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Abstract 11 

Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of 12 

positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In 13 

mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the 14 

likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term 15 

stability. In antagonistic environments, plasmids are purged by negative selection, reducing the 16 

probability of compensatory evolution and driving their extinction. Here we show, using 17 

experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, 18 

that migration promotes plasmid stability in spatially heterogeneous selection environments. 19 

Specifically, migration from mutualistic environments, by increasing both the frequency of the 20 

plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic 21 

environments where, without migration, they approached extinction. These data suggest that 22 

spatially heterogeneous positive selection, which is common in natural environments, coupled with 23 

migration helps to explain the stability of plasmids and the ecologically important genes that they 24 

encode. 25 
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Main text 31 

Conjugative plasmids are semi-autonomous mobile genetic elements that have control over their 32 

own replication and transmission, but rely on the bacterial cell for their propagation [1]. Because 33 

plasmids often carry accessory genes encoding ecologically important traits Ͷ such as toxin 34 

resistance, novel metabolic functions or virulence factors [2] Ͷ they play an important role in 35 

bacterial adaptation and genome evolution through horizontal gene transfer. However, the ubiquity 36 

of plasmids is difficult to explain. Plasmid acquisition is often costly for host cells, due to the 37 

biosynthetic demand placed upon the cell and the disruption of cellular homeostasis [3,4]. The 38 

benefits of plasmid encoded traits meanwhile are often context dependent and only beneficial to 39 

the bacterial host under specific environmental conditions. Thus, interactions between plasmids and 40 

bacteria form a context dependent parasitism-mutualism continuum [5,6]. In environments where 41 

the benefits conferred by plasmid-encoded traits outweigh the costs of plasmid carriage, the 42 

interaction is mutualistic [5,6]. Where these costs are not offset by the benefits of plasmid-encoded 43 

traits, plasmids are parasitic and the interaction is antagonistic [5,6]. The ecological population 44 

dynamics of plasmids are dependent on the balance of these costs and benefits: plasmids will be 45 

maintained at higher frequencies in mutualistic environments due to positive selection. In 46 

antagonistic environments, plasmids which do not have sufficiently high rates of infectious 47 

transmission will be purged by purifying selection potentially leading to extinction of the plasmid 48 

and, concomitantly, reduced evolutionary potential for the bacterial community. 49 

  50 

Compensatory evolution to ameliorate the cost of plasmid carriage can rescue plasmids from 51 

extinction by weakening purifying selection [5,7]. Compensatory evolution has been observed 52 

repeatedly in bacteria-plasmid co-culture studies and is therefore believed to be an important 53 

determinant of plasmid population dynamics [5,8ʹ14]. Recent theory shows that compensatory 54 

evolution is more likely to occur in mutualistic environments because plasmids are at higher 55 

frequency for longer periods of time, increasing the probability that compensation mutations will 56 

arise [13,15]. We predicted, therefore, that under spatially heterogeneous positive selection, 57 

migration from mutualistic to antagonistic patches will stabilize plasmids across the entire landscape 58 

through an eco-evolutionary mechanism, whereby immigrants increase both the frequency of the 59 

plasmid and the supply of compensatory mutations ameliorating the plasmid cost. 60 

  61 

The interaction between the bacterium Pseudomonas fluorescens SBW25 [16] and its conjugative 62 

plasmid, pQBR103 [17], forms a context-dependent parasitism-mutualism continuum. Plasmid 63 

carriage imposes a large fitness cost on the host cell, but this cost is progressively outweighed by the 64 
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fitness benefit of plasmid-encoded mercury resistance at higher concentrations of toxic Hg(II), 65 

creating a fitness gradient from strongly negative to strongly positive selection [5,6]. We previously 66 

showed that P. fluorescens can ameliorate the cost of plasmid carriage through compensatory 67 

mutations targeting the GacA/GacS global regulatory system [5]. While parallel compensatory 68 

evolution was observed across the entire parasitism-mutualism continuum, it occurred with higher 69 

likelihood and at a faster rate in mutualistic environments. Since GacA/GacS positively regulates a 70 

well-characterized suite of secreted proteins we are able to track compensatory evolution dynamics 71 

through time using simple phenotypic assays for protease production [18]. Thus, we have developed 72 

a tractable experimental system that allows us to simultaneously follow the ecological dynamics of 73 

plasmid prevalence and the evolutionary dynamics of compensatory mutation in real-time. Here, we 74 

test how the spatial heterogeneity of positive selection and migration rate interact to determine 75 

plasmid stability through their joint effects on plasmid frequency and compensatory evolution 76 

dynamics. 77 

  78 

Materials and Methods 79 

Experimental populations were established using isogenic strains of the bacteria P. fluorescens 80 

SBW25 with and without the mercury resistance plasmid, pQBR103. Strain SBW25-Gm carries a 81 

gentamicin resistance marker and strain SBW25-Sm-lacZ carries both a streptomycin resistance 82 

marker and the lacZ gene. Antibiotic markers were used to introduce the plasmid by conjugation 83 

[19] and the lacZ gene was used to distinguish between strains when spread on to media containing 84 

X-gal. Populations were grown in 30 ml glass vials in 6 ml Kings B Broth shaking at 28°C. 85 

  86 

Six replicate populations were established for each treatment. Experimental treatments consisted of 87 

ϯ ŵĞƌĐƵƌǇ ƐĞůĞĐƚŝŽŶ ͚ůĂŶĚƐĐĂƉĞƐ͛ ĂŶĚ ϯ ŝŵŵŝŐƌĂƚŝŽŶ ƌĂƚĞƐ ŝŶ Ă ĨĂĐƚŽƌŝĂů ĚĞƐŝŐŶ͕ ǁŝƚŚ ƚŚĞ ĂĚĚŝƚŝŽŶ ŽĨ Ϯ 88 

control treatments which experienced no immigration (figure 1). Experimental landscapes consisted 89 

of a focal 'patch', which was represented by a 6 ml sub-population initiated with 50:50 plasmid-90 

containing and plasmid-free SBW25-Gm, and a source patch, represented by a 6 ml sub-population 91 

of 50:50 plasmid-containing and plasmid-free SBW25-Sm-lacZ. The three mercury selection 92 

landscapes consisted of a heterogeneous landscape with a mutualistic (40 µM HgCl2) source patch 93 

and an antagonistic (0 µM HgCl2) focal patch, and two homogenous landscapes: purely antagonistic 94 

(0 µM HgCl2 in both patches) and purely mutualistic (40 µM HgCl2 in both patches). All populations 95 

were propagated by serial transfer every two days. For each replicate population, 60 µl of the source 96 

sub-population was transferred directly to a fresh microcosm while focal sub-populations were first 97 

mixed with bacteria from their source sub-population at three rates of immigration (0.1, 1 and 10%) 98 
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and then transferred (figure. 1). Carry-over of HgCl2 from mutualistic source patches due to 99 

migration is expected to be negligible. The mer operon provides resistance through detoxification of 100 

Hg(II) into the less toxic Hg(0) which evaporates. After approximately 6 hrs the supernatant of 101 

plasmid-containing cultures is non-toxic to plasmid-free sensitive cells, suggesting that the 102 

concentration of Hg(II) is already substantially reduced (figure S1). Control populations, with no 103 

immigration, were established at either 0 µM or 40 µM HgCl2. 104 

  105 

Populations were evolved for 24 transfers (approx. 180 bacterial generations). Every transfer for the 106 

first 12 transfers, and thereafter every 2 transfers, samples of the focal sub-populations were spread 107 

on to skimmed milk agar (10% milk powder in KB agar) containing 20 mg/µl X-gal with and without 108 

20 µM HgCl2. Skimmed milk agar was used to identify the spontaneous appearance of GacA/S 109 

compensatory mutations, as the GacA/S regulator controls the production of exoprotease [20]. 110 

Colonies positive for GacA/S function can be distinguished by a zone of clearing around the colony. 111 

X-gal was used to distinguish immigrant (blue) and resident (white) bacteria. Milk plates 112 

supplemented with X-gal therefore allowed us to estimate the total population density, the 113 

frequency of immigrants and residents and their GacA/S status, while milk plates supplemented with 114 

X-gal and mercury allowed us to estimate the proportions of these genotypes which contained the 115 

plasmid. 116 

  117 

All analyses were conducted in the R statistical package (R Foundation for Statistical Computing) 118 

using end point data (from transfer 24) unless specified. Data were analysed with ANOVA and 119 

ĨƵƌƚŚĞƌ ŝŶƚĞƌƌŽŐĂƚĞĚ ƵƐŝŶŐ ƉůĂŶŶĞĚ ĐŽŶƚƌĂƐƚƐ͕ ĚĞĨŝŶĞĚ ƵƐŝŶŐ ƚŚĞ ͚ĐŽŶƚƌĂƐƚƐ͛ ƉĂĐŬĂŐĞ͕ ĂůůŽǁŝŶŐ ƐƉĞĐŝĨŝĐ 120 

comparisons between treatments. Where used specific contrasts are specified in lowercase capital 121 

letters.  122 

  123 

Results 124 

To determine the effects of spatial heterogeneity of positive selection and migration rate on plasmid 125 

population dynamics we tracked plasmid frequencies in focal patches over time. In control 126 

populations that were propagated without immigration, plasmids persisted in all populations but 127 

rapidly declined to very low frequencies in antagonistic patches, consistent with the high cost of 128 

plasmid carriage (figure 2a). With migration, we observed interactive effects of selection landscape 129 

and migration rate on plasmid frequency in focal patches (figure 2a, 2b; LANDSCAPE X MIGRATION 130 

RATE: F2,48 = 14.81, p < 0.001). This was driven by variation in response to migration between the 131 

heterogeneous treatment and the two homogeneous treatments (LANDSCAPE[HOMOGENEOUS(i.e. mutualistic + 132 
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antagonistic) VS HETEROGENEOUS] X MIGRATION RATE: t = 5.405, p < 0.001). In homogeneous landscapes, 133 

plasmid frequencies in focal patches varied according to the strength of positive selection, such that 134 

they were higher in mutualistic compared to antagonistic landscapes (Figure 2b; 135 

LANDSCAPE[MUTUALISTIC VS ANTAGONISTIC]: t = 9.89, p < 0.001), but did not vary with migration rate 136 

(LANDSCAPE[MUTUALISTIC VS ANTAGONISTIC] X MIGRATION RATE: t = -0.65, p = 0.52). In the heterogeneous 137 

landscape, however, plasmid frequency increased in antagonistic focal patches with increasing 138 

migration rate (figure 2b). While at the lowest migration rate, the plasmid frequency was similar to 139 

those observed in antagonistic focal patches within homogenous landscapes (LANDSCAPE[MIGRATION = 140 

0.1%; HETEROGENEOUS VS ANTAGONISTIC HOMOGENEOUS] : F = 0.114, p = 0.742), at higher migration rates, the plasmid 141 

frequencies in focal patches of heterogeneous landscapes exceeded those observed in 142 

homogeneous landscapes (LANDSCAPE[MIGRATION > 0.1%; HETEROGENEOUS VS ANTAGONISTIC HOMOGENEOUS] : F = 26.71 P 143 

< 0.0001). This suggests that plasmid stability was enhanced by higher migration rates under 144 

spatially heterogeneous positive selection, whereas migration had no effect on plasmid frequency in 145 

spatially homogeneous selection environments. 146 

  147 

To determine the dynamics of compensatory evolution in focal patches, we tracked the frequency of 148 

the protease negative phenotype associated with mutated gacA/gacS loci of P. fluorescens SBW25. 149 

Protease negative phenotypes appeared rapidly in all populations regardless of treatment (figure. 150 

2a; LANDSCAPE: F2,50 = 0.36, p = 0.702, MIGRATION RATE: F1,50 = 2.66, p = 0.110), and swept to high 151 

frequency among plasmid-bearers (68-100% of mercury resistant colonies were protease negative at 152 

transfer-24; figure 2a), indicating that compensatory evolution played a key role in the survival of 153 

the plasmid in our experiment. We next estimated the proportion of immigrant genotypes among 154 

the plasmid-bearers in focal patches. Immigrant and resident genotypes were distinguished using 155 

the lacZ marker. Although the lacZ marked strain appears to have had a slight fitness advantage over 156 

the unlabelled strain, the response to migration rate differed significantly between  homogeneous 157 

and heterogeneous treatments (LANDSCAPE[HOMOGENEOUS VS HETEROGENEOUS] X MIGRATION RATE: t = 5.41, 158 

p < 0.001). In both types of homogeneous landscape, the proportion of immigrant plasmid-bearers 159 

in focal patches increased with the rate of migration (Fig. 2c; MIGRATION RATE[HOMOGENEOUS ONLY]: F = 160 

111.883, p < 0.001) with no significant difference between treatments (LANDSCAPE[MUTUALISTIC VS 161 

ANTAGONISTIC]: t = 1.151, p = 0.256). By contrast, in the heterogeneous landscape, immigrant plasmid-162 

bearers comprised >90% of plasmid-bearing population regardless of the migration rate 163 

(MIGRATION RATE[HETEROGENEOUS ONLY]: F = 0.517, p = 0.482). Taken together, these data suggest that 164 

plasmid stability in antagonistic focal patches under spatially heterogeneous positive selection 165 

required the immigration from mutualistic patches of plasmid-bearing genotypes that had acquired 166 



compensatory mutations. 167 

  168 

Discussion 169 

Using a tractable bacteria-plasmid model system, where the ecological plasmid population dynamics 170 

and the compensatory evolution dynamics can be jointly tracked in real-time, we show that 171 

migration stabilized plasmids under spatially heterogeneous positive selection by simultaneously 172 

increasing both the plasmid frequency and the supply of compensatory mutations. This adds to our 173 

understanding of the key role for compensatory evolution in plasmid stability, illustrating how 174 

ecological context can enhance this evolutionary process within heterogeneous environments. The 175 

likelihood of compensatory evolution, and thus plasmid survival, increases with the strength and 176 

frequency of positive selection [15], and, as shown here, with the rate of immigration from 177 

subpopulations experiencing positive selection. Spatial heterogeneity is widely thought to be a 178 

common feature of the environments bacterial communities inhabit across a wide range of 179 

ecological scales. Spatially structured environments, such as soils, are likely to contain 180 

heterogeneous microenvironments with localized patches of positive selection [21,22]. Indeed, 181 

positive selection for plasmid-encoded traits can vary at the µm scale, creating microscale 182 

population structure [23] that may be overlooked by less sensitive measurement approaches. Even 183 

low rates of migration in spatially heterogeneous selection landscapes can spread beneficial 184 

mutations from localized hotspots of positive selection to facilitate adaptation across the entire 185 

landscape [24ʹ26]. At larger spatial scales, antibiotic use in hospitals and farms will create hotspots 186 

of positive selection for resistance plasmids, leading to higher plasmid frequencies and higher rates 187 

of compensatory evolution. Emigration of compensated plasmid-bearers from these environments, 188 

e.g. via waste-water systems [27], spreads not just the antibiotic resistance genes carried by the 189 

plasmid, but also bacterial lineages able to maintain plasmids in the absence of antibiotics with 190 

ŵŝŶŝŵĂů ĨŝƚŶĞƐƐ ĐŽƐƚ͘ BǇ ĂĐƚŝŶŐ ĂƐ ƉůĂƐŵŝĚ ͚ƐŽƵƌĐĞƐ͛ ŝŶ ƚŚĞŝƌ ŶĞǁ ĐŽŵŵƵŶŝƚŝĞƐ͕ ƚŚĞƐĞ ůŝŶĞĂŐĞs could 191 

maintain community-wide access to the mobile gene pool [28]. Thus, the joint eco-evolutionary 192 

effects of migration on plasmid frequency and compensatory evolution could help to explain why 193 

resistance plasmids are so commonly isolated from uncontaminated environments [29]. 194 

 195 

Our work has shown that compensatory mutations arise rapidly and have the potential to spread 196 

widely. We have previously shown that compensatory evolution is more likely to evolve in 197 

environments where plasmids are under positive selection [15]. Here we extend this to show that 198 

the invasion of compensatory evolution need not be limited by the prevailing local environment if 199 

migration increases the supply of compensatory mutations. Within our experimental system 200 
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compensatory mutations occur at relatively high frequency as the gacA/gacS loci are known to have 201 

an elevated mutation rate [30]. Thus, because compensatory mutations arose in all focal patches,  202 

an effect of migration on plasmid frequency could not be detected at the lowest migration rate. The 203 

frequency of compensated plasmid-carrying genotypes was, however, significantly increased by 204 

higher migration rates in environments with heterogeneous positive selection.  For alternative 205 

mechanisms of compensation with lower mutation rates we would expect even low rates of 206 

migration to enhance the spread of compensatory mutations.   207 

 208 

However, the success of plasmid-bearing emigrants in new environments may be limited by context 209 

dependent effects of the compensatory mutations themselves. For example, compensatory 210 

mutations targeting the GacA/S global regulatory system prevent expression of large set of bacterial 211 

secreted proteins which are important for competitive interactions with other microbes [31,32], 212 

protection from predators [33] and virulence against eukaryotic hosts [34]. In extreme cases, 213 

compensatory mutations can be costly in the absence of the plasmid even in the environment where 214 

they evolved [35]. Similarly, some compensatory mutations are beneficial only in the absence of 215 

positive selection [36,37], for example where  the cost of the plasmid is linked to the expression of 216 

its beneficial trait [38]; under this scenario the effects of migration on the spread of compensatory 217 

mutations may be limited. Thus, pleiotropic effects of compensatory mutations may lead to 218 

compensated emigrants being at a disadvantage in their new environment, limiting their 219 

ĚŝƐƐĞŵŝŶĂƚŝŽŶ͘  AĚĚŝƚŝŽŶĂůůǇ͕ ĐŽŵƉĞŶƐĂƚŽƌǇ ĞǀŽůƵƚŝŽŶ ĐŽƵůĚ ĞĨĨĞĐƚŝǀĞůǇ ͚ůŽĐŬ͛ ďĂĐƚĞƌŝĂ Ͷ by reducing 220 

the strength of purifying selection Ͷ into associations with plasmids that are not beneficial under 221 

local environmental conditions, a scenario akin to symbiont addiction [39]. This could be detrimental 222 

ƚŽ ƚŚĞ ůŝŶĞĂŐĞ͛Ɛ ůŽŶŐ-term evolvability, because it would prevent acquisition of alternative plasmids 223 

from the same incompatibility group [40], limiting access to the mobile gene pool. 224 

  225 

Plasmids are the principal mobile genetic elements driving horizontal gene transfer in bacterial 226 

communities and, thus, plasmid stability is an important determinant of bacterial evolution. 227 

Environments without positive selection for plasmid-encoded functions have a greater degree of 228 

plasmid horizontal transmission [41] and of interspecific gene mobilization [42]. Thus, by boosting 229 

plasmid residence times in these environments through jointly increasing both the frequency of 230 

plasmids and the supply of compensatory mutations, migration could enhance rates of horizontal 231 

gene transfer in bacterial communities. 232 

  233 
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  257 

Fig. 1 Transfer strategy for selection experiment. Bacterial populations were propagated by serial 258 

transfer of 1% of the population to fresh media (represented by arrows) every 48 hrs. Figure shows 259 

the strategy for a single bacterial transfer step for the 2 control treatments and 3 migration 260 

treatments. Control populations were propagated by simple transfer of bacteria from one 261 

population to a fresh environment. Populations in the migration treatments consisted of two paired 262 

sub-populations. At each transfer bacteria from the source (blue line) sub-population were 263 

transferred as normal and bacteria from the focal (black line) sub-population were first mixed with 264 

bacteria from the source (blue line) sub-population at 3 migration rates (0.1, 1 and 10%) before 265 

being transferred. 266 

  267 

Fig. 2 The impacts of migration across treatments. A. Population dynamics within plasmid-containing 268 

individuals over the course of the selection experiment. The total shaded area shows the proportion 269 



of plasmid containing individuals in the focal subpopulations, averaged across 6 replicate population. 270 

Shading is broken down by genotype, showing the relative proportion of resident (grey) and 271 

immigrant (blue) bacteria which were positive (light) or negative (dark) for the GacA/S phenotype 272 

(i.e. dark areas indicate compensatory mutations). B. Summary of endpoint (transfer 24) mean 273 

plasmid prevalence (n=6). C. Mean proportion of plasmid containing individuals that are from the 274 

source population (lacZ+) at the final time point (n=6).  275 

 276 

Figure S1 277 

Rate of Hg(II) detoxification by bacteria carrying the mer mercury resistance operon measured as 278 

MIC of supernatant following growth with plasmid containing bacteria. KB media microcosms were 279 

initiated with 40µM HgCl2 and either inoculated with bacteria carrying the plasmid pQBR103 (black) 280 

or with no bacteria (grey). 3x bacteria and control microcosms were destructively sampled after 0, 2, 281 

4, 6 and 8 hrs of incubation at 28oC and media was filtered to remove bacteria. Media was then 282 

diluted with mercury free KB along a gradient of dilution factors from 1 (100% spent mercury 283 

supernatant) to 0 (100% mercury-free supernatant) in increments of 0.1 in a 96 well plate. 1 plate 284 

was established for each biological replicate per time point with 8x replicate wells per dilution 285 

factor. Mercury susceptible bacteria were then inoculated into 7 wells per dilution factor with one 286 

left as a control for carry over plasmid containing bacteria. Positive (fresh mercury free media) and 287 

negative (fresh mercury containing media) growth controls were included on each plate. After 24hrs 288 

of growth at 28oC the minimum inhibitory concentration was recorded. 289 

 290 

 291 

 292 

Supplementary table 1 293 

Raw data from immigration experiment. Data are shown as raw colony counts and converted to 294 

population density (cfus/ml). Counts of were taken from 2 plate types; skimmed milk agar + X-gal 295 

with no mercury (grey) which gives counts for the whole population and skimmed milk agar + X-gal + 296 

mercury (pink) which gives mercury resistant and therefore plasmid + counts only. From each plate 4 297 

genotypes can be distinguished: GAC+ lacz- (GacAS positive, resident), gac- lacz- (GacAS negative, 298 

resident), GAC+ LACZ+ (GacAS positive, immigrant), gac- LACZ+ (GacAS negative, immigrant). Colony 299 

counts are then converted to population density (cfu/ml) based on the dilution factor counted 300 

(selecting the dilution with the most countable colonies). 301 
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