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Abstract  

High volumetric efficiency capacitors are found in all smart electronic devices, providing 

important applications within circuits, including flexible filter options, power storage and sensing, 

decoupling and circuit smoothing functions. Multilayer ceramic capacitors (MLCCs) hold the major 

market share but tantalum electrolytic capacitors (TECs) provide a viable alternative if higher 

breakdown strengths are required. The reduced costs, smaller dimensions suitable for space-

constrained electronic circuits, exceptional high-frequency characteristics, higher reliability, ripple 

control and longevity, however, are driving the market to replace TECs with MLCCs wherever 

possible. To date, no current research regarding the transition from TECS to MLCCs has been 

conducted from an entirely environmental viewpoint. This article identifies, quantifies, ranks and 

compares the environmental impacts of the MLCC and TEC supply chains using an integrated 

hybrid life cycle assessment framework. Three recovery methods: incineration; hydrometallurgy 

and pyrometallurgy are considered in the overall impact assessment. Electrical energy 

consumption during fabrication alongside the use of nickel paste are the major environmental 

hotspot for MLCCs. The high proportion of tantalum in TECs results in an overall greater 

environmental impact in comparison with MLCCs, due to intensive extraction, processing and 

purification requirements of tantalum. Of the three recovery methods, the hydrometallurgy 

process offers the least environmental impact for both MLCCs and TECs. Overall, the current 

work shows that while the industry led transition from TECs to MLCCs offers both an operational 

and functional edge, it is also an environmentally intelligent move. Intervention options that can 

further drive down the environmental impacts of MLCCs are also proposed such as a reduction 

in the reliance of MLCCs on rare earth elements and Cu external electrodes in some designs 

and material recovery.  
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Nomenclature 

A/DC Alternating/direct current SCEnAT Supply Chain Environmental 

Analysis Tool 

AEC Aluminium electrolytic capacitor TEC Tantalum electrolytic capacitor 

AP Acidification potential WEEE Waste electrical and electronic 

equipment 

ASM Artisanal and small scale mining X7R MLCC specification 

BOM Bill of materials A Technical coefficient of the IO 

matrix 

EC Electrolytic capacitor Ei Emissions intensity 

(E)IO (Environmental) Input Output kgCO2-

eq 

kg of CO2 equivalent 

EP Eutrophication potential kVA Kilo-volt-amps 

ESR Equivalent series resistance kWh Kilowatt hour 

DCB Dichlorobenzene I Identity matrix 

GWP Global warming potential MHz Mega hertz 

HTP Human toxicity potential MJ-eq Mega joule equivalent 

LCA Life cycle assessment nm Nano meters 

LCI Life cycle inventory Q Quantity of a material or process 

MLCC Multilayer ceramic capacitor tanδ Dissipation/power factor 

measurement 

(W)PCB Waste printed circuit board W Watts 

POCP Photochemical ozone creation 

potential 
wt% Weight percent 

REE Rare earth element µF Micro farads 

 

1. Introduction  

The use of functional materials in product and device development underpins 

many aspects of modern life through energy generation and storage devices, information 

and communications technology, multicomponent sensors, healthcare, military defence 

and transportation. Modern society has witnessed tremendous growth and development 

through the discovery and applications of functional materials and semiconductor 

devices[1]. One specific area where the use of functional materials has made new 

applications possible is the fabrication of capacitors. A capacitor is a passive electrical 
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component which possesses two terminals for energy storage within an electric field. 

Their capacitance is measured in farads (F) and is the ratio of the electric charge to the 

voltage difference between the two electrical conductors separated by a dielectric. There 

are numerous different types of capacitors including aluminium electrolytic capacitors 

(AECs), aluminium organic polymer capacitors, ceramic capacitors, single layer ceramic 

capacitors, multilayer ceramic capacitors (MLCCs), array capacitors, tantalum electrolytic 

capacitors (TECs) and supercapacitors. By identifying different attributes such as 

capacitance, rated voltage, operating temperature range and dimension, capacitors can 

be selected for different types of applications. 

The importance of such devices cannot be underestimated. Modern society 

depends on a number of devices for which capacitors are used; the functional materials 

industry currently boasts of a world market size in excess of $4 trillion with a growth rate 

of 4.8% per annum[1]. The UK alone accommodates substantial cluster of manufacturers 

and end users of functional materials devices such as capacitors, production of capacitors 

in the UK reached over €1 million in 2013[2]. Given that the fabrication of products such 

as volumetric efficient capacitors rely heavily on raw materials which have geopolitical, 

geological and environmental constraints[3-5], the importance of tracking their 

environmental and social profile cannot be overemphasised. 

Innovations in consumer electronics inevitably lead to the generation of waste 

electrical and electronic equipment (WEEE). Capacitors are soldered onto printed circuit 

boards (PCBs) and are a vital component of electronic circuits and therefore contribute 

to the 50 million tonnes of WEEE produced each year[6, 7]. With an annual growth rate 

of 3-5% per year, WEEE is thought to be one of the fastest growing waste streams in the 

world[8]. Currently, there is limited environmental profile assessment of capacitors in their 

various forms, Wang and Xu[6] submitted that a mature recycling technique is yet to be 

developed for capacitors and other electronic components although hydrometallurgy and 

pyrometallurgy can be used for precious metal recovery[9].  

To this end, the current work presents a methodologically robust lifecycle 

assessment (LCA) of two representative capacitors, namely Tantalum Electrolytic 
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Capacitors (TECs) and Multilayer Ceramic Capacitors (MLCCs). This allows us to define 

and address environmental hotspots within the supply chain as well as sustainability 

issues that are essential for future development of these capacitors, given their wide array 

of applications. Research has not yet been published which highlights environmental 

impacts of both type of capacitor and therefore a comparison is yet to be made. Although 

there are numerous types of capacitors, the overall aim of the current work is to compare 

two main types that can be employed as immediate replacement and substitutes for 

similar applications. In this regard, MLCCs hold the major market share but tantalum 

electrolytic capacitors (TECs) provide a viable alternative if higher breakdown strengths 

are required, hence the trend to replace TECs with MLCCs where possible. Also, TEC 

turnover is 75% of the dollar compared to MLCCs placing them second in the capacitor 

industry in terms of units and value[10]. Moreover, there is a lack of availability of detailed 

life cycle inventory (LCI) data for all types of capacitors, as such, the consideration of all 

types of capacitor for LCA is beyond the scope of the current work. This work therefore 

provides a novel and important insight into the environmental impacts of the production 

of MLCCs and TECs at a laboratory scale. The results can be directly translated to the 

day to day production of each capacitor type and can serve as a viable tool in design 

decision making process. 

1.1 The switch from electrolytic capacitors to multilayer ceramic capacitors 

For applications requiring large capacitance (e.g. smoothing), both aluminium 

electrolytic capacitors (AECs) and TECs have been adopted. Difficulties in miniaturisation 

of these capacitors, coupled with significant self-heating problems from ripple currents 

has hampered their applications in a number of space-constrained electronic circuits. 

These challenges prompted the development of MLCCs. MLCCs were first adopted in a 

number of niche electronic applications as their capacitance was comparatively low, thus 

confining their use to filter and high-frequency circuits[11]. However, in recent years, with 

advances in technology for the multi-layering of dielectric materials, large-capacitance 

MLCCs have been fabricated, enabling the replacement of electrolytic capacitors (ECs) 

in a number of applications[12]. Their small dimensions, high capacitance, high reliability 

and exceptional high frequency characteristics find them now utilised in mobile phones 

(Figure 1), laptops and cars[12, 13].  
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Figure 1: Schematic illustration of the application of MLCCs in mobile phones. As indicated, 
MLCCs can be used for coupling (e.g. DC blocking) and decoupling (AC filtering) as well as 
impedance matching. 

 

By 2020, ~3 trillion MLCCs per year will be required to fulfil the demand for 

computers, smart phones and computerised consumer electronics[14]. TECs[10] also 

have high reliability, high volume efficiency and good temperature characteristics and 

consequently compete in the same market as MLCCs[15]. Although the switch from TECs 

to MLCCs offers the aforementioned advantages, their shortcomings lie in the large rate 

of change in capacitance as a result of temperature and DC bias. MLCCs also possess 

low equivalent series resistance (ESR) which can cause adverse effects that may lead to 

anomalous oscillations in power supply circuits[12]. Figure 2 illustrates trends towards the 

switch from ECs to MLCCs. 
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(a)  Frequency band and range of capacitance                    (b) Rated voltage range 

 

 

 

 

 

 

 

 

 

 

 

(c) Relationship between ESR and ripple voltage 

Figure 2: Trends towards the switch from ECs to MLCCs. (a) replacement of ECs (AEC and TEC) 
due to the advent of large-capacitance MLCCs; (b) rated voltage range of sample capacitors. 
MLCCs possess higher voltage ratings in comparison with ECs. It is also endowed with longevity 
and superior reliability; (c) relationship between ESR and ripple voltage. A lower ESR allows the 
ripple voltage to be maintained to a smaller amount, an attribute of MLCCs which enhances its 
optimal performance as a replacement for ECs. 
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MLCCs and TECs have different manufacturing materials and processes, but the 

same function in power correction and smoothing a digital circuit[16]. Companies 

including Kemet[17], YAGEO[18] and academic articles (e.g. Huang et al.[19]) have 

discussed the implications of replacing TECs for MLCCs with the latter concluding that 

total replacement, at this time, would not be feasible due to capacitance and temperature 

limitations. Table 1 provides a summary of the key differences between aluminium and 

tantalum ECs and MLCCs. 

 
 Table 1: Key functional difference between MLCCs and ECs (TECs and AECs) 

 MLCC TEC AEC 

Technical 
features 

• Small size, low profile 
form factor 

• Very large capacitance 
• High reliability 
• Longer lifespan 
• Low equivalent series 

resistance (ESR) 
• No polarity 
• High voltage rating 

• Large 
capacitance 

• Advanced DC 
bias 
characteristics 

• Large 
capacitance 

• Less expensive 

Caution in 
application 

phase 

• Large change in 
capacitance due to 
temperature and DC bias 

• Low ESR constitute an 
advantage but may cause 
oscillation problems in 
power circuits when too 
low 

• Comparatively 
high ESR, 
significant self-
heating because 
of ripple 
currents 

• Low voltage 
rating 

• Large form 
factor 

• Short lifespan in 
environments 
with high 
temperature 

• High ESR, 
significant self-
heating because 
of ripple 
currents 

 

As highlighted above, switching from MLCCs offers a number of benefits including 

small size (due to the miniature and low-profile form factor), improved reliability, ripple 

control and longevity[12]. However, caution must be taken due to the low ESR attributes 

of the MLCC which can have adverse effects leading to anomalous oscillations and anti-

resonance[11]. The lifespan of a typical AEC is estimated to be about ten years because 

its capacitance decreases as the electrolytic solution dries up. MLCCs however do not 
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suffer from these limitations because they contain almost no components and as such, 

they are endowed with longer lifespan. The increasing desire to adopt primary large-scale 

integration and integrated circuit components within electronic devices couple with the 

trend towards low voltage in power supplies which powers these components invigorated 

the race to replace ECs with MLCCs. Additionally, the consumption of power has 

increased considerably in line with the progression of multi-functionality in electronic 

devices and the trend towards the use of high current continues. This trend towards high 

current and low voltage in electronic devices has been further enhanced due to the 

replacement of ECs with MLCCs[12]. The enormous advantages of the switch from ECs 

to MLCCs can therefore not be overemphasised.  

 

While it is clearly well-established that the transition from ECs to MLCCs offers 

both an operational and functional edge as highlighted in the aforementioned examples, 

there is currently no research regarding such transitions that has been conducted from 

an entirely environmental viewpoint. For years to come, the manufacturing of the 

capacitors under consideration would continue in order to fill important human needs. As 

such, an understanding of their environmental profile is therefore paramount. Such an 

understanding will provide manufacturers of capacitors and allied professionals with an 

optimal and reliable input into the design process that is informed by environmental 

considerations. In the subsection that follows, the need to conduct LCA of volumetric 

capacitors is provided. 

 

1.2 Towards life cycle assessment of volumetric efficiency capacitors 

As highlighted in the preceding paragraphs, a great deal of progress and 

improvements based on the performance characteristics and functional aspects of 

volumetric efficient capacitors have been recorded. Yet, despite the importance and 

volume of capacitors in today’s electronics, there are no LCA studies immediately 

available to track the progress recorded from a purely environmental perspective. At the 

moment, only one LCA for a MLCC was found which contained information limited in 

scope; the results may be commercially sensitive and therefore remain unpublished[20]. 

The Ecoinvent database[21] holds a dataset for “capacitor production, tantalum-, for 
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through-hole mounting”. There is also information regarding generic capacitors in the 

Ecoinvent database which is referenced as ‘capacitor, for surface mounting’. However, 

none of these sources of environmental information have presented a detailed cradle-to-

grave analysis of the entire fabrication route for comparison between TEC and MLCC. In 

an era where environmentally-sensitive manufacturing procedures are monitored with 

greater focus and attention, this is an important gap to fill given the increased global 

awareness of environmentally benign design and the strong relationship between global 

warming and CO2 emissions.  

The role of LCA to evaluate whole-life environmental impact of capacitors is 

crucial, as this can play an important function in the early stages of their design process. 

This is particularly important given the vital functions that capacitors perform in many 

devices and the fact that their production will continue to grow, especially considering that 

product supply chains are networked with complex production systems[22, 23] and 

unpredictable and ever increasing consumption patterns[24, 25].  

1.2.1 Summary of contributions and novelty  

The novelty and contribution of this paper is summarised as follows: 

a) The current work presents the first and comprehensive comparative LCA of two 

representative volumetric efficient capacitors namely MLCCs and TECs with the 

view to: (i) provide information to be used at the design phase of capacitors with 

regards to the environmental and health impacts of each component and (ii) 

highlight environmental hotspots and recommend mitigation strategies and 

intervention options for future designs. It is intended that the analysis presented 

provides manufacturers of capacitors and allied professionals with an efficient and 

reliable input into the design process that is informed by environmental 

considerations.  

 

b) The application of hybrid LCA framework to identify supply chain hotspots in the 

environmental profile of High Volumetric Efficiency Capacitors. The work 

demonstrates the analytical capability of LCA for the environmental impact 

assessment of new device versus existing device across multiple environmental 

metrics. In particular, it highlights the fact that the replacement of ECs with MLCC 
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is an environmentally intelligent move. This is an important information for 

designers and manufacturers of capacitors. 

c) Demonstration of the important application of integrated hybrid LCA to a strategic 

manufacturing procedure which allows equipment and device designers, as well 

as policy makers, to make informed decisions regarding the environmental 

consequences of substitute materials, designs, manufacturing processes and 

application. 

 

In light of the above, the remainder of the paper is organised as follows. In Section 

2, a succinct literature review detailing materials composition/ requirements and the 

recyclability potentials of capacitors is provided. A brief description of the steps involved 

for the fabrication processes of laboratory-based MLCCs and TECs are presented in 

Section 3. Details of the general methodological notes and theoretical formulations 

underpinning the Supply Chain Environmental Analysis Tool (SCEnAT) based on 

integrated hybrid LCA model is provided in Section 4. In Section 5, the key findings of the 

results are analysed and discussed leading to the summary and concluding remarks in 

Section 6. 

2. Literature review 

2.1 The role of capacitors in improving energy efficiency of systems 

Due to the depletion in fossil fuel reserves and the ensuing climate change impacts 

as well as the need to pursue complete energy independence, the importance of 

developing efficient systems to support climate change mitigation initiatives have become 

more apparent[26, 27]. This has led to increased awareness about conservation of 

energy, prompting the need to utilise available energy in an efficient manner through the 

use of energy efficient devices[28]. To achieve this, there is the need to convert 

conventional systems into energy efficient systems. Capacitors can play a vital role in 

achieving this goal as they constitute an integral part in constructing energy efficient 

systems[29, 30].  

As with almost all electronic components, the automotive systems put capacitors 

into extensive use. In fact, the rising adoption of cars utilising alternative propulsion 
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technologies where the management of electrical current and circuits is becoming more 

important has led to further expansion in the role of capacitors. Innovations into 

supercapacitors have equally rendered these devices suitable for use in electric vehicles 

and plug-in hybrids, supplementing and in some instances replacing batteries[31, 32]. 

Throughout the automotive subsystems of all types of cars, different types of capacitors 

can be found. For example, AECs are used in subsystems like window wipers, air 

conditioning as well as motors used for automatic windows, seats and other 

applications[33]. They are also used in important safety and control systems like power 

steering, breaking systems and airbag controls, engine control units for battery controls 

and lots more[33]. Furthermore, for smooth grid integration of large-capacity renewable 

energy sources (e.g. solar and wind energy) and use of large-capacity electrical energy 

storage, capacitors will play a vital role towards an energy efficient system. Figure 3 

illustrates a variable-slip induction generator where a capacitor is used as a reactive 

power compensator. 

 

Figure 3: Topology of a variable-slip induction generator where a capacitor is used as a 

reactive power compensator grid integration of wind energy, adapted from International 

Electrotechnical Commission[34].  
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In order to conserve the use of energy, industries are rapidly changing to energy 

efficient equipment and drives such as DC drives, variable speed AC drives, uninterrupted 

power supply and energy efficient lamps. Although these devices can facilitate the use of 

energy in an efficient manner, they have the tendency of reducing the power factor of 

systems through the injection of harmonics which can lead to overall decrease in 

efficiency of the systems. For instance, the need for accurate and automatic control in 

systems and devices has led to the development of electronic controls. However, some 

of these devices requires switched mode power supply which draws current over a part 

of each half cycles thereby reducing the power factor. A number of numerous examples 

of reduction in power factor is available in electronic literature.  

 

In an electrical system, low power factor constitutes a disadvantage given that it 

decreases the overall efficiency of the system whilst affecting the operability of other 

associated devices. Capacitors play a vital role in improving power factor[33, 35]. 

Improved or higher power factor leads to overall reduction in load current and power loss; 

improvement in efficiency of the system; reduction in KVA rating of the device whilst 

enhancing better utilisation of such device; better and improved voltage profile; less 

voltage fluctuations and increased stability[36, 37]. By using capacitors to achieve the 

aforementioned advantages, overall improvement in energy consumption pattern and 

efficiency of such systems can thus be guaranteed. More importantly, capacitor itself is 

an energy efficient device given its low power loss and overall efficiency of roughly 

99.9%[38, 39].  

 

2.2 Capacitor Types 

Capacitors differ from other types of energy storage devices in that they are 

passive electrical devices that store small quantities of electrical energy, as opposed to 

electrochemical devices which produce energy such as batteries and fuel cells[16]. 

Storage of energy ranges from multiple terawatts hours held for years in chemical 

compounds, to watt hours held in capacitors for mere seconds[40]. The basic structure of 

a capacitor involves an insulating layer separating a minimum of two electrical 

conductors. Charging leads to the storage of electricity in the dielectric insulator which 
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can be made of a ceramic, glass or polymer[16].  Supercapacitors, also known as electric 

double-layer capacitors and ultracapacitors, function in the gap between batteries and 

conventional capacitors as they have the characteristics of both energy storage types but 

are still only suitable for short term storage of energy[16, 41]. Furthermore, 

supercapacitors differ from capacitors in that they also have a porous membrane 

separator incorporated into the structure and utilise nano-scale materials to increase 

surface areas which increases capacitance[16]. 

Capacitor characteristics determine their use in different applications. For 

example, hybrid energy storage systems, combining electric double layer capacitors with 

lithium battery technology, are durable and have high power densities, focussing research 

on their optimum material design[42]. Electrolytic capacitors utilising aluminium, tantalum 

or niobium, have been developed over the last 120 years and are used in computer 

motherboards and larger power supplies with capacitance ranging from 1µF to 2.7F[10, 

43]. Ceramic capacitors, such as multilayer ceramic capacitors (MLCCs), are capable of 

quickly charging and discharging with a high power density[44]. The specifications for 

X7R MLCCs require a minimum operating temperature of -55°C up to a maximum 

operating temperature of 125°C, with a percentage of variation in capacitance of ±15% 

across that temperature range. With these parameters in place, work focusses on 

producing a range of materials to suit these requirements[45]. 

2.3 Materials for capacitor fabrication 

X7R MLCCs (with dielectric specified to standard 198 of the Electronic Industries 

Association) are one of the most common types of MLCC and use barium titanate (BT) 

as the dielectric component due to its high dielectric constant and low dielectric loss in 

the MHz frequency range[46, 47]. For this application very thin BaTiO3 layers are required 

which are produced from uniform particles, typically 100-200nm in size. These powders 

are produced in several ways such as hydrothermal synthesis and solid-state reaction 

between barium carbonate (BaCO3) and titanium dioxide (TiO2)[48]. The addition of a 

rare-earth element, such as dysprosium (Dy) or holmium (Ho), to BT is known to maintain 

high insulation resistance for long periods, enhance temperature stability and therefore 

permit the use of thinner dielectric layers that have longer in-use life spans[49]. 
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Dy is a rare earth element (REE) (one of 17 metallic elements with similar chemical 

characteristics; other REEs include yttrium, lanthanum and gadolinium), which is added 

to BT as its oxide, Dy2O3[50]. Critically, MLCCs utilize 2-3 wt% of either Dy, Ho, or Erbium 

(Er) oxide of which there is severe scarcity; the Department of Energy in the USA regards 

Dy as the number one most critically endangered element[51]. Contrary to what their 

name suggests, REEs are not rare in abundance but are difficult to obtain in economically 

feasible concentrations. Additionally, the separation and refining processes are 

challenging and hazardous for the environment[3, 52]. 

From 1965 to 1985, Mountain Pass, California produced the majority of the world’s 

rare earth elements with Australia a major producer into the 1990s. More recently, China 

has been able to produce rare-earth elements more economically than in other regions 

causing the closure of financially unviable mines in America and Australia[13]. Two mines 

(one American-owned and one Australian-owned) became fully operational in 2013, 

potentially challenging the Chinese monopoly on the rare-earth market and addressing 

supply chain issues[53]. To illustrate the reliance on Chinese production, the 2010 

European Commission report on ‘Critical raw materials for the EU’ stated that 90% of rare 

earth metals were produced in China but by 2014 the ‘Report on Critical raw materials for 

the EU’ Heavy rare earth elements (of which Dy is classified) recognized  that this had 

increased to 99%[3-5]. Despite the domination in production (and restriction of exports) 

by China, Dy annual demand has been predicted to exceed 800 tons in 2020 (increasing 

from 400 tons in 2011)[54] and over the next 25 years, dysprosium demand will increase 

by 2600%[50]. 

In the past, MLCC electrodes were fabricated with precious metal electrodes such 

as platinum or silver-palladium alloys. In the late 1990’s however, cost reductions were 

made by using base metal nickel internal electrodes[12, 13]. In a typical MLCC design, 

the internal electrode is made from nickel paste which is alternated between the dielectric 

layers. Copper paste is then applied as an external electrode, followed by an electroplated 

thermal barrier of nickel and finally an electroplated tin layer to improve the 

solderability[55]. This design allows for the minimum space to be used whilst achieving 

the maximum capacitance from a thin dielectric[56]. 
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There are two different types of TECs; wet and solid. Solid TECs are prepared 

from tantalum powder which is pressed into an anode using a binder (the tantalum leads 

are inserted into the pellet at this time). Once sintered a dielectric layer of tantalum oxide 

(Ta2O5), up to 1.1µm thick, is formed on the surface of the anode through electrolysis[15]. 

A layer of manganese dioxide (MnO2) is then formed around the Ta/Ta2O5 and acts as 

the cathode[57]. Graphite is layered between the MnO2 and silver paste to avoid reduction 

of the MnO2 and oxidation of the silver. The graphite and silver combination eliminates 

the use of tantalum foil which reduces cost, weight and improves performance[10]. 

Finally, epoxy resin is used to encapsulate the capacitor and tin is used as a 

termination[58]. In a ‘wet’ capacitor the tantalum anode is held in a liquid electrolyte[57]. 

At low temperatures, the wet TEC exhibits an increase in resistance but the electrolyte 

may permeate into the seal which dries out the capacitor over time and reduces its 

lifespan[59].  

2.4 Capacitor recycling 

A review of literature has found very little information on the specific disposal or 

recycling routes of capacitors but some work has been conducted on the disassembly of 

electrical components (which includes capacitors) from waste PCBs (WPCBs). Chen et 

al.[60] have documented that unregulated recyclers in developing regions such as Africa 

and Asia use handmade tools to disassemble electrical components by heating a WPCB 

on a coal-heated plate in order to melt the solder. This causes severe pollution to the 

environment and exposure to toxic chemicals for those involved in the work. In 2011, 

China banned these activities and now, along with India, employ semi-automatic 

techniques which involve infrared heaters and hot fluids like diesel to melt the solder[60]. 

Wang and Xu[6] discussed dismantling electrical components from WPCBs by damaging 

the joints between the electrical components and the WPCB, dissolving the solder by a 

chemical reaction or using heat and then applying an external force to free the electrical 

component from the WPBC. Wang and Xu[6] further reported that following disassembly, 

electrical components are recycled for precious metal recovery using mainly the 

hydrometallurgy technique (chemical leaching in combination with complexing agents, for 

example oxalic acid)[60, 61], although there is currently is no mature technique for this 

procedure. Pyrometallurgy can also be used to recover electrical components which 
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involves heating WEEE to temperatures above 1000°C to recover the required metals, 

thus leading to high energy consumption and hazardous gas emissions. Rocchetti et al.[9] 

developed a portable system called HydroWEEE to recover base and precious metals 

from WEEE residues. This process involves hydrometallurgical treatment of WPCB 

granulate, i.e. with the electrical components intact. In Europe, the output from this 

process is currently landfilled or treated by pyrometallurgy plants. In this case, the copper 

extraction phase, performed with sulphuric acid and hydrogen peroxide, resulted in the 

highest impact across all of the reported categories[6, 9]. 

Although at the time of their disposal, most electrical components have only 

reached around 5% of their designed lifespan, reuse is frowned upon due to the possible 

instability of the component following refurbishment and also commercial sensitivities[60]. 

When WEEE is not collected for disposal or recycling, it is often stockpiled by consumers, 

again reducing the amount of reuse and recycling of finite materials[62]. 

A review of literature has found no information on the recovery of Dy, Ho or other 

rare earth elements from MLCCs or specifically BT. As rare earth elements have been 

identified as critical materials by a number of different organisations, this may become a 

crucial line of investigation in the near future[63]. The HydroWEEE system precipitates 

yttrium (a rare-earth metal) using oxalic acid but this is noted to be of high environmental 

impact due to the manufacturing process of oxalic acid and Rocchetti et al.[9] suggested 

that future research addresses the requirement for a new agent or process. Investigations 

into the recycling of tantalum from capacitors include Mineta and Okabe[58] who describe 

a two-step process involving initially tantalum recovery as an oxide followed by 

metallothermic reduction and leaching to collect metallic tantalum, yielding 99% purity Ta. 

Von Brisinski et al.[64] used a AlCl3 based ionic liquid to isolate the Ta, dissolve the other 

metals (e.g. manganese, tin and silver) and thereby recover a number of materials. 

2.5 Life Cycle Assessment of functional materials 

The LCAs of functional materials and devices is evolving. For instance, Nease and 

Adams[65] used the process LCA methodology to compare the environmental impacts of 

bulk scale solid oxide fuel sell power plants fueled by gasified coal, with those fueled by 
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a combination of pulverised coal and integrated gasification. Their results highlighted that 

with carbon capture enabled, a coal-fed solid oxide fuel cell plant can have a lower impact 

than a modern natural gas plant[65]. Strazza et al.[66] carried out the LCA of  solid oxide 

fuel cells used as auxiliary power systems on boats. The work highlighted the fuel 

production phase as the highest impact within the life cycle and recommended the use of 

bio-methanol as a fuel to reduce this impact.  

A study by Ibn-Mohammed et al.[67] on the comparative hybrid LCA of potassium 

sodium niobate and lead zirconate titanate outlined the increased impact of niobium 

mining which outweighs the impact of lead across five toxicology impact catergories 

including human toxicology. LCA of Perovskite solar cells (PSCs) have been investigated 

by several leading authors. Zhang et al.[68] and Ibn- Mohammed et al.[69], both used the 

hybrid LCA methodology to examine the environmental viability of  PSCs. Ibn- 

Mohammed et al.[69] show that solar cells based on perovskite structures offer a more 

environmentally friendly option  and ultra-low energy payback period when compared with 

existing photo voltaic cells, while Zhang et al.[68] discuss the merits of substituting silver 

or aluminium for gold in the production process due to the high impact of gold on the 

overall lifecycle. Ahmed et al.[70], considered LCA and technoeconomic analysis  of 

triboelectric nanogenerators (TENGs), where it was highlighted that future research into 

TENGs should focus on improving system performance, material optimization and more 

importantly improving their lifespan to realize their full potential. 

Despite the interest in other functional materials and devices with respect to LCA, 

and their importance in modern technology, there is a dearth of LCA work on electronic 

passive components such as capacitors. As highlighted in section 1.2, only one LCA 

study on MLCC was found in the extant literature and the environmental profile 

information contained therein were limited in scope due to the commercial sensitivity of 

the results[65]. Nevertheless, this study[20] adopted the Eco indicator 95 method to 

determine the environmental impact of MLCCs, surface mounted resistors and 

conventional resistors. A detailed bill of materials (BOM) is not published due to 

confidentiality but it is noted that a silver-palladium alloy is used as the internal electrodes. 

The LCA work showed that electricity consumptions and the ceramic powder are the 
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highest contributors to the overall environmental impact. Primary data was used with the 

addition of public data and literature used to fill gaps where required, this enabled the 

authors to include packaging and waste in the assessment. It submitted that only 20% of 

purchased material was used in the final MLCC product[20]. 

3. Fabrication route for laboratory-based MLCCs and TECs 

In this section, simplistic procedures for fabricating both the MLCCs and TECs are 

presented (Figure 4). Although simplified, the procedures broadly follow those anticipated 

in industry but where information is not available since it is commercially sensitive, 

laboratory based data is substituted44. 

3.1 Fabrication route for MLCCs 

The MLCC production process can be broken down into five basic steps: i) ceramic 

production; ii) electrode printing; iii) layering; vi) heat treatment and v) termination. As 

shown in Figure 4 (right hand side), the process begins with BT powder preparation in 

which a solid state reaction between barium carbonate and titanium dioxide at 900°C for 

6 hours yields BT[48]. This material is then milled, dried and mixed with the appropriate 

solvents and binders. The tape casting process then produces green BT layers, typically 

2-5µm in thickness[12]. Nickel electrodes are then printed on to the ceramic tape, which 

are then stacked, the green body cold isostatically pressed and then cut to size[46, 71, 

72]. Binder burn out takes place at 400-600°C for 2 hours followed by sintering at 

approximately 11-1200°C for 6 hours. The first termination layer is copper, this makes 

contact with the internal electrode; in order to protect the component during soldering, a 

nickel thermal barrier layer is electroplated on to the copper termination; finally, tin is 

electroplated on to the nickel termination to improve solderability[46]. The total time 

required to produce one MLCC in a laboratory environment is almost 76 hours. 

 

3.2 Fabrication route for TECs 

Production of a TEC (Figure 4, left hand side) in a laboratory takes approximately 

17 hours and begins with the pressing of ground tantalum powder into a pellet (at which 

time the Ta leads are inserted into the pellet) followed by sintering at 1700°C for 30 

minutes under a vacuum. A dielectric layer of Ta2O5, up to 1.1µm thick, is formed on the 
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surface of the anode through electrolysis; the pellet is immersed in 0.1% phosphoric acid 

electrolyte solution[10]. The manganese dioxide (MnO2) cathode is formed through 

pyrolysis of liquid manganese nitrate, the Ta/Ta2O5 pellet is immersed in manganese 

nitrate until 100% coverage of the dielectric layer is reached and then water is 

evaporated[10, 73]. Electrical contact is made with the MnO2 by the application of a 

carbon layer which also protects the layers underneath from thermal and mechanical 

shock that may be caused by future processing[73]. A conductive silver layer is then 

applied, followed by epoxy resin and tin for soldering[10, 58, 73]. 
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Figure 4: Fabrication route of MLCC and TEC volumetric efficiency capacitors. The procedures 
broadly follow those anticipated in industry but where information is not available since it is 
commercially sensitive, laboratory based data is substituted which approximates that used in 
industry[64]. 
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4. Research Methodology 

In this section, a detailed methodological framework for the comparative environmental 

profile evaluation of TECs vs MLCCs is presented based on the systems boundary 

depicted in Figure 5.  

 
Figure 5: LCA system boundary, capturing the materials and energy flows associated with 

the fabrication processes of both TEC and MLCC. For detailed life cycle inventory upon which the 
system boundary is based, see Supplementary Material. 

 
 

4.1 Life Cycle Assessment Framework 

Life Cycle Assessment (LCA) is a structured framework for the assessment and 

estimation of the environmental impacts associated with a material, product or 

service[74]. These environmental impacts include (but are not limited to) climate change, 

acidification eutrophication, ozone depletion, water use and human toxicity[75]. Guinee 

et al.[75] discuss the past, present and future trends of LCA in their review of the subject. 

Since the turn of the century LCA has been put into practice through implementation in 

European Policy and throughout the world. Currently, and in the future, LCA will account 

for all three dimensions of sustainability - the environment, society and economics[75]. 

BS EN ISO 14040:2006 outlines four phases in an LCA study: goal and scope definition; 
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inventory analysis; impact assessment and interpretation[76-78]. The overall LCA consist 

of the following steps: i) identification of the raw material requirements, production and 

fabrication processes and energy requirements of both TECs and MLCCs; ii) establish 

systems boundary to consider and determination of a functional unit; iii) development and 

construction of the life cycle inventory and iv) overall impact assessment and 

environmental profile evaluations across multiple sustainability metrics. 

In this work, the functional unit is 1 kg for each MLCCs and TECs with capacitance 

of 1µF and all of the inventories generated are converted by aligning them to conform to 

the functional unit. The motivation for this work pertains to climate change challenges due 

to greenhouse gas emissions. However, Ibn-Mohammed et al.[67] demonstrate the 

importance of considering other sustainability indicators which allows for detailed trade-

off analysis. Accordingly, seventeen (17) environmental impacts were chosen from the 

Ecoinvent database to compare the impact of the individual components of each type of 

capacitor. Examples include the global warming potential (GWP 100a), acidification 

potential, eutrophication potential, human toxicity potential, land use and oxygen 

depletion potential. The primary energy demand is quantified using the cumulative energy 

demand impact factor. The Eco indicator 99 impacts are presented as complementary to 

the CML2001 impacts to allow for further assessment.  A list of the remaining impacts 

can be found in Table S9 of the supplementary material. All the spectrum of metrics 

considered are in line with the Indicators of Sustainable Development identified by the 

United Nations Commission’s Sustainable Development Framework[79]. More 

importantly, the chosen impact categories must be relevant to the requirements of the 

LCA[80]. At the moment, there is no universal list of impact categories that exist but LCA 

professionals choose categories based on the scope of the study[67].  

All material use is assumed to be virgin material. While the MLCC industrial 

process is reported to have only 20% efficiency (wastes include ceramics, ancillaries, 

pastes and plating solutions)[20], the laboratory process is much more efficient and 

therefore only plating solution waste and passivation solutions (TEC production) are 

applicable, all of which are utilized to saturation. 
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4.1.1 Life cycle impact assessment modelling 

Process-based LCA and Environmental Input-Output (EIO) LCA are the two main 

LCA techniques for computing environmental burden of a product or activity[67, 81, 82]. 

Process-based LCA works by establishing a system boundary based on the scope of the 

study, accounting for individual emissions contributions within the system[67]. This is 

achieved by multiplying the quantity of a material or a unit process (Q) by the emissions 

intensity (Ei) of the materials and processes as illustrated in Equation 1:  

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐿𝐶𝐴 =  ∑ 𝑄𝑝(𝑖) × 𝐸𝑝(𝑖)𝑛
𝑖=1                                                                                     (1) 

 

However, LCA study based purely on process-based approach suffers from some 

degree of incompleteness due to systems boundary truncation[83]. To account for such 

truncation in boundary, LCA practitioners have leveraged economic input–output 

information (known as economic input–output (EIO) LCA) to quantify environmental life 

cycle impacts across economic sectors based on Equation 2: 𝐸𝐼𝑂 𝐿𝐶𝐴 = 𝐸𝑖𝑜 . (𝐼 − 𝐴)−1. 𝑦                                                                                            (2) 

where: 𝐸𝑖𝑜 . (𝐼 − 𝐴)−1 is the total (direct and indirect) emissions intensities of each 

industry required to produce the final demand product.   

The integration of both process-based LCA with EIO LCA[27, 84-86] into a 

consistent framework based on hybrid LCA[67, 81, 82, 87] can provide much more robust 

results by expanding the system boundary and complies with ISO standards[88]. As this 

hybrid LCA process assesses the complete supply chain, providing full visibility, it is 

important to apply the methodology to cases such as those presented in this paper. A 

decision support tool known as the Supply Chain Environmental Assessment Tool 

(SCEnAT) developed by Koh et al.[89] integrates both process-LCA and EIO LCA and is 

employed to compute the environmental profile of the capacitors under consideration. 

The framework of the tool is based on five steps namely: supply chain mapping, carbon 

calculation, low carbon interventions, supply chain performance evaluation and informed 
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decision making. This tool has been successfully implemented with a number of 

companies yielding environmental improvements within their supply chains[89, 90]. The 

results of each Hybrid LCA are compared to determine which capacitor poses the highest 

environmental impact, consequently providing information to be used at the design phase 

of electronic devices.  

In this work, three end of life methods including incineration, hydrometallurgy and 

pyrometallurgy were considered. The Ecoinvent database was adopted to determine the 

‘consumer to grave/cradle’ impact of 1kg of MLCCs and 1kg of TECs, yielding a number 

of capacitors each with 1µF capacitance; the ‘treatment of used capacitors, to hazardous 

waste incineration’ dataset was utilised in conjunction with the ‘treatment of average 

incineration residue’ dataset in order to take into account the impact of the waste arising 

from the incineration process. The hydrometallurgy and pyrometallurgy metal recovery 

routes were mapped in the SCEnAT decision support tool to determine which of the three 

(currently) feasible processing routes lead to the lowest environmental impact based on 

the categories chosen. Due to the limitation of data availability in the Ecoinvent database, 

the datasets corresponding to hydrometallurgical and pyrometallurgical treatment of a 

lithium-ion battery were used to represent the capacitors in question. Rochetti et al.[9] 

describe the recycling of Li-ion accumulators by hydrometallurgy as a similar process to 

that of PCBs using sulphuric acid leaching, neutralisation, metal recovery and waste 

water treatment. Bernardes et al.[91] describe the pyrometallurgical process of Li-ion 

battery recycling as utilising higher temperature of that for other electronic components. 

Following both hydro- and pyrometallurgical metal recovery there is a residue that is 

untreatable and therefore must be sent to landfill, consequently the ‘treatment of average 

incineration residue’ dataset has been used to represent this impact[92].  

4.1.2 Choice of functional unit 

For any LCA work, the overall aim is always to gain an understanding of the 

environmental profile of a given system of processes that together delivers a defined 

function. Accordingly, the most essential quantity that defines the scope of an LCA study 

is termed the functional unit[77]. This specifically defines the type and size of the product 

(or, more generally, some activity or even service), the life cycle of which is being 
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assessed by quantitatively describing the function it delivers. In this work, given that the 

LCA of two types of capacitors are under consideration, the functional unit is therefore 

selected on the basis of the capacitance in microfarads (µF) of the capacitors. However, 

in practice, due to the tiny nature of capacitors, they are fabricated in batches. As such, 

the functional unit adopted in this work is on the basis of how many capacitors with 

respective capacitance can be produced using 1 kg of the entire material inventory for 

each MLCCs and TECs. Following on from this, for the MLCCs, 1 kg of the entire material 

inventory yielded 670,630 capacitors, each with a capacitance of 1 µF, and for the TECs, 

the total number of capacitors produced is 33,697. The schematics for each of the 

capacitors are illustrated in Figures 6 and 7 below. 

 

 
 
 
 
 
Figure 6: Schematic of a MLCC used as a basis of the functional unit[93]. 

 

Figure 7: Schematic of a TEC used as a basis of the functional unit[94]. 
 

Figure 6 shows a schematic of the MLCC used as a bases of the functional unit; 

in this case, L is 1mm, W is 0.5mm, T is 0.5mm and MB is 0.25mm[93].  Figure 7 shows 

a schematic of the TEC used as a basis of the functional unit; in this case, Lmax is 2.2mm, 

W is 1.1mm, H is 1.1mm, A is 0.4mm, B is 1.07mm, Dref is 1.6mm and Jmax is 0.1mm[94]. 

The thickness of the MLCC end terminations (tin, nickel and copper) and the internal 

electrode thickness were given by Lee et al. for MLCCs[95]; such data was not available 
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for TECs and therefore assumptions were made using the Lee et al. data and applied to 

the TEC termination for coatings and electrode thicknesses. 

4.2 Data sources  

Due to the complexity of supply chains, data collection processes involved in any 

LCA study can be intensive depending on the scope and the nature of the products or 

activity under consideration. It is best to use primary data as much as possible. In 

instances where primary data are not available, the life cycle inventory (LCI) can be 

augmented using secondary sources[96]. In this contribution, most of the primary data 

were derived from the laboratory. The Ecoinvent database[21] was used to provide the 

background data in the form of environmental impact categories. BS EN ISO 14040 

standard defines “selection of impact categories and classification” and the impacts 

chosen should be of relevance to the study[76]. Dreyer et al.[80] compare the 

methodologies of EDIP97, CML2001 and Eco-indicator 99. CML2001 and EDIP97 

represent impacts at the midpoint, i.e. somewhere between the source and receptor, 

whereas Eco-indicator 99 represents impacts at the end-point, i.e. the receptor. The land 

use impact category is represented in CML2001, but not in EDIP97, while EDIP97 models 

a waste category unlike CML2001. Due to the difference in modelling, it is not possible to 

directly compare all three of the methodologies. In this work, the analysis provided were 

based on emissions intensity data derived from CML200l impact categories as detailed 

in Ecoinvent database.[21] 

4.3.1 Construction of life cycle inventory for the LCA 

The structure of a MLCC and a TEC are outlined in section 2.1; the BOM[3, 10, 

15, 57, 58, 97-100] used to determine the impact of 1kg of each type of capacitor are 

outlined in Tables S1 and S2 of the supplementary material. It is important to note that 

additional minor components are required in the manufacture of a capacitor, such as 

binders. The production method for each type of capacitor is outlined within section 3 and 

presented in more detail in Tables S3 and S4 of the supplementary material. The 

information used to construct the LCI was derived from well-established data from within 

the literature, laboratory process based engineering knowledge, study assumptions and 

upstream emissions data from the Ecoinvent database[21]. For materials whose 
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emissions intensity data were unavailable, data were derived on the basis of 

stoichiometric reactions based on previously published guidelines and substitution based 

on chemical characteristics or functional similarities[67, 101]. The EIO dataset were 

based on the supply and use table for 2008 which is embedded within the overall 

framework of the SCEnAT modelling tool. 

The MLCC dimensions were given by Vishay for the X7R 0402 MLCC[93]; TEC 

dimensions were given by Vishay for the 595D case cade T TEC[94]. The thickness of 

the MLCC end terminations (tin, nickel and copper) and the internal electrode thickness 

were given by Lee et al. for MLCCs[95]; such data was not available for TECs and 

therefore assumptions were made using the Lee et al. data and applied to the TEC 

termination for coatings and electrode thicknesses. 

Given that all manufacturing procedures are conducted using electrical equipment 

in the laboratory, the electrical energy consumption (kWh) is calculated by multiplying the 

electrical power (W) of the specified device as stated by the manufacturer by the time 

(sec). To account for thermal energy requirements of the manufacturing processes, the 

required energy (Q) is calculated by multiplying the specific heat capacity of the material 

heated (J/kg∙K), mass of material heated in the process (kg) and temperature difference 

(K or °C). A capacitor is an energy storage device and does not use energy. Therefore, 

the use phase of a capacitor must be considered by its dielectric loss (tan δ), which refers 

to the reduction in power between the applied ac voltage and current[33, 102]. BT has 

been found to have a tan δ of 0.012, i.e. 1.2% of the energy stored[103]. Consequently, 

the use phase was calculated to be negligible (see supplementary material) and therefore 

was omitted for the scope of this investigation[12]. As stated in section 2.4, capacitors 

have usually only reached around 5% of their designed lifespan when they reach the 

disposal phase. Consequently, the cycle life of each impact need not be considered in 

the overall comparative analysis of the two capacitors. 

5. Results and Discussion 

5.1 Primary energy consumption 

Figures 8 and 9 show the overall distribution of the primary energy consumption 

for the fabrication of a laboratory-based MLCC and TEC. Specifically, Figures 8a and 9a 
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indicate the total primary energy consumption, including materials embedded (i.e. 

embodied energy in natural resources attributed to extraction)[67], thermal and electrical 

energy relating to each of the manufacturing process; MLCC totalling 5567.65 MJ-eq/kg 

and TEC totalling 6862.29 MJ-eq/kg. As shown, materials embedded constitute the 

highest impact from primary energy demand for TECs, while electrical energy is the 

highest contributor for MLCCs. Figures 8b and 9b show the percentage contributions of 

each of the process steps regarding the thermal energy consumption. A breakdown of 

the material embedded in MLCC fabrication (Figure 8c) shows that the use of nickel paste 

is the outweighing component, contributing over 49% of the material impact category. 

Figure 9c shows that roughly 97% of the material embedded energy in TEC fabrication is 

attributed to the use of tantalum. The percentage contributions of each of the process 

steps with regards to electrical energy are shown in Figures 8d and 9d. The drying 

process (Figure 8d) constitutes 62% of the entire electrical energy consumption for MLCC 

fabrication. “Others” in Figure 8d represent those inputs lower than 1%, namely: weighing, 

high speed mixing, cold isostatic pressing and aging of the paste. In the case of TECs, 

the sintering process (Figure 9d) constitutes the largest consumer of electrical energy, 

representing about 64%. This suggests that drying and sintering processes are the main 

hotspot for both MLCC and TEC for which mitigation strategies should be targeted. 

“Others” in Figure 9c represents those inputs lower than 1%, namely: graphite paste, 

silver paste, epoxy resin and silver termination. In Figure 9d, “Others” represents 

weighing, pressing and water evaporation (again, those inputs under 1%). 
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Figure 8. Distribution of the primary energy consumption for the fabrication of an MLCC (a) Total 
primary energy consumption including thermal and electrical energy and materials embedded all 
expressed in MJ kg-1. (b-d) indicate the percentage contributions of each process or material relative 
to (a). For a detailed breakdown of the supply chain map, see Figures S1 and S2 of the 
supplementary material. 
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Figure 9. Distribution of the primary energy consumption for the fabrication of a TEC (a) total 
primary energy consumption including thermal and electrical energy and materials embedded all 
expressed in MJ kg-1. (b-d) indicate the percentage contributions of each process or material 
relative to (a). For a detailed breakdown of the supply chain map, see Figures S1 and S2 of the 
supplementary material. 
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Figure 8a shows that electricity usage is the carbon hotspot in the manufacture of 

a MLCC, in agreement with the results presented by Philips[20]. High electricity use is 

required in the manufacturing stage due to the length of time required to complete the 

drying, calcining and sintering production phases of BT. The overall impact is likely to be 

reduced in industry due to larger, more efficient machinery with high batch 

throughput[104]. As identified by Ibn-Mohammed et al.[67], optimised sintering 

approaches such as the use of sintering aids and low temperature processing technology 

can contribute to the overall reduction in thermal and electrical energy demand for 

fabrication of functional materials. Cold sintering – a process based on the addition of 

small amounts of water to aid the key transport processes that densify the materials for 

device development has also been touted as a means for lowering sintering 

temperatures[105-107]. On the other hand, about 61% of the primary energy demand for 

the fabrication of a TEC is caused by the materials embedded (Figure 9a) for which the 

use of tantalum pellet (including the tantalum leads) constitute 97% of the overall impact 

(Figure 9c). Therefore, raw material extraction is the major source of environmental 

impact. Ta is almost always found with niobium in nature due to their similar chemical 

naturestics[108]. Its extraction is very energy intensive and includes activities such as 

blasting, crushing, smelting and separation[24, 67]. 

5.2 Component level analysis 

Figures 10 and 11 show the component level analysis of the environmental 

impacts of MLCC and TEC fabrication processes respectively. This was undertaken to 

identify their influential components and materials across a number of sustainability 

metrics which are normalised, ensuring that the absolute indicator of each category of 

impact is 100%. Given that the impact from electricity and natural gas use are illustrated 

in Figures 8b and d and Figures 9b and d, they have been omitted from Figures 10 and 

11 to highlight the most influential materials responsible for the overall environmental 

impact of both capacitors. 

Figure 10 shows that the use of nickel paste has the highest percentage impact 

for climate change (51%), acidification (75%), eutrophication (58%), high NOx POCP 

(71%), land use (65%), fresh water aquatic ecotoxicity (69%), fresh water sediment 

ecotoxicity (69%), human toxicity (52%), marine aquatic ecotoxicity (68%), marine 
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sediment ecotoxicity (69%) and cumulative energy demand (50%). Ni is a vital metal in 

modern infrastructure and technology, with a wide range of applications[109]. A detailed 

analysis of local issues pertaining to the mining of Ni is provided by Mudd[109], where he 

submitted that although the environmental impact of Ni has improved across the years, 

its mining has resulted in serious historical local impacts including acid rain from SO2 

emissions, wetland acidification, soil contamination due to heavy metals, biodiversity loss 

(e.g. in fish populations). Nickel inhalation has been reported to lead to an increased risk 

of cancer in the lungs and noses of humans[110]. The remaining cases, i.e. ozone 

depleting (60%) and low NOx POCP (75%), have the highest impact from the barium 

titanate component. 

 

 

 

 

 

Figure 10: Percentage contribution of each MLCC manufacturing component of the 

environmental impacts investigated. 
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As shown in Figure 11, the use of Ta in a TEC (pellet and lead) causes the highest impact 

of all of the components across all impact; climate change (97%), acidification (95%) 

eutrophication (89%), ozone depletion potential (98%), high NOx POCP (95%), low NOx 

POCP (98%), land use (99%), fresh water aquatic ecotoxicity (85%), fresh water sediment 

ecotoxicity (86%), human toxicity (98%), marine aquatic ecotoxicity (86%), marine 

sediment ecotoxicity (87%) and cumulative energy demand (97%). Given that the 

extraction mechanism of niobium is similar to that of tantalum since they are found 

together in nature, a number of approaches  that can be adopted during their extraction 

to minimise overall impact are provided by Ibn-Mohammed et al.[24, 67]. The second 

largest contributor to the impact of TECs is the silver paste which is attributed to mineral 

extraction and the subsequent processes required to obtain the finished material[111]. 

 

 

 

Figure 11: Percentage contribution of each TEC manufacturing component of the 

environmental impacts investigated. The y axis is shown from 75% to 100% to show the impact 

contribution from all materials. 
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Metal mining processes (for nickel and tantalum) are driven by the ore properties, 

tonnage, grade and depth. The most frequently used methods are surface or underground 

mining (or in combination). Of the two methods, underground mining requires more 

infrastructure and therefore leads to a higher environmental impact[111, 112]. Mudd[109] 

discuss that as mines go deeper to meet market needs, production and environmental 

costs increase. Large amounts of tantalum are extracted from the ground by artisanal and 

small scale mining (ASM). ASM, although sometimes formal, is often an informal activity 

conducted by small groups in developing countries. This type of extraction provides jobs 

and an income for millions of people but can lead to dumping of waste and effluent into 

rivers, deforestation, landscape destruction and land pollution (not an exhaustive list). 

These environmental impacts are usually caused by economic limitations and a lack of 

access to better techniques.[113, 114] ASM is likely to negatively impact the 

environmental indicators of tantalum. 

Analysis was performed to determine how the manufacturing location would affect 

the electrical energy impact during MLCC manufacture. The Ecoinvent Great Britain data 

for ‘market for electricity, low voltage’ was compared to the same datasets for the United 

States, China, Japan and France. The highest impact was associated with China, the 

total impact for the electricity use in the manufacturing process of a MLCC was calculated 

to be 44.44 kg CO2-eq; the lowest impact was associated with France, the total impact 

for the electricity use in the manufacturing process was calculated to be 4.35 kgCO2-eq. 

This information shows that, of the countries compared, the most appropriate 

manufacturing location for energy consumption is France (see table S11 in the 

supplementary material). 

5.3 Comparison of Environmental Profiles 

Figure 12 highlights the key differences between the environmental profiles of 

TECs and MLCCs across a number of indicators. As already highlighted in the preceding 

sections, the overall environmental profile of TECs surpasses that of MLCCs across all 

impact categories except in the electrical energy. The thermal energy associated with 

MLCCs is 0.60 MJ-eq/kg compared to 4.39 MJ-eq/kg for that of TECs. This difference is 

due to the increased processing temperatures are material masses required in TEC 
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production. 5352.77 MJ-eq/kg of electrical energy is associated with the production of 

MLCCs and 2665.82 MJ-eq/kg with that of TEC production. This difference can be 

attributed to the additional drying, milling, tapecasting, printing and calcining steps that 

are required for MLCC production but not for TEC production. 

 

As highlighted in Section 5.2, nickel constitutes the highest environmental impact 

in the overall assessment of MLCCs but as indicated in Figure 12b, the toxicological 

footprints of TECs across all variants surpass that of MLCCs due to the use of tantalum. 

This is also the case in terms of the damage to ecosystem quality, resources and human 

health (Figure 12c). Figure 12d highlights the harmful effect of TECs on key economic 

sectors based on the upstream IO greenhouse gas emissions. The supply chain upstream 

impact of TECs is associated to its overall higher cost of production and the cost of the 

materials as compared to MLCCs. This assertion is particularly valid given that economic 

data such as cost of materials are converted into physical quantities (e.g. kg of material) 

in IO analysis. Accordingly, a higher conversion output will cause more upstream 

emissions across the supply chain of the material under consideration[67]. 
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Figure 12 Comparison of TEC versus MLCC. a) Primary energy demand, b) toxicological footprint, 
c) eco-indicator 99 comparisons, d) IO upstream GHG comparison. 
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5.4 Impacts of end of life methods 

The SCEnAT decision support tool was used to map the MLCC and TEC supply 

chains for cradle-to-gate, cradle to incineration, cradle to hydrometallurgy and cradle to 

pyrometallurgy and also to conduct the hybrid LCA carbon calculations and supply 

scenario analysis. Examples of the supply chain maps produced by SCEnAT can be 

found in Figures S1 and S2 of the supplementary material. The tool colour codes the 

supply chain to easily indicate the carbon hotspots; green represents <1% impact, yellow 

represents 1-5% impact, orange represents 5-10% impacts and red represents >10% 

impact. A comparison of the results provided for the MLCC and TEC supply chains by the 

SCEnAT tool is presented in Tables 2 and 3.  

Table 2 SCEnAT Hybrid LCA calculations for a MLCC from Cradle to Gate, Incineration, Hydrometallurgy 
and Pyrometallurgy. 

Parameter Units 
Cradle-to-

Gate 

Cradle to 

Incineration 

Cradle to 

Hydrometallurgy 

Cradle to 

Pyrometallurgy 

Total Emissions kg CO2-eq 97.00 100.70 98.20 98.730 

AP Generic kg SO2-eq 0.77 0.78 0.78 0.78 

EP Generic kg PO4-eq 0.13 0.14 0.14 0.14 

HTP 100a kg 1,4-DCB-eq 22.87 23.92 23.78 25.13 

Land Use m2a 10.14 10.39 10.22 10.25 

 

 
 
Table 3 SCEnAT Hybrid LCA calculations for a TEC from Cradle to Gate, Incineration, Hydrometallurgy 
and Pyrometallurgy. 

Parameter Units 
Cradle-to-

Gate 

Cradle to 

Incineration 

Cradle to 

Hydrometallurgy 

Cradle to 

Pyrometallurgy 

Total Emissions kg CO2-eq 311.99 315.69 313.19 313.72 

AP Generic kg SO2-eq 2.20 2.21 2.21 2.20 

EP Generic kg PO4-eq 0.72 0.73 0.73 0.73 

HTP 100a kg 1,4-DCB-eq 214.54 215.58 215.45 216.80 

Land Use m2a 77.96 78.20 78.04 78.06 

 

The SCEnAT analysis for each recovery method is compared. Of the three 

disposal/recycling routes investigated, the highest CO2 emissions can be attributed to the 

incineration of a both MLCCs and TECs, as can the highest land use impact. The 
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pyrometallurgical route leads to the highest human toxicity potential at 25.13 kg 1, 4-DCB-

eq and 216.80 kg 1, 4-DCB-eq for MLCCs and TECs respectively. The pyrometallurgical 

process itself can include incineration, smelting, drossing, sintering, melting and high 

temperature reactions in the gas phase. The waste gases and flue dusts contain 

halogens, leading to dioxins that accumulate in the food chain and cause reproduction 

issues, immune system damage and cancer[115, 116]. 

The incineration process also causes the release of halogens[117] and the 

leaching of solutions used in the hydrometallurgy process can be toxic and corrosive[115]. 

The HTP 100a impact of hydrometallurgy may be lower than that of pyrometallurgy due 

to the possible wider spread impact of flue emissions compared to process fumes. That 

said, a leak or major spill of the leaching solutions would have a profound environmental 

impact on the ground and surrounding water systems. The acidification potential and 

eutrophication potential for incineration, hydrometallurgy and pyrometallurgy are 

equivalent. As acidification and eutrophication are caused by the combination of emitted 

gasses, such as SO2, NOx, HCl, dioxins and furans, it is possible to attribute the impact 

of incineration and pyrometallurgy to the atmospheric emissions produced during the 

combustion phase[115, 116]. With regards to hydrometallurgy, Rocchetti et al.[9] have 

deduced that the acidification potential and eutrophication potential impacts can be 

attributed to the recovery of yttrium using oxalic acid[9, 118, 119]. 

Min et al.[120] discuss the use of capacitors embedded into substrates to reduce 

the overall size of the substrate. Although this change may meet the market need for 

smaller components, it will add additional complexity to the disassembly phase of WEEE 

and is likely to lead to an increased loss of materials to landfill or energy recovery by 

incineration. This is an important example where the implementation of LCA in the design 

phase could lead to longer term environmental impact savings. 

5.6 Limitations of the current work 

Primary data derived from the laboratory was used for the comparative LCA of 

MLCCs and TECs based on the BOMs and the production processes. Other sources 

include publicly available data and literature. The absence of any further primary data is 
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the main limitation of this study and therefore the reliance on the Ecoinvent database for 

the data required in the main scope of the investigation. Despite this inefficiency, this 

investigation is the most transparent published data available on the life cycle assessment 

of both a MLCC and a TEC. Any future work could include factors such as waste streams 

and packaging from primary sources in the scope of the LCA.  

In an industrial setting, given the well-established manufacturing routes for both 

types of capacitors considered in this work, these components would be manufactured 

on a much larger scale than in a laboratory and therefore the high electricity used reported 

in the manufacturing process based on 1kg each for MLCC and TEC is likely to be lower 

because of the use of larger, more efficient machinery with high batch throughput[104]. 

Nevertheless, following discussion with engineers in Murata Manufacturing Co., Ltd. (a 

global leader in capacitors manufacturing) the environmental hotspots identified in this 

work are in line with processes adopted in an industrial setting. As identified by Ibn-

Mohammed et al.[67], optimised sintering approaches such as the use of sintering aids 

and low temperature processing technology which are available in high tech industries 

can contribute to the overall reduction in thermal and electrical energy demand for 

fabrication of volumetric efficiency capacitors.  

Hybrid LCA was adopted in this study to ensure the completeness of system 

boundary limitations of process-based LCA using EIO LCA data. However, the choice to 

include or exclude certain inventories from the EIO LCA data with the view to account for 

missing inputs whilst avoiding the double counting of inputs remains potentially 

subjective. Such missing inputs are chosen based on the discretion of the modeller and 

different results might be produced if another LCA modeller chooses different missing 

inputs. The use of Dy in a MLCC is diluted in the final output of the hybrid LCA by the high 

impact of electricity use. It is not highlighted as a hotspot in this study because of the low 

volumes in which it is used. Despite this, as the material is not currently recycled from 

these electronic components the earth’s reserves are continually being depleted[60, 61]. 
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6. Conclusion 

In this work, a detailed cradle-to-grave analysis of the entire fabrication route of 

two representative capacitors is presented. No previous published work has been 

provided for either the LCA of a TEC or MLCC. In an era where environmentally-sensitive 

manufacturing procedures are rigorously monitored due to the increased global 

awareness of environmentally benign design and the strong relationship between global 

warming and CO2 emissions, this is an important gap to fill. The electrical impact of a TEC 

is 2666 MJ-eq which is lower than that of a MLCC at 5353 MJ-eq, but the material 

embedded energy (i.e. the cumulative energy demand) of a TEC is 20 times that of a 

MLCC and therefore the overall primary energy demand of a TEC (6862 MJ-eq) is much 

higher than that of an MLCC (5567 MJ-eq). 97% of the global warming potential of TECs 

can be attributed to the use of tantalum for the pellet and the leads, due to the energy 

intensive nature of the extraction and purification process. Although the main drivers for 

replacement of TECs with MLCCs relate principally to cost, the need for the development 

of miniaturised versions of devices and longevity, this work further demonstrates that 

large environmental savings are an additional benefit. By replacing TECs with MLCCs in 

electrical components, a decrease in the environmental impact is achieved. Despite this 

improvement, it is also important for MLCC manufacturers to consider their designs and 

look to decrease further their environmental impacts.  

A number of environmental hotspot mitigation strategies including the use of 

optimised sintering approaches such as the use of sintering aids and low temperature 

processing technology, cold sintering techniques and recommendations to minimise 

environmental impacts of metals used in the fabrication of capacitors is provided. 

Although capacitor recycling is not yet well established, this work shows that the 

hydrometallurgical recycling process leads to the lowest environmental impact when 

compared to incineration and pyrometallurgy. Research is required to fully exploit the 

material recovery possibilities of waste capacitors.  

Any future research in this area would benefit from a primary data source. 

Furthermore, this work shows that it is imperative that research is carried out to reduce 

the environmental impact of MLCCs by reducing their reliance on rare earths and nickel 
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internal electrodes. Overall, the methodological framework used in the current work 

should be useful for the LCA and environmental profile assessment of other emerging 

devices’ architectures and technologies at the early stages before key design decisions 

are made. 
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