UNIVERSITY OF LEEDS

This is a repository copy of *Effect of vibro stone column installation on the performance of reinforced soil*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/130387/

Version: Accepted Version

Article:

Al Ammari, K and Clarke, BG orcid.org/0000-0001-9493-9200 (2018) Effect of vibro stone column installation on the performance of reinforced soil. Journal of Geotechnical and Geoenvironmental Engineering, 144 (9). 04018056. ISSN 1090-0241

https://doi.org/10.1061/(ASCE)GT.1943-5606.0001914

© ASCE. This is an author produced version of a paper published in Journal of Geotechnical and Geoenvironmental Engineering. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Soil Parameters	Stone Column	Estuarine cohesive	Estuarine cohesionless	Marine cohesive	Marine cohesionless
	Hardening Soil	Hardening Soil	Hardening Soil	Hardening Soil	Hardening Soil
Type of material behaviour	Drained	Undrained	Drained	Undrained	Drained
Dry unit weight (y) (kN/m^3)	18.6	15	15	17	17
Saturated unit weight (v_{rat}) (kN/m^3)	21.6	19	19	20	20
Permeability (k _b) m/day	2×10^{-5}	2×10^{-8}	2×10^{-6}	2×10^{-8}	2×10^{-6}
Permeability (k _v) m/day	1×10^{-5}	1×10^{-8}	1×10^{-6}	$1 imes 10^{-8}$	1×10^{-6}
Failure ratio R _f	0.86	0.87	0.69	0.84	0.67
Poisson's ratio (v)	0.2	0.2	0.2	0.2	0.2
Cohesion (c') (kPa)	0	0	0	0	0
Friction angle (Φ') (°)	41	34	38	34	37
Dilatancy angle (Ψ) (°)	0	0	0	0	-
Initial voids ratio, (e_0)	0.5	0.5	0.5	0.5	0.5
Reference pressure, p _{ref} (kPa)	100	100	100	100	100
Lateral earth coefficient K0	0.5	0.5	0.5	0.5	0.5
m	0.65	0.69	0.65	0.90	0.59
E_{50}^{ref} (MPa)	29	8.5	17	8.7	12.6
E_{oed}^{ref} (MPa)	29	8.5	17	8.7	12.6
E_{ur}^{ref} (MPa)	14	42.5	85	43.5	63

Table 1 Properties of the soils and stone columns used in the analysis

Table 2 Properties of the foundation used in the analysis

Footing	Footing (concrete)	Fill	
	Elastic-	Elastic-	
	perfectly	perfectly	
	plastic	plastic	
Dry unit weight (γ) (kN/m ³)	25	16	
Sat unit weight (γ_{sat}) (kN/m ³)	-	19	
Cohesion (c') (kN/m^2)	4000	0	
Friction angle (Φ') (°)	40	30	
Poisson's ratio (v)	0.15	0.33	
E (MPa)	2×10^{4}	10	
Permeability (k _h) m/day	0	2×10^{-6}	
Permeability (k _v) m/day	0	1×10^{-6}	