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The Complexity Landscape of Decompositional Parameters

for ILP

Robert Ganiana,∗, Sebastian Ordyniaka

aAlgorithms and Complexity Group, TU Wien, Favoritenstrasse 9-11, 1040 Wien, Austria

Abstract

Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-

complete optimization problems, and a wide range of problems in artificial intelligence

are solved in practice via a translation to ILP. Despite its huge range of applications,

only few tractable fragments of ILP are known, probably the most prominent of which

is based on the notion of total unimodularity. Using entirely different techniques, we

identify new tractable fragments of ILP by studying structural parameterizations of the

constraint matrix within the framework of parameterized complexity.

In particular, we show that ILP is fixed-parameter tractable when parameterized by

the treedepth of the constraint matrix and the maximum absolute value of any coeffi-

cient occurring in the ILP instance. Together with matching hardness results for the

more general parameter treewidth, we give an overview of the complexity of ILP w.r.t.

decompositional parameters defined on the constraint matrix.

Keywords: Integer Linear Programming, treewidth, treedepth, (Parameterized)

complexity

1. Introduction

Integer Linear Programming (ILP) is among the most successful and general

paradigms for solving computationally intractable optimization problems in computer

science. In particular, a wide variety of problems in artificial intelligence are efficiently

solved in practice via a translation into an Integer Linear Program, including problems

from areas such as process scheduling [10], planning [31, 32], vehicle routing [30],

packing [23], and network hub location [1]. In its most general form ILP can be for-

malized as follows:

INTEGER LINEAR PROGRAM

Input: A matrix A ∈ Z
m×n and two vectors b ∈ Z

m and s ∈ Z
n.

Question: Maximize sTx for every x ∈ Z
n with Ax ≤ b.
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Closely related to ILP is the ILP-FEASIBILITY problem, where given A and b as

above, the problem is to decide whether there is an x ∈ Z
n such that Ax ≤ b. The

decision version of ILP, ILP-FEASIBILITY and various other highly restricted variants

are well-known to be NP-complete [28].

Despite the importance of the problem, an understanding of the influence of struc-

tural restrictions on the complexity of ILP is still in its infancy. This is in stark contrast

to another well-known and general paradigm for the solution of problems in Computer

Science, the Satisfiability problem (SAT). There, the parameterized complexity frame-

work [7] has yielded deep results capturing the tractability and intractability of SAT

with respect to a plethora of structural restrictions. In the context of SAT, one often

considers structural restrictions on a graphical representation of the formula (such as

the primal graph), and the aim is to design efficient fixed-parameter algorithms for SAT,

i.e., algorithms running in time O(f(k)nO(1)) where k is the value of the considered

structural parameter for the given SAT instance and n is its input size. It is known that

SAT is fixed-parameter tractable w.r.t. a variety of structural parameters, including the

prominent parameters treewidth [29] but also more specialized parameters [9, 13, 14].

Our contribution. In this work, we carry out a similar line of research for ILP by study-

ing the parameterized complexity of ILP w.r.t. various structural parameterizations. In

particular, we consider parameterizations of the primal graph of the ILP instance, i.e.,

the undirected graph whose vertex set is the set of variables of the ILP instance and

whose edges represent the occurrence of two variables in a common expression. We

obtain a complete picture of the parameterized complexity of ILP w.r.t. well-known

decompositional parameters of the primal graph, specifically treedepth, treewidth, and

cliquewidth; our results are summarized in Table 1.

Our main algorithmic result (Theorem 6) shows that ILP is fixed-parameter

tractable parameterized by the treedepth of the primal graph and the maximum ab-

solute value ℓ of any coefficient occurring in A or b. Together with the classical results

for totally unimodular matrices [27, Section 13.2.] and fixed number of variables [22],

which use entirely different techniques, our result is one of the few tractability results

for ILP without additional restrictions. We note that the presented algorithm is pri-

marily of theoretical interest; the intent here is to classify the complexity of ILP by

providing runtime guarantees, not to compete with state-of-the-art ILP solvers.

We complement our algorithmic results with matching lower bounds, provided in

terms of paraNP-hardness results (see the Preliminaries); an overview of the obtained

results is provided in Table 1. Namely, we show that already ILP-FEASIBILITY is

ℓ without ℓ

TD FPT (Thm 6) paraNP-h (Thm 12)

TW/CW paraNP-h (Thm 13) paraNP-h (Thm 13)

None paraNP-h (Obs 1) n.a.

Table 1: The complexity landscape of ILP obtained in this paper. The table shows the parameterized com-

plexity of ILP parameterized by the treedepth (TD), treewidth (TW), or cliquewidth (CW) of the primal

graph with (second column “ℓ”) and without (third column “without ℓ”) the additional parameterization by

the maximum absolute value ℓ of any coefficient in A or b.
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unlikely to be fixed-parameter tractable when parameterized by treedepth (whereas the

case of parameterizing by only ℓ is known to be hard); in fact, our results also exclude

algorithms running in time (n + m)f(k), where k is the parameter. Moreover, the

hardness results provided here also hold in the strong sense, i.e., even for ILP instances

whose size is bounded by a polynomial of n and m; it is worth noting that this requires

a more careful approach than what would suffice for weak paraNP-hardness.

One might be tempted to think that, as is the case for SAT and numerous other

problems, the fixed-parameter tractability result for treedepth carries over to the more

general structural parameter treewidth. We show that this is not the case for ILP. Along

with recent results for the Mixed Chinese Postman Problem [18], this is only the sec-

ond known case of a natural problem where using treedepth instead of treewidth ac-

tually “helps” in terms of fixed parameter tractability. In fact, we show that already

ILP-FEASIBILITY remains NP-hard for ILP instances of treewidth at most two and

whose maximum coefficient is at most one. Observe that this also implies the same

intractability results for the more general parameter clique-width [2].

Related Work. We are not the first to consider decompositional parameterizations of

the primal graph for ILP. However, previous results in this area required either im-

plicit or explicit bounds on the domain values of variables together with further re-

strictions on the coefficients. In particular, for the case of non-negative ILP instances,

i.e., ILP instances where all coefficients as well as all variable domains are assumed

to be non-negative, ILP is known to be fixed-parameter tractable parameterized by the

branchwidth, a decompositional parameter closely related to treewidth, of the primal

graph and the maximum value B of any coefficient in the constraint vector b [3]. Note

that B also bounds the maximum domain value of any variable in the case of non-

negative ILP instances. A more recent result by Jansen and Kratsch [20] showed that

ILP is fixed-parameter tractable parameterized by the treewidth of the primal graph and

the maximum absolute domain value of any variable. Hence in both cases the maxi-

mum absolute domain value of any variable is bounded by the considered parameters,

whereas the results presented in this paper do not require any bound on the domain

values of variables.

Furthermore, a series of tractability results for ILP based on restrictions on the

constraint matrix A, instead of restrictions on the primal graph, have been obtained [5,

19, 26]. These results apply whenever the constraint matrix A can be written as an

arbitrary large product of matrices of bounded size and are usually referred to as n-fold

ILP, two-stage stochastic ILP, and 4-block n-fold ILP.

2. Preliminaries

We will use standard graph terminology, see for instance [6]. A graph G is a tuple

(V,E), where V or V (G) is the vertex set and E or E(G) is the edge set. A graph H

is a subgraph of a graph G, denoted H ⊆ G, if H can be obtained by deleting vertices

and edges from G. All our graphs are simple and loopless.

A path from vertex v1 to vertex vj in G is a sequence of distinct vertices v1, . . . , vj
such that for each 1 ≤ i < j, {vi, vi+1} ∈ E(G). A tree is a graph in which, for any

two vertices v, w ∈ G, there is precisely one unique path from v to w; a tree is rooted
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if it contains a specially designated vertex r, the root. Given a vertex v in a tree G with

root r, the parent of v is the unique vertex w with the property that {v, w} is the first

edge on the path from v to r.

2.1. Integer Linear Programming

For our purposes, it will be useful to view an ILP instance as a set of linear inequal-

ities rather than using the constraint matrix. Formally, let an ILP instance I be a tuple

(F , η) where F is a set of linear inequalities over variables X = {x1, . . . , xn} and η

is a linear function over X of the form η(X) = s1x1 + · · · + snxn. Each inequality

A ∈ F ranges over variables var(A) is said to have arity |var(A)| = l and is assumed to

be of the form cA,1xA,1+ cA,2xA,2+ · · ·+ cA,lxA,l ≤ bA; we also define var(I) = X .

We say that two constraints are equal if they range over the same variables with the

same coefficients and have the same right-hand side.

For a set of variables Y , let F(Y ) denote the subset of F containing all inequalities

A ∈ F such that Y ∩ var(A) 6= ∅. We will generally use the term coefficients to

refer to numbers that occur in the inequalities in F . In some cases, we will be dealing

with certain selected “named” variables which will not be marked with subscripts to

improve readability (e.g., a); there, we may use sa to denote the coefficient of a in η,

i.e., sa is shorthand for sj where a = xj .

An assignment α is a mapping from X to Z. For an assignment α and an inequality

A of arity l, we denote by A(α) the left-side value of A obtained by applying α, i.e.,

A(α) = cA,1α(xA,1)+cA,2α(xA,2)+ · · ·+cA,lα(xA,l). Similarly, we let η(α) denote

the value of the linear function η after applying α.

An assignment α is called feasible if it satisfies every A ∈ F , i.e., if A(α) ≤ bA for

each A ∈ F . Furthermore, α is called a solution if the value of η(α) is maximized over

all feasible assignments; observe that the existence of a feasible assignment does not

guarantee the existence of a solution (there may exist an infinite sequence of feasible

assignments α with increasing values of η(α)). Given an instance I , the task in the ILP

problem is to compute a solution for I if one exists, and otherwise to decide whether

there exists a feasible assignment. On the other hand, the ILP-FEASIBILITY problem

asks whether a given instance I admits a feasible assignment (here, we may assume

without loss of generality that all coefficients in η are equal to 0).

Given an ILP instance I = (F , η), the primal graph GI of I is the graph whose

vertex set is the set X of variables in I , and two vertices a, b are adjacent iff either

there exists some A ∈ F containing both a and b or a, b both occur in η with non-zero

coefficients.

2.2. Parameterized Complexity

In parameterized algorithmics [4, 11, 25, 7] the runtime of an algorithm is studied

with respect to a parameter k ∈ N and input size n. The basic idea is to find a parameter

that describes the structure of the instance such that the combinatorial explosion can

be confined to this parameter. In this respect, the most favorable complexity class is

FPT (fixed-parameter tractable) which contains all problems that can be decided by an

algorithm running in time f(k) · nO(1), where f is a computable function. Algorithms

with this running time are called fpt-algorithms.
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To obtain our lower bounds, we will need the notion of a parameterized reduction

and the complexity class paraNP [7]. Since we obtain all our lower bounds already

for ILP-FEASIBILITY, we only need to consider these notions for decision problems;

formally, a parameterized decision problem is a subset of Σ∗×N, where Σ is the input

alphabet.

Let L1 and L2 be parameterized decision problems, with L1 ⊆ Σ∗
1 × N and L2 ⊆

Σ∗
2 × N. A parameterized reduction (or fpt-reduction) from L1 to L2 is a mapping

P : Σ∗
1 × N → Σ∗

2 × N such that:

1. (x, k) ∈ L1 if and only if P (x, k) ∈ L2;

2. the mapping can be computed by an fpt-algorithm with respect to parameter k;

3. there is a computable function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

There is a variety of classes capturing parameterized intractability. For our results,

we require only the class paraNP, which is defined as the class of problems that are

solvable by a nondeterministic Turing-machine in fpt-time. We will make use of the

characterization of paraNP-hardness given by Flum and Grohe [11], Theorem 2.14:

any parameterized (decision) problem that remains NP-hard when the parameter is set

to some constant is paraNP-hard. Showing paraNP-hardness for a problem rules out

the existence of an fpt-algorithm under the assumption that P 6= NP. In fact, it even

allows us to rule out algorithms running in time nf(k) for any function f (these are

sometimes called XP algorithms).

For our algorithms, we will use the following result as a subroutine. Note that this

is a streamlined version of the original statement of the theorem, as used in the area of

parameterized algorithms [8, 15].

Theorem 1 ([22, 21, 12]). An ILP instance I = (F , η) can be solved in time

O(p2.5p+o(p) · |I|), where p = |var(I)|.

2.3. Treewidth and Treedepth

Treewidth is the most prominent structural parameter and has been extensively

studied in a number of fields. In order to define treewidth, we begin with the defi-

nition of its associated decomposition. A tree-decomposition T of a graph G = (V,E)
is a pair (T, χ), where T is a tree and χ is a function that assigns each tree node t a set

χ(t) ⊆ V of vertices such that the following conditions hold:

(P1) For every vertex u ∈ V , there is a tree node t such that u ∈ χ(t).

(P2) For every edge {u, v} ∈ E(G) there is a tree node t such that u, v ∈ χ(t).

(P3) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) forms a subtree

of T .

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated

with the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest

bag minus 1. A tree-decomposition of minimum width is called optimal. The treewidth

of a graph G, denoted by tw(G), is the width of an optimal tree decomposition of G.
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Another important notion that we make use of extensively is that of treedepth.

Treedepth is a structural parameter closely related to treewidth, and the structure of

graphs of bounded treedepth is well understood [24]. A useful way of thinking about

graphs of bounded treedepth is that they are (sparse) graphs with no long paths.

We formalize a few notions needed to define treedepth. A rooted forest is a disjoint

union of rooted trees. For a vertex x in a tree T of a rooted forest, the height (or depth)

of x in the forest is the number of vertices in the path from the root of T to x. The

height of a rooted forest is the maximum height of a vertex of the forest.

Definition 2 (Treedepth). Let the closure of a rooted forest F be the graph

clos(F) = (Vc, Ec) with the vertex set Vc =
⋃

T∈F V (T ) and the edge set Ec =
{xy : x is an ancestor of y in some T ∈ F}. A treedepth decomposition of a graph G

is a rooted forest F such that G ⊆ clos(F). The treedepth td(G) of a graph G is the

minimum height of any treedepth decomposition of G.

We will later use Tx to denote the vertex set of the subtree of T rooted at a vertex x of

T . Similarly to treewidth, it is possible to determine the treedepth of a graph in FPT

time.

Proposition 3 ([24]). Given a graph G with n nodes and a constant w, it is possible to

decide whether G has treedepth at most w, and if so, to compute an optimal treedepth

decomposition of G in time O(n).

The following alternative (equivalent) characterization of treedepth will be useful later

for ascertaining the exact treedepth in our reduction (specifically in Lemma 12).

Proposition 4 ([24]). Let Gi be the connected components of G. Then

td(G) =











1, if |V (G)| = 1;

1 + minv∈V (G) td(G− v), if G is connected and |V (G)| > 1;

maxi td(Gi), otherwise.

We conclude with a few useful facts about treedepth.

Proposition 5 ([24]).

1. If a graph G has no path of length d, then td(G) ≤ d.

2. If td(G) ≤ d, then G has no path of length 2d.

3. tw(G) ≤ td(G).

4. If td(G) ≤ d, then td(G′) ≤ d + 1 for any graph G′ obtained by adding one

vertex into G.

Within this manuscript, for an ILP instance I we will use treewidth (treedepth) of

I as shorthand for the treewidth (treedepth) of the primal graph GI of I .
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3. Exploiting Treedepth to Solve ILP

Our goal in this section is to show that ILP is fixed parameter tractable when pa-

rameterized by the treedepth of the primal graph and the maximum coefficient in any

constraint. We begin by formalizing our parameters. Given an ILP instance I , let td(I)
be the treedepth of GI and let ℓ(I) be the maximum absolute coefficient which occurs

in any inequality in I; to be more precise, ℓ(I) = max{ |cA,j |, |bA| : A ∈ F , j ∈ N }.

When the instance I is clear from the context, we will simply write ℓ and k = td(I)
for brevity. We will now state our main algorithmic result of this section.

Theorem 6. ILP is fixed-parameter tractable parameterized by ℓ and k

The main idea behind our fixed-parameter algorithm for ILP is to show that we

can reduce the instance into an “equivalent instance” such that the number of variables

of the reduced instance can be bounded by our parameters ℓ and k. We then apply

Theorem 1 to solve the reduced instance.

For the following considerations, we fix an ILP instance I = (F , η) of size n

along with a treedepth decomposition T of GI with depth k. Given a variable set Y ,

the operation of omitting consists of deleting all inequalities containing at least one

variable in Y and all variables in Y ; formally, omitting Y from I results in the instance

I ′ = (F ′, η′) where F ′ = F \F(Y ) and η′ is obtained by removing all variables in Y

from η.

The following notion of equivalence will be crucial for the proof of Theorem 6.

Let x, y be two variables that share a common parent in T , and recall that Tx (Ty)

denotes the vertex set of the subtree of T rooted at x (y). We say that x are y are

equivalent, denoted x ∼ y, if there exists a bijective function δx,y : Tx → Ty (called

the renaming function) such that δx,y(F(Tx)) = F(Ty); here δx,y(F(Tx)) denotes the

set of inequalities in F(Tx) after the application of δx,y on each variable in Tx. In other

words, x ∼ y means that there exists a way of “renaming” the variables in Ty so that

F(Ty) becomes F(Tx).
It is easy to verify that ∼ is indeed an equivalence relation. Intuitively, the following

lemma shows that if x ∼ y for two variables x and y of I , then (up to renaming) the

set of all feasible assignments of the variables in Tx is equal to the set of all feasible

assignments of the variables in Ty; it will be useful to recall the meaning of sa from

Subsection 2.1.

Lemma 7. Let x, y be two variables of I such that x ∼ y and sa = 0 for each

a ∈ Tx ∪ Ty . Let I ′ = (F ′, η′) be the instance obtained from I by omitting Ty . Then

there exists a solution α of var(I) of value w = η(α) if and only if there exists a

solution α′ of var(I ′) of value w = η′(α′). Moreover, a solution α can be computed

from any solution α′ in linear time if the renaming function δx,y is known.

Proof. Let α be a solution of var(I) of value w = η(α). Since F ′ ⊆ F , it follows that

setting α′ to be a restriction of α to var(I) \ Ty satisfies every inequality in F ′. Since

variables in Ty do not contribute to η, it also follows that η(α) = η(α′).
On the other hand, let α′ be a solution of var(I ′) of value w = η′(α′). Consider the

assignment α obtained by extending α′ to Ty by reusing the assignments of Tx on Ty .

Formally, for each z ∈ Ty we set α(z) = α′(δ−1
x,y(z)) and for all other variables w ∈
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var(I ′) we set α(w) = α′(w). By assumption, α and α′ must assign the same values

to any variable w such that sw 6= 0, and hence η(α) = η(α′). To argue feasibility, first

observe that any A ∈ F ′ must be satisfied by α since α and α′ only differ on variables

which do not occur in I ′. Moreover, by definition of ∼ for each A ∈ F \ F ′ = F(Ty)
there exists an inequality A′ ∈ F ′ such that δx,y(A

′) = A. In particular, this implies

that A(α) = A′(α) = A′(α′), and since A′(α′) ≤ bA′ = bA we conclude that A(α) ≤
bA. Consequently, α satisfies A.

The final claim of the lemma follows from the construction of α described above.

In the following let z be a variable of I at depth k−i in T for every i with 1 ≤ i < k

and let Z be the set of all children of z in T . Moreover, let m be the maximum size of

any subtree rooted at a child of z in T , i.e., m := maxz′∈Z |Tz′ |. We will show next

that the number of equivalence classes among the children of z can be bounded by the

function #C(ℓ, k, i,m) := 2(2ℓ+1)k+1·mi

. Observe that this bound depends only on ℓ,

k, m, and i and not on the size of I .

Lemma 8. The equivalence relation ∼ has at most #C(ℓ, k, i,m) equivalence classes

over Z.

Proof. Consider an element a ∈ Z. By construction of GI , each inequality A ∈ F(Ta)
only contains at most k− i variables outside of Ta (specifically, the ancestors of a) and

at most i variables in Ta. Furthermore, bA and each coefficient of a variable in A is an

integer whose absolute value does not exceed ℓ. From this it follows that there exists

a finite number of inequalities which can occur in F(Ta). Specifically, the number of

distinct combinations of coefficients for all the variables in A and for bA is (2ℓ+1)k+1,

and the number of distinct choices of variables in var(A)∩Ta is upper-bounded by
(

m
i

)

,

and so we arrive at |F(Ta)| ≤ (2ℓ+ 1)k+1 ·
(

m
i

)

≤ (2ℓ+ 1)k+1 ·mi.

Consequently, the set of inequalities for each child y ∈ Z of z has bounded cardi-

nality. We will use this to bound the number of equivalence classes in #C(ℓ, k, i,m)
by observing that two elements are equivalent if and only if they occur in precisely

the same sets of inequalities (up to renaming). To formalize this intuition, we need

a formal way of canonically renaming all variables in the individual subtrees rooted

in Z; without renaming, each F(Ty) would span a distinct set of variables and hence

it would not be possible to bound the set of all such inequalities. So, for each y let

δy,x0
be a bijective renaming function which renames all of the variables in Ty to the

variable set {x1
0, x

2
0, . . . , x

|Ty|
0 } (in an arbitrary way). Now we can formally define

Γz = {F(Tx0
) : δy,x0

(F(Ty)), y ∈ Z }, and observe that Γz has cardinality at most

2(2ℓ+1)k+1·mi

= #C(ℓ, k, i,m). To conclude the proof, recall that if two variables a, b

satisfy F(Ta) = δb,a(F(Tb)) for a bijective renaming function δb,a, then b ∼ a. Hence,

the absolute bound on the cardinality of Γz implies that ∼ has at most #C(ℓ, k, i,m)
equivalence classes over Z.

It follows from the above Lemma that if z has more than #C(ℓ, k, i,m) children,

then two of those must be equivalent. The next lemma shows that it is also possible to

find such a pair of equivalent children efficiently.
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Lemma 9. Given a subset Z ′ of Z with |Z ′| = #C(ℓ, k, i,m) + 1, then in time

O(#C(ℓ, k, i,m)2 · m!m) one can find two children x and y of Z such that x ∼ y

together with a renaming function δx,y which certifies this.

Proof. Consider the following algorithm A. First, A computes a subset Z ′ consisting

of exactly (arbitrarily chosen) #C(ℓ, k, i,m) + 1 children of Z. Then A branches over

all distinct pairs x, y ∈ Z ′ in time at most O(#C(ℓ, k, i,m)2). Second, A branches over

all of the at most m! bijective renaming functions δx,y . Third, A computes δx,y(F(Tx))
and tests whether it is equal to F(Ty) (which takes at most O(m) time); if this is the

case, then A terminates and outputs x, y and δx,y .

We argue correctness. By Lemma 8 and due to the cardinality of Z ′, there must

exist x, y ∈ Z ′ such that x ∼ y. In particular, there must exist a renaming function

δx,y such that δx,y(F(Tx)) = F(Ty). But then A is guaranteed to find such x, y, δx,y
since it performs an exhaustive search.

Combining Lemma 7 and Lemma 9, we arrive at the following corollary.

Corollary 10. If |Z| > #C(ℓ, k, i,m) + 1, then in time O(#C(ℓ, k, i,m)2 · m!m)
one can compute a subinstance I ′ = (F ′, η) of I with strictly less variables and the

following property: there exists a solution α of I of value w = η(α) if and only if there

exists a solution α′ of I ′ of value w. Moreover, a solution α can be computed from any

solution α′ in linear time.

Proof. In order to avoid having to consider all children of z, the algorithm first com-

putes (an arbitrary) subset Z ′ of Z such that |Z ′| = #C(ℓ, k, i,m) + 2. Then to be

able to apply Lemma 9 without changing the set of solutions of I , the algorithm com-

putes a subset Z ′′ of Z ′ such that |Z ′′| = #C(ℓ, k, i,m) + 1 and for every z′ ∈ Z ′′ it

holds that sz′′ = 0 for every z′′ ∈ Tz′ . Note that since there are at most k variables

of I with non-zero coefficients in η and these variables form a clique in GI , all of

them occur only in a single branch of Tz . It follows that Z ′′ as specified above exists

and it can be obtained from Z ′ by removing the (at most one) element z′ in Z ′ with

sz′′ 6= 0 for some z′′ ∈ Tz′ . Observe that this step of the algorithm takes time at most

O(m · (#C(ℓ, k, i,m) + 1)).
The algorithm then proceeds as follows. It uses Lemma 9 to find two variables

x, y ∈ Z ′′ such that x ∼ y and computes I ′ from I by omitting Ty from I . The running

time of the algorithm follows from Lemma 9 since the running times of the other steps

of the algorithm are dominated by the application of Lemma 9. The corollary now

follows from Lemma 7 and Lemma 9, which certify that:

• there exists a solution α of I of value w = η(α) if and only if there exists a

solution α′ of I ′ of value w, and

• a solution α can be computed from any solution α′ in linear time.

Let ei and di for every i with 1 ≤ i ≤ k be defined inductively by setting ek = 1,

dk = 0, di = #C(ℓ, k, i, si+1) + 1, and ei = diei+1 + 1. The following Lemma

shows that in time O(|I|d21 · e1!e1) one can compute an “equivalent” subinstance I ′ of

I containing at most e1 variables. Informally, ei is an upper bound on the number of
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nodes in a subtree rooted at depth i and di is an upper bound on the number of children

of a node at level i in I ′.

Lemma 11. There exists an algorithm that takes as input I and T , runs in time

O(|I|d21 · e1!e1) and outputs an ILP instance I ′ containing at most e1 variables with

the following property: there exists a solution α of I of value w = η(α) if and only

if there exists a solution α′ of I ′ of value w = η′(α′). Moreover, a solution α can be

computed from any solution α′ in linear time.

Proof. The algorithm exhaustively applies Corollary 10 to every variable of T in a

bottom-up manner, i.e., it starts by applying the corollary exhaustively to all variables

at depth k − 1 and then proceeds up the levels of T until it reaches depth 1. Let T ′ be

the subtree of T obtained after the exhaustive application of Corollary 10 to T .

We will first show that if x is a variable at depth i of T ′, then x has at most di
children and |T ′

x| ≤ ei. We will show the claim by induction on the depth i starting

from depth k. Because all variables x of T at level k are leaves, it holds that x has

0 = dk children in T ′ and |T ′
x| = 1 ≤ ek, showing the start of the induction. Now

let x be a variable at depth i of T ′ and let y be a child of x in T ′. It follows from the

induction hypothesis that |T ′
y| ≤ ei+1. Moreover, using Corollary 10, we obtain that x

has at most #̃C(ℓ, k, i, ei+1) + 1 = di children in T ′ and thus |T ′
x| ≤ diei+1 + 1 = ei,

as required.

The running time of the algorithm now follows from the observation that (because

every application of Corollary 10 removes at least one variable of I) Corollary 10

is applied at most |I| times and moreover the maximum running time of any call to

Corollary 10 is at most O(d21 · e1!e1). Correctness and the fact that α can be computed

from α′ follow from Corollary 10; more specifically, we extend α′ into α by assigning

pruned variables in the same way as their equivalent counterparts.

Proof of Theorem 6. The algorithm proceeds in three steps. First, it applies Lemma 11

to reduce the instance I into an “equivalent” instance I ′ containing at most e1 variables

in time O(|I|d21 · e1!e1); in particular, a solution α of I can be computed in linear

time from a solution α′ of I ′. Second, it uses Theorem 1 to compute a solution α′

of I ′ in time at most O(e
2.5e1+o(e1)
1 · |I ′|); because e1 and d1 are bounded by our

parameters, the whole algorithm runs in FPT time. Third, it transforms the solution α′

into a solution α of I . Correctness follows from Lemma 11 and Theorem 1.

4. Lower Bounds and Hardness

In this section we will complement our algorithmic results by providing matching

hardness results. Namely, we will show that already the ILP-FEASIBILITY problem

is NP-hard on graphs of bounded treedepth and also NP-hard on graphs of bounded

treewidth and bounded maximum coefficient1.

1Unless explicitly mentioned otherwise, all the presented NP-hardness results hold in the strong sense,

i.e., when the input is encoded in unary.
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We begin by noting that ILP-FEASIBILITY remains NP-hard even if the maximum

absolute value of any coefficient is at most one. This follows, e.g., by enhancing the

standard reduction from the decision version of VERTEX COVER (given a graph G and

a bound ν, does G admit a vertex cover of size at most ν?) to ILP-FEASIBILITY as

follows:

• add variables x1, . . . , xν and force each of them to be 1,

• set x =
∑

i∈[ν] xi,

• add a constraint requiring that the sum of all variables which represent vertices

of G is at most x.

Observation 1. ILP-feasibility is NP-hard even on instances with a maximum absolute

value of every coefficient of 1.

To simplify the constructions in the hardness proofs, we will often talk about con-

straints as equalities instead of inequalities. Clearly, every equality can be written in

terms of two inequalities.

Theorem 12. ILP-FEASIBILITY is NP-hard even on instances of bounded treedepth.

Proof. We will show the theorem by a polynomial-time reduction from the well-known

NP-hard 3-COLORABILITY problem [16]: given a graph, decide whether the vertices

of G can be colored with three colors such that no two adjacent vertices of G share the

same color.

The main idea behind the reduction is to represent a 3-partition of the vertex set of

G (which in turn represents a 3-coloring of G) by the domain values of three “global”

variables. The value of each of these global variables will represent a subset of vertices

of G that will be colored using the same color. To represent a subset of the vertices

of G in terms of domain values of the global variables, we will represent every vertex

of G with a unique prime number and a subset by the value obtained from the multi-

plication of all prime numbers of vertices contained in the subset. To ensure that the

subsets represented by the global variables correspond to a valid 3-partition of G we

will introduce constraints which ensure that:

C1 For every prime number representing some vertex of G exactly one of the global

variables is divisible by that prime number. This ensures that every vertex of G

is assigned to exactly one color class.

C2 For every edge {u, v} of G it holds that no global variable is divisible by the

prime numbers representing u and v at the same time. This ensures that no two

adjacent vertices of G are assigned to the same color class.

Thus let G be the given instance of 3-COLORING and assume that the vertices of G

are uniquely identified as elements of {1, . . . , |V (G)|}. In the following we denote by

p(i) the i-th prime number for any positive integer i, where p(1) = 2. We construct

an instance I of ILP-FEASIBILITY in polynomial-time with treedepth at most 8 and

coefficients bounded by a polynomial in V (G) such that G has a 3-coloring if and only

if I has a feasible assignment. This instance I has the following variables:
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• The global variables g1, g2, and g3 with an arbitrary positive domain, whose

values will represent a valid 3-Partioning of V (G).

• For every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3, the variables mi,j (with

an arbitrary non-negative domain), ri,j (with domain between 0 and p(i) − 1),

and ui,j (with binary domain). These variables are used to secure condition C1.

• For every e ∈ E(G), v ∈ e, and j with 1 ≤ j ≤ 3, the variables me,v,j (with

an arbitrary non-negative domain), re,v,j (with domain between 0 and p(v)− 1),

and ue,v,j (with binary domain). These variables are used to secure condition

C2.

I has the following constraints (in the following let α be any feasible assignment of I):

• Constraints that restrict the domains of all variables as specified above, i.e.:

– for every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3, the constraints

gj ≥ 0, mi,j ≥ 0, 0 ≤ ri,j ≤ p(i)− 1, and 0 ≤ ui,j ≤ 1.

– for every e ∈ E(G), v ∈ e, and j with 1 ≤ j ≤ 3, the constraints me,v,j ≥
0, 0 ≤ re,v,j ≤ p(v)− 1, and 0 ≤ ue,v,j ≤ 1.

• The following constraints, introduced for each 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3,

together guarantee that condition C1 holds:

– Constraints that ensure that α(ri,j) is equal to the remainder of α(gj) di-

vided by p(i), i.e., the constraint gj = p(i)mi,j + ri,j .

– Constraints that ensure that α(ui,j) = 0 if and only if α(ri,j) = 0, i.e., the

constraints ui,j ≤ ri,j and ri,j ≤ (p(i) − 1)ui,j . Note that together the

above constraints now ensure that α(ui,j) = 0 if and only if gj is divisible

by p(i).

– Constraints that ensure that exactly one of α(ui,1), α(ui,2), and α(ui,3) is

equal to 0, i.e., the constraints 2 ≤ ui,1+ui,2+ui,3 ≤ 2. Note that together

all the above constraints now ensure condition C1 holds.

• The following constraints, introduced for each 1 ≤ j ≤ 3, together guarantee

that condition C2 holds:

– Constraints that ensure that for every e ∈ E(G) and v ∈ e, it holds that

α(re,v,j) is equal to the remainder of gj divided by p(v), i.e., the constraint

gj = p(i)me,v,j + re,v,j .

– Constraints that ensure that for every e ∈ E(G), v ∈ e, and j with 1 ≤
j ≤ 3 it holds that α(ue,v,j) = 0 if and only if α(re,v,j) = 0, i.e., the

constraints ue,v,j ≤ re,v,j and re,v,j ≤ p(v)ue,v,j . Note that together the

above constraints now ensure that α(ue,v,j) = 0 if and only if gj is divisible

by p(v).

– Constraints that ensure that for every e = {v, w} ∈ E(G) and j with

1 ≤ j ≤ 3 it holds that at least one of α(ue,w,j) and α(ue,v,j) is non-zero,

i.e., the constraint ue,u,j + ue,v,j ≥ 1. Note that together with all of the

above constraints this now ensures condition C2.
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mi,1 mi,2 mi,3

ri,1 ri,2 ri,3

ui,1 ui,2 ui,3

me,v,j me,w,j

re,v,j re,w,j

ue,v,j ue,w,j

Figure 1: Illustration of a vertex-type component (left) and an edge-type component (right) in the graph

GI \ {g1, g2, g3}.

This completes the construction of I and the largest coefficient used in I is p(|V (G)|).
It is well-known that p(i) is upper-bounded by O(i log i) due to the Prime Number The-

orem, and so this in particular implies that the numbers which occur in I are bounded

by a polynomial in |V (G)|. Hence I can be constructed in polynomial time.

Following the construction and explanations provided above, it is not difficult to

see that I has a feasible assignment if and only if G has a 3-coloring. Indeed, for any

3-coloring of G, one can construct a feasible assignment of I by computing the prime-

number encoding for the vertex sets that receive colors 1, 2, 3 and assign these three

numbers to g1, g2, g3, respectively. Such an assignment allows us to straightforwardly

satisfy the constraints ensuring C1 holds (since each prime occurs in exactly one global

constraint), the constraints ensuring C2 holds (since each edge is incident to at most

one of each color) while maintaining the domain bounds.

On the other hand, for any feasible assignment α, clearly each of

α(g1), α(g2), α(g3) will be divisible by some subset of prime numbers between 2 and

p(|V (G)|). In particular, since α is feasible it follows from the construction of our

first group of constraints that each prime between 2 and p(|V (G)|) divides precisely

one of α(g1), α(g2), α(g3), and so this uniquely encodes a corresponding candidate 3-

coloring for the vertices of the graph. Finally, since α also satisfies the second group of

constraints, this candidate 3-coloring must have the property that each edge is incident

to exactly 2 colors, and so it is in fact a valid 3-coloring.

It remains to show that the treedepth of I is at most 8. We will show this by using

the characterization of treedepth given in Proposition 4. We first observe that the graph

GI \ {g1, g2, g3} consists of the following components:

• for every i with 1 ≤ i ≤ |V (G)|, one component on the vertices mi,1, . . . ,mi,3,

ri,1, ri,2, ri,3, ui,1, ui,2, ui,3. Note that all of these components are isomorphic

to each other and we will therefore in the following refer to these components as

vertex-type components.

• for every e = {w, v} ∈ E(G) and j with 1 ≤ j ≤ 3, one component on the

vertices me,w,j , me,v,j , re,w,j , re,v,j , ue,w,j , and ue,v,j . Note that all of these
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components are isomorphic to each other and we will therefore in the following

refer to these components as edge-type components.

The two types of components are illustrated in Figure 1. We will show next that any

vertex-type component has treedepth at most 5 and every edge-type component has

treedepth at most 4. This would then imply that GI has treedepth at most 8 (since

it suffices to remove the vertices {g1, g2, g3} in order to decompose the graph into

these components). Hence let i with 1 ≤ i ≤ |V (G)| and consider the vertex-type

component Ci on the vertices mi,1,mi,2,mi,3, ri,1, ri,2, ri,3, ui,1, ui,2, ui,3. Note that

Ci \ {ui,1, ui,2, ui,3} consists of one component for every j with 1 ≤ j ≤ 3 that con-

tains the vertices mi,j and ri,j . Clearly each of these three components has treedepth

at most 2 and hence the treedepth of Ci is at most 2 + 3 = 5, as required.

In order to show that every edge-type component has treedepth at most 4, consider

an edge e = {w, v} ∈ E(G) and some j satisfying 1 ≤ j ≤ 3. Let Ce,j be the edge-

type component consisting of the vertices me,w,j , me,v,j , re,w,j , re,v,j , ue,w,j , and

ue,v,j . Note that Ce,j \{ue,w,j , ue,v,j} consists of two components, one containing the

vertices me,w,j and re,u,j and one containing the vertices me,v,j and re,v,j . Clearly,

each of these two components has treedepth at most 2 and hence the treedepth of Ce,j

is at most 2 + 2 = 4, as required.

The next theorem shows that ILP-FEASIBILITY is paraNP-hard parameterized by

both treewidth and the maximum absolute value of any number in the instance; observe

that since we are bounding all numbers in the instance, the theorem in particular implies

NP-hardness. We note that the idea to reduce from SUBSET SUM was inspired by

previous work of Jansen and Kratsch [20].

Theorem 13. ILP-FEASIBILITY is NP-hard even on instances with treewidth at most

two and where the maximum absolute value of any coefficient is at most one.

Proof. We show the result by a polynomial reduction from the SUBSET SUM problem,

which is well-known to be weakly NP-complete.

SUBSET SUM

Input: A set Q := {q1, . . . , qn} of integers and an integer r.

Question: Is there a subset Q′ ⊆ Q such that
∑

q′∈Q′ q′ = r?

Let I := (Q, r) with Q := {q1, . . . , qn} be an instance of SUBSET SUM, which we

assume to be given in binary encoding. We will construct an instance I ′ of ILP-

FEASIBILITY equivalent to I in polynomial-time (with respect to the input size of I)

with treewidth at most 2 that uses only −1, 0, and 1 as coefficients. Crucial to our

construction are the following auxiliary ILP instances.

Claim 1. For every q ∈ N and any two variables x and y there is an ILP instance

I(q, x, y) satisfying the following conditions:

(P1) I(q, x, y) has at most O(log q) variables and constraints,

(P2) the maximum absolute value of any coefficient in I(q, x, y) is at most one,
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x z0 z1 z2 zm−2 zm−1 zm y

h0 h1 h2 hm−2 hm−1 hm

h′
0 h′

1 h′
2 h′

m−2 h′
m−1

Figure 2: Illustration of the primal graph of the instance I(q, x, y).

I(q1, y1)
y1

I(q2, y1, y2)
y2

I(qn, yn−1, yn)

yn−1 yn
IC(r, yn)

Figure 3: Illustration of the ILP instance I′.

(P3) the treewidth of I(q, x, y) is at most two and

(P4) for every feasible assignment α of I(q, x, y), it holds that α(y) ∈ {α(x), α(x)+
q}.

Moreover, there are ILP instances I(q, y) and IC(q, y) satisfying (P1)–(P3) and addi-

tionally:

• α(y) ∈ {0, q} for I(q, y), and

• α(y) = q for IC(q, y).

Proof. For an integer q, let B(q) be the set of indices of all bits that are equal to

one in the binary representation of q, i.e., we have q =
∑

j∈B(q) 2
j . Moreover, let

m = bmax(q) be the largest index in B(q).
We construct the ILP instance I(q, x, y) as follows. We first introduce m + 1

variables h0, . . . , hm together with m variables h′
0, . . . , h

′
m−1 and add the following

constraints: 0 ≤ h0 ≤ 1, and for every i with 0 ≤ i < m we set h′
i = hi and hi+1 =

hi + h′
i. Observe that the above constraints ensure that α(hi) is equal to 2iα(h0) for

every i with 0 ≤ i ≤ m and every feasible assignment α. We also introduce the new

auxiliary variables z0, . . . , zm together with the following constraints:

• If 0 ∈ B(q) then we add the constraint z0 = h0 + x, and otherwise we add the

constraint z0 = x.

• For every i with 0 ≤ i < m, if i + 1 ∈ B(q) then we add the constraint

zi+1 = hi+1 + zi and otherwise the constraint zi+1 = zi.
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Observe that these constraints ensure that α(zi) is equal to α(x)+
∑

j∈B(q)∧j≤i α(hj)
for every i with 0 ≤ i ≤ m and any feasible assignment α. Finally we introduce

the constraint y = zm. This concludes the construction of I(q, x, y). By construc-

tion I(q, x, y) satisfies (P1) and (P2). Moreover, because α(y) = α(zm) is equal to

qα(h0)+α(x) for any feasible assignment α and since α(h0) ∈ {0, 1}, we obtain that

α(y) ∈ {α(x), α(x) + q} showing that I(q, x, y) satisfies (P4). Finally, with the help

of Figure 2, it is straightforward to verify that I(q, x, y) has treewidth at most two.

The ILP instance I(q, y) can now be obtained from I(q, x, y) by removing the

variable x. Moreover, the ILP instance IC(q, y) can now be obtained from I(q, y) by

replacing the constraints 0 ≤ h0 ≤ 1 with the constraint h0 = 1.

We now obtain I ′ as the (non-disjoint) union of the instances I(q1, y1),
I(qi, yi−1, yi) for every i with 1 < i ≤ n, and the instance IC(r, yn) (see Figure 3

for an illustration of I ′). The size of each of these n + 1 instances is bounded by

O(logm), where m is the maximum of {q1, . . . , qn, r}, and it can be verified that each

of these instances can be constructed in time O(logm). Hence the construction of I ′

from I can be completed in polynomial time (with respect to the size of the binary

encoding of I). We also observe that the maximum absolute value of any coefficient

in I ′ is at most 1. Finally, because I ′ is a simple concatenation of ILP instances with

treewidth at most 2, it is straightforward to verify that I ′ has treewidth at most 2.

5. Concluding Notes

We presented new results that add to the complexity landscape for ILP w.r.t. struc-

tural parameterizations of the constraint matrix. Our main algorithmic result pushes

the frontiers of tractability for ILP instances and will hopefully serve as a precursor for

the study of further structural parameterizations for ILP. We note that the running time

of the presented algorithm has a highly nontrivial dependence on the treedepth of the

ILP instance, and hence the algorithm is unlikely to outperform dedicated solvers in

practical settings.

The provided results draw an initial complexity landscape for ILP w.r.t. the most

prominent decompositional width parameters. However, other approaches exploiting

the structural properties of ILP instances still remain unexplored and represent inter-

esting directions for future research. For instance, an adaptation of backdoors [17] to

the ILP setting could lead to highly relevant algorithmic results.
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Ideas in the Theory of Discrete Optimization, volume 14 of MOS-SIAM Series on

Optimization. SIAM.

[6] Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer.

[7] Downey, R. G., and Fellows, M. R. 2013. Fundamentals of Parameterized Com-

plexity. Texts in Computer Science. Springer.

[8] Fellows, M. R.; Lokshtanov, D.; Misra, N.; Rosamond, F. A.; and Saurabh, S.

2008. Graph layout problems parameterized by vertex cover. In ISAAC, Lecture

Notes in Computer Science, 294–305. Springer.

[9] Fischer, E.; Makowsky, J. A.; and Ravve, E. R. 2008. Counting truth assignments

of formulas of bounded tree-width or clique-width. Discr. Appl. Math. 156(4):511–

529.

[10] Floudas, C., and Lin, X. 2005. Mixed integer linear programming in process

scheduling: Modeling, algorithms, and applications. Annals of Operations Research

139(1):131–162.

[11] Flum, J., and Grohe, M. 2006. Parameterized Complexity Theory, volume XIV of

Texts in Theoretical Computer Science. An EATCS Series. Berlin: Springer Verlag.
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