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ABSTRACT 
In this paper, a practical displacement-based framework is presented for seismic design of flexible-base structures in 
near-fault regions. Particular attention is given to pulse-like motions that may cause significant damage to building 
structures. The proposed design methodology utilises displacement response spectra constructed using a new 
procedure, which takes into account the effect of pulse period. An equivalent fixed-base single-degree-of-freedom 
oscillator is adopted to capture the salient features of an actual soil-structure interaction (SSI) system in order to 
facilitate the design process. Two step-by-step direct-displacement based design (DDBD) procedures based on 
compatible inelastic spectra and equivalent linearisation are introduced. The effectiveness of the stated design 
procedures is examined using results of nonlinear response history analysis of two example SSI systems subjected to a 
set of sixteen spectrum-compatible near-fault pulse-like ground motions. The results of this study suggest that the 
procedure based on inelastic design spectra, in general, provides a better design solution than using an elastic 
linearisation method, especially when structures are designed with a higher ductility demand. 
 
Key words: Direct-displacement based design; soil-structure interaction; velocity pulse; near-fault ground motion; 
inelastic spectra     
 

1. INTRODUCTION 
Structures located near causative faults are prone to extensive damage in strong earthquakes, especially when 
ground motions contain distinguishable pulses whose periods are close to those of the buildings. A well-known 
phenomenon that may lead to velocity pulses is the “forward directivity” effect due to the propagation of fault 
rupture at a velocity close to the local site shear wave velocity. Compared to far-field ground motions that build 
up energy more gradually within structures, these pulse-like motions (e.g. the fault-normal components of 
ground motions) can expose structures to high input energy at the beginning of shaking [1]. Note that in addition 
to the velocity pulses, high-frequency components of near-fault ground motions may also cause adverse effects 
on short stiff structures [2,3]. 

The effects of pulse-like motions on building response have been studied by a number of researchers. Alavi 
and Krawinkler [4] demonstrated that the storey shear force distribution within a 20-storey moment-resisting 
steel frame varied significantly with the pulse period TP (i.e. duration of the distinct ground velocity pulse). In 
their study, the pulse period was defined based on three mathematical square-wave acceleration pulses that 
represented a set of 15 near-fault earthquake records. Akkar et al. [5] showed that the maximum inter-storey 
drift ratio of steel frame systems exhibited noticeably higher values when the fundamental period of the building 
Ts approached the pulse period TP, which was measured directly from the ground velocity time series. The 
results of the stated studies were confirmed by Kalkan and Kunnath [6] by utilising sinusoidal wave shapes to 
simulate pulse-like motions. Baker [7] developed a method to identify and extract pulses in near-fault ground 
motions by decomposing velocity time series into wavelets. He suggested that if the largest extracted velocity 
pulse in a ground motion is “large” enough compared to the remaining motion, the ground motion is classified 
as pulse-like, and the associated pseudo-period is regarded as the pulse period. Using the pulse-like motions 
identified by Baker [7], Champion and Liel [8] showed that buildings may have a substantially lower collapse 
capacity to pulse-like motions (especially when Ts/TP≤0.5)) when compared to their collapse resistance to far-
field motions. The results of their study indicated that this phenomenon is more prominent for ductile buildings.  

While the above mentioned studies were restricted to fixed-base buildings, it is well known that soil-
structure interaction (SSI) may have a pronounced effect on the seismic performance of buildings [9–13]. SSI 
can change the response of a building by altering the foundation input motion and the dynamic properties of the 
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interacting system. The former could even occur for massless foundations without the presence of any 
superstructure, referred to as the “kinematic interaction”, where a stiff foundation cannot follow the pattern of 
free-field motion. The latter is a direct result of the “inertial interaction” where a shaking superstructure 
dissipates seismic energy into its foundation through soil deformation and wave radiation, which, in turn, affects 
the vibration of the structure. More recently, the effects of pulse-like motions on flexible-base structures have 
received considerable attention (e.g. [14–18]). Similar to the observations stated earlier for fixed-base structures, 
these studies in general showed a strong dependence of seismic response of flexible-base structures on the 
fundamental period of the interacting system Tssi relative to the pulse period TP [16,17]. 

Although much work has been devoted to the investigation of the effects of pulse-like records on fixed and 
flexible-base buildings, less effort has been made on the development of a comprehensive design framework 
that includes these effects [19,20]. Procedures for seismic design or assessment of flexible-base structures have 
been proposed by a number of researchers [21–25], but as yet few studies have introduced the combined SSI and 
pulse effects in the design process. SSI procedures in current seismic provisions and standards (e.g. [26,27]) for 
design of new buildings adopt a force-based approach which does not address the effects of velocity pulses. This 
study attempts to incorporate, for the first time, the effects of near-fault pulse motion into a practical direct 
displacement-based design (DDBD) procedure for seismic design of flexible-base structures. Note that not all 
near-fault ground motions exhibit intensive velocity pulses which are also not necessarily due to forward-
directivity (it depends on the position of the site and its orientation of interest relative to the fault plane). The 
current work deals with near-fault impulsive motions without permanent ground displacements. The proposed 
design procedure is suitable for buildings supported by raft foundations that are bonded to a homogeneous soil 
half-space (i.e. for relatively heavy buildings on softer soils). Foundation input motion is assumed to be due to 
coherent vertically propagating shear waves, in which case kinematic interaction effects are not present. Soil 
nonlinearity is approximated using equivalent-linear shear modulus and damping ratio values that are 
compatible with the strain levels associated with the design scenario.  

The paper is organised into five main parts (sections 2-6). Section 2 suggests a novel method to construct 
compatible design response spectra for near-fault earthquakes which accounts for the pulse period. Section 3 
describes a practical approach for substituting an actual SSI system by an equivalent fixed-base single-degree-
of-freedom (SDOF) oscillator. Section 4 integrates methods introduced in sections 2 and 3 into a DDBD 
framework considering both SSI and near-fault pulse effects. Two step-by-step design procedures based on, 
respectively, inelastic displacement spectra and equivalent linearisation are then presented in Section 4, with 
their effectiveness verified and compared using results of response history analysis for two design examples. 
Finally, the applicability of the proposed design methodology is discussed in Section 5 and conclusions are 
provided in Section 6. 

2. DESIGN RESPONSE SPECTRUM 

2.1 Bi-normalised response spectrum 
Currently the seismic design of new structures (or evaluation of existing structures) is usually based on a design 
response spectrum, which is representative of the response of a series of SDOF oscillators subjected to an 
ensemble of ground motions. The design response spectrum can be determined empirically by averaging the 
individual response spectra corresponding to each ground motion in the ensemble with peak response 
parameters (i.e. acceleration, relative velocity or relative displacement) normalised by the corresponding peak 
ground values (i.e. peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement 
(PGD)). However, the response spectra of real earthquake records  usually exhibit peaks at predominant periods 
(Tg) that may vary significantly from one record to another. For pulse-like motions, TP is a predominant period 
around which spectral shapes can be much different from those without impulsive characteristics [19]. Previous 
studies showed that code-specified spectral shapes based on averaged spectra using various ground motion 
records failed to reflect realistic spectral ordinates at around predominant periods, which may lead to non-
conservative design solutions (e.g. reduced spectral accelerations due to irrational averaging) [28–32].   

We may define Tga, Tgv and Tgd as the predominant periods (Tg) at which the pseudo spectral acceleration 
(PSA), pseudo spectral relative velocity (PSV), and spectral relative displacement (SD) attain their maximum 
values, respectively. The spectral values are related to one another by the following relations [33]: 

2
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where T is the natural period of the vibrating system. Normalising T by the stated predominant periods Tg has 
been shown to produce more realistic design spectra (referred to as the “bi-normalised spectra” [30]) than the 
conventional normalised response spectra for near-fault regions [28,29,31]. The idea of such an approach is to 
preserve the peaks that exist in the individual response spectra at the predominant period Tg. A common practice 
to develop a bi-normalised design response spectrum is to fit the design spectrum to the statistical mean 
spectrum through a least-square analysis. The mean spectrum is usually obtained using a large number of 
ground motion records with the stated normalisation methods [28–31]. For example, Maniatakis and Spyrakos 
[28] derived such a bi-normalised displacement response spectrum (i.e. SD/PGD vs. T/Tgd) as a more accurate 
means of estimating design displacement demands of structures located in near-fault regions, compared with the 
current code spectrum.  However, as pointed out by Malhotra [34] and Xu et al. [35], the response spectrum of a 
real earthquake record usually only correlates well with PGA, PGV and PGD in the short, intermediate and 
long-period regions, respectively. In this sense, a bi-normalised displacement spectrum obtained by averaging 
SD/PGD for a large number of earthquake records may not be reliable for predicting the maximum displacement 
of short and intermediate-period structural systems (i.e. those with Ts<Tgd), which is crucial for direct 
displacement-based design procedures utilising displacement spectra.  

It is a simple matter to show that the pseudo-acceleration calculated using the Maniatakis and Spyrakos [28] 
displacement spectrum tends to infinity for near-rigid systems, which is contradictory to the fact that the PSA of 
short-period systems should be close to PGA. A possible solution to the incompatibility between SD and PSA 
may be in using the Newmark-Hall spectrum [36] based on scaling spectral ordinates from PGA, PGV and PGD. 
The next subsection adopts the Newmark and Hall procedure to suggest new compatible design response spectra 
for near-fault sites that can efficiently retain the spectral peaks.  

2.2 Compatible response spectrum 
Figure 1(a) illustrates the suggested compatible design response spectrum constructed on a four-way logarithmic 
chart. Note that values of PSV, PSA and SD are read along the vertical, -45°, and +45° axes, respectively, on a 
log scale. The spectral ordinates at control points a-e are scaled from peak ground parameters by various 
amplification factors at the corresponding control periods Ta-Te. It is assumed that PSA=PGA and SD=PGD for 
T≤Ta and T≥Te, respectively. Periods Tb, Tc and Td correspond to the predominant periods Tga, Tgv and Tgd at 

which peak ordinates of PSA, PSV and SD are scaled from PGA, PGV and PGD by amplification factors a, v 

and d, respectively. The design pseudo-velocity spectrum is constructed by connecting straight lines between 
the control points on the four-way logarithmic chart, while the pseudo-acceleration and the displacement spectra 
are derived from PSV using Equation (1).  

100

PGV

1010.10.01
0.1

1

10

100

1000

100cm

10cm

1cm

PGD
PGA

1g

0.1
g

0.0
1g

Ta
TeTb Td

Natural vibration period T[sec]

P
se

u
d

o
-v

e
lo

ci
ty

 P
S

V
 [

cm
/s

]

Proposed design spectrum
Original spectrum

(a)

e

d
c

b

a

Tc

 Natural vibration period T [sec]

Tb=Tga

Td=Tgd

Tc=Tgv

0 0.5 1 1.5 2 2.5 3

0 2 4 6 8 10

0 3 6 9 12 15

Proposed design spectraOriginal spectra

(b)

Chi-Chi earthquake

Taiwan, 1999

Component 90° 

@Station TCU076 (free-field)

0

500

1000

1500

P
S

A
 [

cm
/s

2
]

S
D

 [
cm

]
P

S
V

 [
cm

/s
]

0

50

100

150

0

5

10

15

20

 
Figure 1. (a) Suggested design response spectrum plotted on tripartite logarithmic chart (example presented for 

Chi-Chi earthquake in 1999, considering a 5% damping ratio); and (b) comparisons of the proposed and the 
actual response spectra. 
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Figure 1(b) shows that the response spectra obtained using the proposed method compare well with the 
actual spectra. Particularly, the peak responses are very well captured by the proposed spectra. As will be shown 
in the next subsection, compared with the conventional Newmark-Hall spectrum [36], the new proposed design 
spectra explicitly take into account the pulse period TP and can capture the spectral peaks that may vary 
significantly from one seismic event to another. 

2.3 Construction of compatible design spectra 
In order to apply the suggested compatible spectra in design practice, the values of peak ground motion (PGA, 

PGV and PGD), control periods (Ta-Te) and spectral amplification factors (a, v and d) should be determined, 
as illustrated in Figure 2. For seismic design of structures in near-fault regions, the stated spectral parameters are 
mainly a function of the earthquake moment magnitude MW, the closest distance to the fault rupture R, and the 
site soil condition (i.e. [29,37–39]). This section summarises empirical relations of the spectral parameters that 
were adopted to construct the design spectra in this study. These relations were developed by different 
researchers based on statistical analyses, and the mean values of the parameters in those analyses were used in 
this study unless stated otherwise. Note that the proposed displacement-based design methodology is general, 
and any design response spectrum can be easily adopted.  

Seismic input: 

Mw, R, site class 

Pulse periods

TP(MW,R,site)

Peak ground motion 

PGA,PGV,PGD

Control periods 

Ta, Tb, Tc, Td, Te

Amplification 

factors a, v, d

Spectral ordinates at 

control periods

Elastic displacement 

spectra SD(T,x)

Inelastic displacement 

spectra SD(T,x)Cm(T,x,m)
 

Figure 2. Schematic showing the construction of the design spectra. 
 

2.3.1 Peak ground motion parameters 
Due to the lack of prediction models for peak impulsive ground motion in the literature, the current study adopts 
the attenuation relationship developed by Tromans and Bommer [37]: 

    PSCSChRCCC  SSAA
2
0

2
4S21 logMPGPlog                                   (2) 

where PGP is the peak ground motion parameter, i.e. PGA, PGV, PGD; MS is the surface wave magnitude; SA 

and SS are variables relating to site soil condition; C1, C2, C4, CA, CS and h0 are coefficients provided in [37];  
is the standard deviation (std) of log(PGP) while P equals zero and unity, respectively, for the mean and the 
mean+ std values of log(PGP). Note that the moment magnitude MW and the surface wave magnitude MS are 
interchangeable for 6≤MS≤8 (e.g. [40,41]), whereas for lower values of MS, empirical relations can be used to 
convert MS to MW [42]. 
 
2.3.2 Control spectral periods 
For near-fault pulse-like motions, the predominant periods at which spectral peaks occur have been shown to 
correlate well with the pulse period TP. Therefore, a convenient way to determine the control periods is to link 
them to TP, which is mainly a function of the earthquake magnitude (e.g. [7,19,29,39]): 

  W21P Mln XXT                                                                   (3) 
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The values of X1 (-8.6 for rock sites and -5.6 for soil sites) and X2 (1.32 for rock sites and 0.93 for soil sites) 
suggested by Bray and Rodriguez-Marek [39] were used here to determine TP. It has been shown that the 
predominant period for PSV (i.e. Tgv=Tc), in most cases is lower than the pulse period TP [7,43]. Therefore, Tgv 
was reduced from TP through factors of 0.78 and 0.93 for rock and soil sites, respectively, as suggested by Xu et 
al. [43]. In this study, the spectral predominant period for SD, Tgd, was considered to be equal to the pulse 
period TP according to Maniatakis and Spyrakos [28]. The spectral predominant period Tga for PSA (Tb in Figure 
1) was estimated using the empirical expression proposed by Rathje et al. [38]: 

     RYYYT 3W21ga 6M                                                              (4) 

where coefficients Y1 to Y3 are dependent on the site condition. The control periods Ta and Te were assumed to 
be 0.004TP and 10TP, respectively, which are in accordance with those suggested in Mavroeidis et al. [29]. It 
should be mentioned that the suggested design spectrum is close to the one proposed by Mavroeidis et al. [29] 
based on a statistical analysis of bi-normalised pseudo-velocity spectra (PSV/PGV vs. T/TP) obtained from the 
records of 20 seismic events. However, unlike the Mavroeidis et al. [29] spectra whose control periods 
(normalised by TP) were determined by matching their design spectra to the mean bi-normalised pseudo-velocity 
spectra obtained from the statistical analysis, Tb-Td in the present study have clear physical meanings as they 
correspond to spectral peaks.  

Figure 3 shows that the adopted spectral predominant periods proposed in the aforementioned studies 
(highlighted by dashed lines) are generally in the same range as the control periods suggested by Mavroeidis et 
al. [29] (highlighted by solid lines and shaded areas). However, as discussed earlier, the control periods (Tb-Td) 
in Mavroeidis et al. [29] were determined from the averaged bi-normalised PSV and may not correspond to the 
actual spectral peaks.  
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Figure 3. Variation of the normalised control periods (Tb/TP, Tc/TP and Td/TP) with earthquake magnitude MW, 

closest distance to fault rupture plane R, and site condition. 
 
2.3.3 Spectral amplification factors 
Spectral amplification factors are required to scale peak ground parameters at the corresponding control periods. 
Since increasing damping reduces peak structural responses, these factors should also be a function of damping 

ratio x, as shown in Equation (5).  
        xx ,/%5,, gdgg iiiii TBTT                                                            (5) 

where i=a, v and d represent quantities associated with PSA, PSV and SD, respectively. In this study, the values 

of a(Tga,5%), v(Tgv,5%) and d(Tgd,5%) were taken as 3.5, 2.8 and 2.4, respectively, according to references 
[28,30,31]. The term Bd is a damping correction factor defined as: 

      
 

 
 
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 xxx
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%5,PSA
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%5,PSV

,SD

%5,SD
,

ga

ga

gv

gv

gd

gd
gd T

T

T

T

T

T
TB i                                         (6) 

For near-fault earthquake motions, Hubbard and Mavroeidis [44] suggested damping correction factors that 
explicitly include the effect of the pulse period TP. However, these factors may significantly underestimate Bd for 
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T/TP≤0.5 that coincides with the range of Tb/TP for soil sites [44]. Therefore, in this study the expression of Bd 
proposed by Hatzigeorgiou [45] for near-fault motion was used: 

                  122
d ln01.0ln01.009.0ln02.0ln30.0151,


 TTTB                 (7) 

where =100x is the damping ratio in percentage. Figure 4 illustrates the pseudo-acceleration and displacement 
spectra derived using the suggested procedure for structures located on a soil site one kilometre away from the 
rupture fault of an MW 6.5 earthquake. 
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Figure 4. Proposed response spectra for various damping ratios: (a) pseudo-acceleration spectra and (b) 

displacement spectra. 
 
 

2.3.4 Inelastic design spectra 
Inelastic design response spectra can be developed by applying modification factors to their elastic 

counterparts. For example, the inelastic spectral acceleration values be obtained by dividing their elastic values 

by a ductility reduction factor Rmfor given ductility ratios of m. The inelastic displacement spectrum can be 

calculated by multiplying the corresponding elastic SD by an inelastic displacement ratio Cm, which equals m/Rm 
for an elastic-perfectly plastic restoring force-deformation hysteretic behaviour. Qu et al. [46] evaluated the 

accuracy of several empirical relations for Rm and demonstrated that the following expression proposed by 
Ordaz and Pérez-Rocha [47] was the most suitable model for near-fault motions:  

      173.01388.0,1
PGD

1,,SD
1 






 

 mmmx 

m
T

R                                      (8) 

Applying Equations (8) to the 5% damped displacement spectrum in Figure 4(b), the corresponding ductility 
reduction factors and inelastic displacement ratios are presented in Figure 5. Note that the peaks and valleys 

respectively in Rm and Cm spectra occur at the pulse period TP, which agrees with the results in references [48–
50]. It is worth mentioning that the inelastic spectra constructed by the suggested procedure are compatible with 

their original design elastic spectra, since the modification factors Rm and Cm are functions of SD. As a result, the 
dependence of the inelastic spectra on damping is automatically accounted for by using the damping-dependent 
SD. This is in sharp contrast to the common inelastic spectra (usually for 5% damping) constructed using 

smooth Rm and Cm spectra that may be incompatible with the design elastic spectra, as indicated by Fajfar [51].   
It should be noted that the compatible spectrum described in this section was constructed using existing 

empirical prediction models for ground motions and spectral shapes. While the suggested procedure is 
conceptually a better alternative to the conventional bi-normalised response spectra, there are limitations to the 
proposed compatible response spectrum, which are discussed in detail in Section 5. 
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Figure 5. Constant-ductility spectra (5% damping) obtained using Equations (10) and (11) with SD in Figure 

4(b): (a) ductility reduction factors and (b) inelastic displacement ratios. 

3. SOIL-STRUCTURE INTERACTION 

3.1 SSI in current seismic design standards and provisions 
While SSI procedures in current seismic standards and provisions for evaluation and retrofit of existing 
buildings adopts a displacement-based approach [52,53], those for design of new building are still force-based 
[26,27]. ASCE 7-16 [27] starts its design by substituting a superstructure by an SDOF oscillator representing its 
fundamental mode of vibration and replacing the foundation stiffness with springs of a sway-rocking model 
shown in Figure 6(a). Structural yielding is considered by reducing the elastic base shear using the response 

modification coefficient (=Rm for an elastic-perfectly plastic model) as if the superstructure is fixed in base. The 
effects of soil-structure interaction is accounted for by imposing a further reduction to the design base shear of 

the yielding structure in accordance with a period lengthening ratio  and a system damping ratio xssi given by: 

  rg
2

s
3

eqssi 1 xxxx                                                             (9) 

where xs is the structural linear viscous damping ratio, xg the soil hysteretic damping ratio and xr the 
contribution of foundation radiation damping, and the period lengthening ratios are calculated by: 

 11
1 2

seqs,

eqssi,
eq  

m


T

T
                                                         (10) 

ș

2
s

h

s

s

ssi 1
k

Hk

k

k

T

T
                                                           (11) 

where H is the height of the SDOF superstructure; ks, kh, and k are stiffness coefficients corresponding to the 
structure lateral, foundation swaying, and rocking motions. Subscripts “s” and “ssi” are used to represent 
quantities associated with the fixed-base structure and the SSI system, respectively (Figures 6(a)-(b)), whereas 
the subscript “eq” denotes quantities of the vibrating system at its degraded states in response to its maximum 
displacements, shown in Figure 6(c). 

An issue with the stated procedures is that the strength reduction due to structural yielding was treated 
independently without considering SSI, which, however, may lead to nonconservative results [10,25]. Although 
ASCE 7-16 [27] provides an upper bound reduction for the design base shear, the resulting design solutions can 
be unsafe [54]. Compared to the conventional force-based design philosophy, the direct displacement-based 
design (DDBD) has been shown as a more rational approach, since it uses displacement demands (which are 
directly related to structural and non-structural damage) as the main design parameters [55]. It is challenging to 
directly use Equation (9) in a displacement-based SSI procedure for design because the radiation damping term 

xr is frequency-dependent. This means that calculation of xssi requires the knowledge of elastic fundamental 
periods of both the superstructure Ts and the SSI system Tssi, which are two unknowns that need to be 
determined, as opposed to a force-based design (or a displacement-based evaluation) procedure that starts from 
a known initial period value. The following subsection presents equivalent fixed-base SDOF (EFSDOF) 
oscillators that are suitable for displacement-based design of flexible-based structures. 
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Figure 6. Simplified SSI models: (a) Sway-rocking model, (b) nonlinear EFSDOF oscillator, and (c) linear 

EFSDOF oscillator. 

3.2 EFSDOF oscillators 
This study is focused on surface foundations (having an equivalent radius r) that are assumed to be rigid and 
bonded to a homogeneous soil half-space (i.e. for relatively heavy buildings on softer soils) having an effective 

shear wave velocity vs, a mass density r, and a Poisson’s ratio n of 0.4 for preliminary design purposes [53]. In 
order to facilitate design process, a number of dimensionless design parameters are introduced, including 

structure-to-soil stiffness ratio a0=2H/(Tsvs), slenderness ratio of the building s=H/r, and structure-to-soil mass 

ratio mഥ=M/(rHr2) with M being the mass of the SDOF superstructure which is ten times that of the foundation 
[53].  

An SSI system can be replaced by either a nonlinear EFSDOF oscillator (Figure 6(b)), characterised by Tssi, 

xssi, and mssi, or a linear EFSDOF oscillator (Figure 6(c)) having a period of Tssi,eq and an equivalent viscous 

damping ratio of xssi,eq encapsulating energy dissipation by all mechanisms that occur upon the expected 

degraded state of the system. Both oscillators share the identical Tssi and xssi when the SSI systems they 
represent are purely elastic. Using the dimensionless parameters, Equation (11) can be written as: 
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where h and  are dynamic modification factors for kh and k, respectively, associated with the equivalent 
natural frequency of the system Tssi as follows [49]: 
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Note that Tssi exists on both sides of Equation (12) and can be solved iteratively.  

 Following Equation (9), the elastic system damping ratio xssi takes the following functional form:  

  rg
2

s
3-

ssi 1 xxxx                                                                   (14) 

where xr can be approximated using the following closed-form expressions: 

   msfm ,/1 5.05.12
r

 x ,         3.18.02ln42.1ln38.0, 5.3  mssmmsf                             (15) 
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where f(s,݉ഥ) was derived in this study through a least-square analysis against the results of the exact solution 
developed by Maravas et al. [56] obtained iteratively using the Veletsos and Verbič impedance functions [57]. 
Equation (15) takes into account the frequency-dependent nature of radiation damping and is valid for common 
building structures with 0.3≤ ഥ݉≤0.7 and 0.5≤s≤4. Figure 7 compares the foundation radiation damping ratios 
calculated by the proposed closed-form expression and the exact solutions for systems with different structure-

to-soil mass and slenderness ratios. It is shown that despite some slight underestimation of xr for s≤1 
(conservative in design), the proposed closed-form expression is sufficiently accurate for design purposes.  
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Figure 7. Comparison of the foundation radiation damping ratio calculated by the proposed closed-form 

expression and the exact solutions. 
While the soil material damping (hysteretic dissipation of energy) is strain-dependent, it has been shown to 

be insensitive to the frequency of vibration [58]. The strain-dependent shear modulus degradation and damping 
curves serve as the basis for the equivalent-linear method for site response analysis. The two curves are related 
to each other by the following expression [59]:  
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where PI is the plasticity index in percentage, G is the effective soil shear modulus equal to rvs
2, and G0 is the 

low-strain shear modulus that can be evaluated using the corresponding shear wave velocity vs0. The shear 
modulus degradation ratio G/G0 is related to peak spectral acceleration and site classes in Table 19.3-2 of ASCE 
7-16 [27].  
 For the nonlinear EFSDOF oscillator, an effective ductility ratio is used to measure the degree of 
inelasticity of the SSI system (Figure 6(b)):  

  11s
2-

ssi  mm                                                                (17) 

whereas the equivalent viscous damping ratio of the linear EFSDOF oscillator can be obtained by applying 
standard equivalent linearisation methods on the nonlinear model in Figure 6(b). Using the well-known Gulkan 
and Sozen methods for reinforced concrete framed structures [60], Moghaddasi et al. [24] gives the following 
expression: 

 

m

xx ssi
eqssissi,eq

/11
                                                           (18) 

In general, the equivalent viscous damping ratio values for concrete and steel frame buildings are close when 
having similar ductility demands [55]. Engineers should choose appropriate formulae for the equivalent viscous 
damping ratio in accordance with the structural system of interest.  

4. DIRECT DISPLACEMENT-BASED DESIGN METHODOLOGY FOR FLEXIBLE-
BASE BUILDINGS 

A controversial issue regarding the DDBD approach is the use of heavily damped elastic spectra for estimating 
inelastic displacement demands of SDOF systems, on the basis of an equivalent linear approximation of the 
actual nonlinear behaviour. Previous research has suggested that, instead of using elastic spectra with equivalent 
viscous damping, inelastic design spectra could be adopted for estimating inelastic displacement demands with 
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higher accuracy [51,61,62]. This section presents a procedure for soil-structure interaction analysis within the 
framework of the DDBD approach, as illustrated in Figure 8. The effectiveness of both equivalent linearisation 
and inelastic spectra methods is assessed by means of two design examples. 

Structural input: 
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Figure 8. Flowchart illustrating the overall DDBD process for flexible-base yielding structures. 

4.1 Design procedure based on inelastic spectra 
The suggested design procedure for flexible-base buildings subjected to near-fault pulse-like motions involves 
the following steps, in accordance with Figure 6(b) and Figure 8: 
1. SDOF representation of the design building 

Determine the properties of the fixed-base building corresponding to its inelastic first-mode shape 
(assumed similar to its elastic shape [55]) and the structural ductility, slenderness and mass ratios. 

2. Design displacement of the EFSDOF oscillator ussi,m    
Calculate the yield displacement and the effective ductility ratio of the nonlinear EFSDOF oscillator, 

obtain the design displacement ussi,m. For the 1st iteration, 0=Tssi/Ts can be assumed to be equal to 1 (i.e. 
fixed-base condition). 

3. System damping ratio xssi    

Calculate the system damping ratio xssi using 0. 
4. Equivalent natural period Tssi    

Construct the inelastic displacement spectrum using SD(T,xssi,mssi)=SD(T,xssi)∙Cm,ssi(T,xssi,mssi) following 
the procedures described in Section 2. Determine Tssi that corresponds to ussi,m. If no solution is found, i.e. 

ussi,m>max[SD(T,xssi,mssi)], increase 0 values and repeat steps 2-4 until solutions found. If 0>max (say, 5), 
adjust structural geometry or member dimensions and repeat steps 1-4 until solutions found. 

5. Check convergence of design solution    

Calculate Ts and a0 to evaluate a new value of 1. If  1 is close to 0 within an acceptable tolerance, 

proceed to step 6. Otherwise, let0=1 and repeat steps 2 to 5 until a satisfactory tolerance of is obtained. 
6. Design base shear Vd    

Determine the design base shear strength Vd which is then distributed to each floor to design structural 
members.  
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4.2 Design procedure based on equivalent linearisation 
The second procedure adopts elastic design spectra derived for high damping ratio values to account for 
structural inelasticity, in accordance with Figure 6(c) and Figure 8. Steps 1, 2, 5, and 6 in the inelastic spectra 
method (subsection 4.1) remain unchanged here whereas steps 3, 4 are modified as follows.  

3. Equivalent linear viscous damping ratio xssi,eq 

Estimate the effective period lengthening ratio xssi,eq using eq and mssi 
4. Equivalent period of the yielding system Tssi,eq 

Construct the design elastic displacement spectrum SD(T,xssi,eq) following the procedures described in 
Section 2. Obtain Tssi,eq corresponding to ussi,m on the spectum. The solution process is the same as that in 
step 4 for the inelastic spectra method. 

4.3 Design examples 
The effectiveness of the suggested direct displacement-based procedure is demonstrated using two example 
SDOF structures. The properties of the SDOF structures were extracted from two framed buildings of which the 
detailed design was originally presented in references [55,63] for the fixed-base condition. The first example 
Ex.1 relates to a steel building (Figure A1(a)) where the seismic resistance is provided by peripheral and interior 
resisting frames, while the second example Ex.2 represents a hybrid precast prestressed frame building (Figure 
A1(b)). Both structural systems are supported by a raft foundation constructed on a clay site two kilometres 
away from the rupture plane of the governing fault. The buildings were designed for a maximum drift ratio of 
0.025 during an MW 6.6 seismic event considering that the ground velocity motions at the site exhibit strong 
pulses (pulse-like ground motions). 

Table 1 lists the properties of the design examples (calculated according to reference [55]) and the 
foundation soil. Tables A1-A4 within Appendix A summarise results of the iterative direct-displacement design 
procedures, based on both the inelastic spectra (subsection 4.1) and the equivalent linearisation (subsection 4.2) 
methods, for examples Ex.1 and Ex.2.  
 

Table 1. Input structural and geotechnical parameters for the design examples 

Parameter Ex.1 Ex.2 

Effective mass, Me (tonnes) 2595 1965 

Effective height, He (m) 12.24 14.43 

Structural yielding displacement, us,y (m) 0.183 0.043 

Structural displacement demand, us,m (m) 0.256 0.303 

Structural ductility ratio, ms 1.4 7.0 

Structural linear damping ratio, xs 0.05 0.05 

Low-strain shear wave velocity, vs0 (m/s) 240 240 

Soil mass density, r (kg/m3) 1800 1800 

Plasticity Index, PI (%) 30 30 

Soil Poisson's ratio, n 0.4 0.4 

Structure-to-soil mass ratio, mഥ  0.51 0.38 

Slenderness ratio, s 0.81 1.02 
 
The data in Tables A1-A4 show that for the building designed with a low ductility capacity in Ex.1, using 

elastic and inelastic spectra has led to similar design base shear values (i.e. Vd=22179 and 23335kN for the 
inelastic and equivalent linearisation methods, respectively). On the contrary, for the building designed with a 
high ductility capacity in Ex.2, using the equivalent linearisation method resulted in a design base shear which is 
more than two times greater than that obtained using the inelastic spectra method. The adequacy of these two 
design solutions is studied in the next subsection using nonlinear response history analysis.  

4.4 Verification using response history analysis 
Since the design scenario involves pulse-like ground motions, 91 fault-normal pulse motions identified by Baker 
[7] were processed for the verification analyses in this study. These records were firstly modified using the 
RSPMatch09 program [64] to match the design pseudo-acceleration response spectrum (5% damping ratio). 
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RSPMatch09 performs time-domain spectral matching by adding adjustment wavelets to an initial acceleration 
time series. The model 7 tapered cosine function recommended by RSPMatch09 was adopted for the spectral 
matching to prevent drift in the modified velocity and displacement time series while preserving the non-
stationary characteristics of the ground motion. Recognising that adding the wavelets to the original records may 
change their pulse-like characteristics, the modified motions were then filtered using the pulse-motion 
identification algorithm proposed by Baker [7] and the pulse periods calculated, i.e. the motion was identified as 
being “pulse-like” if the pulse indicator value was higher than 0.85. Following this criterion, sixteen spectrum-
compatible pulse-like motions were selected as representative of the design ground motions for the nonlinear 
dynamic analysis. Figure B1 in Appendix B shows the strong velocity pulses in the modified ground motions. 
Comparisons of the individual and mean values of the response spectra and the pulse periods of the design 
pulse-like motions with the design target values are presented in Figures 9 and 10, demonstrating a good 
agreement between the mean design motion and the target design scenario.  

  
Figure 9. Displacement spectra for the modified records compared with the target spectra considering a damping 

ratio of 5%. 

 
Figure 10. Pules periods of the design ground velocity motions compared with the target design value. 

 
The superstructures were modelled by an SDOF oscillator having a mass of Me, a height of He and elastic-

perfectly plastic lateral force-displacement behaviour with a viscous damping ratio of 0.05. The dynamic 
behaviour of the raft foundation was simulated using a discrete-element model, which is based on the 
idealisation of a homogeneous soil under a rigid circular base mat as a semi-infinite truncated cone. More 
information about the flexible-base SDOF oscillators used to represent the actual soil-building interaction 
systems in this study is provided in reference [25]. 

Figure 12 compares the displacement demands of the flexible-base SDOF oscillators obtained from time-
history analysis with the design target values listed in Tables A1 and A2 for Ex1 which was designed to undergo 
small inelastic deformations. Note that these displacements are defined relative to the ground and include the 
contributions of the foundation motions. The Ex 1 representative SDOF structures designed using either the 
inelastic spectra or the equivalent linearisation method experienced similar maximum displacements when 
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subjected to the design pulse-like motions. This is consistent with the fact that the design base shear values 
using these two methods were fairly close. 

Ex1(a)

(b) Ex1

 
Figure 12. Displacement demands obtained from nonlinear response history analysis vs. target design values for 

Ex 1: (a) equivalent linearisation and (b) inelastic spectra methods. 
 

For the structure in Ex.2 that was expected to dissipate a great amount of seismic energy through significant 
inelastic deformations, Figure 13 shows that the inelastic spectra method provides a noticeably better result, 
leading, on average, to a 7.9% higher displacement demand compared to the design displacement, while the 
mean value corresponding to the equivalent linearisation method is more than 40% lower than the target values 
(all individual values are also lower than the design displacement value).  

Although using an inelastic design spectrum has been shown to be more efficient for seismic design of 
highly ductile fixed-base structures compared to using a heavily damped elastic spectrum [51,61,62], the authors 
by no means imply that inelastic spectra should always be favourable to elastic spectra in displacement–based 
design of flexible-base structures. In fact, both techniques are alternative tools in DDBD methods that need 
improvements (especially for pulse-like ground motions), and the performance of these techniques is affected by 
the procedures used for developing the design spectra and/or the methods used for the equivalent linearisation. 

(a)

(b)

Ex2

Ex2

 
Figure 13. Displacement demands obtained from nonlinear response history analysis vs. target design values for 

Ex 2: (a) equivalent linearisation and (b) inelastic spectra methods. 
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While the focus of this study is on flexible-base structures, it is interesting to examine the response of 
corresponding fixed-base structures as well. Two additional scenarios were considered where structures were 
designed with a fixed-base assumption. Three cases are compared, defined as: 

 Case 1- structures designed using the “fixed-base” assumption, supported on a rigid base and 
subjected to the sixteen pulse-like motions;  

 Case 2- structures designed using the “fixed-base” assumption, supported on a flexible base and 
subjected to the sixteen pulse-like motions;  

 Case 3- structures designed using the “flexible-base” assumption, supported on a flexible base and 
subjected to the sixteen pulse-like motions (results shown in Figures 12 and 13).  

Note that the design process and solutions for the structures in case 3 are presented in Appendix A. The soil 
conditions for the case 2 structures were assumed to be identical to those in case 3, as presented in Table 1. 
Table 2 summarises the dynamic properties and design base shear values of the example structures designed 
according to the fixed and flexible-base assumptions.  

The seismic response of the structures designed based on all three cases are compared in Figures 14 and 15. 
The displacement demands of SSI systems in cases 2 and 3 include the rigid-body movements of the foundation, 
whereas for case 1 the displacement demands correspond to the maximum structural distortion. In addition to 
evaluating the displacement demands against the target design values, the results of structural ductility demands 
are also compared in order to check if the actual structural inelasticity level is close to the design level. The 
comparison of the mean and target values for cases 1 and 3 is used to assess the effectiveness of the DDBD 
procedure; while for case 2, it displays the difference of the actual response of flexible-base structures designed 
using the fixed-base assumption and the target performance.  

In general, the results of cases 1 and 3 (shown in Figures 14 and 15) indicate that using inelastic spectra is 
more effective than using elastic spectra in DDBD design of structures with and without considering soil-
structure interaction, especially for structures designed to have higher ductility demands. It is also shown that 
the dispersion of the data is higher for structures with SSI-based design than for those designed using the fixed-
base condition, and this dispersion increases with increasing target ductility demand. Figure 14(a) shows that the 
mean values of the displacement demand of Ex 1 structures in cases 1 and 2 are very close, suggesting that soil-
structure interaction seems to have a negligible effect on their structural response. However, as illustrated in 
Figure 14(b), the structures with a flexible base in case 2 exhibited a much lower ductility demand compared to 
those in case 1 (lower than the target values). In fact, it seems that in this example the reduction of structural 
deformation (reduced ductility demand) and the increase in the foundation motion due to SSI cancelled each 
other out, leading to a similar displacement demand to the fixed-base structures.  
 

Table 2. Design solutions for structures in cases 1, 2, and 3 

Description Case 1 Case 2 Case 3 

Base condition Fixed base Fixed base Flexible base 

Simulation assumption Fixed base Flexible base Flexible base 

Ex 1 EL1 IS2 EL IS EL IS 

Ts (sec) 0.667 0.682 0.667 0.682 0.896 0.919 

a0 0 0 1.268 1.468 1.118 1.090 

Vd (kN) 42020 40228 42020 40228 23335 22179 

Ex 2 EL IS EL IS EL IS 

Ts (sec) 0.447 0.760 0.447 0.760 0.505 0.781 

a0 0 0 0.997 1.554 2.339 1.510 

Vd (kN) 16787 5819 16787 5819 13180 5501 
                           Note: 1-EL=Equivalent Linearisation, 2-IS=Inelastic Spectra  

 
Figure 15 compares the displacement and structural ductility demands of the structures in all three cases 

(designed using inelastic spectra) with the target values. It is shown that the SSI effect is insignificant for 
structures with high ductility demand. In this case, both fixed-base and SSI-based DDBD design methods lead 
to a practically identical design solution (see Table 2). This observation is in agreement with the results 
presented in Lu et al. [25], where the period elongation and damping due to foundation soil were negligible 
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compared to those due to high levels of structural inelasticity; the overall response of the SSI system was 
governed by its highly nonlinear superstructure. On the other hand, the Ex 2 structures designed using heavily 
damped elastic spectra (equivalent linearisation) exhibited very different seismic performances compared to 
those designed using inelastic spectra, which implies that these design solutions were not appropriate.           

    

individual mean mean±std. target

(a)

(b)

Equivalent linearisation Inelastic spectraEx1

 
 

Figure 14. Results of nonlinear response history analysis vs. target design values for Ex 1 in all three cases: (a) 
displacement demands and (b) structural ductility demands. 
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(a)
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Figure 15. Results of nonlinear response history analysis vs. target design values for Ex 2 in all three cases: (a) 

displacement demands and (b) structural ductility demands. 
 

5. DISCUSSION  
In previous sections, a step-by-step procedure was presented for seismic design of flexible-base structures to 
pulse-like ground motions using a direct-displacement based design (DDBD) approach. The proposed design 
procedure is best suited to buildings supported by raft foundations. The effects of nonlinearity at the foundation-
soil interface (e.g. foundation uplift and/or sliding), full mobilisation of foundation bearing capacity, soil 
inhomogeneity and foundation embedment were not considered. However, these effects can also be incorporated 
into the developed design framework by modifying the current procedure based on relevant references 
[21,22,65,66]. In the proposed design approach, the building was simplified into an SDOF structure based on its 



16 
 

fixed-base fundamental mode of vibration (which has a similar first mode-shape to the flexible-base counterpart) 
and higher modes of SSI systems were not considered. Recent research showed that short-period velocity pulses 
amplified the higher-mode (high-frequency) response flexible-base buildings whose inter-storey drift ratio 
distribution varied with respective to the pulse periods [67,68]. In fact, higher-mode shapes of fixed-base 
building can be significantly different compared to those supported on flexible bases. Therefore, further studies 
should be conducted to quantify the alteration of higher-modes due to SSI in order that appropriate 
modifications can be applied to the basic procedure proposed in the current research.  

Since the suggested compatible response spectra were constructed using empirical models for ground and 
spectral parameters (e.g. peak ground motion, peak spectral ordinates, spectral control periods, damping 
correction factors and ductility reduction factors) based on earthquake records in several separate datasets which 
may not necessarily focus on pulse-like motions, future studies are required to derive predictive models that are 
more consistent with the ensemble of pulse-like ground motions of interest. Note that the compatible spectrum 
corresponds to a deterministic design spectrum which should be treated differently from those based on 
probabilistic seismic hazard analysis calculations (e.g. uniform hazard response spectra). An assumption made 
in this study (and other related studies [28,30]) was that the spectral predominant periods Tg are insensitive to 
damping level, which may not to be appropriate for heavily damped response spectra. However, the results 
presented in this paper show that the response spectra for high damping ratios do not exhibit the distinct peaks 
that appear in slightly damped spectra. Therefore, using predominant periods of slightly damped spectra for 
constructing heavily damped response spectra is considered acceptable for practical purposes. Another area 
requiring further attention relates to the uncertainties in estimating the pulse period and/or other spectral control 
periods. This could be addressed by defining constant maximum spectral regions within the spectral range, 

limited for example by Tg-and Tg+ being the standard deviation of Tg). The values corresponding to the 
smoothed spectral amplification factors could then be evaluated within these regions.  

Though the above mentioned limitations indicate that the suggested design response spectrum should not be 
directly applied in design practice, it has been shown that the concept of constructing such a design spectrum 
provides a better alternative to the conventional bi-normalised response spectra derived by normalising the 
spectral ordinates with respect to a single peak ground motion (i.e. PGA, PGV or PGD). Nevertheless, the 
procedure for DDBD of flexible-base structures proposed in this study is not restricted to the suggested design 
spectra, and, in essence, any type of design response spectrum can be easily employed to perform the design 
process. 

6. CONCLUSIONS  
A practical displacement-based design framework was presented, for the first time, for seismic design of 
flexible-base structures subjected to near-fault pulse-like ground motions. Within this framework, an actual soil-
structure interaction system is treated as an equivalent fixed-base SDOF (EFSDOF) oscillator having an 
equivalent natural period, a system damping ratio, and an effective ductility ratio which can be readily 
determined using proposed formulations. The effects of near-fault pulse motions on structural response are 
accounted for by newly developed compatible response spectra that are directly correlated with the pulse period. 
Utilising the EFSDOF oscillator and the design response spectra, two step-by-step procedures were proposed on 
the basis of the suggested inelastic spectra and equivalent linearisation methods. The results of non-linear 
dynamic analysis performed on two example SSI systems under a set of sixteen spectrum-compatible pulse-like 
ground motions demonstrated that using heavily damped elastic displacement spectra based on conventional 
equivalent linearisation may lead to inappropriate design solutions in this case. However, it was shown that the 
proposed direct-displacement based design procedure based on inelastic design spectra in general provides more 
accurate results for the SSI systems under pulse-like ground motions. The results also indicate that the SSI effect 
is insignificant for structures with high ductility demand, where fixed-base and SSI-based DDBD design 
methods lead to almost identical design solutions. 
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APPENDIX A 
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Figure A1. Frame buildings for the design SDOF example structures: (a) steel moment resisting frame building 

[63] and (b) hybrid precast prestressed frame building [55]. 
 

 
 

Table A1. Results of the DDBD procedure using inelastic spectra for Ex.1 

  Iteration number 

Parameter 1 2 3 4 5 6 7 8 9 10 

0
2 1.000 1.683 1.240 1.369 1.303 1.334 1.319 1.326 1.322 1.324 

ussi,m (m) 0.256 0.381 0.300 0.323 0.311 0.317 0.314 0.315 0.315 0.315 

xssi 0.050 0.242 0.120 0.159 0.139 0.148 0.144 0.146 0.145 0.146 

Tssi 0.682 1.343 0.969 1.104 1.035 1.067 1.051 1.059 1.055 1.057 

a0 1.468 0.968 1.151 1.062 1.105 1.084 1.094 1.089 1.091 1.090 

1
 1.683 1.240 1.369 1.303 1.334 1.319 1.326 1.322 1.324 1.324 

Vd (kN)                   22179 
 

 
Table A2. Results of the DDBD procedure using equivalent linearisation for Ex.1 

  Iteration number 

Parameter 1 2 3 4 5 6 7 8 9 

0
2 1.000 1.526 1.277 1.371 1.330 1.347 1.340 1.343 1.341 

ussi,m (m) 0.256 0.352 0.306 0.324 0.316 0.319 0.318 0.318 0.318 

xssi,eq 0.137 0.220 0.176 0.192 0.185 0.188 0.187 0.187 0.187 

Tssi,eq 0.899 1.355 1.123 1.209 1.171 1.187 1.180 1.183 1.182 

a0 1.318 1.026 1.155 1.102 1.125 1.115 1.119 1.118 1.118 

1
 1.526 1.277 1.371 1.330 1.347 1.340 1.343 1.341 1.341 

Vd (kN)                 23335 
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Table A3. Results of the DDBD procedure using inelastic spectra for Ex.2 

  Iteration number 

Parameter 1 2 3 4 5 

0
2 1.000 1.389 1.478 1.465 1.467 

ussi,m (m) 0.303 0.320 0.324 0.323 0.323 

xssi 0.050 0.155 0.178 0.175 0.176 

Tssi 0.869 0.915 0.951 0.946 0.946 

a0 1.359 1.520 1.509 1.511 1.511 

1
 1.389 1.478 1.465 1.467 1.467 

Vd (kN)         5501 
 

 
 

Table A4. Results of the DDBD procedure using equivalent linearisation for Ex.2 

  Iteration number 

Parameter 1 2 3 4 5 6 7 

0
2 1.000 2.646 2.111 2.244 2.208 2.218 2.215 

ussi,m (m) 0.303 0.375 0.351 0.357 0.356 0.356 0.356 

xssi,eq 0.258 0.262 0.255 0.256 0.256 0.256 0.256 

Tssi,eq 1.284 1.520 1.430 1.452 1.446 1.448 1.447 

a0 2.434 2.285 2.351 2.335 2.340 2.338 2.339 

1
 2.646 2.111 2.244 2.208 2.218 2.215 2.215 

Vd (kN)             13180 
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APPENDIX B 

 
Figure B1. Velocity time series of the design earthquake motions showing the pulse characteristics.  
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