595, doi:10.5194/acpd-8-3563-2008.

Kindler, T. P., W. L. Chameides, P. H. Wine, D. M. Cunnold, F. N. Alyea, and J. A. Franklin (1995), The fate of atmospheric phosgene and the

stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCl3, CH3CCl3, and CHCl3, J. Geophys. Res., 100, 1235–1251,

doi:10.1029/94JD02518.

Kinnison, D. E., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model,

J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879.

Kirschke, S., et al. (2013), Three decades of global methane sources and sinks, Nat. Geosci., 6(10), 813–823, doi:10.1038/NGEO1955.

Ko, K., et al. (2003), Halogenated very short-lived substances, in: Scientific Assessment of Ozone Depletion: 2006, in Global Ozone Research

and Monitoring Project, Report No. 50 chap. 2, World Meteorological Organization, Geneva, Switzerland.

Krysztofiak, G., V. Catoire, G. Poulet, V. Marécal, M. Pirre, F. Louis, S. Canneaux, and B. Josse (2012), Detailed modeling of the atmo-

spheric degradation mechanism of very-short lived brominated species, Atmos. Environ., 59, 514–532, doi:10.1016/j.

atmosenv.2012.05.026.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,294



Lawler, M. J., B. D. Finley, W. C. Keene, A. A. P. Pszenny, K. A. Read, R. von Glasow, and E. S. Saltzman (2009), Pollution-enhanced reactive

chlorine chemistry in the eastern tropical Atlantic boundary layer, Geophys. Res. Lett., 36, L08810, doi:10.1029/2008GL036666.

Lawler, M. J., R. Sander, L. J. Carpenter, J. D. Lee, R. von Glasow, R. Sommariva, and E. S. Saltzman (2011), HOCl and Cl2 observations in marine

air, Atmos. Chem. Phys., 11(15), 7617–7628, doi:10.5194/acp-11-7617-2011.

Libuda, H. G., F. Zabel, E. H. Fink, and K. H. Becker (1990), Formyl choride: UV absorption cross sections and rate constants for the reactions

with Cl and OH, J. Phys. Chem., 94(15), 5860–5865, doi:10.1021/j100378a047.

Lindgren, P. (1992), Diffusion scrubber-ion chromatography for the measurement of trace levels of atmospheric HCl, Atmos. Environ, Gen.

Top., 26(1), 43–49, doi:10.1016/0960-1686(92)90259-N.

Lobert, J. M., W. C. Keene, J. A. Logan, and R. Yevich (1999), Global chlorine emissions from biomass burning: Reactive chlorine emissions

inventory, J. Geophys. Res., 104, 8373–8389, doi:10.1029/1998JD100077.

Long, M. S., W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson (2014), Sensitivity of tropospheric chemical composition to

halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry global climate system: Halogen distributions, aerosol

composition, and sensitivity of climate-relevant gases, Atmos. Chem. Phys., 14(7), 3397–3425, doi:10.5194/acp-14-3397-2014.

Maben, J., W. Keene, A. Pszenny, and J. Galloway (1995), Volatile inorganic Cl in surface air over eastern North America, Geophys. Res. Lett., 22,

3513–3516, doi:10.1029/95GL03335.

MacDonald, S. M., J. C. Gómez Martín, R. Chance, S. Warriner, A. Saiz-Lopez, L. J. Carpenter, and J. M. C. Plane (2014), A laboratory charac-

terisation of inorganic iodine emissions from the sea surface: Dependence on oceanic variables and parameterisation for global mod-

elling, Atmos. Chem. Phys., 14(11), 5841–5852, doi:10.5194/acp-14-5841-2014.

Mann, G. W., K. S. Carslaw, D. V. Spracklen, D. A. Ridley, P. T. Manktelow, M. P. Chipperfield, S. J. Pickering, and C. E. Johnson (2010), Description

and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model

Dev., 3(2), 519–551, doi:10.5194/gmd-3-519-2010.

Marché, P., A. Barbe, C. Secroun, J. Corr, and P. Jouve (1980), Ground based spectroscopic measurements of HCl, Geophys. Res. Lett., 7,

869–872, doi:10.1029/GL007i011p00869.

Matsumoto, M., and T. Okita (1998), Long termmeasurements of atmospheric gaseous and aerosol species using an annular denuder system

in Nara, Japan, Atmos. Environ., 32(8), 1419–1425, doi:10.1016/S1352-2310(97)00270-7.

Matusca, P., B. Schwarz, and K. Bchmann (1984), Measurements of diurnal concentration variations of gaseous HCl in air in the sub-nanogram

range, Atmos. Environ., 18(8), 1667–1675, doi:10.1016/0004-6981(84)90389-5.

McCulloch, A., M. L. Aucott, C. M. Benkovitz, T. E. Graedel, G. Kleiman, P. M. Midgley, and Y.-F. Li (1999), Global emissions of hydrogen chloride

and chloromethane from coal combustion, incineration and industrial activities: Reactive chlorine emissions inventory, J. Geophys. Res.,

104, 8391–8403, doi:10.1029/1999JD900025.

Mielke, L. H., A. Furgeson, and H. D. Osthoff (2011), Observation of ClNO2 in a mid-continental urban environment, Environ. Sci. Technol.,

45(20), 8889–8896, doi:10.1021/es201955u.

Mogili, P. K., P. D. Kleiber, M. A. Young, and V. H. Grassian (2006), N2O5 hydrolysis on the components of mineral dust and sea salt aerosol:

Comparison study in an environmental aerosol reaction chamber, Atmos. Environ., 40, 7401–7408, doi:10.1016/j.atmosenv.2006.06.048.

Molina, M., and F. Rowland (1974), Stratospheric sink for chlorofluoromethane—Chlorine atomic-catalysed destruction of ozone, Nature,

249(5460), 810–812, doi:10.1038/249810a0.

Monks, S. A., S. R. Arnold, and M. P. Chipperfield (2012), Evidence for El Niño–Southern Oscillation (ENSO) influence on Arctic CO interannual

variability through biomass burning emissions, Geophys. Res. Lett., 39, L14804, doi:10.1029/2012GL052512.

Monks, S. A., et al. (2016), The TOMCAT global chemical transport model: Description of chemical mechanism and model evaluation, Geosci.

Model. Dev. Discuss., doi:10.5194/gmd-2016-212.

Olkhov, R. V., and I. W. M. Smith (2004), Time-resolved experiments on the chlorine atom initiated oxidation of tetrachloroethene, J. Phys.

Chem. A, 108(12), 2232–2237, doi:10.1021/jp031158j.

Ordóñez, C., J.-F. Lamarque, S. Tilmes, D. E. Kinnison, E. L. Atlas, D. R. Blake, G. S. Santos, G. Brasseur, and A. Saiz-Lopez (2012), Bromine and

iodine chemistry in a global chemistry-climate model: Description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys.,

12(3), 1423–1447, doi:10.5194/acp-12-1423-2012.

Osthoff, H. D., et al. (2008), High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1(5), 324–328,

doi:10.1038/ngeo177.

Pechtl, S., and R. von Glasow (2007), Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study,

Geophys. Res. Lett., 34, L11813, doi:10.1029/2007GL029761.

Phillips, G. J., M. J. Tang, J. Thieser, B. Brickwedde, G. Schuster, B. Bohn, J. Lelieveld, and J. N. Crowley (2012), Significant concentrations of

nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions,

Geophys. Res. Lett., 39, L10811, doi:10.1029/2012GL051912.

Platt, U., W. Allan, and D. Lowe (2004), Hemispheric average Cl atom concentration from
13
C/

12
C ratios in atmospheric methane, Atmos.

Chem. Phys., 4, 2393–2399, doi:10.5194/acp-4-2393-2004.

Pöschl, U., R. von Kuhlmann, N. Poisson, and P. Crutzen (2000), Development and intercomparison of condensed isoprene oxidation

mechanisms for global atmospheric modeling, J. Atmos. Chem., 37(1), 29–52, doi:10.1023/A:1006391009798.

Prather, M. (1986), Numerical advection by conservation of 2nd-order moments, J. Geophys. Res., 91, 6671–6681, doi:10.1029/JD091iD06p06671.

Prather, M. J., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of

atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.

Pszenny, A. A. P., W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zetwo, M. Springer-Young, and J. N. Galloway (1993), Evidence of inorganic

chlorine gases other than hydrogen chloride in marine surface air, Geophys. Res. Lett., 20, 699–702, doi:10.1029/93GL00047.

Pszenny, A. A. P., J. Moldanová, W. C. Keene, R. Sander, J. R. Maben, M. Martinez, P. J. Crutzen, D. Perner, and R. G. Prinn (2004), Halogen cycling

and aerosol pH in the Hawaiian marine boundary layer, Atmos. Chem. Phys., 4(1), 147–168, doi:10.5194/acp-4-147-2004.

Puxbaum, H., E. Quintana, and M. Pimminger (1985), Spatial-distribution of atmospheric aerosol constituents in Linz (Austria), Fresen. Z. Anal.

Chem., 322(2), 205–212, doi:10.1007/BF00517660.

Rahn, K. A., R. D. Borys, E. L. Butler, and R. A. Duce (1979), Gaseous and particulate halogens in the New York City atmosphere, Ann. N. Y. Acad.

Sci., 322(1), 143–151, doi:10.1111/j.1749-6632.1979.tb14123.x.

Richards, N. A. D., S. R. Arnold, M. P. Chipperfield, G. Miles, A. Rap, R. Siddans, S. A. Monks, and M. J. Hollaway (2013), The Mediterranean

summertime ozonemaximum: Global emission sensitivities and radiative impacts, Atmos. Chem. Phys., 13(5), 2331–2345, doi:10.5194/acp-

13-2331-2013.

Riedel, T. P., et al. (2014), An MCM modelling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide

partitioning in polluted continental outflow, Atmos. Chem. Phys., 14(8), 3789–3800, doi:10.5194/acp-14-3789-2014.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,295



Riedel, T. P., et al. (2012), Nitryl chloride and molecular chlorine in the coastal marine boundary layer, Environ. Sci. Technol., 46(19),

10,463–10,470, doi:10.1021/es204632r.

Roberts, J. M., H. D. Osthoff, S. S. Brown, A. R. Ravishankara, D. Coffman, P. Quinn, and T. Bates (2009), Laboratory studies of products of N2O5

uptake on Cl containing substrates, Geophys. Res. Lett., 36, L20808, doi:10.1029/2009GL040448.

Saiz-Lopez, A., and R. von Glasow (2012), Reactive halogen chemistry in the troposphere, Chem. Soc. Rev., 41, 6448–6472, doi:10.1039/

C2CS35208G.

Saiz-Lopez, A., et al. (2008), On the vertical distribution of boundary layer halogens over coastal Antarctica: Implications for O3, HOx, NOx and

the Hg lifetime, Atmos. Chem. Phys., 8(4), 887–900, doi:10.5194/acp-8-887-2008.

Saiz-Lopez, A., R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martín, J.-F. Lamarque, and S. Tilmes (2014), Iodine chemistry in the

troposphere and its effect on ozone, Atmos. Chem. Phys., 14(23), 13,119–13,143, doi:10.5194/acp-14-13119-2014.

Sander, R. (2015), Compilation of Henryˈs law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15(8), 4399–4981, doi:10.5194/

acp-15-4399-2015.

Sander, R., Y. Rudich, R. von Glasow, and P. J. Crutzen (1999), The role of BrNO3 in marine tropospheric chemistry: A model study, Geophys.

Res. Lett., 26, 2857–2860, doi:10.1029/1999GL900478.

Sander, R., et al. (2003), Inorganic bromine in the marine boundary layer: A critical review, Atmos. Chem. Phys., 3(5), 1301–1336, doi:10.5194/

acp-3-1301-2003.

Sander, R., A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young (2013), Gas phase acid, ammonia and

aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe)

2007 intensive sampling period, Earth Syst. Sci. Data, 5(2), 385–392, doi:10.5194/essd-5-385-2013.

Sander, S., et al. (2011), Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation number 17, JPL Publication 10-

6, Jet Propulsion Laboratory.

Sanhueza, E., and A. Garaboto (2002), Gaseous HCl at a remote tropical continental site, Tellus B, 54(4), 412–415, doi:10.1034/j.1600-

0889.2002.251371.x.

Sarwar, G., and P. V. Bhave (2007), Modeling the effect of chlorine emissions on ozone levels over the eastern United States, J. Appl. Meteorol.

Climatol., 46(7), 1009–1019, doi:10.1175/JAM2519.1.

Sarwar, G., H. Simon, P. Bhave, and G. Yarwood (2012), Examining the impact of heterogeneous nitryl chloride production on air quality

across the United States, Atmos. Chem. Phys., 12(14), 6455–6473, doi:10.5194/acp-12-6455-2012.

Schmidt, J. A., et al. (2016), Modeling the tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH,

and mercury, J. Geophys. Res. Atmos., 121, 11,819–11,865, doi:10.1002/2015JD024229.

Sherwen, T., et al. (2016), Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys.,

16, 12,239–12,271, doi:10.5194/acp-16-12239-2016.

Simmonds, P. G., et al. (2006), Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene, and tetra-

chloroethene from the AGAGE observations at Mace Head, Ireland, and Cape Grim, Tasmania, J. Geophys. Res., 111, D18304, doi:10.1029/

2006JD007082.

Simpson, W. R., S. S. Brown, A. Saiz-Lopez, J. A. Thornton, and R. von Glasow (2015), Tropospheric halogen chemistry: Sources, cycling, and

impacts, Chem. Rev., 115(10), 4035–4062, doi:10.1021/cr5006638.

Singh, H. B., and J. F. Kasting (1988), Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere, J. Atmos.

Chem., 7(3), 261–285, doi:10.1007/BF00130933.

Sommariva, R., and R. von Glasow (2012), Multiphase halogen chemistry in the tropical Atlantic Ocean, Environ. Sci. Technol., 46(19),

10,429–10,437, doi:10.1021/es300209f.

Spicer, C., E. Chapman, B. Finlayson-Pitts, R. Plastridge, J. Hubbe, J. Fast, and C. Berkowitz (1998), Unexpectedly high concentrations of

molecular chlorine in coastal air, Nature, 394(6691), 353–356, doi:10.1038/28584.

Spicer, C. W. (1986), Patterns of atmospheric nitrates, sulfate, and hydrogen chloride in the central Ohio river valley over a one-year period,

Environ. Int., 12(5), 513–518, doi:10.1016/0160-4120(86)90145-5.

Spracklen, D. V., K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann (2005), A global off-line model of size-resolved aerosol

microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5(8), 2227–2252, doi:10.5194/acp-5-2227-

2005.

Stemmler, K., A. Vlasenko, C. Guimbaud, and M. Ammann (2008), The effect of fatty acid surfactants on the uptake of nitric acid to deli-

quesced NaCl aerosol, Atmos. Chem. Phys., 8(17), 5127–5141, doi:10.5194/acp-8-5127-2008.

Stewart, D. J., P. T. Griffiths, and R. A. Cox (2004), Reactive uptake coefficients for heterogeneous reaction of N2O5with submicron aerosols of

NaCl and natural sea salt, Atmos. Chem. Phys., 4(5), 1381–1388, doi:10.5194/acp-4-1381-2004.

Stockwell, D., and M. Chipperfield (1999), A tropospheric chemical-transport model: Development and validation of the model transport

schemes, Q. J. R. Meteorol. Soc., 125(557), 1747–1783, doi:10.1256/smsqj.55713.

Thornton, J. A., et al. (2010), A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464(7286),

271–274, doi:10.1038/nature08905.

Thüner, L. P., I. Barnes, K. H. Becker, T. J. Wallington, L. K. Christensen, J. J. Orlando, and B. Ramacher (1999), Atmospheric chemistry of tet-

rachloroethene: products of chlorine atom initiated oxidation, J. Phys. Chem., A, 103(43), 8657–8663, doi:10.1021/jp991929c

Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117(8),

1779–1800, doi:10.1175/1520-0493.

Timonen, R. S., L. T. Chu, M.-T. Leu, and L. F. Keyser (1994), Heterogeneous reaction of ClNO2(g) + NaCl(s)→ Cl2(g) + NaNO3(s), J. Phys. Chem.,

98(38), 9509–9517, doi:10.1021/j100089a025.

Toyota, K., Y. Kanaya, M. Takahashi, and H. Akimoto (2004), A box model study on photochemical interactions between VOCs and reactive

halogen species in the marine boundary layer, Atmos. Chem. Phys., 4(7), 1961–1987, doi:10.5194/acp-4-1961-2004.

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr. (2006), Interannual variability in global biomass

burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6(11), 3423–3441, doi:10.5194/acp-6-3423-2006.

Vogt, R., P. Crutzen, and R. Sander (1996), A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer,

Nature, 383(6598), 327–330, doi:10.1038/383327a0.

Vogt, R., R. Sander, R. Von Glasow, and P. Crutzen (1999), Iodine chemistry and its role in halogen activation and ozone loss in the marine

boundary layer: A model study, J. Atmos. Chem., 32(3), 375–395, doi:10.1023/A:1006179901037.

von Glasow, R. (2006), Importance of the surface reaction OH + Cl
�
on sea salt aerosol for the chemistry of the marine boundary layer—A

model study, Atmos. Chem. Phys., 6(11), 3571–3581, doi:10.5194/acp-6-3571-2006.

von Glasow, R. (2008), Atmospheric chemistry—Pollution meets sea salt, Nat. Geosci., 1(5), 292–293, doi:10.1038/ngeo192.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,296



von Glasow, R., R. Sander, A. Bott, and P. J. Crutzen (2002), Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL,

J. Geophys. Res., 107(D17), 9–16, doi:10.1029/2001JD000942.

von Hobe, M., et al. (2011), Evidence for heterogeneous chlorine activation in the tropical UTLS, Atmos. Chem. Phys., 11(1), 241–256,

doi:10.5194/acp-11-241-2011.

Voulgarakis, A., et al. (2013), Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys.,

13(5), 2563–2587, doi:10.5194/acp-13-2563-2013.

Wagman, P. D., W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. J. Nuttall (1982), The NBS tables of chemical

thermodynamic properties; Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data., 11, suppl. 2.

Wallington, T. J., M. Bilde, T. E. Møgelberg, J. Sehested, and O. J. Nielsen (1996), Atmospheric Chemistry of 1,2-Dichloroethane: UV Spectra of

CH2ClCHCl and CH2ClCHClO2 Radicals, Kinetics of the Reactions of CH2ClCHCl Radicals with O2 and CH2ClCHClO2 Radicals with NO and

NO2, and Fate of the Alkoxy Radical CH2ClCHClO, J. Phys. Chem., 100(14), 5751–5760, doi:10.1021/jp952149g.

Wild, O., O. V. Rattigan, R. L. Jones, J. A. Pyle, and R. A. Cox (1996), Two-dimensional modelling of some CFC replacement compounds,

J. Atmos. Chem., 25(2), 167–199, doi:10.1007/BF00053790.

Wingenter, O. W., D. R. Blake, N. J. Blake, B. C. Sive, F. S. Rowland, E. Atlas, and F. Flocke (1999), Tropospheric hydroxyl and atomic chlorine

concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean,

J. Geophys. Res., 104, 21,819–21,828, doi:10.1029/1999JD900203.

Wofsy, S. C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important

atmospheric gases and aerosols, Phil. Trans. R. Soc. A, 369(1943), 2073–2086, doi:10.1098/rsta.2010.0313.

Wofsy, S. C., et al. (2016), HIPPO Aircraft Data, HIPPO Combined Discrete Flask and GC Sample GHG, Halo-, Hydrocarbon Data (R_20121129),

Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., doi:10.3334/CDIAC/hippo_012.

Yang, X., R. Cox, N. Warwick, J. Pyle, G. Carver, F. OˈConnor, and N. Savage (2005), Tropospheric bromine chemistry and its impacts on ozone:

A model study, J. Geophys. Res., 110, D23311, doi:10.1029/2005JD006244.

Yang, X., J. A. Pyle, R. A. Cox, N. Theys, and M. Van Roozendael (2010), Snow-sourced bromine and its implications for polar tropospheric

ozone, Atmos. Chem. Phys., 10(16), 7763–7773, doi:10.5194/acp-10-7763-2010.

Young, A. H., W. C. Keene, A. A. P. Pszenny, R. Sander, J. A. Thornton, T. P. Riedel, and J. R. Maben (2013), Phase partitioning of soluble trace

gases with size-resolved aerosols in near-surface continental air over northern Colorado, USA, during winter, J. Geophys, Res. Atmos., 118,

9414–9427, doi:10.1002/jgrd.50655.

Zhang,W., et al. (2009), Asianemissions in 2006 for theNASA INTEX-Bmission,Atmos. Chem. Phys., 9, 5131–5153, doi:10.5194/acp-9-5131-2009.

Zhou, X., and K. Mopper (1990), Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and

freshwater; implications for air-sea exchange, Environ. Sci. Technol., 24(12), 1864–1869, doi:10.1021/es00082a013.

Ziska, F., et al. (2013), Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide, Atmos. Chem. Phys., 13(2),

8915–8934, doi:10.5194/acpd-13-8915-2013.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025756

HOSSAINI ET AL. MODEL OF TROPOSPHERIC CL CHEMISTRY 14,297


