
This is a repository copy of Zero-maintenance of electronic systems: Perspectives, 
challenges, and opportunities.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130512/

Version: Accepted Version

Article:

McWilliam, R., Khan, S., Farnsworth, M. et al. (1 more author) (2018) Zero-maintenance of
electronic systems: Perspectives, challenges, and opportunities. Microelectronics 
Reliability, 85. pp. 122-139. ISSN 0026-2714 

https://doi.org/10.1016/j.microrel.2018.04.001

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 1

Zero-Maintenance of Electronic Systems:

Perspectives, Challenges, and Opportunities
Richard McWilliam, Member, IEEE, Samir Khan, Member, IEEE, Michael Farnsworth, Colin Bell

Abstract—Self-engineering systems that are capable of repair-
ing themselves in-situ without the need for human decision (or
intervention) could be used to achieve zero-maintenance. This
philosophy is synonymous to the way in which the human body
heals and repairs itself up to a point. This article synthesises
issues related to an emerging area of self-healing technologies that
links software and hardware mitigations strategies. Efforts are
concentrated on built-in detection, masking and active mitigation
that comprises self-recovery or self-repair capability, and has
a focus on system resilience and recovering from fault events.
Design techniques are critically reviewed to clarify the role of
fault coverage, resource allocation and fault awareness, set in the
context of existing and emerging printable/nanoscale manufac-
turing processes. The analysis presents new opportunities to form
a view on the research required for a successful integration of
zero-maintenance. Finally, the potential cost benefits and future
trends are enumerated.

Index Terms—Fault-tolerance, self-repair, zero-maintenance,
built-in fault detection, self-healing systems

I. INTRODUCTION

The rising maintenance costs facing today’s high value

manufacturing industry is fuelling a new appetite for design

strategies that reduce maintenance, repair and overhaul costs

of complex high value systems [1]. The availability and

dependability of electronic components and sub-components

within complex, high-value systems is a critical driver for

reducing the net cost per hour of operation. Fault events and

associated system error states incur punitive costs due to; fault

location and diagnosis; invasive inspection and test; provision

for frequent maintenance intervals even if fault events have not

occurred. Electronic systems and sub-systems have therefore

become a pivotal element in fault-sensitive, service-driven

sectors.

This article surveys several journal articles, conference

papers, books and literature reviews on hardware approaches

that are anticipated to pave the way towards zero-maintenance

capabilities. Such capabilities are difficult (or even impossible)

to implement exclusively within the software, mechanical

or materials domains: instead the majority of strategies are

partially (or fully) coupled with electronic systems and sub-

systems since this permits a wide range of fault mitigation

R. McWilliam is with the Department of Mathematical Sciences, Durham
University

S. Khan is with the Department of Aeronautics and Astronautics, University
of Tokyo. E-mail khan@ailab.t.u-tokyo.ac.jp

M. Farnsworth is with the Department of Automatic Control and Systems
Engineering, University of Sheffield, Sheffield, South Yorkshire. E-mail
m.j.farnsworth@sheffield.ac.uk

C. Bell is with the Department of Mechanical Engineering and Mathemat-
ical Sciences, Oxford Brookes University

Manuscript received xx xx, 20xx; revised August 26, 2017.

approaches. Hence cross-domain strategies feature heavily in

the methods considered. The aim of this work is therefore

to develop a core understanding of zero-maintenance within

electronic systems and related design strategies for its imple-

mentation. This is achieved through a number of objectives

outlined below:

• Analyse current trends in the evolution of self-recovery

and self-repair towards achieving zero-maintenance;

• Present a quantitative (and where possible qualitative)

comprehension of the design trade-off factors and met-

rics;

• Develop a cohesive understanding of zero-maintenance

as a design approach and technology in its own right;

• Develop an appreciation of the core merits of zero-

maintenance through a sector-wise view of the technol-

ogy.

The title of this article has been chosen carefully, because the

use of the word perspectives implies a personal analysis and

presentation on behalf of the authors. The authors’ expertise

range in the areas of diagnostic design, signal processing,

maintenance, self-healing and machine learning; with signifi-

cant focus on practical implementation rather than theoretical.

Nevertheless, the article’s contents will be of general interest

to electrical scientists and engineers, because some of the

more practical issues of implementing self-recovery and self-

repair capabilities are often not appreciated, let alone the costs

attached to them. The focus is therefore towards detailing

the philosophy of having zero-maintenance. The principal

concepts of self-detection, fault masking/mitigation behaviour

monitoring are analysed and categorised according to their

design level implementations. Self-recovery in the presence of

faults is an important step towards realising complex systems

capable of maintaining their designed for function throughout

their intended life-cycle. The other characteristic is that their

common design metrics must be analysed in terms of fault

coverage, resource allocation/cost and fault awareness set in

the context of existing and emerging electronic manufacturing

processes. To the best of the authors’ knowledge, this is

the first study which provides a detailed account on zero-

maintenance systems and related system approaches. These

accounts have been broken down into research questions, that

are suggested together with their motivations in Table I. The

questions are aimed to make some semantic distinctions which

are important towards application. These can be divided in

terms of approach (active or passive), methodologies, tech-

niques, applications, implementation requirements and capa-

bilities, cost implications and their impact.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 2

TABLE I
RESEARCH QUESTIONS

Research question Table(s) Motivation

What are the technological requirements for zero-maintenance? VI, XI, XII
Identify the types of implementation tools that can be used to
accomplish a task

What approaches can be considered to achieve these capabilities? XIV, XV Identify the types of active and passive approaches

What kind of design methodologies can be used for
zero-maintenance?

XIII, XVI Identify how to systematically solve the problem

What techniques can be used to provide built-in fault detection? III Identify the type of techniques or tests that can be used

What metrics can be used to estimate the cost implications? VIII Identify the most important key performance metrics

What are the challenges for a zero-maintenance philosophy on
mission-critical and resilience systems?

XVI Identify opportunities for self management systems

What kind of applications can benefit from its successful
realisation?

XVII Categorise the applications where it can be used

A. Contributions

The article focuses on an emerging and important topic

across many complex engineering industries. It provides a

broad overview of self healing and self repair techniques,

which span multiple application domains. For each technique,

the authors provide its basic form and then consider how it

can be useful to achieve zero-maintenance. Literature devel-

opments are discussed accordingly. This template provides

an easier and succinct understanding of these techniques,

taking note of their applicability and limitations. Whilst most

of the work covered focuses on the electronics industry,

there is an increase interest from electro-mechanical domain.

The authors have noted that zero-maintenance systems need

to attain the characteristics of self-diagnosis, self-repair and

self-immobilisation to some degree, to prevent more serious

damage and catastrophic breakdowns. As research within this

area is of practical importance, some older references have

been included, e.g., early discussions about online self-test

and repair, which never really took hold after electronics

became repairable during manufacture and relatively robust

in-service. This is not necessarily true of emerging non-

CMOS technologies and so the online repair theme is popular

once more. To accomplish the study aims and objectives, this

research undertook a filtering process where the key main

themes and subtopics (formalisms, design and strategies for

zero-maintenance of electronic systems) were decided upon,

and selected journals and conferences formed the bulk of

material for review and analysis. These range from electronics,

maintenance and repair, manufacture and more, all of which

are directly related to self-recovery, self-repair and its mainte-

nance application. To summarise the key contributions at the

outset, the article provides:

• An organised and critical view of current and emerging

trends towards achieving zero-maintenance;

• A state-of-the-art on common design techniques in terms

of fault coverage, resource allocation/cost and fault

awareness set in the context of existing and emerging

electronic manufacturing processes;

• A discussion of the key performance metrics and their

relevance within different application domains. This in-

cludes past methods that have seen renewed interest such

as fine-grained device/interconnect redundancy;

• An overview of the potential impact upon mission-

critical, high resilience systems whose useful lifespan

depends on efficient, self-management of spare resources.

There seems to be an over-emphasis on being able to

deploy high-level models rapidly, without the need of

an underlying technical expertise about the processing

framework;

• Consideration is given to the relative effort needed for the

successful integration of a zero-maintenance philosophy

weighed against cost factors.

Also, the authors have written this article in a way, that

can allow readers with a non-electronic background to gain an

understanding of the zero-maintenance philosophy. The article

first follows the trends towards zero-maintenance and dis-

cusses the challenges for its successful realisation in Section II.

In Section III, a brief perspective on the quantification of zero-

maintenance parameters is formed. Expanding upon this we

delve into more detail on how this approach can be introduced

into electronic systems, providing state of the art examples in

Section IV. It also outlines recent approaches for quantifying

the success and trade offs of these techniques using current

metrics. The discussion then switches to focus upon design

with an overview of the main active and passive methods for

mitigating faults in electronic systems in Section V, before a

look at how a number of design strategies can be undertaken to

incorporate these techniques across a number of applications

in Sections VI. Finally the paper looks forward, drawing

conclusions about this emerging field, with an outlook on the

opportunities and challenges that await.

II. TOWARDS ZERO-MAINTENANCE

Can a system’s maintenance effort be reduced to zero?

Perhaps a more realistic question is: can a system operate as

originally intended, all the time?

If a system (or service or component) operates without

failing, and delivers the exact business function without any

manual intervention, then there is some semblance of mov-

ing towards zero-maintenance. Even though this may only

be a theoretical possibility, it provides a perspective to ex-

plore questions for bridging a knowledge gap. An ideal self-

engineering system should be capable of repairing itself in-situ

without the need for human decision (or intervention). This

will have a significant impact on reducing the overall cost of

the maintenance process [2]. However, the application of this



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 3

philosophy within engineering is a challenge and the authors

aim to draw attention to the need for maintenance systems to

have self-diagnosis and self-repair capabilities, built-in logic

for self-reconfiguration and a cost weighted solution.

The concept embodies the idea of enabling applications and

systems to achieve and sustain near-zero spend, and transform

the traditional maintenance practices from ‘Fail-and-Fix’ to

‘Predict-and-Prevent’ and ultimately to a ‘Fail-Proof’ state. A

classification of literature is presented in Table II with a direct

link between the topic of interest and the concepts discussed

and analysed within. These articles highlight that concepts

such as self-healing and self-repair are predominantly designed

at the component and material science level. Within all these

applications, there are generic concepts of zero-maintenance.

However, for safety-critical applications, such as aerospace or

nuclear that operate in inaccessible environments (e.g. space,

offshore), there is a need to have a system level of self-

diagnosis and self-repair, if not self-immobilisation, to prevent

more serious damage and catastrophic breakdowns.

In the broadest sense, Reliability, Availability and Service-

ability (RAS) performance metrics become highly dependent

upon self-repair capability. Further downstream impact can

be seen within integrated health monitoring, online self-test

within which interrupt-free service is a critical profit margin

driver [17], [18], [19]. As a result of this, growing interest

has emerged for new design strategies with zero-maintenance

properties. This article will focus on electronic components

and sub-systems that are equipped with new fault detection

and classification capabilities [20], [21]. Existing capabilities

that can relate to these concepts are briefly introduced in

Table III. Maintenance can be related to this emerging area

of self-healing technologies as it links software and hardware

mitigations strategies across multiple domains where many

failure classes exist [22], [23]. Examples relating to elec-

tronic systems include mechatronics [24], control [25] and

materials. In some cases an overlap exists between hardware

and software domains occurs for example, in fault-tolerant

GPU algorithms [26], VHDL methods for redundant layout

in FPGAs [27] and FPGA bitstream manipulation [8] and

therefore zero-maintenance is driven by a subset of failure

classes. In addition to this, mitigation relies upon an aware-

ness of the underlying hardware, especially multiple multi-

processor, custom configurable architectures and reliability-

driven compilation [7]. This survey therefore focuses on key

emerging trends for hardware-driven mitigation methods that

relate to Table III.

A. Technology platforms

The philosophy of zero-maintenance is relatable to several

existing and emerging electronic technologies. State-of-the-

art hardware fault mitigation techniques handle permanent

faults using active detect-respond mitigation, whilst sometimes

operating along side passive masking. FPGAs are frequently

used for studies in this area [6] where online reconfigu-

ration remains a highly challenging task [12], [28], [29].

More sophisticated reconfigurable platforms are emerging that

support development of dynamic self-test and repair (STAR).

Manufacturing yield enhancement has been a strong driver for

significant investment for silicon electronics and the resulting

yield-driven strategies continue to extract fully functional oper-

ation out of essentially error-prone fabrication processes [30].

These strategies are undergoing a transformation to include

built in repair mechanisms that operate beyond the point of

manufacture. Emerging non-silicone technologies of relevance

to zero-maintenance are printable large area and nanoscale

electronics that bring new challenges and opportunities for

fault mitigation due to their differing fabrication processes and

technology scaling.

In respect to hardware development platforms, a key goal

of future zero-maintenance strategies is to proliferate fault

detection and discrimination towards the lower design levels

in order that detection occurs closer to the actual fault locale.

This aspect is explored further in Section IV-A. It is further

expected that fault mitigation operates most effectively when

concentrated as far as possible to the same locale. To support

development of such fine-grained fault mitigation, hardware in

loop monitoring has advanced significantly in recent years to

support industrial control and monitoring platforms for high-

value sectors such as aerospace, mining, consumer transporta-

tion and exploration where even small down-time events incur

considerable financial cost. In such cases the incorporation

of built-in actions that inhibit further fault events become

extremely valuable as does the ability to record the frequency

and nature of abnormal events.

B. Implementation challenges

A precursor to eliminating effort required to maintain any

function, is to monitor it. Under nominal operational con-

ditions, dependability in electronic systems is secured when

errors arising from faults can be diagnosed. Therefore fault

detection and mitigation during normal operation becomes

paramount. Faults stem from a number of sources, including

production defects (infant mortality), ground level radiation

effects, yield challenges for next generation fabrication pro-

cesses, greatly increasing complexity of mission and safety

critical electronic systems, testability of complex systems,

highly integrated System in Package (SiP) ageing factors

especially for high power devices and ultra low voltage ASICs.

Within this survey, it is therefore assumed that the primary

faults under consideration relate to transient upsets or perma-

nent faults in each of these cases1. Therefore, several factors

make achieving zero-maintenance a challenging endeavor:

1) Provisioning for various fault types: Commonly encoun-

tered faults and errors (potentially) arising within electronics

are considered in Table IV. Such events may occur on a

time-limited basis and maybe short-lived, repetitive (persis-

tent) or periodic in nature. Upsets can cause temporary or

permanent fault conditions, but errors do not necessarily result.

Faults that do not cause immediate errors are termed sub-

critical and may lie dormant between power cycles or remain

indefinitely. Their influence upon error state is dependent

upon the system state, and therefore sub-critical faults are

1A broad discussion of such matters is found in [31], in which various
examples of fault and error manifestation are discussed.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 4

TABLE II
CATEGORISATION OF REVIEW LITERATURE RELATING TO ZERO-MAINTENANCE PHILOSOPHY

Topic Article O
ffl

in
e

O
n
li

n
e

C
h
ip

L
ev

el
P

ac
k
ag

e/
b
o
ar

d
le

v
el

Y
ie

ld
en

h
an

ce
m

en
t

F
au

lt
d
et

ec
ti

o
n

F
au

lt
m

as
k
in

g
M

o
d
u
la

r
re

d
u
n
d
an

cy
C

el
lu

la
r

ar
ch

it
ec

tu
re

R
ec

o
n
fi

g
u
ra

ti
o
n

E
D

C

F
in

e-
g
ra

in
ed

Microsystems

[3] x x x x x
[4] x x x x
[5] x x x x x x

FPGA-based

[6] x x x x x
[7] x x x x x x
[8] x x x x x
[9] x x x x x x x x
[10] x x x x
[11] x x x x

Computer
architecture

[12] x x x x x x x x
[13] x x x x x
[14] x x x x x x

DRAM [15] x x x x x

Evolutionary [16] x x x x x x x x

TABLE III
CURRENT METHODS FOR RESILIENT OPERATION

Technique Context Example of state-of-the-art

Built-in self-test Perform off line integrity checks before commencing normal
operation

Power-On Self Test (POST) within computer BIOS

Online status reporting Real-time fault checking General dashboard warning light
Fault discrimination System-level diagnosis via sub-module level BIT Specific dashboard warning light
Fault monitoring Detect and log fault occurrences SMART hard disk monitoring
Fault masking Typically majority voting within modular sub-system TMR controller for safety critical plant systems
Active fault mitigation Active response to eliminate faults within logic Data scrubbing
Self-preservation Prediction and mitigation against faults Mostly found in electromechanical systems e.g., hard

drive free-fall protection
Error mitigation Correct errors that cannot be eliminated by fault mitigation EDC for memory modules

assumed to compromise system dependability. Critical faults

cause immediate, persistent and potentially cumulative errors.

Even so, there is no guarantee that errors will be immediately

observable. The susceptibility to fault-induced upsets increases

with various factors, such as increasing die area, shrink-

ing transistor gate dimension and reduced switching voltage.

These are all common drivers in microelectronics and future

nanoscale and printable electronics hence significant research

effort has been directed towards faults occurring within future

ASICs, interconnects and memory devices, especially those

faults induced by radiation particle strikes [32]. In many cases

physics of failure (PoF) models are used to help predict the

likely system response. This evidence is then used to build a

case for provision of redundant resources to be allocated at

design-time and weighing up additional cost.

2) Detecting faults: Considering board and sub-system

levels, physical breakdown of printed circuit boards (PCB)

is a major concern in high performance systems, especially

for high-voltage applications. An example of a simple fault

analysis of PCBs is summarised in Table V, where various

symptoms and related processes of elimination that involve

costly and time consuming design steps are characterised (see

also [33]). This classification exemplifies the complexity and

effort associated with maintenance where, at the sub-system

level, procedures for monitoring and assessing potential fail-

ures and mitigation strategies become increasingly complex.

In critical applications, failure modes and effects analysis

(FMEA) procedures may be employed at the system level

to form predictive models for maintenance planning. This

includes potential disruption caused by ‘No Fault Found (NFF)

scenarios and strategic provision of built-in test (BIT) logic

[34]. Indeed, BIT logic is viewed as beneficial at board and

system levels provided the additional complexity is feasible.

An example of this is shown in Table VII, where the relative

cost/benefit of BIT is estimated [35]. These factors contribute

to the overall maintainability and availability of the system

[36]. Potential causes of failures are typically assessed by

system experts and preventative or corrective courses of action

are determined. FMEA is less commonly applied to low-

level design due to the complexity of analysing all sub-

parts and hence is mostly confined to high-level integrity

analysis. Degradation is also to be considered when designing

zero-maintenance strategies; the onset of ageing may become

accelerated in the presence of persistent faults hence mitigation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 5

strategies offer the potential to slow this process by repair.

Detection and monitoring is also extremely useful in demand-

driven maintenance during the onset of ageing.

3) Responding according to fault severity: Systemic and

device-level faults give rise to critical errors [37], while

soft errors arise from a number of different fault conditions

[38]. In particular, dormant fault and sub-critical faults can

remain unnoticed for some time before causing errors. Further

upset mechanisms include electromagnetic interference (EMI),

thermal cycling and mechanical degradation of packaging.

Faults may also manifest as incorrect logic levels appearing at

gate inputs/outputs or else bit upsets within memory contents

(or indeed the manifestation of incorrect voltages/current com-

ponents within analogue circuitry). Different error behaviours

are possible depending upon their location and duration [39].

Examples include: errors that are overwritten and do not

cause failures; latent errors that persist but which do not

cause output failure (but may affect internal states); and errors

that are detected and corrected. A more complete model for

the relationship between faults, errors and failures has been

proposed in [31].

4) Integrated self-maintenance: Many faults manifest as

flaws during manufacture and, while these must be removed

during test and repair before the product is worthy of selling,

there is potential to continue the process of detection and repair

into the useful lifetime via runtime and POST maintenance. As

a result of yield issues, many high-density ICs contain large

pools of redundant elements that are partly consumed during

production BIST, but the remaining redundant elements and

associated BIT logic remain inactive thereafter [40]. Even after

built-in test and repair (BISTAR), it is conceivable that non-

critical faults may have been inadvertently triggered during

resource reallocation and may compromise normal operation.

BISTAR will continue to feature in future FPGAs [41], con-

figurable ASICs [42] and nanoscale electronics [43] and it has

been suggested that BISTAR logic could be made available for

runtime test or repair of logic [44] and interconnects [45].

Due to the above challenges, achieving zero-maintenance,

in its most generic form, is not an easy problem to solve. In

fact, most current maintenance design techniques solve only

specific formulations of the problem. These efforts are further

influenced by rapidly changing technology requirements and

availability as well as investment costs for development and

test, factors that are often determined by the industry domain

in which maintenance is required.

C. Formalisms of zero-maintenance

In the context of this paper, zero-maintenance can perhaps

be best viewed as a collection of capabilities that ensure

error-free operation in the presence of faults occurring

within an integrated sub-system or component, with min-

imal external intervention. This is also related to the area of

autonomous maintenance wherein autonomous systems take

on similar capabilities, for example the use of external robotic

systems to perform specific maintenance tasks [46]. A number

of related maintenance requirements can be identified within

the literature, though most come from related areas. A synopsis

is given in Table VI including an indication of state of the

art. At their most basic level, faults (and errors potentially

arising as a result) are masked and/or removed such that their

influence is no longer critical to error-free operation. Thus a

minimum condition of zero-maintenance is that all faults are

made sub-critical. By the same measure, it is also desirable

to address sub-critical faults by masking strategies. Design

for zero-maintenance therefore comprises fault-tolerant design

augmented by active detect and response capabilities such

that operational life is extended. Ideally fault-free operation

is secured.

III. QUANTIFYING ZERO-MAINTENANCE

Several metrics have been considered for quantifying the

performance of self-maintenance strategies. Their design-time

prioritisation is application-dependent and each must be evalu-

ated in terms of their reliance upon redundant and coordination

resources. Moreover, such resources must be allocated at

design-time. Existing metrics are summarised in Table VIII,

including fault capacity and performance impact. There are

few real-world examples where evaluation of these parameters

has been reported in the open literature although some detailed

FPGA studies have been summarised in [8].

An important step in the design process is test and eval-

uation of the detection and mitigation strategy. Ideally this

would be done within the actual hardware under test where

emerging fault detection and mitigation strategies will aid with

the test and verification of complex electronic systems. An

example of this is the Slackprobe design for ARM processors

that places embedded logic deep within strategic locations of

the chip for critical timing monitoring. This logic is included

within synthesis/layout steps and provides new insights into

ageing effects as the timing becomes degraded. In may cases

however the overhead associated with the test logic is high and

data collected is not directly related to fault events. Besides

embedded hardware monitoring, an alternative approach is to

implement fault injection engine during the design evaluation

phase. Fault injection is a more aggressive approach that

emulates direct fault conditions at the hardware level under

the control of a fault injection engine [52]. For low pin count

ICs, hardware electronic faults may be injected directly. High-

density devices such as ASICs and FPGAs require dedicated

internal logic [53], [54]. A comprehensive description of fault

injection techniques can be found in [55]. Fault injection has

also been discussed at the transistor, gate, device and system

level with in ASICs [56] but interconnect-related faults are not

as well understood and further work is needed especially for

self-repairing strategies [8].

Despite benefiting from mature software tools FPGAs are

not optimised for on line reconfiguration. Fine-grained Triple

Modular Redundancy (TMR) requires special considerations

as discussed in [27]. Off-the-shelf solutions do exist that

exploit either partial-reconfiguration facilities or else direct

manipulation of the configuration bitstream. Several methods

also exist for testing the resilience of FPGA strategies includ-

ing stuck-at-faults, bitstream analysis, radiation testing and

fault injection characterisation [10].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 6

TABLE IV
FAULTS OCCURRING WITHIN INTEGRATED CIRCUITS

Abbr. Definition Description

T
ra

n
si

en
t

SEU Single event upset Single transient fault event
SET Single event transient Transient pulse affecting gates and latches
SBU Single bit upset Logical bit inversion within register/memory
MBU Multiple bit upset Multiple register bits inversions
MCU Multiple cell upset Faults manifesting/propagating within logic cells
SEFI Single event functional interrupt Produces observable failure at cell/block output

P
er

m
a

n
en

t SHE Single hard error Caused by single fault, commonly stuck-at
SEL Single event latch-up Rail to rail short circuit in pnpn circuits
SESB Single event induced snap-back Rail to rail short circuit in nMOS circuit
SEB Single event burnout Thermal runaway in power transistors
SEGR Single event gate rupture Breakdown of gate dielectric

TABLE V
ESTABLISHED METHODS FOR PCB LEVEL TESTING AND REPAIR WITHOUT SELF-REPAIR STRATEGIES (ADAPTED FROM [33]).

Fault type Cause of failure Eliminated by Failure model

Layout Crosstalk, grounding, power rail
noise, fan-in or fan-out violations

Correct application of layout rules Stuck-at, intermittent

Construction Inappropriate interconnect design
or packaging, solder splash, bridg-
ing, dry joints

Careful construction and inspection Stuck-at, bridging

IC internal failures Fabrication defect, yield issue,
packaging defect

Careful construction, screening Stuck-at, metal-metal shorts

Environment Accelerated component degradation Use components qualified for envi-
ronment conditions

Stuck-at, intermittent

Degradation (time-
dependent)

Component ageing, modifications Preventative maintenance Stuck-at

Design and
implementation

Critical races, static/dynamic errors,
hazards

Correct design and validation Stuck-at, intermittent

TABLE VI
RELATED MAINTENANCE REQUIREMENTS REPORTED IN THE ELECTRONIC DOMAIN

Method Aim of strategy State of the art

Built-in self-test Detection of fault caused by upset at power-on
and/or run-time

Automated SMART disk reporting [47]

Fine-grained fault masking Fault masking at device level, possibly including
fault identification

PaNDA chip [42]; interleaved logic; Gaisler Pro-
cessors [48]

Built-in self-reconfiguration Capability for online or offline design reconfigura-
tion

Many lab demonstrations, but unclear whether used
commercially

Built-in self-reallocation Self-initiated reorganisation of logic fabric Fundamental research
Robust state machines State machine encoding for fault resilience Adopted in commercial designs
Self-maintenance Correction of faults in-service (active operation or

in standby). May initiate partial repair until next
scheduled maintenance.

Some commercial examples but mostly fundamen-
tal research

Survivability Continuously recover from faults, consuming re-
sources as necessary (possible at expense of per-
formance)

Systems for long-term space exploration

Self-diagnosis Ability to determine most effective course of action;
reporting of remaining repair capacity.

Some software-based techniques [49]; MEMS in-
tegrity test [50]

Self-preservation Able to reduce the impact of fault condition before
major action is required

Primarily electromechanical systems e.g., disk drive
shock protection [51].

TABLE VII
COST/BENEFIT FOR BIT, VIEWED FROM VLSI PERSPECTIVE ADAPTED FROM [35]. + COST INCREASE, - COST REDUCTION, +/- COST INCREASE LEADING

TO SAVING.

Design, test

& dev.
Fabrication

Production

testing

Mainte-

nance

testing

Diagnosis,

repair

Service

interruption

Chips +/- + -

Boards +/- + - -

Systems +/- + - - - -



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 7

TABLE VIII
KEY PERFORMANCE METRICS FOR ASSESSING ZERO-MAINTENANCE STRATEGIES

Metric Description

R
es

p
o

n
se

Fault coverage Refers to fractional area of overall circuit that protected and
diversity of faults that can be handled

Fault granularity Minimum design layer at which faults can be detected/addressed
Fault capacity Number of remaining faults that can be sustained by mitigation

strategy
Performance reduction Loss of application performance due to zero-maintenance opera-

tions
Latency Time required for recovery

R
es

o
u

rc
es

Resource overhead Number of additional components needed over and above basic
design

Resource re-use Achieving efficient consumption of redundant resources (active
methods)

Energy usage Energy consumed during recovery and consumed by additional
resources overall

D
ia

g
n

o
st

ic Reporting Discrimination & reporting of fault events at multiple system levels
Remaining lifetime Indication of remaining operational hours after which faults will

no longer be handled
Logging Capacity to store a log of fault history and classification

IV. DESIGN MODELS FOR MITIGATION

Mitigation strategies take the form of either distributed

passive masking or active detect and respond. As noted earlier,

some are already utilised in manufacturing test and repair and,

to a lesser extent, degradation management. In the former

case detection followed by repair is sometimes referred to as

built-in test and repair (BISTAR). There is a large class of

platforms based on reconfigurable FPGAs and PLDs that are

explored later in this section. An important question is how can

the mitigation strategy determine the most appropriate level

of response? A sub-component that is affected by transient

upset will not benefit from active response capability since

unless permanent effects result; repairing temporary faults by

reallocating valuable redundant resources is extremely ineffi-

cient and would not address further occurrences of transient

upset. Fault masking would be the primary design strategy

in this case. In other cases however, the decision is less

straightforward because both transient and permanent fault

handling may be expected to occur and hence resources must

be traded against design overall cost/benefit factors. In [57]

general considerations of early fault-tolerant computers were

explored and a number of questions raised: when should

fault tolerance be considered? How do errors manifest, human

error, software fault or hardware fault? How is the benefit

quantified? As stated earlier, the motivation for fault-tolerance

has shifted from manufacturing consistency toward random

and cumulative faults caused by environmental and ageing

factors.

To help set the context for design for zero-maintenance

a suggested relationship between fault severity and design

mitigation as given in Fig. 1 for a non-specific sub-component.

A similar view was suggested by Noura et al in the context

of resilient control systems [25]. The view presents several

typical design considerations: the absolute of limit of fault tol-

erance, the regions of applicability for each class of fault han-

dling and the performance degradation for more sophisticated

Fault severity

SEU Permanent fault /ageing
M

e
tr

ic
Target 

performance
Performance

Mi�ga�on method

Recon�gura�on Realloca�on

Mask

Fig. 1. Progressive strategy for fault-tolerant mitigation with performance
impact (adapted from [25]).

fault handling procedures. The anticipated impact on sub-

component performance somewhat qualitative, but is indicative

of the benefits of employing more complex maintenance

strategies. Resource restructuring is a simple concept, but in

practice involves a complex hardware reorganisation process

that requires coordination and accurate fault diagnostics. This

tends to become especially complex for current reconfigurable

FPGA designs such as STAR (self-test and repair) [58] that

is capable of detecting and isolating faulty logic by activating

spare logic, but which requires significant external processing

resources.

A. Passive methods

Significant advances in electronics fabrication and packag-

ing methods have taken place over the past decades and the

perceived reliability and dependability of resulting ASICs is

high. In recent years a re-emergence of passive mitigation has

occurred in part to a response to new nanoscale electronics

but also the onset of SEUs within current-generation ASICs.

The most prevalent passive fault-tolerant strategy is n-modular



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 8

(a) (c)(b)

A1

A2

A3

A4

A5

A6

a1

a2

a4

a3 a6

a5

A1

A2

A3

Voter

A1

A2

A3

Voter

Σ

Fig. 2. Majority strategies for fine-grained redundancy. (a) basic majority
using logical voter (b) full majority logical voter (c) weighted analogue
majority signal formed by summation of weighted contributions. In this
example output of each module A1, A2, ..., A6 is weighted according to
a1, a2, ...a6.

redundancy (nMR) involving majority signalling. An early

review of nMR design considerations for computer hardware

is provided by Carter [13] while fundamental nMR concepts

may be traced back to the much-cited work of Von Neumann

[59] that was inspired by solutions observed in biological

systems that construct resilient systems out of many spare

components. Each component is assumed prone to failure

and hence error-free operation is secured in the presence of

faults through massively redundant node, interconnections and

majority signal blocks. Various majority signalling methods

have been proposed including partial and full majority (Fig.

2a-b) and summing (Fig. 2c). More recently, fault masking

has again arisen as a key approach in nanoscale design but

for now utilising small n [60]. Numerous variations on this

theme exist, each bringing their own performance / resource

trade-off at the fine-grained transistor or logic gate levels.

The potential impact on availability and cost of ownership

brought about by fault masking is considered further by

Maxion [14]. Proven fault handling measures include self-

purging [61], where the classical nMR with voter structure

is modified to provide explicit fault detection and isolation of

each module. The required switching mechanism constitutes a

departure from purely fault masking to detect-isolate actions.

In this case the overall reliability is highly dependent upon

the individual switching reliability. Further augmentations to

the TMR approach were suggested in [39] to include explicit

detection and handling of transient and permanent errors.

In this scheme, fault detection and self-reassertion of the

correct logic state is possible within individual modules. In

addition detect-isolate is performed when a permanent fault

occurs in a single module, in which case the design reverts

to a master/checker scheme. Although this implementation

does not include a full self-reconfiguration implementation,

it is attractive because there is minimal logic overhead in

comparison to the conventional TMR implementation. Of

course, the high resource overhead of the TMR scheme itself

is still present.

Graceful degradation is difficult to achieve by passive

methods due to the inherently limited fault capacity. Although

detection is not directly involved, it is possible to extract

and utilise majority signals for basic diagnostics. This is

done at the modular level to generate enumerated states such

as ‘ok’, ‘fault has occurred but still ok’, ‘cannot tolerate

further faults’ (critical condition) and ‘unavailable’. Although

feasible at the modular sub-system levels, their implementation

requires considerable design effort at lower levels (i.e. closer

to the origin of fault) and hence new architectures are needed

to support this level of granularity. The benefits are clearly

significant for integrity monitoring in the presence of transient

upsets.

1) Bottom-up design methods: Fine-grained strategies have

seen specific interest recently owing to concerns over the

vulnerabilities of emerging nanoscale and to some extent

state-of-the-art printable electronics. At the lowest design

levels, provisioning of redundant transistors has been discussed

for compensating yield tolerance occurring during manufac-

ture [62]. Such strategies inevitably involve compromises,

namely redundancy overhead, complexity of fault detection

and degradation of performance through the use of non-

optimal transistors. However, within the zero-maintenance

paradigm the benefits of graceful and predictable degradation

and self management of faults are extremely attractive. At the

sub-system level, online fault discrimination and monitoring

operates at the modular level and within maintenance-heavy

products, such as land, air and space vehicles, it becomes

possible to monitor component aging via key response factors

that that are expected to degrade more progressively over

time [2]. These methods focus on self-correction of stuck-

at faults within nanoscale logic units, for which there are two

reasons to consider fine-grained redundancy: firstly, fabrication

processes are more prone to defect and variability [63] and

the high density of nanoscale manufacturing exacerbates the

challenge of high volume production. Secondly, the reduced

device dimensions will result in increased susceptibility to in-

service faults. With the advent of Large Scale Integrated (LSI)

ICs, fine-grained redundancy was employed in mission critical

electronic systems such the flight computer of the Apollo lunar

mission. Its use was ultimately restricted due to improvements

in manufacturing tolerances and the unfavourable view of

maintenance at the time [64]. Increasing component density

brings a number of issues relating to upset vulnerability and

manufacturing defect that must be reduced so that these tech-

nologies are able to complete with current silicon technologies.

Further considerations include reduced operating and threshold

voltage that, together with higher feature density, will lead to

lower SEU immunity. Defect mitigation commands the highest

effort in the first instance [31] but a number of approaches

nonetheless been reported in recent years as summarised in

Table IX.

nMR has also been incorporated within FPGA config-

urations at the block level [65], extended to fine-grained

gate redundancy by a method closely related to quadded

logic[60] and ultimately appearing at the transistor level via

N-modulo redundancy (nMR) [66] and most commonly TMR

implementations [67]. A further variation involves scrubbing

in which the configuration is periodically refreshed from a

golden bitstream [68]. This method is very popular due to its

simplicity although service interruption does occur. In [43],

multiplexed redundancy was considered at the lowest design

levels to improve the reliability of logic gates. Future space

exploration will further leverage fine-grained strategies wher-

ever possible, principally because of the additional complexity

of incorporating design for active repair [66]. Essentially,

once a fault masking strategy has been determined it may be



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 9

(a)

(b) (c)

Fig. 3. Fine-grained passive redundancy principal for electronics. (a) quad
transistor structure (b) standard CMOS NAND logic gate (c) equivalent quad
redundant NAND design.

applied fairly readily to hierarchical logic designs, whether

fine-grained, cell or block level although evaluation of its

resulting impact fault rate behaviour and associated reliability

still needs to be performed. In [43], Han and Jonker noted

that different strategies are likely to be required to address

transient and permanent (and defect) related failures since the

underlying binomial distribution applied to examine transient

upset behaviour is unsuitable for modelling permanent faults,

where statistical independence can no longer be assumed.

Majority voting may occur as a function of the topology of

the functional gate [69], the principle being to eliminate the

classical voter logic by a summation of electrical currents at a

common node. In this instance RoRa (reliability-oriented place

and route) algorithms may be employed to instantiate TMR-

like structures and evaluate them using V-Place, a model-

based tool that uses a topology heuristic to assess and recover

performance metrics.

Information redundancy is a further long-established ap-

proach distinguished by the fact that errors are allowed to

occur and must be corrected. Although mainly as active miti-

gation there exists hardware designs that exploit this approach

when errors can be tolerated. For example, computing in the

presence of noise caused by SEUs can be achieved when the

numerical error created by an upset does not impinge upon

the accuracy of the output [77].

B. Active methods

In contrast to fault-masking redundancy methods, fault

detection and reconfiguration aim to achieve fault tolerance

via BISR capability. Sometimes this is referred to as built-in

self-test and repair (BISTAR), the result of combining BIT

and BIST. The contrasting behaviour of active and passive

strategies is exemplified by revising Fig.1 where, for active

strategies, redundant resources are called upon (and consumed)

by rising fault severity. By contrast, passive strategies possess

much more limited fault capacity in the form of redundant

resource but offer fast recovery. Active methods are armed

with sufficient resources to maintain a consistently higher fault

capacity but with longer recovery times after each fault event.

In the ideal case a combined strategy would only address

transient faults by the masking method and permanent faults

by the active method.

BISTAR initiates a direct response to an upset event in

the form of active alteration of the functional logic (and

possibly additional dormant logic). BISTAR is fundamentally

different to passive mitigation in that a measured response is

taken by reorganising internal resources. The variety of active

mitigation methods is summarised in Table X. Reorganisation

usually involves a process of fault detection and localisation

(possibly automated but most likely manual) followed by

replacement of faulty logic with logic that is assumed to

be fully functional. An example partial reconfiguration of

an FPGA by user-initiated loading of a new bitstream after

detecting a problem is suspected. This type of maintenance

assistance can be highly sophisticated however it does not

constitute self-repair. Self-diagnosis should also be qualified

here: many circuits contain BIT hardware that is designed

to enhance the fault detection process, however these mostly

require external test hardware to be connected in order to

achieve diagnosis capability [78].

Built-in test (BIT) logic was originally created for produc-

tion test and repair but lacks the detection capability proposed

for online mitigation [79]. This approach has been refined

over the years to improve the efficiency of production test,

including the introduction of self-repair logic in memory

chips. For example, redundant row and column cells for

more efficient repair [80] is essentially a more straightforward

reallocation process whereby resources are reorganised to cir-

cumvent defects. Once processed by the production tester, the

configuration remains locked for the remaining lifetime of the

component. The envisaged diagnostic, resource and response

performance/cost trade-offs were considered in Table VIII and

clearly the incorporation of self-repairing capabilities needs

additional resources beyond those envisaged for the production

test and repair. An example of this is seen in adaptive cache

design where a variable trade-off is implemented in hardware

[81].

1) Detection and classification: Detection in electronic

sub-systems can occur online, during the active operation

with minimal service interruption or offline, performed when

the system is placed in a special diagnostic mode or else

during power on self-test. Present-day detection is typically

implemented using some form of boundary scan logic that is

made available during offline test. In complex systems this is

usually performed during regular or emergency maintenance

and inspection. Offline detection is commonplace in produc-

tion test and repair during which dedicated logic is activated

to facilitate the test and repair process [35]. Notably however,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 10

TABLE IX
BOTTOM-LEVEL DESIGN METHODOLOGIES FOR ELECTRONICS

Method Example Mechanism(s)

Quad-structures [70], [71]
Quad transistors arranged in serial/parallel
fault tolerance. Output is formed from
majority of pull up/down resistor current.

N2-transistor structures [72]
Massively-redundant micro-architectures;
variant of quad structures.

Triple transistor structures for
CMOS logic

[73]
Triple transistor redundancy scheme for
minimal area overhead.

Yield enhancement for next-gen
electronics

[74], [75]
Redundant transistors designed to be
allocated only during production test

Interleaved logic and
interconnect

[60]

Send multiple copies of logic levels to
redundant gates so that output is calculated
several times. This provides majority output
and can be arranged to inherently mask
certain faults.

Multiplexed redundancy [43] Redundancy via additional interconnections

FPGA configuration [76]
Provisioning additional resources ar
programmable block level

TABLE X
ACTIVE MITIGATION STRATEGIES

Method State of the art Example

Offline test and
repair (BISTAR)

Resources organised during test mode.
Valid for chip, package and SoC level test
& diagnostics.

[15], [44], [35]

Fine-grained
reallocation

Transistor-level reorganisation using
switch-over.

[82]

Online test and
repair

Fault & mitigation for critical sub-systems
that must not be interrupted; integrated
self-test & repair.

Autonomous fault management; ECSS F3
on-board fault management [83]

Error mitigation
Errors permitted to occur then corrected at
data level

[48], [84]

Self-healing
Autonomic reorganisation, possibly without
explicit detection;

FLASH memory recovery, self-healing
materials; interconnect possible but very
low TRL. [85], [86]

complexity is retained within production test units that are only

available during production. Extensions have been proposed

that increase the on-chip complexity in lieu of faster overall

test procedures [87]. Beyond production BIT and BIST, the

principles of detection lies within the wider research area of

anomaly detection [88]. For example, at higher system levels

cluster analysis is a powerful data-driven approach for system-

level health monitoring and diagnostic [89]. However, in the

context of this paper it is assumed that detection logic is

needed much closer to the point of origin of faults, requiring

a step-change in design and integration practices. The goal

has become to ensure that errors are not permitted to manifest

within electronic logic, interconnections and memory. Fault

discrimination is a critical augmentation of detection and

opportunities exist within microelectronics design to integrate

detection and discrimination close to the point of fault, includ-

ing assessment of the seriousness of fault. This is made all

the more important given detection is the first step towards all

active mitigation strategies. In contrast, masking approaches

do not depend upon online fault detection, but instead majority

signals are produced that, in turn, generate signals that reflect

the current integrity in the presence of threats. Logging and

reporting of fault events is clearly a further desirable feature

within the general maintenance model, however detection and

counting of transient upsets is not trivial. Active mitigation

is however very well-suited to status monitoring even before

active recovery is considered.

There are examples when fault detection is not used but

instead the masking strategy is primed to initiate a default re-

sponse should particular error occur. Examples include switch-

over [36], RAID data storage and error detection and cor-

rection (EDC) codes. EDC operates by exploring redundancy

applied at the information level by data coding. This differs

from hardware mitigation since errors are allowed to manifest

and are then corrected. In contrast, hardware methods seek

to prevent errors from arising when faults occur. EDC is

however extremely popular in memory ICs due to regular

architecture of memory cells that allows direct application

of data codes. An abstraction between hardware and EDC

strategies is sometimes apparent for example, in the protection



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 11

of configuration bitstreams for FPGAs. In this case EDC is

used to protect data patterns that are in turn responsible for

hardware configuration [9]. However the respective detection

strategies are still distinct. A further example is when EDC

applied to protect look up tables (LUT) that in turn implement

finite state machines (FSM). Whereas the FSM is traditionally

implemented as a combination of LUT data and execution

logic, it is possible in some cases to implement the FSM

almost entirely out of memory and therefore EDC becomes

the predominant detection mechanism. Alternatively, fault

tolerance may be encoded at the state level [90]. Once again,

errors are allowed to occur and exist until repaired by the EDC

strategy. A further variation of this case is when the FSM is

provisioned with both hardware fault mitigation and EDC, thus

protecting against different fault mechanisms [84]. Detection

also appears in the context of self-healing technologies [22]

where autonomic responses are triggered upon certain events.

In Table XI a summary of fault detection strategies related

mostly to modular designs is presented.

Fine-grained built-in test (BIT) strategies represent an im-

portant step towards zero-maintenance capability in electronic

sub-systems because they require that faulty conditions are

identified and localised before the response is formulated.

Another case is that of remotely activated BIST using the

System JTAG (SJTAG) method [91] wherein the test itself is

offline but is activated by a remote data centre. By comparison,

online detection is still in its relative infancy but will bring

the facility to identify faults during normal operation with

minimal impact on overall performance. Zero-maintenance

requires considerably more complex design effort to gather

useful information to inform the recovery process. One future

strategy is to make extensive use of hardware fault detection

at the lowest design levels in conjunction with fine-grained

redundant design with new BIT logic [92]. This marks a

departure from the reliance upon traditional external test units

and a step towards online BIST.

Chip- and board-level system considerations are also impor-

tant, especially the integrity of interconnects. This is an espe-

cially challenging area that has been considered as part of the

boundary scan approach [45]. There has been limited progress

in this area although IEEE standard 1149.1 has evolved to

cater for multi-chip modules (MCMs) [93], on-chip test and

even hardware emulation and debug. Analogue time-domain

refractometry (TDR) approaches have also been proposed to

improve fault coverage and retain low MCM complexity [94].

In most cases online operation is not considered and hence the

addition of field support phase capability has been discussed

with respect to modified boundary scan hardware [44] and

could potentially be applied at the board or system levels.

This would essentially constitute an automated approach to

circumvention of localised board issues. Beyond this however,

there is a great need for further work in interconnect-level fault

detection they represent critical points of failure and methods

are confined to production test [95].

2) Self-reconfiguration: Off-the-shelf FPGA devices con-

tain reconfiguration logic coordinated by user-provided config-

uration bitstream that has been generated by software design

tools and is typically fixed at design-time. These devices have

become highly popular and have been identified as critical

to system dependability in many applications [96]. At the

same time, SoC platforms such as the Zync and Cyclone

SoC include integrated processors for runtime reconfiguration

of programmable FPGA resources including logic, LUTs,

memory and interconnects. The principle of reconfiguring

resources within an FPGA in response to faults is discussed

in [97], noting that the configuration fabric itself remains

fixed. Resource utilisation in such cases rarely approaches

100% and therefore unused memory blocks, look up tables,

logic resources are available even within complex designs. The

challenge associated reconfiguration however lies in effective

detection, coordination and resource coverage within the de-

tection strategy. Since access to available resources tend to be

clustered with limited granularity, coverage must be carefully

managed otherwise available resources may not be accessible.

An external governing process is usually needed that oper-

ates online or offline depending on the implementation. This

process may take one of two forms: alternative pre-verified

bitstreams stored externally and loaded into the device [98]

or direct manipulation of the live bitstream by an internal

or external governing process. Embedded or software-defined

processors have been proposed as part of this but are con-

sidered analogous to external processors in terms of resource

usage. Sophisticated algorithms such as the STAR approach

[99] attempt to self-manage dynamic resource allocation by

quarantining active logic that is under test, with the intention

that areas of memory and logic affected by faults are less likely

to generate errors.

Besides FPGA chips, reconfiguration is also performed

within multi-processor hardware where, again, the underlying

logic fabric remains fixed but the resource utilisation is dy-

namically managed by software techniques depending on fault

conditions. Typical examples include load balancing and ther-

mal management as well as modular standby sub-components.

Finally, the fault-tolerant properties of neural networks have

been investigated by incorporating TMR principles into the

network [100]. A summary of key design features expected of

reconfigurable computer systems can be found in Table XII.

The most flexible of all active response strategies involves

dynamic resource reallocation using a generic pool of re-

sources. Here, the underlying logic fabric itself may be al-

tered and manipulated in response to persistent fault events.

Dynamic allocation involves substitution of faulty logic and

interconnect with healthy hardware in response to a variety of

fault conditions. Successful strategies include heterogeneous

architectures arranged as a pool of available resources with

multiple fixed logic designs that achieve the same task, but

each of which have different fault behaviours, thus providing

resilience against systemic failures [101]. Kothe (2006) dis-

cusses a method for direct reconfiguration at the fine-grained

transistor level [82] where a switching fabric is included at the

transistor level. Self-coordination at the logic cell level uses

simple trigger-based signals to activate or deactivate each cell.

This method is related to bio-inspired cellular arrays, and in

particular cellular automata, whose functionality is defined by

DNA-like instructions stored by cells organised as a regular

array structure. This approach is conceptually attractive due to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 12

TABLE XI
FUNDAMENTAL DETECTION CAPABILITIES FOR ZERO-MAINTENANCE

Method Mechanism

Checkpointing
Save known good state for potential future roll-back. Usually
software implemented.

Spare module
A duplicate module exists in either online or offline state. This is
activated when a problem is detected. Requires fault detection.

Duplicate & match
Primitive of TMR: perform same operation twice and compare
results. Often implemented using design diversity i.e., two
different implementations are used to help avoid systemic errors.

Hardware error
detection and
correction (EDC)

Generally performed on data to be stored and transmitted.
Redundancy is introduced into the data set itself such that certain
errors caused by fault are detected and corrected.

Temporal redundancy Time-sharing of resources in order to generate majority vote.

State machine
encoding

Protection by inserting of redundant states that indicate error
states.

Virtual TMR
Uses reconfigurable logic blocks to implement TMR when
configured correctly. Implementations can be dynamic.

System-level voting

Abstract levels of majority voting to determine system
correctness at high level e.g. software level in computing.
Somewhat independent of underlying hardware and does not
provide indication of cause of error.

TABLE XII
FEATURES FOUND IN RECONFIGURABLE SYSTEMS

Feature Description

Reprogrammable Configuration by bitstream or machine code, which can be updated and reloaded.

Configuration means Access to configuration bitstream (FPGAs) or instruction memory (processors)

Regular architecture Multiple identical arrays of logic and memory fabric arranged in a regular fashion.

Embedded processors
Specific to FPGAs: software-defined processor allow complex task management with
hardware resource abstraction.

Partial reconfiguration
Pre-verified configurations (FPGA) or machine code (processors) primed for fast
reconfiguration of select resources without halting active task.

the relatively simple rule sets that govern global functionality.

Other instances of self-organisation include dynamic re-

allocation of microprocessors workloads in the event of a

failed worker [102] and self-assembly of patterns by conver-

gent cellular automata that are used to coordinate functional

logic cells [103]. The latter achieves self-reassembly of the

correct configuration even in the event that every cells state is

randomised. The Plastic Cellular Architecture (PCA) has also

been suggested [104] taking the form of a CA coordination

layer together with a reconfigurable functional logic layer

called a ”reconfigurable plane”. Taken together, they form

a self-reconfiguring logic mechanism even though self-repair

was not the original focus of this work. Evolutionary algo-

rithms may also be applied to drive self-reconfiguration [105]

in which the rule sets are dynamically evolved over time. In

[106] a self-recovery mechanism based on a diffusion model is

demonstrated using a reconfigurable hardware platform. A fur-

ther approach uses the redundant genetic information observed

in prokaryote organisms to create an artificial prokaryote that

controls circuit configuration [107].

V. TOWARDS A DESIGN STRATEGY FOR

ZERO-MAINTENANCE

From the above overview, it is clear that a multitude

of strategies relating to maintenance exists that should be

carefully matched to the application. This section attempts

to set out a forward strategy for designing zero-maintenance

into electronic sub-systems and components with reference to

the literature classified according to the components of zero-

maintenance. A summary of applicable methods is set out in

Table XIII in terms of passive and active mechanisms.

For the case of transient upset mitigation the resource

requirement is likely to be fixed and the degree of overhead is

directly linked to expected fault frequency and corresponding

fault capacity. Active mitigation strategies are capable of

dynamically issuing redundant elements during the course

of operation but resource allocation is considerably more

complex and must be determined at design-time. Therefore,

redundant resources depicted in Fig. 1 will consumed as

cumulative permanent faults occur over time.

An example design for mitigation is seen in for control

systems and signal processing applications, where it was noted

that system performance degradation is traded for enhanced



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 13

fault-tolerance [25], [108], [109]. This compromise was gen-

eralised in Fig. 1 to include redundant resource requirement.

As previously discussed, passive strategies mitigate through

masking faults without explicit detection and seek to continue

in the presence of those faults without error. Active strategies

rely instead upon explicit fault detection before taking action

to remove faulty logic. Clearly it is important in the latter case

to avoid false alarms triggered by transient faults that cannot

be effectively handled by an active response. Even when

considering the advancements made key questions remain:

how is the integrity of redundant resources ensured, should

they be trusted? This may merit a self-test of standby resources

before their allocation in response to fault events. A related

issue is integrity of redundant resource pool monitoring and

communication of remaining resources to the upper design

levels. Last but not least–how can integrity of checking logic

be ensured?

A. Design Perspectives

High-value industrial systems are synonymous with high

recurring maintenance, repair and overhaul effort that increases

the overall cost of through-life support [1]. Failures associated

with electronic sub-components lead to costly repair activity

and down-time, a symptom that is on the increase within elec-

tronic components. OEM and system integrators therefore seek

new design methods driven within the electronics domain by

increasing IC density, shrinking transistor critical dimension,

aggressive voltage and frequency scaling and increasingly

complex interconnect and packaging.

Evidence of existing design aspects in that relate zero-

maintenance in electronics has been gathered in Table VI,

while a deeper analysis of passive mitigation strategies is

presented in Table XIV. Although several instances relate to

production test and repair, EDC has appeared within low-

level hardware including FSM logic. Fine-grained transistor

level strategies have matured in production yield enhancement

but further opportunities exist to extend this to through-

life operation. An alternative yield method relates to direct

mitigation against signal delays caused variability in sequential

logic components such as flip flops [110]. nMR methods have

seem most use within masking strategies, including quad-

redundancy, but are generally limited to TMR within FPGAs.

In the latter case, FPGA reconfiguration is not necessary since

the strategy allocates fixed resources for fault masking. By

contrast, active methods are classified in Table XV including

custom ASIC, COTS FPGA and mixed signal strategies. There

is a good representation of both online and offline approaches–

though again modular methods are limited to n ≤ 4.

A significant challenge to zero-maintenance is that signifi-

cant design effort must be invested at the outset on minimising

susceptibility to error events that are prevalent to the appli-

cation. In some cases it becomes economically infeasible or

technically implausible to eliminate fault events. An example

is radiation hardening, which can be achieved using special

shielding materials, but adds design complexity in order to

meet thermal and weight specifications. An alternative is to

use rad-hard chips that are considerably more expensive and

are typically not available in current-generation designs unless

full custom design is undertaken. Indeed the current trend is to

use state of the art commercial and off-the-shelf (COTS) chips

due to their higher performance and lower power consumption.

This is true even for high-value sectors such as transport and

space exploration that need high performance and reliability.

The automotive industry is now using high performance SoC

wherein critical sub-systems (steering, braking) run concur-

rently with non-critical services (entertainment and navigation

interfaces) all with low power consumption.

Integration of both passive and active strategies is likely

since each brings their specific benefits and by the fact that

various fault scenarios might be encountered during through-

life operation. Combined strategies have been considered in

robust microprocessors for some time–an early example seen

in [126], where modular redundancy was used. Modern strate-

gies tend to be more concentrated towards the fine grained

levels while retaining some degree of modular redundancy

at higher design levels. Though by no means complete, the

Tables XIV & XV illustrate the breadth of techniques in use or

demonstrated in principle. Yet integrated design methodologies

are comparatively under-developed. Recognising the need for

an integrated view, Henkel (2014) proposes a map of ‘Multi-

layer dependability modelling and optimization’ for electron-

ics micro-architectures in [12] that demonstrates the wide

range of available design options. In addition, advancements

in hardware and open-source software have been accelerated

for implementing concepts related to deep learning and support

libraries. These include improvements in Graphical Processing

Units (GPUs) as well as work on other technologies such

as FPGAs, Tensor Processing Units (TPUs), and other chip

systems and architectures that match specific artificial intel-

ligence (AI) and machine learning requirements [89]. With

an emphasis on bridging these gaps in AI, novel chips are

being built to support different computing models. E.g., Intel is

introducing an AI-oriented processor the Intel Nervana Neural

Network Processor which is a purpose-built architecture for

deep learning, and Huawei’s Kirin 970 mobile AI computing

platform. Such technology platforms not only influences per-

formance but also cut down costs for organisations who will

be making use of these systems in the future.

Generalising to higher design layers or cross-layer tech-

niques, allow us to bring benefits to more than one design

level, and are essential in order to leverage the investment

of zero-maintenance resources. As an example, re-use of

fault information generated at device levels for higher levels,

e.g., using fault information generated during fault masking

operations at the application layer during maintenance assess-

ment would achieve greater design benefits. The qualitative

relationship between performance and resource metrics was

illustrated in Fig. 1. There is, however, a lack of detailed

trade-off analysis for different methods. A top-level view

of the possible operations involved within a complex zero-

maintenance design is depicted in Fig. 5. Note that, although

masking is included in this scheme, there is no active response.

As discussed in Section IV-B1, fault event monitoring and

reporting is particular to the zero-maintenance paradigm and

should be carried out in all cases i.e., passive or active fault



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 14

TABLE XIII
FUNDAMENTAL ZERO-MAINTENANCE DESIGN STRATEGIES

Strategy Mechanism
Active or

passive

Example recovery mechanism (if

applicable)

Fault quarantine Limit spread of fault Passive None, but may assist future repair

Fault detection
Built-in checking for
presence of faults

Active
Masking voters; next-gen boundary
scan; error-detection

Fault masking
Continue in presence of
faults

Passive
nMR; EDC; reduced precision;
interleaving; FSM-coding

Retry/scrub Simple fault eradication Active Not a direct repair operation

Fault classify
Detect and report on fault
events

Active
None; but important for status and
active mitigation

Self-reconfiguration
Adapt to eradicate
permanent faults

Active Autonomous FPGA reconfiguration

Self-healing
Reallocate resources and
combine multiple methods.

Both
Self-healing materials; cellular
automata

TABLE XIV
CLASSIFICATION OF PROMINENT PASSIVE MASKING STRATEGIES (FIXED CONFIGURATION)

Method Article T
M

R

Q
M

R

>
Q

M
R

R
ed

u
n
d
an

t
tr

an
si

st
o
rs

R
ed

u
n
d
an

t
g
at

es
R

ed
u
n
d
an

t
b
lo

ck
s/

m
o
d
u
le

s

R
ed

u
n
d
an

t
in

te
rc

o
n
n
ec

ts

E
D

C
co

d
es

S
ta

te
m

ac
h
in

e
co

d
in

g
D

ef
ec

t
to

le
ra

n
ce

Fault mask-
ing

[60] x x x x
[73] x x x
[72] x x x x
[59] x x x
[43] x x x x
[42] x x x

Error Correc-
tion

[4] x x
[48] x x
[84] x x
[111] x x x
[112] x x x
[113] x x x

FPGA imple-
mented

[6] x x x
[27] x x
[114] x x x
[115] x x x

and so that trends such as varying SEU rates may be analysed.

Fault management via active mitigation is a desirable concept

in zero-maintenance that has not yet seen adoption acceptance

within critical applications such as transportation (aviation,

rail, automotive) and space. Further complications face active

strategies that display complex behaviour since their complex

behaviour can be difficult to certify. A further factor is a lack

of standards though progress is being made in autonomous

vehicles and space exploration [83].

B. Hierarchical perspective

Design for zero-maintenance must lead to higher intrinsic

systems robustness and dependability while at the same time

reducing the overall complexity and frequency of maintenance

operations. Lessons have been learned in some high-volume

electronic products, such as electromechanical hard disk drives

[127], where the traditional assumptions about hazards rates

for early and useful life periods do not apply in the same way

as for previous electronic ICs. This gave rise to initiatives

for introducing built-in test and self-diagnosis capabilities

[128]. In addition, health monitoring utilises external sensor

data for accelerated testing to better understand degradation

effects [129]. It is notable, however, that these methods are

hardware/software codependent and thus are coordinated at

the higher system levels.

A useful perspective is to regard zero-maintenance as a

multi-level design problem in similar fashion to the highly in-

tegrated nature of electronic systems design. An early analysis



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 15

TABLE XV
CLASSIFICATION OF PROMINENT ACTIVE MITIGATION STRATEGIES BASED ON RECONFIGURATION

Method Article O
n
li

n
e

O
ffl

in
e

R
e-

ro
u
ti

n
g

D
M

R

T
M

R

Q
M

R
o
r

h
ig

h
er

C
el

l
re

co
n
fi

g
u
ra

ti
o
n

T
em

p
o
ra

l
re

d
u
n
d
an

cy
In

te
rc

o
n
n
ec

t
re

d
u
n
d
an

cy

In
tr

in
si

c
re

d
u
n
d
an

cy
S

el
f-

tu
n
in

g
D

el
ay

li
n
es

Time-shared
redundancy

[3] x x x
[112] x x x
[116] x x x

ASIC
(fine-grained)

[82] x x x
[117] x x x

ASIC,
(heterogeneous)

[106] x x
[118] x x
[119] x x x
[120] x x x

FPGA
implementations

[99] x x x
[121] x x x
[122] x x x
[123] x x x x

Analogue &
mixed-signal

[77] x x x x
[86] x x
[124] x x
[125] x x

of the cost/benefit expected from traditional BIT techniques for

VLSI was provided by Agrawal in 1993 [35]. More recently,

Henkel provided a categorization of strategies specific to on-

chip systems [130], where the priority areas of manufacturing

variability, ageing, soft-errors and hardware mitigation were

identified as key to design for resilience. This viewpoint can

be broadened slightly to include key system levels of interest

to zero maintenance:

• Application level: fault reporting, fault capacity, assess-

ment and scheduling of swap-out or refurbishment

• Software level: resource awareness and adaptability e.g.,

multiple core management; software fault flagging

• Integrated hardware level: board and interconnect failures

between sub-module interconnections and wiring looms;

interfaces for diagnostic information, power-on self-test

• Integrated chip level: System-on-Chip and micro-

architectures; cellular reallocation; reconfiguration; adap-

tive analogue methods

• Cell, gate and transistor levels: component redundancy;

individual fault masking and detection; variability and

yield compensation

From this analysis, we suggest the design hierarchy model in

Figure 4 that considers the technological categories relevant

to zero-maintenance and requirement for fault prognostics and

diagnostics.

Further inspiration is found in technologies for extreme

harsh environments such as unmanned space exploration mis-

sion will require ultra-reliable craft and vehicles for long-

term colonisation [131]. For these cases, future developments

will need to address enhanced resilience against component

ageing, thermal stressing and soft/hard-errors. A variety of

Fig. 4. Proposed hierarchy of design for zero maintenance in electronics.
In respect to fault prognostics/diagnostics, a solid arrow suggests the flow of
fault awareness and action taken while a dashed arrow suggests information
flow only.

self-healing technologies are likely to contribute, albeit each

having realistic limitations. An example of this is recovery of

flash memory technology via built-in energy pulsing [132].

Annealing of the wear characteristic was demonstrated but

under specific conditions. Intense radiation is a major concern

not only for exploration but also avionics and satellites and

is the subject of many studies [133]. Fine-grained redundancy

for autonomous applications has been discussed for situations

in which human intervention is hazardous or impossible with

applications in deep sea exploration, nuclear inspection, deep

drilling and mining [134], [135]. Fault events cause serious

consequences for safety critical systems and often require

costly fault-finding and maintenance. When subjected to one



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 16

or more of these influences the resulting sub-system behaviour

can be somewhat complex and difficult to predict. One pos-

sible model considers faults occurring at different system

levels in electronic components wafer (transistor, interconnect,

metal layers on wafer), packaging (ASIC, FPGA, package

wires, chip to chip connections, SoC interconnects) and sub-

component (PCB, packaging, cables and connectors). However

it is not clear from this how errors proliferate into malfunctions

across different systems levels. This is compounded by the

challenge of fault detection and location. FMEA originated

from the design of flight electronic systems in the 1950s [136]

and specifically aims to identify corrective actions needed to

prevent failures by an exhaustive analysis of system com-

ponents and identification of failure modes and probabilities

and possible detection and recovery action steps. PSPICE

modeling can be helpful in determining component ratings

(thermal, voltage/current and noise) and to recommend de-

rating where necessary.

From the above discussion, it is clear that a structured design

methodology is required to address zero-maintenance within

electronics. With this in mind a breakdown of key challenges

with this model is proposed in Table XVI, in which key mech-

anisms are described according to known existing strategies

together with potential benefits and challenges in the context

of zero-maintenance. There is evidence of similar hierarchical

considerations at the lower design levels in [137], where a

BISR architecture is defined up to the cellular hardware level.

Since the available passive and active methods span all

hardware layers from fine-grained logic to reconfigurable logic

fabric, it necessary to integrate design strategies across most

hardware design levels. Within this structure, it is important

to consider the specific benefits to real-world maintenance

aspects and in particular effective detection and integration

with software methods. By way of example, GPUs provide an

interesting case in point because they already utilise a variety

of error-handling strategies. Depending upon the architecture

used a combination of low-level hardware EDC to protect

vulnerable high-density memory areas [138] and a high-level

error tolerance due to the visual latitude of the application

is exploited [26]. There is however some debate over the

benefit of low-level hardware EDC protection since software

redundant methods have also been shown to be effective [139].

Furthermore, this model generally allows errors to manifest

rather than mitigating against the underlying faults. A fault-

tolerant design approach faces similar design decisions.

Evidence of package-level mitigation (Table II) and inter-

connect fault handling (Table XIV) exists. However there is

a great need for enhanced test and verification for state of

the art system on chip (SoC) and system in package (SiP)

technologies for supporting design validation as well as fault-

handling. This need straddles multiple design levels, with fault

detection and status monitoring placed as close as possible to

the point of origin of faults. The hierarchical model extends

further to electro-mechanical interfaces, as seen in MEMS

integrated design [140][141][142], and ultimately into the

higher software layers.

C. Application-specific considerations

Fault mitigation has in-part driven the evolution of some

COTS devices such as FPGA and microcontrollers. Radation-

hardened FGPAs have been developed but functional resilience

capabilities have also been introduced for fault tolerance.

The potential impact of fault-tolerance within FPGAs has

been considered at the electromechanical system level of a

robot [143]. Specific examples discussed earlier in Section IV

included bitstream EDC, managed partial reconfiguration and

runtime manipulation of the configuration, each of which may

be exploited in mission critical applications and online [144].

COTS ICs have also acquired EDC protection for internal

registers and on-chip redundancy although such measures do

not address the problem of eliminating faults at the outset [48],

[4]. Furthermore, state of the art reconfigurable platforms now

contain their own hard-wired microprocessor cores (and even

larger pools of SRAM) fully integrated on-chip and therefore

on line detect and thus self-repair has become an important

area of research. Once again this indicates a merging between

passive and active fault mitigation for microprocessors and

reconfigurable platforms.

A clear assessment of technology readiness level (TRL)

for zero-maintenance methods is difficult due to the emergent

nature of most methods. Examples of state-of-the-art are listed

in Table XVII based on the known examples. Factors that

influence technology readiness include co-software/hardware

demonstration level, proven reliability of the design and

assessment of potential impact on fabrication cost. This is

evident in examples of microprocessor design [19], pro-

grammable logic chips [42] and RF microelectronics [86].

Future applications include security (attack and defend), FDIR

(Fault detection, isolation, recovery) and ISHM (Integrated

System Health Management) [131]. An important indicator in

this context will be integration readiness level (IRL) proposed

for evaluating the complexity of integrating related strategies

into existing space exploration systems [145].

VI. CONCLUSIONS AND OUTLOOK

Over the past few years, a number of maintenance re-

quirements have emerged within engineering systems and

have gained considerable focus in the areas of detection,

classification and self-recovery from fault conditions. The

increasing demand for robust products, composed of complex

sub-systems that must maintain the longest possible opera-

tional life-span, has brought self-repairing capability firmly

into the design and manufacturing fray. At the same time,

electronic sub-systems have become particularly vulnerable to

environmentally-induced random and cumulative fault condi-

tions and thus a significant body of literature has appeared

that seeks to exploit the unique flexibility available within

electronics for fault mitigation. As such, the authors have

observed a number of recent trends paving the way towards

zero-maintenance designs for electronics with the common

goal of regaining: robust, error-resilient operation with major

impacts expected in product availability and cost of mainte-

nance. From fault detection and classification to passive and

active fault mitigation, integrated self-recovery is becoming



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 17

TABLE XVI
DETAILED HIERARCHY FOR ZERO-MAINTENANCE STRATEGIES

Method Benefits Challenges

Status reporting
Logging key metrics (remaining capacity,
faults classification etc.) to assist
maintenance planning

Fault signals must traverse multiple design
levels; effective filtering and interpreting of
signals at application layer

Self-maintenance
Correction faults in-service (and online
where possible) using a variety of actions
to prolong operational window

Will most likely require several strategies
across multiple integrated levels: masking,
detection/reporting and active reallocation

Built-in self-test and
repair (BISTAR)

Combined detection and restoration on chip
Requires detect and active logic for
reallocation of resources. Difficult to
validate all possible states

Built-in
reconfiguration

Capability to restore correct operation in
the event of fault

Relies upon a reconfigurable chip. Usually
requires external initiation

Supervised repair
(production yield
enhancement)

Highly efficient reallocation of resources
for reduced failure rate

Requires complex production tester and
precisely controlled environment

Built-in self-test
(BIT)

Relatively simple logic overhead; detection
of errors at specific intervals

Often limited to detecting persistent faults
power on time

Self-preservation /
fault avoidance

Put measures in place to reduce impact of
further faults

Requires accurate monitoring, possibly
anticipation of impending fault events

Fault masking Fixed structure; validation is relatively easy
Of limited fault capacity, can become
potentially high resource overhead for
fine-grained strategies

Fault

event

Centralised or localised control

Available resources

Detect

Con�rm

coverage

Report

status

Calculate

fault

capacity

Confirm/report

Execute

response

Transient fault

has occurred

Response

Data EDC

Mask fault

Permanent error

has occurred

A parameter value

has deviated

Fig. 5. Depiction of a possible top-level design of zero-maintenance systems with various options. Several implementations are possible: the example shown
here includes masking and active response for permanent error or analogue parameter. Collection of status including evaluation of available resources are also
shown.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 18

TABLE XVII
APPLICATION EXAMPLES LINKED TO ZERO-MAINTENANCE FOR HIGH-VALUE SECTORS

Application Faults Status Opportunities for zero-maintenance

A
v

ia
ti

o
n Civil and military

aircraft; autonomous
flight

Radiation effects from
ground to 60,000ft

nMR; mutual-checking/voting systems;
resilient sensors for test beds [146]

Predictable recovery; assistive fault
monitoring and discrimination

E
n

er
g

y

Wind turbine and
nuclear
decommissioning;
inspection; disaster
assessment

Heavy radiation; remote
servicing/inspection;
detection & monitoring for
harsh environments

Fault-detection and diagnosis [147];
robotic inspection [148];

Self-maintaining control systems;
sustained operation; functional
hardening [149]

S
p

a
ce

Exploration and orbital
communications
systems

SEU/MBU mitigation

Modularized electronics, interconnect
[150]; resilient SoC [151],
transceivers [152] & redundancy [66], for
spacecraft altitude [153]

Unmanned systems that self-maintain
(e.g. Skylon); modular spares;
sophisticated fault diagnosis [131]

V
eh

ic
le

s Dependability of
safety-critical
subsystems

Vibration; temperature
cycling; ground level SEU

Reconfigurable MCM platforms; Secure
Soc; electromechanical redundancy, for
electric ship power systems [154]

The self-healing vehicle [155];
mitigation for systemic failures;
fail-save; rapid recovery

R
a

il

On-board power and
control systems;
electrification

Ageing; fault prevention
and discrimination

Power-on self-test routines for power
systems. Guided repair [156]

Enhanced fault logging & localization;
maintaining predictable operation

M
in

in
g Autonomous

exploration; pipeline
inspection

Extreme environment
(drilling, mining, deep sea)

Autonomous vehicles; extreme
environment sensing and predictive failure
monitoring [157]

Prolonged unmanned operation with
limited communications; fault logging
collaborative systems

adopted within the electrical and electronic discipline; coupled

systems with significant benefits to be seen across transport,

health care, mining/exploration, nuclear energy and space

exploration engineering systems. The aim was to set out the

potential impacts with regard to intermittent fault scenarios and

the overall maintenance cost overheads, that plague modern

complex systems. This is principally due to the fact that:

• Electronics support the necessary flexibility for provision

of resources and built-in intelligence;

• Upset mechanisms are projected to become more preva-

lent within next-generation nanoscale design;

• Aggressive scaling of COTS devices towards the neces-

sary complexity, especially with regard to online detec-

tion and resource allocation.

In the light of the above mentioned, the authors had noted

significant recent research activity reported in future nanoscale

analogue and digital design, contemporary CMOS, current

and future configurable integrated circuits, electromechanical

sub-systems and assemblies, complex mechatronic and cyber

physical systems. As a consequence, this paper considered the

current and future technology trends that will make possible a

zero-maintenance design; that is based on masking and active

mitigation techniques driven by emerging nano- and printable-

electronics technologies. This includes built-in fault detection

and logging, fine-grained redundancy (with new possibilities

for masking), self-reconfiguration and self-reallocation. An

alternative perspective is that zero-maintenance is composed of

methods for self-monitoring and self-management of internal

redundant resources. It is also clear that, rather than being

outdated, passive masking strategies have an important role to

play in some environments though they become ineffectual as

ageing-related faults begin to manifest.

A. Future opportunities

Several opportunities exist for fundamental advancement in

this area: novel detection mechanisms need to be identified to

underpin masking and reconfiguration strategies; The handling

of interconnect-related failures is sorely neglected [8] and

needs further research work to understand its impact upon de-

sign for zero-maintenance. Finally, Combining multiple fine-

grained sensing and repair strategies for both manufacturing

yield and through-life maintenance will lead to more efficient

resource reuse. The associated design challenges are equally

significant: i) justifying cost of resources and design com-

plexity (including test and evaluation); ii) gaining confidence

in new strategies; iii) overcoming barriers for certification in

certain application areas; iv) understanding the options for

integrating zero-maintenance at various design levels (and

potentially cross-layered approaches). In most instances, there

is a lack of EDA tool support for effective design exploration

and evaluation. From the multitude of strategies considered,

it seems clear that no single approach to zero-maintenance in

electronics will win and that a multi-objective design approach

is necessary

Design for zero-maintenance incurs many competing design

goals across several areas in electronics sub-systems. These

systems are composed of many sub-systems that must operate

error-free otherwise downtime leads to a direct loss of service

high MRO costs. At the chip-level, speed, efficiency and

cost per unit area are paramount though test and verification

complexity are becoming limiting factors. Board-level and

higher levels bring in new factors including weight, absolute



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 19

cost, integration density and accessibility for inspection. At

the top design level, inter-modular issues are prevalent in-

cluding cabling and connectors, density issues (e.g., thermal

management) and efficiency of space usage (e.g., in compact

avionics bay). Once again, the test and verification complexity

is ever-increasing. Traditional approaches such as design for

reliability, component screening and modular redundancy have

been enlisted with mission critical systems but their cost is

often viewed as being unjustifiable. New low-level capabilities

promise to bring underlying fault detection and discrimination

but these capabilities must be integrated.

Where possible, zero-maintenance techniques should be

tightly integrated with maintenance-related technologies. This

is possible owing to the already mature hierarchical archi-

tecture of microelectronics design, though perhaps less well-

developed at the higher board, sub-module levels. The poten-

tial impact brought about by zero-maintenance should not be

underestimated, especially for industrial applications that are

heavily penalised by downtime. At the same time, autonomous

maintenance strategies may lead to difficulties in certification.

For example, if the trustworthiness of a sub-component is

dependent on knowing its exact configuration at any time,

then self-configuring approaches may be challenging, and fault

masking may be the only route. Information arising from fault

registration, discrimination and localisation will provide new

opportunities for assessing system status in terms of fault

capacity, environmental harshness and onset of ageing. This

could potentially revolutionise predictive and scheduled main-

tenance as well as better-informing major MRO and major

failure events as well as offering self-preservation capabilities

when faults can be predicted. Fault localisation offers direct

benefits for fault tracing in complex systems and to avoid

no-fault found scenarios. However, it is less obvious how

zero-maintenance strategies will directly solve this particular

problem and they may instead reside alongside bespoke fault

locating strategies.

Active mitigation methods are undoubtedly closest to the

vision of self-healing systems, but are still reliant upon effec-

tive (re-)organisation of their internal resources. In this con-

text, self-healing may not become autonomic (i.e., fully self-

initiated) due to the need for fault registration and reporting of

events where resources have been re-organised, re-generated

or drawn down from external sources [22]. An example of a

process that is part self-healing is seen in [158], in which

a data storage device contains embedded heating elements

able to restore neighbouring non-responsive storage cells. This

has the effect of re-establishing the correct material response

and so the recovery of degraded memory cells is accelerated.

The precise relationships between self-maintenance and self-

healing technologies have yet not been established.

It could be argued that a better balance must be achieved

between preventing faults from ever occurring in the first place

and mitigation, e.g., super conducting quantum locked fields

for space travel that may provide both simultaneous propul-

sion and strong shielding against radiation particles for both

passengers and electronic systems. Such developments could

help readdress the balance between fault prevention/mitigation

coupled hardware/software design. In the event of disruptive

future technologies, one might still ask what would be the

consequences of failures of the clever idea itself i.e., in

the above example resulting in loss of shielding? This still

validates the wider arguments in this article even if there

were a paradigm shift in hardware/software capabilities.

Despite recent advancements, the building blocks of design

for zero-maintenance need to be better understood. The tra-

ditional paradigm of multi-level design is well-suited, but a

holistic approach is needed to combine strategies potentially

across multiple design levels. An evolution from tolerance

towards active mitigation has been observed in electronics,

due in part to projected capabilities of (and manufactur-

ing challenges associated with) nanoscale electronics. How-

ever, although emerging strategies promise much for zero-

maintenance capabilities within future electronic systems, their

success is dependent upon a more precise and predictable

evaluation of the associated resource overhead, performance

impact and fault capacity metrics. The future of this field looks

promising and equally pervasive to a host of applications and

domains. We ourselves are looking towards development of

practical demonstrations of whole systems that exhibit this

philosophy of zero-maintenance, beyond just electronics but

also mechanical and robotic systems, particularly within the

manufacturing and through-life services industries, where we

will likewise also outline our perspectives, challenges and

opportunities.

REFERENCES

[1] R. Roy, J. A. Erkoyuncu, and A. Shaw, “The Future of Maintenance
for Industrial Product-Service Systems,” in Product-Service Integration

for Sustainable Solutions (H. Meier, ed.), Lecture Notes in Production
Engineering, pp. 1–15, Springer Berlin Heidelberg, Jan. 2013.

[2] M. Farnsworth, R. McWilliam, S. Khan, C. Bell, and A. Tiwari, Design

for Zero-Maintenance. In: Redding L., Roy R., Shaw A. (eds) Advances
in Through-life Engineering Services. Decision Engineering. Springer,
2017.

[3] X. She and K. McElvain, “Time Multiplexed Triple Modular Re-
dundancy for Single Event Upset Mitigation,” IEEE Transactions on

Nuclear Science, vol. 56, pp. 2443–2448, Aug. 2009.

[4] K. Reick, P. Sanda, S. Swaney, J. Kellington, M. Mack, M. Floyd, and
D. Henderson, “Fault-Tolerant Design of the IBM Power6 Micropro-
cessor,” IEEE Micro, vol. 28, no. 2, pp. 30–38, 2008.

[5] M. Breuer, S. Gupta, and T. M. Mak, “Defect and error tolerance in
the presence of massive numbers of defects,” IEEE Design Test of

Computers, vol. 21, no. 3, pp. 216–227, 2004.

[6] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A Comparison of
TMR With Alternative Fault-Tolerant Design Techniques for FPGAs,”
Nuclear Science, IEEE Transactions on, vol. 54, pp. 2065 –2072, Dec.
2007.

[7] J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of fault
tolerant methodologies for FPGAs,” ACM Trans. Des. Autom. Electron.

Syst., vol. 11, pp. 501–533, Apr. 2006.

[8] M. G. Parris, C. A. Sharma, and R. F. Demara, “Progress in Au-
tonomous Fault Recovery of Field Programmable Gate Arrays,” ACM

Comput. Surv., vol. 43, pp. 31:1–31:30, Oct. 2011.

[9] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods for relia-
bility in FPGAs,” in International Conference on Field Programmable

Logic and Applications, 2008. FPL 2008, pp. 415 –420, Sept. 2008.

[10] L. Sterpone, Electronics System Design Techniques for Safety Critical

Applications. Springer, 1st ed., 2008.

[11] L. Bauer, C. Braun, M. Imhof, M. Kochte, H. Zhang, H. Wunderlich,
and J. Henkel, “OTERA: Online test strategies for reliable reconfig-
urable architectures #x2014; Invited paper for the AHS-2012 special
session #x201c;Dependability by reconfigurable hardware #x201d;,”
in 2012 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), pp. 38–45, June 2012.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 20

[12] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique, “Multi-
Layer Dependability: From Microarchitecture to Application Level,” in
Proceedings of the 51st Annual Design Automation Conference, DAC
’14, (New York, NY, USA), pp. 47:1–47:6, ACM, 2014.

[13] W. Carter and W. Bouricius, “A Survey of Fault Tolerant Computer
Architecture and its Evaluation,” Computer, vol. 4, no. 1, pp. 9–16,
1971.

[14] R. A. Maxion, D. P. Siewiorek, and S. A. Elkind, “Techniques
and Architectures for Fault-Tolerant Computing,” Annual Review of

Computer Science, vol. 2, no. 1, pp. 469–520, 1987.

[15] S. Hamdioui, G. Gaydadjiev, and A. J. Van de Goor, “The state-of-
art and future trends in testing embedded memories,” in Records of

the 2004 International Workshop on Memory Technology, Design and

Testing, 2004, pp. 54–59, 2004.

[16] M. A. Trefzer and A. M. Tyrrell, Evolvable Hardware: From Practice

to Application. Springer, Sept. 2015.

[17] S. Michalak, A. Dubois, C. Storlie, H. Quinn, W. Rust, D. DuBois,
D. Modl, A. Manuzzato, and S. Blanchard, “Neutron Beam Testing
of High Performance Computing Hardware,” in 2011 IEEE Radiation

Effects Data Workshop (REDW), pp. 1–8, 2011.

[18] A. Patel and K. Prakash, “Fault-tolerant features of modern processors
- A case study,” 2010.

[19] J. Rivers, M. Gupta, J. Shin, P. Kudva, and P. Bose, “Error Tolerance
in Server Class Processors,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 30, pp. 945 –959,
July 2011.

[20] C. . D. S. Gao, Zhiwei; Cecati, “A survey of fault diagnosis and
fault-tolerant techniques-part ii: fault diagnosis with knowledge-based
and hybrid / active approaches,” IEEE Transactions on Industrial

Electronics, vol. 62, no. 6, pp. 3768–3774, 2015.

[21] C. . D. S. Gao, Zhiwei; Cecati, “A survey of fault diagnosis and
fault-tolerant techniques part i: Fault diagnosis with model-based and
signal-based approaches,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3757–3767, 2015.

[22] R. Frei, R. McWilliam, B. Derrick, A. Purvis, A. Tiwari, and G. D. M.
Serugendo, “Self-healing and self-repairing technologies,” The Inter-

national Journal of Advanced Manufacturing Technology, vol. 69,
pp. 1033–1061, Nov. 2013.

[23] H. Psaier and S. Dustdar, “A survey on self-healing systems: ap-
proaches and systems,” Computing, vol. 91, pp. 43–73, Jan. 2011.

[24] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji, “Self-
Repairing Mechanical Systems,” Autonomous Robots, vol. 10, pp. 7–21,
Jan. 2001.

[25] H. Noura, D. Theilliol, J.-C. Ponsart, and A. Chamseddine, Fault-

tolerant Control Systems: Design and Practical Applications. Springer
Science & Business Media, July 2009.

[26] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “The visual vulnera-
bility spectrum: characterizing architectural vulnerability for graphics
hardware,” tech. rep., DTIC Document, 2006.

[27] Sandi Habnic, “Functional triple modular redundancy (FTMR),” Dec.
2002.

[28] M. Reorda, L. Sterpone, and A. Ullah, “An error-detection and self-
repairing method for dynamically and partially reconfigurable systems,”
IEEE Transactions on Computers, vol. 66, no. 6, pp. 1022–1033, 2017.

[29] O. Eldash, K. Khalil, and M. Bayoumi, “On on-chip intelligence
paradigms,” Electrical and Computer Engineering (CCECE) IEEE 30th

Canadian Conference, vol. 1, no. 1, pp. 1–6, 2017.

[30] A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithog-

raphy. SPIE Press, 2001.

[31] B. Parhami, “Defect, Fault, Error,..., or Failure?,” IEEE Transactions

on Reliability, vol. 46, pp. 450–451, Dec. 1997.

[32] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz,
G. Dermer, S. Hareland, P. Armstrong, and S. Borkar, “Neutron soft
error rate measurements in a 90-nm CMOS process and scaling trends
in SRAM from 0.25-/spl mu/m to 90-nm generation,” in Electron De-

vices Meeting, 2003. IEDM ’03 Technical Digest. IEEE International,
pp. 21.5.1–21.5.4, 2003.

[33] R. G. Bennetts, Introduction to Digital Board Testing. Crane, Russak,
1982.

[34] S. Khan, P. Phillips, C. Hockley, and I. Jennions, “No fault found
events in maintenance engineering part 2: Root causes, technical
developments and future research,” Reliability Engineering and System

Safety, vol. 123, no. 1, pp. 196–208, 2014.

[35] V. Agrawal, C. Kime, and K. Saluja, “A tutorial on built-in self-test. I.
Principles,” IEEE Design Test of Computers, vol. 10, no. 1, pp. 73–82,
1993.

[36] P. O’Connor and A. Kleyner, Practical Reliability Engineering. John
Wiley & Sons, Nov. 2011.

[37] F. Sexton, “Destructive single-event effects in semiconductor devices
and ICs,” IEEE Transactions on Nuclear Science, vol. 50, no. 3,
pp. 603–621, 2003.

[38] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer,
Sept. 2010.

[39] M. Ebrahimi, S. Miremadi, H. Asadi, and M. Fazeli, “Low-Cost Scan-
Chain-Based Technique to Recover Multiple Errors in TMR Systems,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, pp. 1454–1468, Aug. 2013.

[40] I. Koren and A. Singh, “Fault tolerance in VLSI circuits,” Computer,
vol. 23, pp. 73–83, July 1990.

[41] A. Agarwal, J. Cong, and B. Tagiku, “The Survivability of Design-
specific Spare Placement in FPGA Architectures with High Defect
Rates,” ACM Trans. Des. Autom. Electron. Syst., vol. 18, pp. 33:1–
33:22, Apr. 2013.

[42] J. Walker, M. Trefzer, S. Bale, and A. Tyrrell, “PAnDA: A Reconfig-
urable Architecture that Adapts to Physical Substrate Variations,” IEEE

Transactions on Computers, vol. 62, no. 8, pp. 1584–1596, 2013.

[43] J. Han and P. Jonker, “A defect- and fault-tolerant architecture for
nanocomputers,” Nanotechnology, vol. 14, pp. 224–230, Feb. 2003.

[44] R. Sedmark, “Boundary-scan: beyond production test,” in , 12th IEEE

VLSI Test Symposium, 1994. Proceedings, pp. 415–420, 1994.

[45] A. Hassan, V. Agarwal, B. Nadeau-Dostie, and J. Rajski, “BIST of PCB
interconnects using boundary-scan architecture,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 11,
no. 10, pp. 1278–1288, 1992.

[46] M. Farnsworth, C. Bell, S. Khan, and T. Tomiyama, “Autonomous
Maintenance for Through-Life Engineering,” in Through-life Engineer-

ing Services (L. Redding and R. Roy, eds.), Decision Engineering,
pp. 395–419, Springer International Publishing, 2015.

[47] B. Allen, “Monitoring hard disks with smart,” Linux J., no. 117, p. 9,
2004.

[48] J. Andersson, J. Gaisler, and R. Weigand, “Next Generation MultiPur-
pose Microprocessor,” vol. 682, p. 7, Aug. 2010.

[49] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are Disks the Dominant
Contributor for Storage Failures?: A Comprehensive Study of Storage
Subsystem Failure Characteristics,” Trans. Storage, vol. 4, pp. 7:1–
7:25, Nov. 2008.

[50] H. V. Allen, S. C. Terry, and D. W. De Bruin, “Accelerometer systems
with self-testable features,” Sensors and Actuators, vol. 20, no. 1,
pp. 153–161, 1989.

[51] Q. Jia, “Write Fault Protection Against Shock Disturbance in Hard Disk
Drives Without a Shock Sensor,” IEEE Transactions on Magnetics,
vol. 43, pp. 3689–3693, Sept. 2007.

[52] M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, pp. 75–82, Apr. 1997.

[53] S. Chau, “Fault injection boundary scan design for verification of fault
tolerant systems,” in Test Conference, 1994. Proceedings., Interna-

tional, pp. 677–682, 1994.

[54] T. Chakraborty and C.-H. Chiang, “A novel fault injection method for
system verification based on FPGA boundary scan architecture,” in Test

Conference, 2002. Proceedings. International, pp. 923–929, 2002.

[55] H. Quinn, D. Black, W. Robinson, and S. Buchner, “Fault Simulation
and Emulation Tools to Augment Radiation-Hardness Assurance Test-
ing,” IEEE Transactions on Nuclear Science, vol. 60, pp. 2119–2142,
June 2013.

[56] ESA, “Techniques for Radiation Effects Mitigation in ASICs and
FPGAs,” Dec. 2011.

[57] A. Avizienis, “Fault-tolerance: The survival attribute of digital sys-
tems,” Proceedings of the IEEE, vol. 66, no. 10, pp. 1109–1125, 1978.

[58] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tolerance
for FPGA Logic Blocks,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 15, pp. 216–226, Feb. 2007.

[59] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34,
pp. 43–98, 1956.

[60] P. A. Jensen, “Quadded NOR Logic,” IEEE Transactions on Reliability,
vol. R-12, pp. 22 –31, Sept. 1963.

[61] J. Losq, “A Highly Efficient Redundancy Scheme: Self-Purging Re-
dundancy,” IEEE Transactions on Computers, vol. C-25, pp. 569–578,
June 1976.

[62] A. M. Tyrrell, “Fault Tolerant Applications,” in Evolvable Hardware,
Natural Computing Series, pp. 191–207, Springer Berlin Heidelberg,
2015. DOI: 10.1007/978-3-662-44616-4 7.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 21

[63] M. A. Trefzer, J. A. Walker, S. J. Bale, and A. M. Tyrrell, “Fighting
stochastic variability in a D-type flip-flop with transistor-level reconfig-
uration,” IET Computers Digital Techniques, vol. 9, no. 4, pp. 190–196,
2015.

[64] Eldon Hall, “General Design Characteristics of the Apollo Guidance
Computer,” June 1996.

[65] M. Straka, J. Kastil, and Z. Kotasek, “Fault Tolerant Structure for
SRAM-Based FPGA via Partial Dynamic Reconfiguration,” in 2010

13th Euromicro Conference on Digital System Design: Architectures,

Methods and Tools (DSD), pp. 365–372, 2010.
[66] M. Niknahad, O. Sander, and J. Becker, “Fine grain fault tolerance- A

key to high reliability for FPGAs in space,” in 2012 IEEE Aerospace

Conference, pp. 1 –10, Mar. 2012.
[67] V. Petrovic and M. Krstic, “Design Flow for Radhard TMR Flip-

Flops,” in 2015 IEEE 18th International Symposium on Design and

Diagnostics of Electronic Circuits Systems (DDECS), pp. 203–208,
Apr. 2015.

[68] K. Chapman, SEU Strategies for Virtex-5 Devices, vol. XAPP864.
2010.

[69] A. Namazi and M. Nourani, “Gate-Level Redundancy: A New Design-
for-Reliability Paradigm for Nanotechnologies,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 775 –786,
May 2010.

[70] J. Han, E. Leung, L. Liu, and F. Lombardi, “A Fault-Tolerant Technique
Using Quadded Logic and Quadded Transistors,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–1,
2014.

[71] M. Niknahad, O. Sander, and J. Becker, “QFDR-an integration of
Quadded Logic for modern FPGAs to tolerate high radiation effect
rates,” in 2011 12th European Conference on Radiation and Its Effects

on Components and Systems (RADECS), pp. 119–122, Sept. 2011.
[72] A. El-Maleh, B. Al-Hashimi, A. Melouki, and F. Khan, “Defect-

tolerant n2-transistor structure for reliable nanoelectronic designs,” IET

Computers Digital Techniques, vol. 3, pp. 570 –580, Nov. 2009.
[73] A. Mukherjee and A. S. Dhar, “New triple-transistor based defect-

tolerant systems for reliable digital architectures,” in 2015 IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 1917–
1920, May 2015.

[74] J. Han, J. Gao, P. Jonker, Y. Qi, and J. Fortes, “Toward hardware-
redundant, fault-tolerant logic for nanoelectronics,” IEEE Design Test

of Computers, vol. 22, pp. 328 – 339, Aug. 2005.
[75] R. Kumawat, V. Sahula, and M. S. Gaur, “Reliable circuit analysis

and design using nanoscale devices,” Proc . of SPIE, vol. 8760,
pp. 87602C–87602C, Jan. 2013.

[76] M. Straka, J. Kastil, Z. Kotasek, and L. Miculka, “Fault tolerant
system design and SEU injection based testing,” Microprocessors and

Microsystems, no. 0.
[77] B. Pratt, M. Fuller, M. Rice, and M. Wirthlin, “Reduced-Precision

Redundancy for Reliable FPGA Communications Systems in High-
Radiation Environments,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 49, no. 1, pp. 369–380, 2013.
[78] M. Sankaranarayanan and A. Vaidyanathan, “Black box model based

self healing solution for stuck at faults in digital circuits,” Interna-

tional Journal of Electrical and Computer Engineering, vol. 7, no. 5,
pp. 2451–2458, 2017.

[79] K. Chakraborty and P. Mazumder, Fault Tolerance and Reliability

Techniques for High Density Random Access Memories. Prentice Hall
PTR, 2002.

[80] S. Kimura, M. Takahashi, T. Okuyama, S. Tsuchiya, and Y. Suzuki,
“A fault-tolerant control algorithm having a decentralized autonomous
architecture for space hyper-redundant manipulators,” Systems, Man

and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 28, pp. 521 –527, July 1998.

[81] A. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, and S.-L. Lu,
“Adaptive Cache Design to Enable Reliable Low-Voltage Operation,”
IEEE Transactions on Computers, vol. 60, no. 1, pp. 50–63, 2011.

[82] R. Kothe, H. Vierhaus, T. Coym, W. Vermeiren, and B. Straube,
“Embedded Self Repair by Transistor and Gate Level Reconfiguration,”
in Design and Diagnostics of Electronic Circuits and systems, 2006

IEEE, pp. 208 –213, 2006.
[83] F. de Novaes Kucinskis and M. G. V. Ferreira, “Taking the ECSS

autonomy concepts one step further,” in SpaceOps 2010 Conference

Delivering on the Dream Hosted by NASA Mars, pp. 25–30, 2010.
[84] X. Wendling, R. Rochet, and R. Leveugle, “ROM-based synthesis of

fault-tolerant controllers,” in , 1996 IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems, 1996. Proceedings,
pp. 304–308, 1996.

[85] Q. Wu, G. Dong, and T. Zhang, “A First Study on Self-Healing
Solid-State Drives,” in Memory Workshop (IMW), 2011 3rd IEEE

International, pp. 1 –4, May 2011.

[86] A. Goyal, M. Swaminathan, A. Chatterjee, D. Howard, and J. Cressler,
“A New Self-Healing Methodology for RF Amplifier Circuits Based
on Oscillation Principles,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 20, pp. 1835 –1848, Oct. 2012.

[87] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. Higgins, and
J. Lewandowski, “Built in self repair for embedded high den-
sity SRAM,” in Test Conference, 1998. Proceedings., International,
pp. 1112–1119, 1998.

[88] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Comput. Surv., vol. 41, pp. 15:1–15:58, July 2009.

[89] S. Khan and T. Yairi, “A review on the application of deep learning in
system health management,” Mechanical Systems and Signal Process-

ing, vol. 107, no. 1, pp. 241–265, 2018.

[90] A. H. El-Maleh, “A sequential circuit fault tolerance technique with
enhanced area and power,” in 2015 IEEE International Symposium on

Signal Processing and Information Technology (ISSPIT), pp. 301–304,
Dec. 2015.

[91] I. Reis, P. Collins, and M. van Houcke, “On-line Boundary-Scan
Testing in Service of Extended Products,” in Test Conference, 2006.

ITC ’06. IEEE International, pp. 1–10, Oct. 2006.

[92] L. Whetsel, “Built-in self-test (BIST) using boundary scan,” 1996.

[93] Y. Zorian, “A structured testability approach for multi-chip modules
based on BIST and boundary-scan,” IEEE Transactions on Compo-

nents, Packaging, and Manufacturing Technology, Part B: Advanced

Packaging, vol. 17, no. 3, pp. 283–290, 1994.

[94] B. Kim, A. Chatterjee, M. Swaminathan, and D. Schimmel, “A novel
low-cost approach to MCM interconnect test,” in Test Conference,

1995. Proceedings., International, pp. 184–192, 1995.

[95] Y. Fkih, P. Vivet, B. Rouzeyre, M.-L. Flottes, and G. Di Natale, “A
3d IC BIST for pre-bond test of TSVs using ring oscillators,” in
New Circuits and Systems Conference (NEWCAS), 2013 IEEE 11th

International, pp. 1–4, 2013.

[96] I. Villalta, U. Bidarte, J. Gmez-Cornejo, J. Lzaro, and C. Cuadrado,
“Dependability in FPGAs, a Review,” in 2015 Conference on Design

of Circuits and Integrated Systems (DCIS), pp. 1–6, Nov. 2015.

[97] S. Habermann, R. Kothe, and H. T. Vierhaus, “Built-in self repair
by reconfiguration of FPGAs,” in On-Line Testing Symposium, 2006.

IOLTS 2006. 12th IEEE International, pp. 2–pp, 2006.

[98] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgeford,
“Enhanced Architectures, Design Methodologies and Cad Tools for
Dynamic Reconfiguration of Xilinx Fpgas,” in Proceedings of the

16th International Conference on Field Programmable Logic and

Applications (FPL06), (Madrid, Spain), Aug. 2006.

[99] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic fault
tolerance in FPGAs via partial reconfiguration,” in Field-Programmable

Custom Computing Machines, 2000 IEEE Symposium on, pp. 165 –174,
2000.

[100] M. Krcma, Z. Kotasek, and J. Kastil, “Fault tolerant Field Pro-
grammable Neural Networks,” in Nordic Circuits and Systems Con-

ference (NORCAS): NORCHIP International Symposium on System-

on-Chip (SoC), 2015, pp. 1–4, Oct. 2015.

[101] R. Kaushik, J. Byunghoo, P. Dimitrios, and R. Anand, “Integrated sys-
tems in the more-than-moore era: designing low-cost energy-efficient
systems using heterogeneous components,” IEEE Design and Test,
vol. 33, no. 3, pp. 56–65, 2016.

[102] M. Kawanaka, M. Tsunoyama, and S. Naito, “A fault-tolerant parallel
processor modeled by a two-dimensional linear cellular automaton,”
Systems and Computers in Japan, vol. 25, pp. 1–11, Mar. 2007.

[103] D. Jones, R. McWilliam, and A. Purvis, “Designing convergent cellular
automata.,” Biosystems, vol. 96, no. 1, pp. 80–85, 2008.

[104] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi, “Plastic cell
architecture: towards reconfigurable computing for general-purpose,” in
IEEE Symposium on FPGAs for Custom Computing Machines, 1998.

Proceedings, pp. 68–77, 1998.

[105] W. Barker, D. Halliday, Y. Thoma, E. Sanchez, G. Tempesti, and
A. Tyrrell, “Fault Tolerance Using Dynamic Reconfiguration on the
POEtic Tissue,” IEEE Transactions on Evolutionary Computation,
vol. 11, pp. 666 –684, Oct. 2007.

[106] A. M. Tyrrell and A. J. Greensted, “Evolving dependability,” J. Emerg.

Technol. Comput. Syst., vol. 3, July 2007.

[107] M. Samie, G. Dragffy, and T. Pipe, “Novel bio-inspired self-repair algo-
rithm for evolvable fault tolerant hardware systems,” in Proceedings of

the 11th Annual Conference Companion on Genetic and Evolutionary



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 22

Computation Conference: Late Breaking Papers, GECCO ’09, (New
York, NY, USA), pp. 2143–2148, ACM, 2009.

[108] D. Jose and R. Tamilselvan, “Fault tolerant and energy efficient signal
processing on fpga using evolutionary techniques,” Computational

Intelligence, Cyber Security and Computational Models. Springer,
vol. 1, no. 1, pp. 155–164, 2016.

[109] X. Yang, Y. Li, and Y. Tong, “Application of interactive evolutionary
strategy in fault-tolerant system capable of online self-repairing,” Inter-

national Journal of Computational Science and Engineering, vol. 15,
no. 1, pp. 57–65, 2016.

[110] T. Koal, S. Scharoba, and H. T. Vierhaus, “Combining Correction of
Delay Faults and Transient Faults,” in 2015 IEEE 18th International

Symposium on Design and Diagnostics of Electronic Circuits Systems

(DDECS), pp. 99–102, Apr. 2015.
[111] J. Sklaroff, “Redundancy Management Technique for Space Shuttle

Computers,” IBM Journal of Research and Development, vol. 20, no. 1,
pp. 20–28, 1976.

[112] T. Koal, M. Ulbricht, and H. Vierhaus, “Virtual TMR Schemes Com-
bining Fault Tolerance and Self Repair,” in 2013 Euromicro Conference

on Digital System Design (DSD), pp. 235–242, 2013.
[113] R. McWilliam, P. Schiefer, and A. Purvis, “Demonstration of a Self-

recovering ALU Using a Convergent Cellular Automata,” Procedia

CIRP, vol. 11, pp. 373–378, 2013.
[114] F. Kastensmidt and P. Rech, “Radiation Effects and Fault Tolerance

Techniques for FPGAs and GPUs,” in FPGAs and Parallel Architec-

tures for Aerospace Applications (F. Kastensmidt and P. Rech, eds.),
pp. 3–17, Springer International Publishing, 2016. DOI: 10.1007/978-
3-319-14352-1 1.

[115] N. Campregher, P. Y. K. Cheung, G. Constantinides, and M. Vasilko,
“Reconfiguration and Fine-Grained Redundancy for Fault Tolerance in
FPGAs,” in International Conference on Field Programmable Logic

and Applications, 2006. FPL ’06, pp. 1–6, 2006.
[116] P. Schiefer, R. McWilliam, and A. Purvis, “Fault Tolerant Quadded

Logic Cell Structure with Built-in Adaptive Time Redundancy,” Pro-

cedia CIRP, vol. 22, pp. 127–131, 2014.
[117] R. Moric, B. J. Phillips, and M. J. Liebelt, “Defect tolerant prefix adder

design,” vol. 7268, pp. 72680F–72680F–9, 2008.
[118] P. Bremner, Y. Liu, M. Samie, G. Dragffy, A. G. Pipe, G. Tem-

pesti, J. Timmis, and A. M. Tyrrell, “SABRE: a bio-inspired fault-
tolerant electronic architecture,” Bioinspiration & Biomimetics, vol. 8,
p. 016003, Mar. 2013.

[119] M. Kawanaka, M. Tsunoyama, and S. Naito, “A fault-tolerant parallel
processor modeled by a two-dimensional linear cellular automaton,”
Systems and Computers in Japan, vol. 25, no. 6, pp. 1–11, 1994.

[120] N. Kamiura, Y. Hata, and K. Yamato, “A repairable and diagnos-
able cellular array on multiple-valued logic,” in , Proceedings of

The Twenty-Third International Symposium on Multiple-Valued Logic,

1993, pp. 92–97, 1993.
[121] S. Mitra, W.-J. Huang, N. Saxena, S.-Y. Yu, and E. McCluskey,

“Reconfigurable architecture for autonomous self-repair,” Design Test

of Computers, IEEE, vol. 21, pp. 228 – 240, June 2004.
[122] S. Habermann, R. Kothe, and H. T. Vierhaus, “Built-in Self Repair

by Reconfiguration of FPGAs,” in Proceedings of the 12th IEEE

International Symposium on On-Line Testing, IOLTS ’06, (Washington,
DC, USA), pp. 187–188, IEEE Computer Society, 2006.

[123] J. Huang, M. Tahoori, and F. Lombardi, “Fault tolerance of switch
blocks and switch block arrays in FPGA,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 13, no. 7, pp. 794–807,
2005.

[124] F. Smith, “A new methodology for single event transient suppression
in flash FPGAs,” Microprocessors and Microsystems, vol. 37, pp. 313–
318, May 2013.

[125] W.-H. Chen and B. Jung, “Self-Healing Phase-Locked Loops in Deep-
Scaled CMOS Technologies,” Design Test of Computers, IEEE, vol. 27,
pp. 18 –25, Dec. 2010.

[126] B. J. Flehinger, “Reliability Improvement through Redundancy at
Various System Levels,” IBM Journal of Research and Development,
vol. 2, no. 2, pp. 148–158, 1958.

[127] F.-B. Sun and S. Zhang, “Does Hard Disk Drive Failure Rate Enter
Steady-State Afer One Year?,” in Reliability and Maintainability Sym-

posium, 2007. RAMS ’07. Annual, pp. 356–361, Jan. 2007.
[128] Y. Wang, Q. Miao, E. Ma, K.-L. Tsui, and M. Pecht, “Online Anomaly

Detection for Hard Disk Drives Based on Mahalanobis Distance,” IEEE

Transactions on Reliability, vol. 62, pp. 136–145, Mar. 2013.
[129] S. Kamarthi, A. Zeid, and Y. Bagul, “Assessement of current health

of hard disk drives,” in IEEE International Conference on Automation

Science and Engineering, 2009. CASE 2009, pp. 246–249, Aug. 2009.

[130] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique,
M. Tahoori, and N. Wehn, “Reliable On-chip Systems in the Nano-
era: Lessons Learnt and Future Trends,” in Proceedings of the 50th

Annual Design Automation Conference, DAC ’13, (New York, NY,
USA), pp. 99:1–99:10, ACM, 2013.

[131] J. Schumann, O. J. Mengshoel, and T. Mbaya, “Integrated Software
and Sensor Health Management for Small Spacecraft,” in Proc. of IEEE

International Conference on Space Mission Challenges for Information

Technology, (Palo Alto, CA), pp. 77–84, 2011.

[132] H.-T. Lue, P.-Y. Du, C.-P. Chen, W.-C. Chen, C.-C. Hsieh, Y.-H. Hsiao,
Y.-H. Shih, and C.-Y. Lu, “Radically extending the cycling endurance
of Flash memory (to #x003e; 100m Cycles) by using built-in thermal
annealing to self-heal the stress-induced damage,” in Electron Devices

Meeting (IEDM), 2012 IEEE International, pp. 9.1.1–9.1.4, Dec. 2012.

[133] R. Velazco, P. Fouillat, and R. Reis, eds., Radiation Effects on Embed-

ded Systems. Springer, 1 ed., May 2007.

[134] D. D. Sworder and T. Kazangey, “Optimal Control, Repair, and
Inventory Strategies for a Linear Stochastic System,” Systems, Man

and Cybernetics, IEEE Transactions on, vol. 2, pp. 342 –347, July
1972.

[135] S. Carthik, S. Alireza, A. Ahmad, and D. Ronald, “Self-healing
reconfigurable logic using autonomous group testing,” Microprocessors

and Microsystems, vol. 37, pp. 174–184, Oct. 2013.

[136] B. S. Dhillon, “Failure modes and effects analysis Bibliography,”
Microelectronics Reliability, vol. 32, pp. 719–731, May 1992.

[137] M. Balaz and S. Kristofik, “Generic Self Repair Architecture with
Multiple Fault Handling Capability,” in 2015 Euromicro Conference

on Digital System Design (DSD), pp. 197–204, Aug. 2015.

[138] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-
scale assessment of real-world error rates in gpgpu,” in Cluster, Cloud

and Grid Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on, pp. 691–696, IEEE, 2010.

[139] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for GPGPU reliability,” in Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing Units, pp. 94–
104, ACM, 2009.

[140] G. K. Fedder, T. Mukherjee, and L. Pileggi, “Self-configuring CMOS
Microsystems,” in Control Technologies for Emerging Micro and

Nanoscale Systems (E. Eleftheriou and S. O. R. Moheimani, eds.),
no. 413 in Lecture Notes in Control and Information Sciences, pp. 181–
200, Springer Berlin Heidelberg, Jan. 2011.

[141] M. Farnsworth, A. Tiwari, M. Zhu, and E. Benkhelifa, “A multi-
objective and multidisciplinary optimisation algorithm for micro-
electromechanical systems,” Studies in Computational Intelligence,
vol. 731, pp. 205–238, 2018.

[142] M. Farnsworth, A. Tiwari, and M. Zhu, “Multi-level and multi-
objective design optimisation of a mems bandpass filter,” Applied Soft

Computing, vol. 52, pp. 642–656, 2017.

[143] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The eval-
uation platform for testing fault-tolerance methodologies in electro-
mechanical applications,” Microprocessors and Microsystems, vol. 39,
pp. 1215–1230, Nov. 2015.

[144] F. L. Kastensmidt, R. Reis, and L. Carro, Fault-Tolerance Techniques

for SRAM-Based FPGAs. Springer, Feb. 2007.

[145] B. Sauser, R. Gove, E. Forbes, and J. E. Ramirez-Marquez, “Integration
maturity metrics: Development of an integration readiness level,”
Information, Knowledge, Systems Management, vol. 9, pp. 17–46, Jan.
2010.

[146] T. J. Kaiser, B. J. LaMeres, T. Buerkle, J. A. Hogan, and R. J. Weber,
“Experimental Conformation of Ionizing Sensing for Space Radiation
Environmental Awareness,” IEEE Sensors Journal, vol. 16, pp. 3482–
3483, May 2016.

[147] J. Ma and J. Jiang, “Applications of fault detection and diagnosis
methods in nuclear power plants: A review,” Progress in Nuclear

Energy, vol. 53, pp. 255–266, Apr. 2011.

[148] J. De Geeter, M. Decrton, and E. Colon, “The challenges of telerobotics
in a nuclear environment,” Robotics and Autonomous Systems, vol. 28,
pp. 5–17, July 1999.

[149] H. F. J. Shipurkar, Udai; Polinder, “A review of methods to increase
the availability of wind turbine generator systems,” CPSS Transactions

on Power Electronics and Applications, vol. 1, no. 1, pp. 66–82, 2016.

[150] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, A. Erdogan, and I. Martinez,
“Enabling FPGAs for future deep space exploration missions: Im-
proving fault-tolerance and computation density with R3tos,” in 2011

NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pp. 104–112, 2011.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 23

[151] X. Iturbe, D. Keymeulen, E. Ozer, P. Yiu, D. Berisford, K. Hand,
and R. Carlson, “An integrated SoC for science data processing in
next-generation space flight instruments avionics,” in 2015 IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 134–141, Oct. 2015.

[152] S. Taube, V. Petrovic, and M. Krstic, “Fault tolerant implementation of
a SpaceWire interface,” in 2014 21st IEEE International Conference on

Electronics, Circuits and Systems (ICECS), pp. 614–617, Dec. 2014.
[153] B. D. S. Z. D. Yin, Shen; Xiao, “A review on recent development of

spacecraft attitude fault tolerant control system,” IEEE Transactions on

Industrial Electronics, vol. 63, no. 5, pp. 3311–3320, 2016.
[154] J. A. S. Babaei, Maziar; Shi, “A survey on fault detection, isolation, and

reconfiguration methods in electric ship power systems,” IEEE Access,
vol. 6, no. 1, pp. 9430–9441, 2018.

[155] M. Amor-Segan, R. McMurran, G. Dhadyalla, and R. Jones, “Towards
the Self Healing Vehicle,” in 2007 3rd Institution of Engineering and

Technology Conference on Automotive Electronics, pp. 1 –7, June 2007.
[156] A. Abdel-Malek, B. Scallan, J. M. Bruno, B. A. Mathewson, J. E.

Schlabach, G. J. Fera, and I. Gomez, “Diagnosis and repair system
and method,” Apr. 2007. US7209817 B2.

[157] J. Sarangapani and D. R. Schricker, “Method and apparatus for predict-
ing a fault condition,” Sept. 1999. U.S. Classification 702/179, 702/181,
702/182, 701/1, 701/32.1; International Classification G05B23/02,
G05B19/406; Cooperative Classification G05B23/0232; European
Classification G05B23/02S4H2B.

[158] Q. Wu, G. Dong, and T. Zhang, “A First Study on Self-Healing
Solid-State Drives,” in Memory Workshop (IMW), 2011 3rd IEEE

International, pp. 1–4, May 2011.


