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Observed NO/NO2 ratios in the upper troposphere imply errors in NO-NO2-O3 cycling 

kinetics or an unaccounted NOx reservoir 
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Key Points:  

 Large model overestimates of NO/NO2 concentration ratios in the upper troposphere 

imply errors in NO-NO2-O3 cycling kinetics or the presence of an unaccounted labile 

NOx reservoir.   

 The presence of an unaccounted labile NOx reservoir would affect the NOx lifetime in 

the upper troposphere and would suggest unrecognized, likely organic, chemistry. 

 Possible error in NO-NO2-O3 cycling kinetics would have large implications for 

global simulations of tropospheric ozone and for satellite retrievals of tropospheric 

NO2. 
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Abstract 

 Observations from the SEAC
4
RS aircraft campaign over the Southeast US in August-

September 2013 show NO/NO2 concentration ratios in the upper troposphere that are 

approximately half of photochemical equilibrium values computed from JPL kinetic data. 

One possible explanation is the presence of labile NOx reservoir species, presumably organic, 

decomposing thermally to NO2 in the instrument. The NO2 instrument corrects for this 

artifact from known labile HNO4 and CH3O2NO2 NOx reservoirs. To bridge the gap between 

measured and simulated NO2, additional unaccounted labile NOx reservoir species would 

have to be present at a mean concentration of ~40 ppt for the SEAC
4
RS conditions 

(compared with 197 ppt for NOx). An alternative explanation is error in the low-temperature 

rate constant for the NO+O3 reaction (30% 1-σ uncertainty in JPL at 240 K) and/or in the 

spectroscopic data for NO2 photolysis (20% 1-σ uncertainty). Resolving this discrepancy is 

important for understanding global budgets of tropospheric oxidants and for interpreting 

satellite observations of tropospheric NO2 columns. 

 

Plain Language Summary 

 

We identify large discrepancies between observed NO/NO2 ratios and models representing 

our best understanding of the chemistry controlling NO and NO2 in the upper troposphere in 

the Southeast US during August&hyphen;September 2013. We suggest that either 

unrecognized chemistry or errors in modeled cycling between NO, NO2 and O3 could 

explain this discrepancy. Either explanation will have important implications for global 

tropospheric chemistry and for the interpretation of satellite observations of NO2. 

 

1. Introduction  

 Nitrogen oxide radicals (NOx º NO + NO2) are emitted by anthropogenic sources (fuel 

combustion) and natural sources (lightning, soils, fires). Anthropogenic emissions degrade 

surface air quality by producing ozone and nitrate particulate matter, and also affect 

ecosystems through nitrogen deposition. On a global scale, NOx increases the concentration 

of tropospheric oxidants (ozone and OH) with complicated implications for climate forcing 

(Wild et al., 2001). NOx in the upper troposphere and the associated cycling between NO and 

NO2 is of particular importance for production of tropospheric ozone and OH (Murray et al., 

2013; Newsome & Evans, 2017; Ridley et al., 2017). Recent observations from the SEAC
4
RS 
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aircraft campaign over the Southeast US in August-September 2013 show much lower 

NO/NO2 ratios in the upper troposphere than expected from models (Travis et al., 2016). 

Here we suggest possible explanations for this discrepancy and discuss the implications for 

global tropospheric chemistry and for the interpretation of satellite NO2 data. 

 

The SEAC
4
RS observations over the Southeast US show NOx concentrations 

averaging 0.20 ppb in the upper troposphere above 8 km (0.11 ppb as NO and 0.09 ppb as 

NO2), as compared to 0.37 ppb in the boundary layer below 2 km (0.06 ppb NO and 0.31 ppb 

NO2), and much lower concentrations (averaging less than 0.07 ppb) in the middle 

troposphere between 2 and 8 km (Travis et al., 2016). Such a “C-shaped” profile reflects 

influences from fuel combustion in the boundary layer and lightning in the upper troposphere 

(Bertram et al., 2007; Hudman et al., 2007; Huntrieser et al., 2002; Pickering et al., 1998). 

The mean observed daytime NO/NO2 ratios in SEAC
4
RS were 0.44 mol mol

-1
 in the 

boundary layer and 1.4 mol mol
-1

 in the upper troposphere, while the corresponding ratios in 

the GEOS-Chem chemical transport model sampled along the flight tracks were 0.33 mol 

mol
-1

 in the boundary layer and 3.3 mol mol
-1

 in the upper troposphere (Travis et al., 2016). 

The NO/NO2 ratio in the model increases rapidly with altitude because of the strong 

temperature dependence of the NO+O3 reaction (Burkholder et al., 2015), but in the 

observations this increase is much less.   

NO2 measurements in the upper troposphere are prone to positive interferences from 

inlet decomposition of thermally unstable compounds including HNO4, CH3O2NO2, and other 

organic nitrates (Bradshaw et al., 1999; Browne et al., 2011; Murphy et al., 2004; Nault et al., 

2015; Reed et al., 2016). The Berkeley thermal-dissociation laser-induced fluorescence (TD-

LIF) instrument used in SEAC
4
RS (Thornton et al., 2000; Day et al., 2002; Wooldridge et al., 

2010) was specifically designed to minimize and correct for these interferences. Inlet 
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residence time is only 0.23 seconds and the NO2 measurement is corrected for partial thermal 

dissociation of HNO4 (0-11%) and CH3O2NO2 (0-21%) with a calibration accuracy of 5% 

(Nault et al., 2015). HNO4 and CH3O2NO2 are independently measured with calibration 

accuracies of 15%, and the CH3O2NO2 measurement has an overall uncertainty of 40%, 

mainly due to uncertainty in the thermal decomposition rate constant (Nault et al., 2015). An 

independent NO2 measurement made by chemiluminescence (Pollack et al., 2010) during 

SEAC
4
RS was biased high compared to the TD-LIF measurement, likely due to interferences 

from CH3O2NO2 and HNO4 (Travis et al., 2016). The Berkeley TD-LIF NO2 measurements 

in the upper troposphere have been used in previous work to interpret NOx chemistry (Nault 

et al., 2016), lightning NOx emissions (Nault et al., 2017), and satellite observations of NO2 

columns (Choi et al., 2014; Laughner and Cohen, 2017).  

The model-measurement discrepancy in NO/NO2 partitioning in the upper 

troposphere has consequences not only for tropospheric chemistry but also for interpreting 

solar backscatter NO2 observations from satellites. It is generally assumed that the 

tropospheric NO2 column retrieved from satellites is mainly contributed by the boundary 

layer (Lamsal et al., 2014; Laughner et al., 2016; Martin et al., 2002) and can therefore be 

related to local NOx emissions (Martin et al., 2003). However, the NO2 vertical profiles from 

SEAC
4
RS imply a 35-50% contribution of the upper troposphere to the NO2 tropospheric 

column observed from satellite (Travis et al., 2016), because sensitivity of backscattered solar 

radiation to NO2 increases by a factor of 3 from the surface to the upper troposphere (Martin 

et al., 2002). Better understanding of this upper tropospheric NO2 is crucial to the use of 

satellite data for estimating surface NOx emissions.   
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Previous work starting in the 1990s has found varied levels of agreement between 

NO/NO2 ratios observed from aircraft and model photochemical equilibrium computed from 

local conditions. Early work in the lower stratosphere found models to be too high by 20-30% 

(Del Negro et al., 1999; Jaeglé et al., 1994; Sen et al., 1998; Cohen et al., 2000). Observed 

NO/NO2 ratios in the upper troposphere during the PEM-West A campaign over the tropical 

Pacific were three times lower than model predictions, which was attributed to NO2 

measurement interferences (Crawford et al., 1996), although Davis et al. (1996) also 

hypothesized a role of halogen chemistry. Bradshaw et al. (1999) found model agreement 

with observations to within 30% in the upper troposphere over the tropical Pacific using an 

improved NO2 instrument that avoided positive interferences through short inlet residence 

time. More recent model studies of the upper troposphere have again found an overestimate 

of observed NO/NO2 ratios (Travis et al., 2016; Williams et al., 2017), and attributed it to 

underestimate of peroxy radicals converting NO to NO2. 

 

2. NO-NO2 cycling in the upper troposphere during SEAC
4
RS  

 According to current understanding, the NO/NO2 ratio in the daytime upper 

troposphere is determined by rapid chemical cycling through the reactions in Table 1. Here 

we calculated the mean rates of individual reactions along the SEAC
4
RS flight tracks over the 

Southeast US by applying the recommended JPL rate constants (Burkholder et al., 2015) to 

aircraft measurements of species concentrations (NO, NO2, O3), NO2 photolysis rate constant 

(JNO2), temperature, and pressure, together with peroxy and halogen radical concentrations 

computed by the GEOS-Chem model (Sherwen et al., 2016, 2017; Travis et al., 2016) along 

the flight tracks. We exclude data outside the 9-15 hour solar time window and in 

stratospheric air ([O3]/[CO] > 1.25 mol mol
-1

). We focus on the Southeast US because it 
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accounts for most of the SEAC
4
RS flights and represents a relatively homogeneous 

environment.  

The calculated rates in Table 1 indicate that conversion of NO to NO2 in the upper 

troposphere is mainly by reaction with ozone (75%). Reactions with peroxy radicals 

contribute 18%, and reactions with halogen radicals (BrO, IO, and ClO) contribute 7%. The 

total calculated rate of conversion of NO to NO2 has an aggregated uncertainty of 32% and 

balances only half of the NO2 photolysis rate, which has an uncertainty of 21%. This 

represents a significant discrepancy, such that a model using JPL kinetics would overestimate 

the NO/NO2 ratio observed in SEAC
4
RS.  

 Figure 1 shows the median observed vertical profiles of the principal variables 

relevant to NO/NO2 cycling, along with the corresponding values simulated by the standard 

GEOS-Chem model along the aircraft flight tracks as in Travis et al. (2016). The NO/NO2 

ratio in the model is over twice that measured in the upper troposphere above 8 km. The bias 

is systematic over the frequency distribution of the observations (Figure 2) and also extends 

to stratospherically influenced air ([O3]/[CO] > 1.25 mol mol
-1

), although SEAC
4
RS did not 

sample the actual stratosphere (maximum ozone concentration was 125 ppb). Travis et al. 

(2016) attributed the model bias in the NO/NO2 ratio to an underestimate of peroxy radicals, 

but that underestimate would have to be a factor of 5 in order to close the budget of Table 1. 

This is incompatible with the SEAC
4
RS observations for H2O2, which is produced by self-

reaction of HO2 and is thus a sensitive proxy of HO2 concentrations. Observed H2O2 

concentrations are 30% higher than GEOS-Chem (Figure 1) but would be grossly 

overestimated if HO2 concentrations were increased by a factor of 5. Similarly, simulated 

BrO concentrations would have to be underestimated by a factor of 20 in order to correct the 

model bias in the NO/NO2 ratio. This would be grossly inconsistent with observations 

(Schmidt et al., 2016; Shah et al., 2016; Sherwen et al., 2016).  
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 We see from Figure 1 that there is no systematic model bias in ozone, temperature, or 

JNO2 that would explain an error in the NO/NO2 ratio. The JNO2 observations during SEAC
4
RS 

are from spectrally resolved actinic flux measurements (Shetter et al., 2003), converted to 

photolysis frequencies using the same temperature-dependent JPL spectroscopic data 

(absorption cross-sections and quantum yields) as in GEOS-Chem. These spectroscopic data 

are tabulated by JPL as a function of wavelength at 220 and 294 K, and are interpolated 

linearly for intermediate temperatures. 90% of JNO2 photolysis is contributed by wavelengths 

shorter than 398 nm for which the quantum yield is unity. The estimated JPL uncertainty on 

JNO2 is 20% with no temperature dependence (Sander et al., 2011), though laboratory studies 

show better agreement at surface temperatures (Orphal, 2003; Shetter et al., 2003). Observed 

photolysis frequencies of other relevant species (O3, HCHO, H2O2, HNO3, PAN, CH3OOH) 

also agree with GEOS-Chem values to within 1-15% throughout the troposphere. 

 One possible explanation for the apparent departure of the NO/NO2 ratio from 

photochemical equilibrium would be a positive bias in the NO2 measurement. This could 

occur if there was an unrecognized labile reservoir of NO2 (other than HNO4 or CH3O2NO2) 

decomposing in the instrument inlet, or if the correction for HNO4 or CH3O2NO2 was 

inadequate. We find that that this missing reservoir (likely organic) would need to be present 

at a mean concentration of at least 40 ppt in the upper troposphere in order to fit the model 

NO/NO2 ratios, assuming 100% decomposition to NO2 inside the instrument. For 

comparison, the correction to the NO2 measurement from the decomposition of CH3O2NO2 

was 0-23 ppt (0-21% of NO2 at temperatures less than 240 K) and 0-20 ppt HNO4 (0-11%) 

during SEAC
4
RS (Nault et al., 2015). The high-flow pump to minimize the influence from 

these reservoirs malfunctioned in the first five SEAC
4
RS flights (Aug 6-16) but these flights 

were either not over the Southeast US or not in the upper troposphere and are not included in 

our analysis. 
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 A significant uncertainty in the CH3O2NO2 correction is the thermal decomposition 

rate constant, which has a JPL 1-σ uncertainty of 30%. Considering a cabin air temperature of 

300 K, an exterior pressure of 230 hPa, and an inlet residence time of 0.23 s, a 30% increase 

in the CH3O2NO2 thermal decomposition rate would double the corresponding correction to 

the NO2 measurement from 0-23 ppt to 0-46 ppt.  The effect would be at most 23 ppt at the 

upper end of the range and is not sufficient to correct the NO/NO2 ratio. GEOS-Chem 

underestimates CH3O2NO2 in the upper troposphere (18±19 ppt modeled, 124±98 ppt 

observed), reflecting in part the model underestimate of NO2 but also suggesting missing 

organic chemistry. A faster thermal decomposition rate for CH3O2NO2 would exacerbate the 

model underestimate.  

Previous work has postulated missing organic chemistry in the upper troposphere to 

explain observations of volatile organic compounds (VOCs) including methanol (Jacob et al., 

2005), acetaldehyde (Millet et al., 2010) and glyoxal (Volkamer et al., 2015). Aumont et al. 

(2005) and Mouchel-Vallon et al. (2013) showed how explicit VOC mechanisms produce a 

cascade of oxidation products globally that are not tracked in models. Bradshaw et al. (1999) 

did not need to invoke an unknown NOx reservoir to reconcile their model with observations 

over the tropical Pacific, but the Southeast US may be a more propitious environment for 

VOC oxidation products to be lifted to the upper troposphere by deep convection (Li et al., 

2005).  

 An alternative explanation for the apparent NO/NO2 departure from photochemical 

equilibrium would be error in the kinetic data used to compute that equilibrium. Figure 3 

shows the IUPAC and JPL recommendations for the temperature dependence of the NO+O3 

rate constant k1, along with the individual laboratory data that went into these 

recommendations. IUPAC recommends k1 = 2.07×10
-12

exp[-1400/T] cm
3
 molecule

-1
 s

-1 
with 

a 1-σ uncertainty of ±200 K for E/R and a 1-σ uncertainty of 8% for k1 at 298 K (Atkinson et 
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al., 2004). JPL recommends k1 = 3.00×10
-12

exp[-1500/T], again with 1-σ uncertainty of ±200 

K for E/R and a 1-σ uncertainty of 10% for k1 at 298 K. The IUPAC and JPL rate expressions 

agree to within 4% over the 220-300 K temperature range. For a typical upper tropospheric 

temperature of 220-240 K the implied 1-σ uncertainty for the JPL rate is 30-40%.  However, 

several studies have suggested a departure from Arrhenius behavior at low temperatures 

(Figure 3; Birks et al., 1976; Borders & Birks, 1982; Cohen et al., 2000; Michael et al., 

1981). 

 The purple curves in Figures 1 and 2 show the effects in the GEOS-Chem simulation 

of decreasing JNO2 by 20%, and decreasing the activation energy for k1 by 400 K (2σ) relative 

to the JPL recommendation so that k1 increases by a factor 1.4 on average in the upper 

troposphere, while remaining at the JPL recommended value at 298 K through adjustment of 

the pre-exponential factor. The resulting NO/NO2 ratio in the upper troposphere decreases by 

40% from the standard simulation and Figure 2 shows that the variance in the modeled 

NO/NO2 ratio decreases by half, becoming more consistent with the observations. One could 

match the observations if there was in addition a 15 ppt positive bias in the NO2 measurement 

due to an unaccounted labile NOx reservoir.  

We examined whether the variability of the observed NO/NO2 ratio in the SEAC
4
RS 

data set could test the above corrections. For this purpose we used 10-minute observations of 

the ratio along the flight tracks at 8-12 km altitude and correlated them to the local values of 

the photoequilibrium constant JNO2(hν)/k1(T)[O3] for NO-NO2-O3 cycling where the UV 

actinic fluxes (hν), temperatures (T), and [O3] are taken from the observations. Results are 

shown in Figure 4. When using JPL values for JNO2(hν) and k1(T), we find a significant (p < 

0.01) correlation coefficient r = 0.37 and a reduced-major-axis (RMA) regression slope S = 

4.0. The relatively low correlation coefficient can be attributed to noise and high-frequency 

variability in the observations. Reducing JNO2 by 20% and increasing the low-temperature k1 
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as described above improves the slope (S = 2.3) while not affecting the correlation coefficient 

(r = 0.38). Excluding the 15% of the data with [O3] < 40 ppb increases the correlation 

coefficient to r = 0.48-0.49. Those conditions were associated with particularly high JNO2 

(reflecting clouds below) and enhancements in CO and HCHO indicative of recent 

convective influence (Barth et al., 2015; Fried et al., 2016; Snow et al., 2007).  

 

 

3. Implications  

 The apparent departure of the NO/NO2 concentration ratio from photochemical 

equilibrium in upper tropospheric observations cannot be explained by missing radicals 

converting NO to NO2, as proposed in previous work, because the required radical 

concentrations would be far in excess of observational constraints. It must be due either to an 

unaccounted labile NOx reservoir acting as positive interference on the NO2 measurement, 

and/or to significant errors in the kinetic data for NO-NO2-O3 photochemical cycling at low 

temperatures. Either of these possibilities have important implications for upper tropospheric 

chemistry. 

 The NO2 measurement specifically excludes interferences from HNO4 and 

CH3O2NO2, but other labile NOx reservoirs could potentially be measured as NO2 following 

thermal decomposition in the instrument. The presence of such a reservoir at a concentration 

of 40 ppt, as needed to explain the observed NO/NO2 ratios, would increase the effective 

lifetime of NOx by 20% under the SEAC
4
RS conditions. More importantly, it would likely 

imply organic chemistry missing from the models, as also suggested by observations of 

acetaldehyde and glyoxal in the upper troposphere (Millet et al., 2010; Volkamer et al., 2015) 

and by the large model underestimate of CH3O2NO2 in SEAC
4
RS. .  

 The rate constants JNO2 and k1 involved in NO-NO2-O3 photochemical cycling have 
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relatively small uncertainties in kinetic assessments, and even then are found to be major 

sources of uncertainty in model simulations of tropospheric oxidants (Bergin et al., 1999; 

Newsome and Evans, 2017; Ridley et al., 2017; Vuilleumier et al., 1997). When the low-

temperature NO+O3 reaction rate constant (1.4k1) and NO2 photolysis frequency (JNO2 –20%) 

are adjusted in GEOS-Chem within these uncertainties to improve the simulation of the 

NO/NO2 ratio in the SEAC
4
RS upper tropospheric data, we find that simulated ozone 

decreases by 7 ppb at 8-12 km altitude. This degrades the previously successful simulation of 

upper tropospheric ozone in the standard model (Travis et al., 2016), however that simulation 

overestimated the NO concentration (Figure 1).  

 Improved understanding of the contribution of the upper troposphere to the 

tropospheric NO2 column also has implications for retrieving and interpreting NO2 

observations from satellites. Spectral fitting of the satellite data in and around the NO2 

absorption bands measures the slant column of NO2 along the light path. Conversion of this 

slant column to the actual vertical tropospheric column requires removal of the stratospheric 

contribution, followed by division by an air mass factor (AMF) dependent on the vertical 

distribution of tropospheric NO2 (Martin et al., 2002). The NASA operational retrieval for the 

OMI satellite instrument (Krotkov et al., 2017) assumes NO2 vertical profiles from the GMI 

model (Lamsal et al., 2014) that greatly underestimate NO2 concentrations in the upper 

troposphere as observed by SEAC
4
RS. The mean AMF over the Southeast US in August-

September 2013 is 1.28 using vertical distributions from the NASA operational retrieval but 

1.67 when using the median observed profile in Figure 1. This implies that the OMI 

operational retrieval for NO2 may be 30% too high. Laughner and Cohen (2017) show that 

inclusion of lightning NOx in the upper troposphere to match DC3 observations of NO2 

increases the OMI AMF by 34% for summertime, further demonstrating the importance of 

accurately modeling and measuring NOx in the upper troposphere for the interpretation of 
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satellite NO2 measurements.  

 In conclusion, models significantly overestimate recent observations of the NO/NO2 

ratio in the upper troposphere. This cannot be easily explained by known labile NOx 

reservoirs (HNO4, CH3O2NO2) interfering with the NO2 measurement. It implies either error 

in current recommendations for NO-NO2-O3 cycling kinetics or the presence of a missing 

labile NOx reservoir, likely organic. Either explanation would have important implications for 

our understanding of tropospheric oxidants and/or the interpretation of satellite NO2 

measurements.   
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Table 1. NO-NO2 cycling in the upper troposphere during SEAC
4
RS

a
  

Reaction Mean Rate (10
6
 molecules cm

-3
 s

-1
) 

Conversion of NO to NO2   

R1. NO + O3  NO2 + O2 3.42 ± 1.04
b,c,d

 

R2. NO + HO2  NO2 + OH 0.68 ± 0.23
b,d,e

 

R3. NO + CH3O2  NO2 + CH3O 0.13 ± 0.04
b,d,e

 

R4. NO + BrO  NO2 + Br 

R5. NO + IO  NO2 + I 

R6. NO + ClO  NO2 + Cl 

      Total                                                                                                     

0.18 ± 0.09
b,d,f

 

0.10 ± 0.05
b,d,f

 

0.02 ± 0.01
b,d,f

 

4.53 ± 1.46 

Conversion of NO2 to NO   

R7. NO2 + hν  NO + O 8.20 ± 1.74
g 

 
a
Main reactions cycling NO and NO2 in the daytime upper troposphere (8-12 km) over the 

Southeast US. Mean rates are calculated using JPL kinetic data (Burkholder et al., 2015) 

applied to SEAC
4
RS aircraft observations (NO, NO2, O3, JNO2, temperature, pressure) over 

the Southeast US (94.5-76°W, 30-37°N) in August-September 2013 and with radical 

concentrations (RO2, halogens) computed by the GEOS-Chem model along the flight tracks 

(Sherwen et al., 2016, 2017; Travis et al., 2016). Only reactions with rates above 1x10
4
 

molecules cm
-3

 s
-1

 are listed. Data outside the 9-15 solar time window and in stratospheric air 

([O3]/[CO] > 1.25 mol mol
-1

) have been excluded. Error standard deviations are calculated by 

propagation of measurement, rate constant, and GEOS-Chem radical concentration errors 

(precision).  
b
Precision of the NO measurement (4%; Ryerson et al., 2000).  

c
Precision of the O3 measurement (3%; Ryerson et al., 1998).  

d
Precision of the kinetic rate constants (30% for NO+O3; 15% for NO+HO2, NO+CH3O2, 

NO+BrO, and NO+ClO; 20% for NO+IO; Burkholder et al., 2015).  
e
Uncertainty in the GEOS-Chem HO2 concentration (30%) estimated from the H2O2 

measurements in SEAC
4
RS (Crounse et al., 2006). The same relative error is assumed for 

CH3O2.  
f
Uncertainty in the GEOS-Chem BrO, IO, ClO concentrations (50%; Sherwen et al., 2016).  

g
Precision of the NO2 measurement (5%; Nault et al., 2015), the measured UV-A actinic flux 

(5%; Shetter et al., 2003), and the NO2 cross section and quantum yield (20%; Sander et al., 

2011).  
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Figure 1. Median vertical tropospheric profiles of the NO/NO2 concentration ratio and 

related quantities on SEAC
4
RS flights (9-15 solar time) during August-September 2013 over 

the Southeast US (94.5-76°W, 30-37°N). Data from urban plumes ([NO2] > 4 ppb), open fire 

plumes ([CH3CN] > 200 ppt), and stratospheric air ([O3]/[CO] > 1.25 mol mol
-1

) are 

excluded. Observations are compared to GEOS-Chem model results sampled along the flight 

tracks, for the standard model (Travis et al., 2016) and a sensitivity simulation with reduced 

JNO2 and increased low-temperature NO+O3 rate constant (see bottom right panel). Observed 

NO2 is from the Berkeley TD-LIF measurement (Nault et al., 2015). The bottom right panel 

shows the k1 (NO+O3) rate constant versus temperature from JPL in red with 2σ uncertainty 
in gray shading (Burkholder et al., 2015), and sensitivity simulation values resulting in 1.4k1 

(purple) in the upper troposphere. The JNO2 observations apply JPL spectroscopic data to 

actinic fluxes measured aboard the aircraft, and would be reduced similarly to the model if 

the spectroscopic data are corrected downward (black dashed line). The dashed purple line in 

the top left panel shows the NO-NO2-O3 photochemical equilibrium values JNO2(hν)/k1(T)[O3] 

calculated from observed actinic fluxes (hν), temperature (T), and [O3] with 1.4k1 and the 

20% reduction in JNO2 applied. 
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Figure 2. Probability density function of the NO/NO2 concentration ratio under midday 

conditions (9-15 local time) in the upper troposphere (8-12 km) during SEAC
4
RS in August-

September 2013. Observations are compared to the standard GEOS-Chem model and the 

model with JNO2 reduced by 20% and the activation energy for the NO+O3 reaction increased 

so that k1 increases on average by 1.4 in the upper troposphere (purple). The same data 

criteria as stated for Table 1 are applied.  
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Figure 3. Temperature dependence of the NO+O3 rate constant k1. The y-axis is a log scale 

and the x-axis is an inverse scale (1/T), so that an Arrhenius dependence plots as a straight 

line. Recommended rates from JPL (black; Burkholder et al., 2015) and IUPAC (light gray; 

Atkinson et al., 2004) are shown as solid lines with the 2-σ uncertainty in shading. 
Laboratory measurements used in the JPL and IUPAC recommendations are shown in circles 

with their respective uncertainties. The sensitivity simulation resulting in 1.4k1 in the upper 

troposphere (230-250 K) is shown as the purple line.  
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Figure 4. Correlation of the observed NO/NO2 concentration ratio with the local 

photochemical equilibrium constant JNO2(hν)/k1(T)[O3] under midday conditions (9-15 local 

time) in the upper troposphere (8-12 km) during SEAC
4
RS in August-September 2013. Data 

are 10-minute averages along the aircraft flight tracks. The photochemical equilibrium 

constant is calculated from local aircraft measurements of actinic fluxes (hν), temperature (T), 

and ozone concentrations. Calculations using the JPL recommendations for JNO2(hν) and 

k1(T) (in red) are compared to calculations reducing JNO2 by 20% and increasing k1 on 

average by 1.4 in the upper troposphere (purple). Solid lines show reduced major axis 

regressions and the 1:1 line is dashed. Correlation coefficients (r) and regression slopes (S) 

are given inset. 


