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Highlights:

Environmental impacts of precast, composite and cast-in-situ slabs are conducted.

All life cycle stages from cradle-to-grave (including end-of-life stage) are included.

Both midpoint and endpoint of LCA results are analyzed.

The floor slabs are designed based on two functional units.

Uncertainty analysis and sensitivity analysis are carried out.

Abstract:

The traditional construction industry is characterized as a labor-intensive, wasteful, and 

inefficient sector. Currently, prefabrication has become a common practice in residential 

development and has reduced energy consumption and waste generation compared to traditional 

on-site practices. This study investigates the differences in life cycle environmental impacts among 

three different floor systems (precast slab, composite slab (semi-precast slab) and cast-in-situ slab) 

based on two functional units (delivering the same carrying capacity and maintaining consistent 

floor depth) using both LCA midpoint and endpoint methods using the software tool SimaPro. 

This study sets a calculation boundary for the construction process: raw material production, slab 

production, transportation, construction activities on-site, demolition and recycling of buildings at 

the end-of-life stage. Moreover, uncertainty and sensitivity analysis are carried out to help 

decision-makers identify major environmental impact factors and develop eco-friendly plans to 

facilitate housing industrialization. The results indicate that (1) the environmental impact of 

precast slab outperforms those of cast-in-situ and composite floors regardless of different design 

functional units and evaluation methods. (2) While under different functional units, the 

environmental performance of composite and cast-in-situ floors varies considerably. (3) From the 
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perspective of life cycle stages, the transportation sector and its supply chain make up a significant 

portion of the final environmental impact and are responsible for 45.2%, 50.1% and 53.6% of the 

total impact for the precast, composite and cast-in-situ slabs, respectively. Slab production of 

precast slab (it is raw material production of cast-in-situ and composite slabs) is the second largest 

contributor to the environmental impact.

Keywords: LCA, Precast slab, Cast-in-situ slab, Composite slab, Uncertainty analysis, Sensitivity 

analysis

1. Introduction

Due to its conventional on-site construction approach the construction industry is often 

considered to be labor-intensive, wasteful, and inefficient (Mao et al., 2013; Liao et al., 2011). It 

has been reported that the construction sector consumes about 40% of the total global energy 

(WBCSD, 2009), uses 40% of the global materials (Horvath, 2004) and produces 50% of global 

waste (De Schepper et al., 2014). It is estimated that in the UK alone, approximately 109 million 

tons of construction waste are produced each year (Paschoalin et al., 2008).

Many strategies have been adopted to improve the efficiency of building construction to 

reduce material and energy consumption as well as carbon emissions. Such strategies generally 

involve innovative methods such as design for disassembly, lean construction and waste 

management (Ji et al., 2016). Prefabrication is also considered a new way to improve the 

sustainability of construction activities (Zhang et al., 2014). The first step of prefabricated 

construction is to produce construction components in precast yards, then the complete or semi-

complete components are transported to construction sites, and finally these components are 

assembled to construct buildings (Hong et al., 2016).

According to Lopez-Mesa et al. (2009), the environmental impact of a building with precast 

concrete slabs is approximately 12.2% lower than that made with cast-in-situ slabs. However, the 

evaluation of environmental impacts from prefabrication is a complex problem, from one 

perspective, prefabrication reduces construction wastage as only installation occurs on the 

construction site, but from another perspective, prefabrication might generate more greenhouse gas 

emissions during transportation and manufacturing. Moreover, the higher potential recycling and 

re-use rates of precast products will deliver more environmental benefits than in-situ concrete 
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construction systems at the end-of-life stage. Study of the environmental impact of prefabricated 

structures or buildings is to date relatively limited, it is therefore necessary to fully assess the 

whole life cycle environmental impacts of a prefabricated system.

The key aim of this paper is to compare the life cycle environmental impacts of prefabricated 

and cast-in-situ floor systems. The following investigations are conducted: (i) this study builds a 

whole life cycle assessment (LCA) model with all processes from cradle-to-grave being 

considered. (ii) In order to verify the validity of the presented model, and ascertain the best 

environmental design alternative, a comparison of three different construction floor slabs (precast 

slab, composite slab and cast-in-situ slab) is conducted, based on two functional units. (iii) 

Uncertainty analysis, including model and data uncertainties, is carried out to evaluate how these 

sources of uncertainty may effect environmental impact results. (iv) Finally, sensitivity analysis is 

conducted to help decision-makers identify major causes of environmental impact and develop 

lower impact construction solutions.

2. Literature review

Prefabrication is a construction method that could improve quality control, environmental 

performance, and site safety, whilst reducing labor demand and construction time (Jaillon and 

Poon, 2008). Currently, research on the environmental impact of precast/prefabrication can be 

divided into the following aspects:

(1) Through comparison of environmental impacts (such as GHG emissions, energy 

consumption) of prefabricated and cast-in-situ construction methods to ascertain which 

construction system is more environmentally beneficial. Dong et al. (2015) compared the carbon 

emissions of two construction systems at four different levels, i.e. concrete, element, group of 

elements, and building, finding that with prefabrication, carbon emissions are 10% less than that 

in-situ cast concrete, for one cubic meter. Other scholars also considered GHG reduction as a 

benefit of implementing precast concrete (Cao et al., 2015; Mao et al., 2013; Ji et al., 2016). 

Beyond GHG emissions, prefabrication is also environmentally beneficial for energy and material 

consumption (Pons and Aguado, 2012; Jeong et al., 2017; Pittau et al., 2017; Aye et al., 2012). For 

example, Jeong et al. (2017) conducted an integrated evaluation of productivity, cost and carbon 

dioxide emissions between prefabricated and conventional columns and estimated that the carbon 
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dioxide emissions of the prefabricated column is 72.18% higher than that of the conventional 

column. 

(2) Some research focuses upon the evaluation of environmental impacts caused by 

prefabrication in different life cycle stages to find out which stage produces larger environment 

impacts (Bonamente et al., 2014). Mao et al. (2013) investigated the difference in GHG emissions 

between precast and cast-in-situ methods. In their study, five processes were included: raw 

materials production, transportation of building materials, waste and soil as well as prefabricated 

components, and construction activities on site. Results show that raw material production took the 

largest proportion of total GHG emissions, accounting for about 85%. Ingrao et al. (2014) made an 

assessment on the life cycle environmental impact of precast concrete using basalt aggregates, 

indicating the highest impact phase is the production of the basalt aggregates. Wong and Tang 

(2012) reviewed the “cradle to site” GHG emissions of prefabricated elements for residential 

buildings, finding that most of the carbon savings come from raw-material extraction and this is 

because less material is used.

(3) The factors affecting the use of precast concrete systems are discussed in several studies. 

Hong et al. (2016) put forward an input–output-based hybrid model to investigate the relationship 

of energy use of prefabricated components and the corresponding effect on final embodied energy. 

Their study concluded that the final energy consumption and prefabrication rate was linearly 

correlated. Chen et al. (2010) identified 33 sustainable performance criteria (SPC) including seven 

dimensions namely, economic factors: ‘long-term cost’, ‘constructability’, ‘quality’, and ‘first 

cost’; social factors: ‘impact on health and community’, ‘architectural impact’ and environmental 

factor: ‘environmental impact’ for construction method selection in prefabricated buildings. The 

results show that social awareness and environmental concerns were considered as increasingly 

important in choice of construction method. Pons and Wadel (2011), Pasquire et al. (2005) as well 

as Idrus and Newman (2002) did similar research, identifying five factors as being the most 

important ones, namely ‘appropriateness of use’, ‘cost’, ‘constructability’, ‘speed’ and ‘health and 

safety’ in Idrus and Newman (2002) study.

(4) There are also some studies focusing on the reduction of construction waste resulting from 

prefabrication (Jaillon et al., 2009; Tam et al., 2007) and the corresponding waste treatment 
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method (Wu et al., 2015; Li et al., 2014; Ding et al., 2016; Baldwin et al., 2009; Lu and Yuan, 

2013). Jaillon et al. (2009) studied the application of prefabrication and corresponding impact on 

waste reduction in Hong Kong, concluding prefabrication results in a 52% reduction in waste. 

Both Ding et al. (2016) and Baldwin et al. (2009) suggest that implementing design for 

deconstruction (DfD) would reduce demolition waste. Prefabrication is one potential method to 

achieve this. The increased reuse potential is likely to decrease end of life waste. Lu and Yuan 

(2013) investigated waste reduction potential in the upstream processes including manufacturing 

and transportation of components, finding that waste generation rate in the upstream processes is 

approximately 2% lower with prefabrication compared to traditional cast in-situ concrete 

construction.

(5) Work has also been carried out on different implementation mechanisms for prefabricated 

construction. Four key areas include: 1) Financial incentives: Hong et al. (2018) analyzed barriers 

to promote prefabricated construction in China and indicated that the future focus should lie in 

providing financial support to promote the development of prefabrication technology, optimizing 

the structural integrity of prefabricated buildings, and improving the maturity of the precast 

market. 2) Feasibility: In work by Tam et al. (2007), Li et al. (2016) and Jaillon and Poon (2014), 

feasibility analysis is conducted, exploring advantages, hindrances and future developments in 

adopting prefabrication in construction activities. 3) Strategic: Zhai and Huang (2017) developed a 

mechanism to coordinate two independent entities (i.e. building company and a prefab factory. 4) 

Technological: In Chen et al’s. (2010) study, they presented a Construction Method Selection 

Model (CMSM) to aid building team members during early project stages to apply prefabrication 

in concrete buildings.

From the literature review, the following gaps in research have been identified: although 

some studies have compared the environmental burdens between prefabrication and cast-in-situ 

methods, most of them didn’t consider the demolition, recycling and re-use at the end-of-life stage. 

In addition, there are few studies that also compare the environment benefits/impacts of a 

composite slab (semi-precast slab) with other pre-cast concrete systems. Moreover, decisions often 

are taken based on deterministic analysis, without explicit evaluation of the uncertainties involved 

and consideration of the potential variation in result. A comprehensive research effort, which not 
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only investigates the environmental burden of precast construction method, but also takes into 

account the uncertainty and sensitivity of the evaluation process is still lacking. Existing research 

also lacks exploration of the relationships between assembly rate, structural system, construction 

process and final environmental impacts.

3. Methods

3.1 Methodology

In order to compare the environmental impacts of precast, composite and cast-in-situ 

construction methods, an LCA approach is adopted. Borghi (2013) suggested that LCA has 

developed into a key tool to estimate the overall environmental performance of products from 

cradle to grave. In general, LCAs include the following four steps: (1) goal and scope definition; 

(2) life cycle inventory (LCI); (3) life cycle environmental impact assessment; (4) interpretation 

(ISO-14040, 2006; ISO-14044, 2006). In accordance with the research aim of this study, the 

following subsections give a detailed description of this methodology. 

3.2 Environmental impact assessment

In the life cycle environmental impact assessment (LCIA) process, all the inventory data is 

aggregated into specific environmental impact categories. In general, the LCIA process has three 

steps: characterization, normalization and weighting (ISO-14042, 2000). In the classification step, 

the contribution of each burden to each impact category is calculated by multiplying it by a 

characterization factor (Oliver-Solà et al., 2009). In the normalization and weighting process, the 

magnitude of LCIA results can be further calculated relative to reference information (a common 

scale to all impact categories, normally representing the background impact from society’s total 

activities). The aim of normalization and weighting is to better understand the relative significance 

of each indicator result and to facilitate the interpretation of results (Monteiro and Freire, 2012). 

As to the selection of LCIA method, there are many LCIA methods that are available, such as 

‘Eco-indicator 99’, ‘CML 2001’, ‘EDIP 2003’, ‘IMPACT 2002+’, ‘EPD’, ‘International reference 

Life Cycle Data system (ILCD)’ and ‘ReCiPe’(Dreyer et al., 2003). These methods vary across 

areas which may lead to different LCIA results. These methods can be classified into midpoint and 

endpoint two categories. Midpoint methods are considered problem-oriented methods, they have 

midpoints impact categories such as climate change, ozone depletion, human toxicity and 
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particulate matter etc. (see Table 4). They model problems at an early stage in the cause-effect 

chain with characteristic values, allowing a more transparent assessment, limiting the 

uncertainties, and enable the results to be more objective. Endpoint methods can be regarded as 

damage-oriented methods, they have a narrowed set of categories, such as damage to human 

health, ecosystem and resources. Aside from characterization, the results of endpoint often need to 

be normalized and weighted (Monteiro and Freire, 2012). In this paper, the environmental impact 

assessment of the three floor systems were performed using the software tool SimaPro and ILCD 

and ReCiPe 2008 were used to assess the midpoint and endpoint results respectively.

3.3 Functional unit and system boundaries

3.3.1 System boundaries

In terms of the inclusion of life cycle stages, the full LCA, i.e. cradle-to-grave is adopted in 

this paper, including the material production, transportation, construction process and end-of-life 

stages. The floors studied internal floors, thus, they have minimal impact on the in-use energy of 

the building. The main purpose of this paper is to compare the LCA results caused by different 

construction methods, thus, any possible thermal mass benefits from different solutions during the 

use stage are considered out of the scope of this study, see Fig.1 in (BS EN, 2011).

Process maps for the precast, composite and cast-in-situ scenarios are shown in Fig.1. It can 

be seen from the figures that manufacturing prefabrication elements in a precast yard is a more 

complex process than casting in construction site. Nonetheless, the procedures to be carried out on 

construction site can be simplified when using the precast units as some works have already been 

transferred to the precast yard.
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3.3.2 Functional unit

The functional unit (FU) is seen as the reference unit of the product system for which the 

environmental impact will be calculated (De Schepper et al., 2014). Within this study, the floor 

system is the focus. Two different functional units are adopted, FU1 means that all the three floor 

systems are designed to deliver the same carrying capacity for a given load, meaning that the 

minimal amount of material can be used. Under FU2, the floor slabs are designed to maintain a 

consistent floor depth (e.g. 200 mm depth), which could be of benefit if this was a limiting factor 

in design. It is worth noting that no matter under which FU, all the floor systems need to be 

designed according to Eurocode (BS EN, 2005; BS EN, 2004) to meet the minimum load 

requirements. Fig.2 shows the cross-sectional views of the floor systems.

FU1: Deliver the basic carrying capacity;

FU2: Maintain a consistent floor depth.
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3.4 Description of the case study

In order to verify the LCA model, a precast school building is chosen as a case study. The 

school is located in Leeds in the UK and the precast yard is located in Belfast in Northern Ireland. 

Fig.3 is the schematic diagram of the school. The total floor area of this school is 11600 m2. In the 

original alternative, excepting the dead-weight, the slabs need to support live loads (5 kN/m2) and 

additional dead loads (screed, ceiling & service and finishes with 1.8, 0.55 and 0.2 kN/m2, 

respectively). The concrete mix and corresponding transportation distance of raw materials (by 

referring to the Google Maps) is shown in Table 1.

Fig. 3. The schematic diagram of the school



ACCEPTED MANUSCRIPT

11

Table 1 

Material weights to produce 1 m3 of concrete and corresponding transport distance

Transport
Type Quantity

Departure Destination Distance (km)

CEM |42.5R 365 kg Ballyconnell Ardboe 131.48

6/14 mm Aggregate 525 kg Magheraglass Ardboe 0

6/14 mm Aggregate 490 kg Draperstown Ardboe 23.5

0/4 mm Concrete Sand 305 kg Magheraglass Ardboe 0

0/4 mm Concrete Sand 405 kg Draperstown Ardboe 23.5

0/2 mm Building Sand 255 kg Lough Neagh Ardboe 68.1

Added Water 72 L - - 0

Total Free Water 149 L - - 0

HC1 Paver 0.75 L Belfast(Sika UK) Ardboe 50.1

3.5 Data collection

    One of the most critical steps in LCA is data collection. Generally, site-specific data and 

existing databases are the two main sources of data in LCA research. Some data can be obtained 

from the case study directly, such as the theoretical concrete and steel use, concrete mix and 

transportation distance. Other data such as the waste recycling rate and material losses, which 

cannot be obtained from the case study directly can be calculated by parameters from existing 

literature.

(1) Element fabrication/ construction stage

Since the process of element fabrication stage and construction stage are very similar and the 

only difference is that they happen in different places, in this paper, we discuss the two stages 

together. Five main aspects are considered across the precast yard and construction site: material, 

equipment, energy, labor and waste (Dong, 2014).

Firstly, both materials in the precast yard and construction site can be classified into four 

types: the theoretical demand for material, raw material loss, surplus material and waste. Fig.4 

shows the material flow in precast yard. The theoretical demand for material can be calculated 

according to the given load and Eurocode (BS EN, 2005; BS EN, 2004). Raw material loss is the 

loss of material during handling, storage or manufacturing (Aziz, 2015), these lost materials likely 

end up as miscellaneous waste. The surplus materials generated during the manufacturing and 

construction processes mainly consist of hardened concrete with or without reinforcement, steel 

reinforcement and pieces of structural steel and fresh concrete (from production and washing of 
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equipment) (Sven et al., 2003). In the precast yard, the surplus materials can be recycled and 

reused because they are relatively easy to collect. Formulas (1) and (2) describes how to calculate 

material loss and surplus material respectively. Table 2 shows the rates of material loss and surplus 

material of steel and concrete. Moreover, on construction sites, aside from the permanent 

construction material such as concrete and rebar, there are also some temporary materials, such as 

formwork and scaffolding. Since the temporary materials are normally reused across many 

projects, their environmental impacts are not considered in this study.

                     (1)Material𝑙𝑜𝑠𝑠 = Theoretical amount × Rate𝑙𝑜𝑠𝑠
                  (2)Material𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = Theoretical amount × Rate𝑠𝑢𝑟𝑝𝑙𝑢𝑠
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Equipment adopted in the precast yard and construction site may be different across different 

plants and construction sites, but the common character is that once the machines are introduced to 

the plant (construction site), they can be repeated to produce a large number of products, the 

abrasion loss to produce one unit product can be ignored. In addition, the environmental impact 

caused by machine abrasion belongs to machine production stage but not the building construction 

stage. Thus, in this paper, only the energy consumed by equipment is considered. As to the 

manpower, the transport method to transfer the workers to site are included in the study.

Waste treatment is considered as follows: (1) for precast slab, on the construction site there is 

minimal waste, since the slabs are already manufactured and only need to be installed. Previous 

research indicates that per m2 hollow core slab installation, 1 kg of concrete waste is produced 

(SPC, 2017). (2) The waste caused by traditional cast-in-situ and composite slabs in the 

construction site is higher. Unlike the surplus materials in precast yard, most of these materials 

can’t be recycled or reused, they would be disposed of at landfill. Fig.5 compares the difference of 

solid waste treatment in precast yard and construction site. It is worth noting that recycling of ferro 

metals (steel and rebar) can decrease environmental impact caused by a construction project 

significantly. If the ferro metals are recycled, 70% of the environmental burden can be 

counteracted (Sven et al., 2003). As to wastewater, it is estimated that typically 45 kg of 

wastewater per m3 of concrete is produced (Sven et al., 2003).
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 (2) Transportation

In pre-cast yards, the transport refers to internal transportation (Sven et al., 2003). It means 

that cement, aggregates, reinforcement must be brought to the plant. The internal transport consists 

of three stages, bringing the supplies into the plant from their storage areas, the transportation of 

the fresh concrete in the plant and the transportation of the finished product to the stockyard. Since 

the transportation distance of the fresh concrete in the plant and the finished product to the 

stockyard is relatively small compared to the distance of bringing the supplies into the plant and is 

difficult to estimate without detailed information, in this paper, only the latter is considered. The 

transport distance between the precast yard and the construction site is estimated using Google 

Maps, for example, the transport distance from Belfast (the location of precast yard and raw 

materials) to Leeds is 514.5 km.

(3) End of life stage

Construction and demolition (C&D) waste generated from demolition of buildings at the end-

of-life stage is one of the largest solid waste streams in the world. Recycling these wastes into 

useful materials can minimize the C&D waste volume significantly. It is stipulated that 70% of 

non-hazardous C&D waste should be reused or recycled by 2020 in the EU (Hu et al., 2013). End 

of life concrete can be divided into four alternatives. (1) Re-use, this refers to elements which still 

have good mechanical properties which can be directly reused in other new buildings or 

refurbishment projects (BRE, 2017). (2) Aggregate recycling, concrete can be recycled into new 

aggregates for asphalt/concrete production (CEDD, 2016). (3) Fill recycling, granular waste 

concrete is used as hardcore in road construction or substructure works (Hu et al., 2013). (4) 

Disposal, waste concrete that cannot be re-used or recycled is likely to end up in landfill. It is 

estimated by Building Research Establishment Green Guide that 50% of concrete is crushed and 

recycled as new aggregate, 40% is down cycled for use such as road sub-base and drainage layers, 

and the remainder goes to landfill (Weight, 2006).

Steel rebar and sheet, are easily sorted from waste streams due their magnetism, more than 

85% of steel in the world is recycled at EOL stage. In UK construction, the recycling rates of 

various steel products have been estimated at 98% for rebar, 89% for profile steel cladding, the re-

use rate is 10% for profile steel cladding (Sansom and Avery, 2014).
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Table 3 summarizes the life cycle inventory data for the different slab options in the case 

project.
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Table 3 

Life cycle inventory data of the case study

Composite Cast-in-situ
Input Unit Precast slab

FU1 FU2 FU1 FU2

Theoretical 

amount
m3 1438.40 1624.00 2204.00 2900.00 2320.00

Material loss m3 57.54 64.96 88.16 116.00 92.80
Concrete

Surplus material m3 23.01 81.20 110.20 171.10 136.88

Theoretical 

amount
t

109.18 200.97 200.97 86.63 

105.85 

Material loss t 0.00 14.07 14.07 6.06 7.41 
steel

Surplus material t - 2.81 2.81 2.25 2.75 

Raw material 

production

Zn (Tata Steel, 2013) t - 3.19 3.19 - -

Concrete tkm 261259.47 - - - -Inter-

transportation steel tkm 6550.85 - - - -

Element manufacture (Dong, 2014; Sven et al.,2003) GJ 580.00 - - - -

Wastewater t 68.35 - - - -

Waste concrete landfill t 143.84 - - - -

Production 

stage

Waste

Waste concrete as new aggregate t 57.54 - - - -

Raw material tkm 3797810.37 4767755.96 6386187.96 8261899.28 6652934.04

Supplementary material tkm 72338.28 58418.28 58418.28 55680.00 55680.00Transportation

Manpower personkm 3480.00 6960.00 6960.00 13920.00 13920.00

Structural Steel/steel t 10.61 10.61 10.61 - -

Screed/Mortar t 1160.00 928.00 928.00 928.00 928.00Supplementary 

material Fabric Reinforcement (Mesh) (CR, 

2017)
t 35.03 35.03 35.03 - -Construction

Energy
Diesel (Dong, 2014; Sven et al., 

2003) 
GJ 348.00 1126.87 1405.03 1750.32 1469.86
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Table 3 (Continued)

Life cycle inventory data of the case study

Concrete t - 365.40 495.90 717.75 574.20

Steel t - - - 8.15 9.96Construction Waste

Wastewater t - 79.66 108.11 143.42 114.74

Crushed and recycled t 2523.00 2610.00 3335.00 4205.00 3480.00

Down-cycled t 2018.40 2088.00 2668.00 3364.00 2784.00Concrete

Landfill t 504.60 522.00 667.00 841.00 696.00

Recycled t 151.72 219.48 219.48 84.90 103.73

End of life

Steel
Lost t 3.10 2.47 2.47 1.73 2.12

Note: 

In this table, for precast slab, the production stage means slab production stage, for cast-in-situ and composite slab, it means raw material production stage. 
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3.6 Interpretation

3.6.1 Uncertainty analysis

According to the description of Eco-indicator 99-manual (Goedkoop, 1999), uncertainty 

factors are distinguished into two types: uncertainties about the correctness of the models used and 

data uncertainties.

(1) Uncertainties about the correctness of the models

The building of different evaluation models not only has something to do with differences in 

knowledge levels, but also fundamental differences in attitude and perspective play an important 

role. According to Eco-indicator 99-manual, there are three “Archetypes” of perspective, H 

(Hierarchist), E (Egalitatain) and I (Individualist). For the three perspectives, the characterization, 

normalization and weighting factors are different (Goedkoop, 1999), and thus, there will be a 

series of ReCiPe methods, ReCiPe H/A, H/H, E/A, E/E, I/A and I/I where A is the abbreviation of 

average weighting set. For example, “ReCiPe H/A” refers to the normalization values of the 

Hierarchist version with the average weighting set. “ReCiPe H/H” refers to the normalization 

values with the weighting set belonging to the Hierarchist perspective, see Table 5 and 6. The 

default ReCiPe method is ReCiPe H/A in SimaPro.

(2) Data uncertainties

The data uncertainties refer to difficulties in measuring or predicting effects caused by the 

input data. Most of the input data used in this case study are obtained from practical experience 

and literature. There are some unavoidable limitations of the available input data, additional 

assumptions are needed during analysis. For example, different waste recycling rates will result in 

different environmental impacts. For this case study, only one recycling rate is considered.

3.6.2 Sensitivity analysis

In order to assess the robustness of the evaluation model and account for the variability of 

critical input variables, a sensitivity analysis was performed (Roy, 2005). The use of sensitivity 

analysis contains two aspects: (1) find the critical input variables, namely, find the parameters that 

have a largest influence on the final impacts. A hotspot assessment provides information on where 

the issues of concern may be the most significant in the product’s life cycle. (2) Estimate the 

variability of environmental scores associated with these key variable parameters, as different 
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values of the key parameters may lead to significant changes in the outcome.

4. Results and discussion
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4.1 Comparison of LCA results

4.1.1 LCA results between different functional units

Table 4 shows the midpoint impact results of the three alternative slabs using ILCD method 

in LCA software tool SimaPro. The method is generally accepted and commonly used for 

demonstrating environmental profiles. The results of the environmental categories have different 

units because they are the raw characterization values without normalization and weighting. It is 

clear that the precast slab has the lowest impact irrespective of the functional unit selected, with 13 

damage categories (marked in bold in Table 4) showing the lowest value. When the floor slabs are 

designed to meet the minimum load requirements (FU1), the composite slab has higher 

environmental impacts compared to that of the precast, but constantly displays an environmental 

performance better than that of the cast-in-situ slab. This pattern is reversed when the floor 

systems are designed under fixed depth, e.g. 200 mm depth (FU2).

Table 4

ILCD impact assessment: characterization

Composite Cast-in-situ
Damage category (Unit) Precast

FU1 FU2 FU1 FU2

Climate change(kg CO2 eq) 2.34·106 3.11·106 3.77·106 4.67·106 3.83·106

Ozone depletion (kg CFC-11 eq) 2.98·10-1 6.24·10-1 7.44·10-1 7.98·10-1 6.87·10-1

Human toxicity, cancer effects (CTUh) 9.58·10-2 4.80·10-2 6.27·10-2 1.13·10-1 1.07·10-1

Human toxicity, non-cancer effects 

(CTUh)
3.77 4.62 6.16 8.03 6.51

Particulate matter (kg PM2.5 eq) 1.46·103 1.62·103 2.13·103 2.76·103 2.26·103

Ionizing radiation HH (kg U235 eq) 1.38·105 1.51·105 1.99·105 2.58·105 2.13·105

Ionizing radiation E (interim) (CTUe) 1.18 1.30 1.71 2.22 1.84

Photochemical ozone formation (kg 

NMVOC eq)
1.48·104 2.07·104 2.65·104 3.21·104 2.64·104

Acidification (molc H+ eq) 1.29·104 1.82·104 2.33·104 2.77·104 2.28·104

Terrestrial eutrophication

(molc N eq)
5.16·104 6.94·104 8.98·104 1.11·105 9.11·104

Freshwater eutrophication (kg P eq) 5.79·101 5.05·101 7.31·101 1.18·102 9.60·101

Marine eutrophication (kg N eq) 4.66·103 4.39·103 6.24·103 1.00·104 8.24·103

Freshwater ecotoxicity (CTUe) 2.89·106 2.99·106 3.94·106 5.35·106 4.49·106

Land use (kg C deficit) 9.58·106 1.14·107 1.53·107 2.00·107 1.62·107

Water resource depletion

(m3 water eq)
2.64·103 2.65·103 3.56·103 4.86·103 4.05·103

Mineral, fossil & ren resource depletion 5.98·101 7.81·101 1.03·102 1.32·102 1.07·102
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(kg Sb eq)

Fig.6 illustrates the LCA endpoint results under different functional units. According to 

Consultants (2000), the LCA result values can be regarded as dimensionless figures. As a name we 

use point (Pt). The absolute value of the points is not very relevant as the main purpose is to 

compare relative differences between products or components. The scale is chosen in such a way 

that the value of 1 Pt is representative for one thousandth of the yearly environmental load of one 

average European inhabitant. Thus, this value is calculated by dividing the total environmental 

load in Europe by the number of inhabitants and multiplying it with 1000 (scale factor). It 

indicates that, at level 1 the cast-in-situ has the highest score with 339.74 kPt. The composite slab 

shows a reduction (-33%) by having a value of 226.4 kPt whilst the precast shows an even further 

reduction (-48%) with a value of 117.13 kPt. It can also be seen that production and transportation 

phases are the most two influential components among the environmental impact categories and 

life cycle phases of the three floor systems. Transportation sector and its supply chain are 

responsible for 45.2%, 50.1% and 53.6% of the total impact for precast, composite and cast-in-situ 

slabs, respectively. The environmental impact caused by production stage accounts for 48.9%, 

50.2% and 53.6% of the final impacts for the three floor systems. During the end-of-life (EOL) 

stage, even though the demolition of the building will consume some resources and energy, 

considering concrete and steel can be recycled after demolition, the EOL stage will bring 

environmental benefits. While for FU2, when the composite and cast-in-situ slabs maintain a 

consistent depth with the precast slab (200 mm), the situation is a little different. It is easy to see 

that the precast slab still has the lowest environmental impact, while the composite slab replacing 

the cast-in-situ slab becomes the highest among the three systems.
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Note: In this figure, for precast slab, the production stage means slab production stage, for cast-in-

situ and composite slab, it means raw material production stage. 

Fig. 6. Comparison of LCA endpoint results between different functional units
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It can be seen from Table 4 and Figure 6 that no matter with which evaluation method 

(midpoint or endpoint) and functional unit, precast slab always shows the best environmental 

performance. There are three reasons for this: 1) in terms of productivity, the prefabrication 

elements in precast yard are considerably better than that cast in site and semi-prefabrication 

because they need shorter fabrication times (Jeong et al., 2017). 2) Waste generation and 

treatment, production process of prefabrication elements are also better than the other two (Wu et 

al., 2015; Li et al., 2014; Ding et al., 2016; Baldwin et al., 2009; Lu and Yuan, 2013). 3) In terms 

of material consumption, since precast slabs are hollow slabs, they can save concrete and steel as 

much as possible. When the three floor systems are designed with FU1: delivering the basic 

carrying capacity, most of the loading are supported by steel plate for composite slab, less concrete 

are needed than that for cast-in-situ slab, thus, the final environmental impact of the former is 

better than that of the latter. While, when the floor systems are designed with FU2: maintaining a 

consistent floor depth, composite slab with high environmental impact steel plate plus 200 mm of 

concrete performance will produce bigger environmental impact than that of cast-in-situ slab.

4.1.2 LCA results between different stages

Comparison of environmental impacts of the three floor systems during different stages (FU1) 

is shown in Fig.7. In the production stage, six processes are included, concrete production, steel 

production, concrete mix, inter-transportation, prefabrication and waste. From the perspective of 

production process, the environmental impacts caused by production of concrete and steel are the 

two most dominant components of the environmental impacts. The two categories account for 

approximately 63.5%, 84.1% and 74.4% of the total environmental impacts during the production 

stage. This is because the production of raw materials such as cement and steel are carbon 

intensive, with high energy and resource consumption. From the perspective of construction 

method, it can also be seen from Fig.7 that the precast slab has less concrete and steel than the 

composite and cast-in-situ slabs. By reducing the amount of concrete and steel, the environment 

impact caused by the corresponding concrete mix and related transportation will also reduce. The 

construction of composite and in-situ slabs occurs on-site, with no prefabrication and inter-

transportation in precast yard. Similarly, we assume that there are no wastes generated off-site for 

these two floor systems.
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Fig. 7. Comparison of environmental impacts of the three floor systems during different stages 

(kPt)
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In the transportation stage, all the supplementary materials (such as steel used to make steel 

mesh, U-shape steel that is used to combine the elements for the precast and composite slabs, 

screed materials), raw materials and manpower need to be transported to the construction site. 

When considering the environmental impacts from transport, the majority of impacts arise from 

the transport of raw materials, with only a small proportion from the transport of supplementary 

materials and construction labor. There are three reasons behind this: (1) large volume and mass of 

the raw materials which require transport from the raw material production site to the construction 

site; (2) the corresponding transport distance is very long; (3) lorries used to deliver raw materials 

have a higher carbon intensity per km/kg compared to cars used to transfer people.

In the construction stage: six processes are included: cement production, steel production, 

energy consumption of construction activities, wastewater, and waste concrete and steel. The 

processes can be classified into three categories. (1) Supplementary steel for the precast and 

composite slabs is needed, but for the cast-in-situ slab, there is no such supplementary steel 

beyond typical rebar. Similarly, for the precast and composite slabs, more structural screed is 

required as it needs to cover the steel mesh, see Fig.2. (2) The cast-in-situ construction method is 

more complex than that of the prefabricated and composite construction methods. Thus, the energy 

consumption of construction activities for cast-in-situ method is larger than that of the other two. 

(3) Wastewater, waste concrete and waste steel are the waste sources in the cast-in-situ 

construction site, since the precast slabs are already manufactured and only need to be installed in 

the construction site, we assume that there is no waste. For the composite slab, since sheet is 

prefabricated in a steel factory, we assume that there is no waste steel in the construction stage.

At the end-of-life stage, three processes are included: (1) Demolition process, (the 

environmental impact caused by energy consumption to demolish buildings); (2) waste steel 

recycling processes; (3) waste concrete recycling processes. In the latter, the waste concrete can be 

reused as new aggregates for asphalt/concrete production, as well as hardcore in road construction 

or fill material. It is worth noting that even though the consumption of energy such as petroleum 

and diesel to demolish buildings will produce negative environmental impacts, the recycling and 

reuse of waste concrete and steel can compensate these impacts to some extent. With a higher 

recycling rate of sheet and steel, composite and precast slabs bring bigger environmental benefits.
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4.2 Uncertainty analysis

In section 2, three types of uncertainty were defined: uncertainty in perspectives and 

weightings, uncertainty in the waste treatment method in the production and construction stage, as 

well as EOL stage.

4.2.1 Uncertainty analysis of LCA model

As discussed before, there are three perspectives of the evaluation model ReCiPe 2008, 

Hierarchist, Egalitarian and Individualist.

It can be seen from Table 5 and 6, the relative importance of the impact categories does have 

a minor effect on the results. Under FU1, in all cases, the ranking of alternatives does not change, 

although the distance between the scores obtained by each alternative changes slightly. Precast 

slabs are always the best environmental alternative and the environmental damage caused by cast-

in-situ slabs is the biggest among the three floor systems. Under most cases with FU2, composite 

slabs have the largest environmental impact, while using the weighting factors in the individualist 

perspective would make the decision about the composite and cast-in-situ slabs very difficult. The 

figures marked in bold in Table 5 and 6 show the highest environmental damage value. Compared 

to average weighting factors, the weighting set belonging to the hierarchist perspective places a 

higher importance on resource consumption. The scenario of egalitarian considers higher values on 

the ecosystem impact in the daily practice and individualist puts more focus on human health. The 

uncertainty analyses performed in this section highlights the difficulty in dealing with different 

weighting parameters of the adopted decision-making approach.

Table 5 

Uncertainty analysis considering different perspectives and weights (FU1)

Perspective Method Weighting values
Precast 

(kPt)

Composite

(kPt)

Cast-in-

situ(kPt)

ReCiPe H/A Eco=0.40;Hum=0.40;Res=0.2 177.13 226.41 339.74
Hierarchist

ReCiPe H/H Eco=0.40;Hum=0.30;Res=0.3 165.88 208.01 318.77

ReCiPe E/A Eco=0.40;Hum=0.40;Res=0.2 223.82 292.73 438.14
Egalitarian

ReCiPe E/E Eco=0.50;Hum=0.30;Res=0.2 175.49 227.65 340.10

ReCiPe I/A Eco=0.40;Hum=0.40;Res=0.2 143.15 177.91 276.34
Individualist

ReCiPe I/I Eco=0.25;Hum=0.55;Res=0.2 184.34 229.02 359.11
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Table 6

Uncertainty analysis considering different perspectives and weights (FU2)

Perspective Method Weighting values
Precast 

(kPt)

Composite

(kPt)

Cast-in-

situ(kPt)

ReCiPe H/A Eco=0.40;Hum=0.40;Res=0.2 177.13 287.06 280.76
Hierarchist

ReCiPe H/H Eco=0.40;Hum=0.30;Res=0.3 165.88 265.22 262.65

ReCiPe E/A Eco=0.40;Hum=0.40;Res=0.2 223.82 370.11 362.50
Egalitarian

ReCiPe E/E Eco=0.50;Hum=0.30;Res=0.2 175.49 287.65 281.49

ReCiPe I/A Eco=0.40;Hum=0.40;Res=0.2 143.15 228.02 227.01
Individualist

ReCiPe I/I Eco=0.25;Hum=0.55;Res=0.2 184.34 294.11 295.02

4.2.2 Different waste treatment methods in the production stage

The use of recycled fine aggregates can result in a minor reduction of compressive strength 

(SPB, 2017). Since the collection of steel is easily carried out during the precast yard, it is assumed 

that all the steel is recycled. Thus, in this section, only the recycling of waste concrete is 

considered. Fig.8 shows how the final environmental impact changes with different waste 

treatment methods of concrete in the production stage. It can be seen from Fig.8, that compared to 

landfill directly, an average combined method (which is the usually method adopted by precast 

yard) can reduce the final environmental burden by 53%. If the waste concrete can be reused or 

recycled, e.g. as road base filling material or new aggregate, 119% and 186% of the final impact 

can be reduced.

Landfill Average 

combined

As roadbase As new 

aggregate

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

Human 

Health

Pt

53 119% 186%

Fig. 8. he environmental impacts caused by different waste treat methods of concrete in precast 

yard (the arrows represent the reduction percentage of environmental impact of other waste 

treatment methods compared to landfill)

4.2.3 Different waste treatment methods in the EOL stage
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Usually, waste material from the demolition of buildings is recycled or landfilled directly. 

However, precast products have the potential to be different since many precast elements could be 

reused or recycled at the end of their first use, such as concrete pipes and railway sleepers which 

have a long service life. Some companies now offer a take back service on precast concrete units 

so that they may be repaired and reused (BRE, 2017). According to a study by Tingley and 

Davison study (2012), if an element can be reused one time, the environmental impact could be 

shared across the two uses (see Fig. 6 in (Tingley and Davison, 2012)). Fig.9 describes how the 

final EOL environmental impact of precast slab changes with different waste treatment methods.
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Fig. 9. The EOL environmental impact of precast slab with different waste concrete treat methods
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It is easy to obtain the conclusion that reuse of the elements can reduce the environmental 

impact significantly and this is the main reason that precast products should be promoted. Fig.9 

also shows that advanced and normal recycling can reduce the environmental impacts by 28.60 Pt 

and 8.33 Pt respectively compared to landfill for the case floor system. Moreover, it is estimated 

that construction industry produces approximately 109 million tonnes of construction waste each 

year (24% of total waste) in the UK, and concrete contributed 59% of this (CRWP, 2008). If all 

the waste concrete can be recycled as aggregate, it will reduce 599 million Pt environmental 

impact. That is to say, 152 million Pt on human health, 12.4 million Pt on ecosystem and 335 

million Pt on natural resources.

4.3 Sensitivity analysis

In this case, the precast slab is kept constant as the preferred alternative. Hence, a sensitivity 

analysis is performed for the precast slab designed to meet the minimum load requirement. A 

hotspot analysis result is presented in Fig.10. There are three rings in Fig.10, the inner ring 

represents the basic classification of life cycle stages, the values are the corresponding rates of 

environmental impacts produced by the slab production stage, the transportation stage and the end-

of-life stage. Similarly, the second and third rings are more specific classifications of the life cycle 

stages. It can be seen from this figure that the transportation stage accounts for a significant 

proportion (about 41%) of the final score. During the transportation stage, the transportation of 

precast slab takes the largest ratio. This is because when a building uses precast elements, large 

parts of the building need to be brought to the site directly, consuming more fuel.
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Fig. 10. Hotspots analysis of precast slab (FU1)

From google maps, we can estimate the original transport distance at 514.5km, which is a 

significant distance. If all the other parameters are kept the same, reducing the transportation 

distance is the most direct and effective measure to reduce the environmental impact. Fig.11 shows 

how the environmental score changes with the alteration of transport distance. It is possible to 

observe that the minimum, average, and maximum total environmental scores are 143, 177, and 

222 kPt respectively when the transport distance varies from 300km to 800km. Indeed, the results 

shown in this figure would allow the conclusion that the variation of the transport distance has the 

potential to change the values of the three damage categories (human health, resource, and 

ecosystem) significantly but not equally compared to Fig.6 (precast slab, FU1). According to the 

probabilistic results, the coefficient of variation of resources is the largest, from the lowest value 

122 Pt to the highest value 141 Pt. Following resources, human health also sees a relatively higher 

variation, from 20 Pt to 49 Pt, while damage to ecosystem is the least variable, with 2 Pt and 5 Pt 
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for lowest and highest values. Thus, the general conclusion can be obtained that damage to 

resources is the most sensitive to the variation of transport distance, while damage to ecosystem 

sees little variation.
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Fig. 11. Sensitivity analysis of transport distance of precast slab (FU1) (from 300 km to 800 

km)

5. Conclusions and recommendations

This study investigates the difference in environmental burden between the three construction 

methods with the life cycle boundary from cradle to grave. The outcome of this work is to make 

recommendations for optimum floor systems, with increased sustainability and reduced 

environmental impacts. Firstly, it is necessary for clients, designers, and construction managers to 

assess environmental impacts during the whole life cycle, since recycling and re-use at the 

demolition stage can reduce the whole life impacts by reducing the need for new raw materials in 

the future. Secondly, this study indicates that environmental burdens depend much on functional 

unit, thus, key stakeholders should consider both aspects when making decisions. Thirdly, through 

uncertainty and sensitivity analysis, the critical input parameters which have a larger influence on 

the final score can be established and corresponding measures can be adopted. Finally, in this 

paper, both midpoint and endpoint results are analyzed since they can provide reliable and 

interpreted assessment respectively.

There are still some deficiencies of this study, although the benefit is apparent as the hot-

spots can be easily detected, encompassing the detailed information of the whole construction 

process consumes large amount of time to collect data and design different alternatives. 
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Consequently, the LCA model studies the environmental burden of the floor system rather than the 

entire building, and a complete building system could be studied in the future. To further explore 

the potential benefits and impacts of prefabrication, the study could also be extended to include 

economic and social impacts in addition to environmental impacts.
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