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Abstract 

Background: It is well documented that the modelling of health related quality of life 

(HRQoL) data is difficult as the distribution of such data is often strongly right/left 

skewed and it includes a significant percentage of observations at one. Objectives: To 

develop a series of two-part models (TPM) that deal with these issues. Methods: Data 

from the UK Medical Research Council (MRC) Myeloma IX trial were used to examine 

the relationship between the European Organization for Research and Treatment of 

Cancer (EORTC) QLQ-C30/QLQ-MY20 scores and the European QoL-5 Dimensions 

(EQ-5D) utility score. Four different TPM models were developed. The models fitted 

included TPM with normal regression, TPM with normal regression with variance a 

function of participant characteristics, TPM with log-transformed data and TPM with 

gamma regression and a log link. The cohort of 1839 patients was divided into 75% 

derivation sample, to fit the different models, and 25% validation sample to assess the 

predictive ability of these models by comparing predicted and observed mean EQ-5D 

scores in the validation set, unadjusted R2 and Root Mean square Error (RMSE). 

Results: Predictive performance in the derivation dataset depended on the criterion 

used, with R2/adjusted-R2 favouring the TPM model with normal regression and mean 

predicted error favouring the TPM model with gamma regression. The TPM model with 

gamma regression performs best within the validation dataset under all criteria. 

Conclusions: TPM regression models provide flexible approaches to estimate mean 

EQ-5D utility weights from the EORTC QLQ-C30/QLQ-MY20 for use in economic 

evaluation. 

 
Key words: Bayesian methods; EQ-5D; Multiple Myeloma; Quality of Life; two-part 

models; Cost-utility analysis; MCMC. 
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1. Introduction 

 

Preference-based measures of health related quality of life (HRQoL) are widely used 

to calculate quality adjusted life years (QALYs) for use in cost effectiveness analyses. 

Examples of these are the European QoL-5 Dimensions (EQ-5D) questionnaire [1], the 

six-dimensional health state short form (SF-6D) [2] and Health Utility Index 2 (HUI-

II ) [3] instruments. QALYs are formed as a weighted sum of life expectancy, where 

each year is weighted on a HRQoL scale that reflect the sacrifices that people would 

make to attain or avoid the particular states in those years.  In such measures, zero and 

one are assigned specific meanings.  At a HRQoL value of one, a person would not 

make any sacrifices for better health and they are said to be in ‘full health’.  In contrast, 

those with a HRQoL value of zero occupy a state ‘as bad as dead’, in the sense that they 

would swap a 100% certainty of death for remaining in that state; once dead, a HRQoL 

value of zero is also assigned.   

 

As a HRQoL value of one represents the state where a person no longer sacrifices to 

obtain better health, HRQoL does not usually exceed one and often has a noticeable 

‘spike’ here.  As most people are only willing to make moderate sacrifices for health, 

HRQoL values lie tend to at the higher end of the measurement scale, with some 

observations displaying extremely low levels of HRQoL. In principle, there is no lower 

bound to a HRQoL value, so that support may include large negative values.  Thus, 

HRQoL values often have a noticeable density spike at one and a negatively-skewed 

distribution.  In contrast the disutility of a health state (formed as one minus the HRQoL 

value), has a significant percentage of zero-disutility values and is positively skewed.  

The disutility of a particular health state therefore shares the same characteristics as 

cost data, including heteroskedasticity. 

 

Most studies modelling HRQoL data use linear regression assuming normal and 

homooscedastic error terms [4-6]. The latter condition is unlikely to be satisfied for 

bounded variables for mean values close to bounds [7]. Alternative regression methods 

that model HRQoL data include censored least absolute deviation (CLAD) models [8, 

9], Tobit models [8, 10] and median regression [9]. Of these, CLAD and Tobit methods 

model an underlying latent variable, which is censored at one. Such models are not 
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necessarily appropriate for HRQoL data because preferences are measured on a scale 

where values cannot be over 1 (‘no HRQoL deficit’) [8]. Median regression also 

addresses the non-normality of the data [11]. However, the regression usually 

concentrates on the mean rather than the median when HRQoL data are regressed on 

individual covariates to predict QALYs [8-10].  

 

One approach advocated to address the problem generated by zero/one HRQoL 

observations is to apply a two-part model (TPM) [12-15] on disutility. Such an 

approach fits two separate models. Firstly, a logistic regression model is used to predict 

whether patients indicate any HRQoL deficit. Secondly, for those individuals who 

indicate nonzero disutility, a regression model is fitted to estimate the magnitude of the 

deficit. This approach is broadly similar to existing approaches dealing with cost data.  

For example, Cooper et al [13] have proposed a Bayesian TPM in which a logistic 

regression model was used first to predict the conditional probability of observing zero 

costs in the sample, followed by a linear regression model fitted to the log-transformed 

cost applied to those individuals reporting positive costs. This paper, and similar 

approaches elsewhere [16-17] provide flexible approaches to regress the mean of an 

outcome with truncated support such as HRQoL on covariates 

 

This paper focuses on the application of four different TPM specifications of increasing 

complexity to predict HRQoL utility in myeloma patients. The paper is organised with 

the next section describing the motivating data for the models described herein. Then 

Section 3 outlines the models used for the analysis including assessment of model 

complexity, model fit and assessment of model prediction. Section 4 illustrates the 

application of the proposed method to the analysis of HRQoL data from the case study 

presented in Section 2. Finally, the implications of the results and directions for future 

research conclude the paper. 

 

2. Motivating data set 

2.1 Measures 

The EuroQol 5D is recommended for use in economic evaluations by National Institute 

for Health and Care Excellence (NICE) [18], with the EQ-5D-3L [19] used here.  This 

measure classifies patients into one of 243 health states varying in five dimensions 
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(alongside additional states for ‘dead’ and ‘unconscious’): mobility; self-care; usual 

activities; pain/ discomfort; and anxiety/depression. The levels of each dimension are 

roughly: none, moderate, and severe. The EQ-5D is of demonstrated validity and 

reliability [1, 20] and population values are available for both the UK [21] and 

elsewhere [22]. 

 

The European Organization for Research and Treatment of Cancer Quality of Life 

Questionnaire Core 30 (EORTC QLQ-C30) is a commonly-used instrument for 

measuring general cancer quality of life. It has been translated into more than 65 

languages and is used widely internationally [23].  It covers several health domains, as 

well as cancer-specific symptoms of disease, the side effects of treatment, 

psychological distress, physical functioning, social interaction, global health, and 

quality of life. Most of the questions have a categorical response (Not at all; A little; 

Quite a bit; and Very much), with two questions relying on the use of a Visual Analogue 

Scale (VAS). The raw questionnaire responses are transformed to produce scores (0-

100) on a set of five function scales (physical, role, emotional, cognitive, and social 

functioning) and nine symptom scales, along with a scale representing global quality of 

life. Higher scores indicate better functioning and more severe symptoms on the 

functioning and symptom scales, respectively. The EORTC QLQ-C30 scale has 

undergone extensive psychometric testing [24]. 

 

The myeloma cancer module QLQ-MY20 is acceptable for use among patients varying 

in disease level and treatment modality (i.e. surgery, chemotherapy, radiotherapy and 

hormonal treatment). It should always be used as a complement to the QLQ-C30. The 

myeloma module is designed to assess the symptoms and side effects of treatment and 

their impact on everyday life [25]. The module comprises 20 questions addressing four 

domains of QoL important in myeloma: body image, diseases symptoms, treatment side 

effects and future perspective. The module was developed according to the guidelines, 

and approved after formal review. As with the EORTC QLQ-C30 questions, the QLQ-

MY20 questions have a hierarchical response with ordinal scores transformed to a 0-

100 scale and each domain analysed separately. Both QLQ-C30 and –MY20 domain 

scores are re-transformed to 0-1 scale, and for this to allow values to mirror the overall 

potential contribution to quality of life. 
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2.2. Data source 

The EORTC QLQ-C30 and QLQ-MY20 instruments are mapped onto the EQ-5D 

instrument using data from MYELOMA-IX1 [26]. This randomized controlled trial of 

the effectiveness of new treatment regimens at both diagnosis (CVAD vs. C-Thal-Dex 

or C-Thal-Dex attenuated; sodium clodrinate vs zoledronic acid) and maintenance (no 

therapy vs thalidomide). The trial needed a sample size of 1600 patients enlisted across 

hospitals in the UK, New Zealand and South Africa over 5 years. Overall, the trial 

recruited 1839 patients, who provided a total of 3184 observations. 

 

3. Model development and validation 

In this section, we develop a series of TPMs that take into account the typical 

characteristics of HRQoL data. All models shown are implemented from a Bayesian 

perspective using Gibbs sampling MCMC methods freely available in the specialist 

software WinBUGS [27]. The WinBUGS code is available from the corresponding 

author. MCMC methods permit great flexibility in the specification of complex non-

standard models and also facilitate the computation of model complexity and fit 

statistics for non-nested models [28]. 

 

In each model, the utility weight from the EQ-5D is treated as our dependent variable. 

Our covariates were the summary scores from each of the 19 domains of the EORTC 

QLQ-C30 and QLQ-MY20, which we treated as continuous variables, in addition to 

respondent-level covariates such as age and gender. In total, then there are up to 22 

covariate parameters in our models, being a constant term, 19 EORTC dimensions, and 

up to 2 demographic covariates. 

 

The data set described in the previous section was split into a learning sample, which 

consisted of data from a 75% derivation sample of patients and was used to fit the 

different models. A validation sample was formed and consists of the remaining 

patients and was used to assess the predictive ability of the different candidate models.   

                                                
1 http://clincancerres.aacrjournals.org/content/early/2013/08/30/1078-0432.CCR-12-3211 
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Whilst our approach selects derivation/validation by patient, for simplicity we index by 

observations (i = 1, 2, …, 3184).  Had missingness been defined at a patient level, this 

would have led to complete data at a point in time being removed and classified as 

having ‘missing’ data, on the basis that missing data exists at a different time point. 

 

Four different TPMs of increasing complexity were fitted to the data: 

1) TPM with second part normal regression, 

2) TPM with second part normal regression with variance a function of participant 

characteristics, 

3) TPM with second part lognormal regression, and 

4) TPM with second part gamma regression with a log link. 

 

All models considered were developed within a Bayesian framework using ‘vague’ 

prior distributions throughout and implemented in the freely available WinBUGS 

software [27]. In this application, Bayesian methods provided a useful tool for fitting 

complex, non-standard models. For a more in-depth description of Bayesian methods 

and their application in healthcare see [28]. 

 

3.1 Model development 

As already mentioned above, previous evidence suggests that the EQ-5D score is 

skewed toward the upper bound.  If the EQ-5D utility of observation i is ௜ܻ then we 

define disutility as ܦ௜ ൌ ͳ െ ௜ܻ.  In TPMs, we are interested in first estimating the 

likelihood of ܦ௜ ൌ Ͳ (alternatively ܻ ௜=1) and secondly how large  ܦ௜ in the case it is 

nonzero.  By doing this, TPMs essentially attempt to filter off individuals with zero-

disutility, and then a distribution to the remainder (i.e. to those individuals who have a 

nonzero disutility).   

 

Algebraically, let id  be a dummy variable, which takes value 1 when ܦ௜ ൐ Ͳ and the 

value 0 otherwise. Utility, as our estimated variable of interest, is then calculated based 

on both the likelihood of a nonzero disutility and the expected size of any non-zero 
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disutility. All four models have a common functional form in the first part (Part A), as 

follows: 

 )(~ ii pBernoullid  

 iii XXp 2221110 ...][logit   , (1) 

where ip  is the probability of observing a disutility, kiX  indicates values for the k 

covariates for individual i (i.e. 19 QLQ scores plus age and gender) and the k  

parameters are estimated within the logistic model. In these cases, the vague priors used 

set are as follows   

)10,0(~,..., 6
210 N . 

To assess the importance of addressing these potential complexities, four different (Part 

B) models are also fitted to estimate disutility when ܦ௜ ൐ Ͳ.   

Model 1: Normally distributed Part B 

For those individuals who have a nonzero disutility, Part B of the model becomes: 

 ),(~)0|( 2iii NDD   

 iii XX 2121110 ...     (2) 

where iX s indicate observation-specific values for the 21 covariates (i.e. 19 QLQ 

scores, age and gender), and k ’s are the regression parameters to be estimated. Vague 

prior distributions were specified as follows: 

)10,0(~,... 6
210 N ,  2 )001.0,001.0(maInverseGam~  

Model 2: Normally distributed Part B with variance a function of age and gender,  

In Model 2, the TPM Model 1 again has a normal conditional distribution but allows 

variance to be a function of participant characteristics. In this model we allowed the 

logarithm of the variance to also be a function of age ( iX 20 ) and gender ( iX 21 ); that is:  

 ),(~)0|( 2
iiii NDD   

 iii XX 2121110 ...    

 iii XX 2122010
2)(Log    (3) 
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where again kiX s indicate individual values for the 21 covariates and  ’s are the 

estimated parameters. Prior distributions were specified as: 

)10,0(~,,,,... 6
210210 N  

Model 3: Lognormally distributed Part B 

In Model 3, the disutility is estimated with a similar equation to Model 1 but assumes 

a lognormal distribution with uniform variance across observations.  Here, Part B is: 

 ),(~)0|( 2iii LNDD   

 iii XX 2222110 ...    (4) 

where kiX s indicate observation-specific values for the 21 covariates (i.e. 19 QLQ 

scores, age and gender), and k s are the regression parameters to be estimated. Vague 

prior distributions were specified as follows: 

)10,0(~,... 6
210 N ,  2 )001.0,001.0(maInverseGam~  

Model 4: Gamma distributed Part B with a log link. 

The fourth model specified disutility as a Gamma regression with a log link function.  

Here, the log of mean disutilities is modelled as a function of the covariates.  Both the 

mean value by observation (i ) and the common variance (2 ) are related to the 

parameters of the Gamma distributions (ii ba ,  ).  (Here, iii ba /  and 22 / ii ba ) 

In this model, Part B is: 

),(Gamma~)0|( iiii baDD   

 iii ba   and 2/iib   

 iii XX 2121110 ...)log(    (5) 

As before, the 22 parameters k  are estimated in the log-linear model and include the 

constant term, 20 QLQ scores, and covariates for age and gender. Prior distributions 

were specified as: 

)10,0(~,... 6
210 N ,  2 )001.0,001.0(maInverseGam~ . 
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3.2 Model prediction 

To assess the predictive ability of Models 1-4 each was applied to derive utilities for 

both the derivation and validation samples of the cohort of individuals with myeloma. 

The expected deficit in HRQoL is expressed as the expected mean disutility (in the case 

that one is observed in a particular observation) multiplied by the probability of 

observing a nonzero disutility, and is given by the equations (6) - (8) below: 

 

As a similar/common first part appears across the models, we first define the expected 

likelihood of a disutility as: 

)...exp(1

)...exp(
)0(

110

110

kiki

kiki
ii XX

XX
DPp






 , 

 

Models 1 and 2: 

For the second part of the TPMs in Models 1 and 2, the conditional expectation 

)0|( ii DDE  from the second stage (2) equals: 

 ),0|(...)0|( 2121110  iiiiii DEXXDDE   

In TPMs, this last term is assumed to equal zero in contrast to other approaches, for 

example, Heckman’s [29] sample selection model. The relative merits of the TPM have 

been the subject of a vigorous debate in the literature [30] and much of the discussion 

focuses on this assumption.  Thus, 

iiii XXDDE 2121110 ...)0|(   . 

Note that the unconditional expectation of the dependent variable iD , )( iDE , is given 

by 

)0|().0()0|().0()(  iiiiiii DDEDPDDEDPDE . 

Then, since 0)0|( ii DDE , it follows that  

iiiiiiii pXXDDEDPDE )...()0|().0()( 2121110   . 

Therefore, for Models 1 and 2, predicted health (as one minus disutility) is: 

 iiiii pXXY )...(1 2121110

^

   (6) 

Model 3: 
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In a similar way, Model 3’s lognormal formula for estimated disutility yields an 

expected health of: 

 iiii pXXY ])...[exp(1 2
2
1

2121110

^

   (7) 

And for Model 4: 

 iiii pXXY )...exp(1 2121110

^

   (8) 

 

The performance of all models was compared by calculating the proportion of variance 

they explained in both the derivation and validation samples, using the unadjusted R2  

and adjusted R2 statistics measuring the goodness of fit between the predicted and 

observed values [9,31]. 

 

As the intended purpose of our TPM models is to predict the mean EQ-5D scores based 

on the mean EORTC QLQ C-30/QLQ-MY20 domain scores, we compare the predicted 

versus observed mean EQ-5D scores in the overall validation data set and calculate the 

mean absolute prediction error.  The validity of candidate models is also estimated 

using root mean square error (RMSE) criterion for the mean: 

  2/1

1

2 /)ˆ(RMSE  


T

i ii TYy     (9) 

where T is the number of observations in the test sample.  

 

Finally, the performance of the models fitted above was also compared by calculating 

the Bayesian Deviance Information Criterion (DIC) [28] which combines measures of 

both model fit and model complexity. It is defined by, 

DPDDIC 


 

where 


D  is the posterior mean deviance and DP  is a measure of model complexity 

which may be termed the effective number of parameters. The DIC is similar to Akaike 

Information Criterion (AIC) [32] and is interpreted as a Bayesian measure of fit 

penalised for increased model complexity. The minimum DIC denotes the model best 

fitting the data [28].  
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4. Results  

4.1. Study cohort 

The entire study population consisted of 3184 observations (1839 patients); 331 

observations (10%) had the EQ-5D utility weight missing and 252 observations (8%) 

had missing values for at least one component of EORTC QLQ-C30/QLQ-MY20. 

Overall, 510 observations had at least one of EQ-5D, EORTC QLQ-C30/QLQ-MY20 

or demographic data values missing.  The complete case analysis was therefore 

performed on a cohort of 2674 observations (i.e. 3184-510=2674 observations from 

1658 patients); the derivation sample had 2003 observations (1244 patients) and the 

validation sample had 671 observations (414 patients). 

 

Table 1 presents the baseline characteristics of the entire population, the complete case 

cohort, and our validation and derivation set. The mean age of the entire population was 

64.75 years and 59% were males, both of which were in line with the complete case 

cohort and the derivation and validation data sets. The observations with missing values 

typically came from an older and more female sample than the observations without 

missing values.  However, the EQ-5D scores and 19 components of the EORTC QLQ-

C30/QLQ-MY20 produced similar means and interquartile ranges (IQR) across both 

the missing and complete sets. The correlations (≤ 0.3 and > 0.3) between the EORTC 

QLQ-C30/QLQ-MY20 domains and the EQ-5D scores were also explored, and the 

results from the final column of Table 1 showed that only dyspnoea, diarrhoea and body 

image had weak correlations with the EQ-5D scores.  

 

To this end, we consider the design characteristics of both the derivation and validation 

samples. In Table 2 we show the mean and count for the 104 EQ-5D health states 

observed in the derivation sample whereas Table 3 presents the corresponding results 

for the 79 states observed in the validation sample. 72 of the 79 states in the validation 

sample also appeared in the derivation sample, with these states accounting for 99% of 

the validation dataset. This substantial overlap suggests that we should expect 

substantially similar fit between the validation and derivation samples. 

 

4.2. Model estimation 
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For each model, a burn-in of 10000 iterations was allowed to reach convergence. 

Convergence was assessed by examining the Gelman-Rubin convergence statistic for 

two MCMC sequences with different initial values [33]. These were followed by a 

further 20,000 iterations for parameter estimation purposes. 

 

Tables 4 and 5 summarise each the estimated distributions for the parameters (including 

the 19 QLQ coefficients) in terms of mean and associated 95% credible intervals.  Table 

4 presents the model predicting whether or not a person is likely to report full 

health/zero disutility, which is used as the first part of the two part models for Models 

1-42. Of the 19 coefficients on QLQ domains (ߙଵ to ߙଵଽ), 12 have credible intervals 

including 0, with zero disutility associated with higher scores on emotional functioning, 

fatigue, physical functioning, and role functioning, but lower scores on appetite loss, 

disease symptoms and pain. Table 5 presents the equivalent distributions for the various 

Part B models.  In only five domains did the coefficient’s credible intervals exclude 

zero in all models; here, higher EQ-5D scores (lower disutility) was associated with 

higher scores for emotional functioning, physical functioning, future perspectives and 

fatigue but lower scores for disease symptoms and pain. The 95% credible intervals for 

age and gender included zero in all four models.  

 

4.3. Model reliability and validation 

Table 6 presents the R2, adjusted R2, mean prediction error statistics and RMSE for each 

model. No model clearly dominates across both derivation and valuation tasks. Models 

1 and 2 (normal Part B with/without variance influenced by age and gender) perform 

best within the derivation dataset under R2/adjusted-R2 criteria, and explain around 70% 

of variation; the best performing model on the validation dataset is the TPM with 

Gamma regression and log link, which explains around 68% of the data. The TPM with 

Gamma regression and log link also provides the best performance based on i) lowest 

root mean squared error within the validation dataset and ii ) lowest mean predicted 

error in the two datasets.  Finally, the DIC, used to assess complexity and fit of the 

models to the derivation sample was also explored, and the TPM with second part 

                                                
2 Models 1-4 were estimated individually as joint Part A and Part B.  However, the four different “Part 
A” regressions led to very similar results and each had the same parameter estimates (including estimates 
of standard error) up to 5 decimal places.  Thus, it suffices to just state one.  For completeness, Part A of 
Model 1 was reported in Table 4.  
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lognormal regression was found (Table 7) to provide the best fit to the data (DIC = -

943). The TPM with Gamma regression and log link was also found to provide a good 

fit to the data though (DIC = -890.2). 

 

5. Discussion 

 

The aim of this paper was to enable the estimation of EQ-5D health state values based 

on the EORTC QLQ-C30 data using a Bayesian framework. We have developed a 

series of Bayesian TPM regression models and have found that the TPM model with 

normal regression and the TPM model with normal regression, with variance a function 

of participant characteristics perform best within the derivation dataset under 

R2/adjusted R2 criteria, and explains around 70% of variation; the best performing 

model on the validation dataset was the TPM with Gamma regression and log link, 

which explains around 68% of the data. A key advantage of the TPMs presented here 

is that the zero utility observations are separated from the non-zero utility observations, 

thus removing the need for a transformation before a standard regression model can be 

fitted. If zero disutility and non-zero disutility responses are believed to come from 

different data generating processes it is then possible to explore the determinants of 

these by including different sets of covariates in the two parts of the model. 

 

All four models presented here used ‘vague’ prior distributions and were implemented 

using MCMC methods in the software package WinBUGS. This environment provides 

significant flexibility in model specification as it fits nonstandard models, such as those 

TPM models presented in this paper, in a single modelling framework, and all 

parameter estimation uncertainty is automatically incorporated into the results [34]. 

Furthermore, the DIC for model selection is also available as its computation has been 

coded into WinBUGS. It would have been possible to use Bayes factors instead to 

quantify the relative ability of the four models in predicting the data [35]. However, in 

comparison to DIC, the use of Bayes factors require informative prior distributions, 

which we did not have here. 

 

The Tobit Model is another approach to address data with ceiling effects [36]. This 

approach may be considered more efficient than the TPM unless the normality and 
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homoscedasticity assumptions are violated [37, 38]. It is worth mentioning that Tobit 

model was also fitted to the EORTC QLQ-C30 data (results not shown) and residuals 

were examined against the predictor variables. We have found that the residuals were 

not constant across the level of each predictor and so our data empirically suggest that 

the Tobit model at least violates the assumption of homoscedasticity. Latent Class and 

Heckman sample selection models are also considered alternative approaches to the 

TPM to address data with ceiling effects. However, there is a well-established debate 

in health econometrics over the merits of the latter versus TPM models as of which of 

these works best empirically [39]. 

 

There is a scope for using more complex models such as generalized linear models [40, 

41] and survival-type models to predict utilities. The latter is attractive due to the lack 

of assumptions required regarding the error [14] as well as their potential to cope with 

censored data. It is worth mentioning that implementing such models in an MCMC 

setting and using WinBUGS would be possible. It is perhaps worth mentioning that a 

TPM with second part beta regression was also fitted to the EORTC QLQ-C30 data 

(results not shown but available upon request from the leading author), but didn’t 

provide further improvement over the four models presented here. We believe that the 

explanation for this finding is due to only 8% of the patients had EQ-5D scores at the 

ceiling of one. Indeed, in a healthy population, where a substantially higher proportion 

may have been at the ceiling, models such as TPM with second part beta regression or 

even models presented here may have better performance. Additional work includes 

dealing with missing follow-up utility data which, again, could be incorporated and 

implemented in MCMC setting using the Bayesian multiple imputation approach as 

mentioned by Kharroubi et al [42]. 

 

This paper has proposed four alternative TPM models for modelling and predicting 

utilities. Although it is not possible to recommend one particular model for analysing 

utility data in general, due to the specific characteristics of each data set and therefore 

the need for a series of different models to be fitted and model fit assessed, the analyses 

presented have demonstrated how utility data may be straightforwardly modelled using 

Bayesian hierarchical models, and model fit and complexity assessed using the DIC, 

which is straightforward to compute in a MCMC analysis. Such models provide 
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important information for the planning of future services and budgets, and may also be 

used to inform cost-effectiveness analyses. 

 

In conclusion, we found that mean EQ-5D utility weights can be accurately estimated 

using a TPM regression mapping algorithm from the EORTC QLQ-C30/QLQ-MY20. 

Whilst previous models for mapping the EORTC QLQ-C30 to the EQ-5D exist [43, 

44], this is the first model to our knowledge to explicitly consider a myeloma subgroup 

and to include the MY-20 data. Such a model will be of significant use to investigators 

conducting economic evaluations, by generating preference-based utility weights in 

patients with myeloma.   
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Table 1: Baseline Characteristics of Study Cohort (Kharroubi et al [45]). 

Note: PF, physical functioning; RF, role functioning; DY, dyspnoea; PA, pain; FA, fatigue; SL, insomnia; AP, appetite loss; NV, Nausea and vomiting; CO, constipation; DI, 
diarrhoea; CF, cognitive functioning; EF, emotional functioning; SF, social functioning; FI, financial difficulties; QL, quality of life; DS, disease symptoms; SE, side effects; 
BI, body image; FP, future perspective; NA, not applicable; ȡ, correlation coefficient. 
  

    Missing Data Complete       

  Entire population EQ-5D QLQ-MY20 Case Cohort Derivation Set Validation Set ʌ 

No of patients 1839 318 240 1658 1244 414   

No of obn 3184 331 252 2674 2003 671   

Age, mean(IQR) 64.75 (58-72) 65.6 (58-73) 67.53 (60-76) 64.45 (58-72)  64.4 (58-72) 64.62 (58-72)   

Male, % 59.22 56.6 55 59.89 59.97 59.66   

EQ-5D, mean(IQR) 0.52(0.26-0.76) NA 0.47(0.19-0.76) 0.52(0.26-0.76) 0.52(0.26-0.76) 0.52(0.26-0.76)   

PF, mean(IQR) 58.05(40-80) 58.11(40-80) NA 58.29(40-80) 58.02(40-80) 58.08(40-80) 0.75 

RF, mean(IQR) 42.16(0-66.67) 41.53(0-66.67) NA 42.40(0-66.67) 42.17(0-66.67) 42.09(0-66.67) 0.68 

DY, mean(IQR) 32.24(0-66.67) 32.43(0-66.67) NA 32.01(0-33.34) 32.10(0-33.34) 31.74(0-66.67) -0.26 

PA, mean(IQR) 44.01(16.67-66.67) 48.26(16.67-83.34) NA 43.46(16.67-66.67) 43.33(16.67-66.67) 43.84(16.67-66.67) -0.70 

FA, mean(IQR) 51.52(33.34-66.67) 51.20(33.34-66.67) NA 51.45(33.34-66.67) 51.34(33.34-66.67) 51.79(33.34-66.67) -0.61 

SL, mean(IQR) 34.77(0-66.67) 35.47(0-66.67) NA 34.60(0-66.67) 34.47(0-66.67) 35.02(0-66.67) -0.35 

AP, mean(IQR) 29.68(0-66.67) 30.73(0-66.67) NA 29.24(0-66.67) 29.51(0-66.67) 28.47(0-33.34) -0.45 

NV, mean(IQR) 13.20(0-16.67) 14.81(0-16.67) NA 12.93(0-16.67) 13.13(0-16.67) 12.34(0-16.67) -0.36 

CO, mean(IQR) 32.41(0-66.67) 35.84(0-66.67) NA 32.11(0-66.67) 31.84(0-66.67) 32.94(0-66.67) -0.39 

DI, mean(IQR) 10.07(0-0) 11.95(0-0) NA 9.81(0-0) 10.18(0-0) 8.70(0-0) -0.10 

CF, mean(IQR) 73.10(50-100) 72.53(50-100) NA 73.22(66.67-100) 73.13(66.67-100) 73.50(66.67-100) 0.48 

EF, mean(IQR) 70.24(58.34-91.67) 70.09(55.56-91.67) NA 70.38(58.34-91.67) 70.51(58.34-91.67) 70.00(58.34-91.67) 0.51 

SF, mean(IQR) 50.11(16.67-83.34) 50.86(16.67-83.34) NA 50.09(16.67-83.34) 50.08(16.67-83.34) 50.10(16.67-83.34) 0.64 

FI, mean(IQR) 20.54(0-33.34) 19.51(0-33.34) NA 20.61(0-33.34) 21.32(0-33.34) 18.48(0-33.34) -0.30 

QL, mean(IQR) 51.15(33.34-66.67) 48.93(33.34-66.67) NA 51.53(33.34-66.67) 51.46(33.34-66.67) 51.71(33.34-66.67) 0.64 

DS, mean(IQR) 31.91(13.34-50) 34.18(16.67-50) NA 31.59(11.12-46.67) 32.04(11.12-50) 30.22(13.34-44.45) -0.62 

SE, mean(IQR) 23.77(11.12-33.34) 24.15(11.12-33.34) NA 23.66(11.12-33.34) 23.57(11.12-33.34) 23.93(11.12-33.34) -0.51 

BI, mean(IQR) 70.98(33.34-100) 73.15(66.67-100) NA 71.09(33.34-100) 71.72(33.34-100) 67.20(33.34-100) 0.28 

FP, mean(IQR) 48.16(33.34-66.67) 46.71(22.23-66.67) NA 48.33(33.34-66.67) 48.95(33.34-66.67) 45.49(22.23-66.67) 0.35 
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Table 2: Mean and count for 104 health states in the derivation sample 

State Mean n State Mean n State Mean n State Mean n 
11111 1 169 12232 0.053 1 21332 0.03 7 23322 0.079 8 

11112 0.848 62 12311 0.452 1 21333 -0.135 2 23323 -0.086 1 
11113 0.414 3 12321 0.329 3 22111 0.746 1 23332 -0.184 8 
11121 0.796 88 12322 0.258 2 22132 0.02 1 23333 -0.349 4 
11122 0.725 57 12331 0.066 1 22211 0.71 9 31311 0.242 2 
11123 0.291 1 12332 -0.005 3 22212 0.639 9 31312 0.171 1 
11211 0.883 55 21111 0.85 21 22213 0.205 1 31322 0.048 1 
11212 0.812 21 21112 0.779 10 22221 0.587 64 31323 -0.117 1 
11221 0.76 115 21121 0.727 34 22222 0.516 117 32131 -0.154 1 
11222 0.689 68 21122 0.656 12 22223 0.082 10 32222 0.002 1 
11223 0.255 8 21131 0.195 3 22231 0.055 20 32311 0.138 5 
11232 0.157 4 21211 0.814 38 22232 -0.016 39 32312 0.067 2 
11311 0.556 4 21212 0.743 22 22233 -0.181 7 32313 -0.098 1 
11312 0.485 2 21221 0.691 164 22311 0.383 9 32321 0.015 1 
11321 0.433 14 21222 0.62 145 22312 0.312 9 32322 -0.056 10 
11322 0.362 11 21223 0.186 8 22313 0.147 3 32323 -0.221 1 
11323 0.197 1 21231 0.159 18 22321 0.26 48 32331 -0.248 1 
11331 0.17 1 21232 0.088 28 22322 0.189 119 32332 -0.319 5 
11332 0.099 2 21233 -0.077 1 22323 0.024 7 32333 -0.484 3 
11333 -0.066 2 21311 0.487 12 22331 -0.003 22 33311 0.028 2 
12112 0.744 1 21312 0.416 8 22332 -0.074 61 33312 -0.043 1 
12132 0.089 1 21313 0.251 2 22333 -0.239 9 33321 -0.095 2 

12213 0.274 1 21321 0.364 31 23222 0.137 1 33322 -0.166 4 

12221 0.656 7 21322 0.293 45 23231 -0.055 1 33331 -0.358 3 

12222 0.585 10 21323 0.128 5 23311 0.273 1 33332 -0.429 14 

12231 0.124 2 21331 0.101 6 23321 0.15 2 33333 -0.594 7 
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Table 3: Mean and count for 79 health states in the validation sample 

State Mean n State Mean N State Mean n 
11111 1 51 21132 0.124 1 22313 0.147 1 

11112 0.848 21 21211 0.814 16 22321 0.26 13 
11121 0.796 30 21212 0.743 8 22322 0.189 38 
11122 0.725 18 21221 0.691 51 22323 0.024 5 
11131 0.264 2 21222 0.62 54 22331 -0.003 4 
11211 0.883 20 21223 0.186 3 22332 -0.074 19 
11212 0.812 16 21231 0.159 8 22333 -0.239 2 
11213 0.378 1 21232 0.088 5 23222 0.137 3 
11221 0.76 28 21233 -0.077 1 23311 0.273 1 
11222 0.689 24 21311 0.487 4 23321 0.15 1 
11223 0.255 4 21312 0.416 3 23322 0.079 6 
11311 0.556 2 21321 0.364 9 23323 -0.086 1 
11312 0.485 1 21322 0.293 13 23332 -0.184 3 
11321 0.433 5 21323 0.128 2 31322 0.048 1 
11322 0.362 3 21331 0.101 3 32313 -0.098 1 
12212 0.708 2 21332 0.03 5 32321 0.015 1 
12221 0.656 4 22121 0.623 1 32322 -0.056 2 
12222 0.585 2 22211 0.71 3 32331 -0.248 2 
12312 0.381 1 22212 0.639 3 32332 -0.319 4 
12321 0.329 1 22221 0.587 32 32333 -0.484 3 
12322 0.258 1 22222 0.516 50 33311 0.028 1 
12332 -0.005 1 22223 0.082 1 33321 -0.095 1 

13322 0.148 1 22231 0.055 4 33322 -0.166 2 

21111 0.85 2 22232 -0.016 9 33332 -0.429 5 

21112 0.779 1 22233 -0.181 2 33333 -0.594 1 

21121 0.727 7 22311 0.383 1    

21122 0.656 8 22312 0.312 1    
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Table 4: Results of first part of Models 1-- 4 

 QLQ domain* Coefficient (credible interval) ߙ଴ (Constant)  15.65 (11.54, 20.10) ߙଵ Appetite Loss 2.233 (0.766, 3.820) ߙଶ Body Image -0.172 (-1.205, 0.881) ߙଷ Cognitive Functioning 1.124 (-0.729, 2.810) ߙସ Constipation -0.292 (-1.268, 0.701) ߙହ Diarrhoea 1.253 (-0.357, 2.958) ߙ଺ Disease Symptoms 4.934 (2.235, 7.739) ߙ଻ Dyspnoea -0.332 (-1.485, 0.798) ଼ߙ Emotional Functioning -6.648 (-9.105, -4.415) ߙଽ Fatigue -2.105 (-4.017, -0.209) ߙଵ଴ Financial Difficulties 1.145 (-0.204, 2.594) ߙଵଵ Future Perspective -0.664 (-1.818, 0.463) ߙଵଶ Nausea and Vomitingg -0.013 (-2.846, 2.908) ߙଵଷ Pain 5.874 (3.645, 8.201) ߙଵସ Physical Functioning -6.703 (-9.398, -4.095) ߙଵହ Quality of Life -1.706 (-3.563, 0.138) ߙଵ଺ Role Functioning -2.929 (-4.529, -1.251) ߙଵ଻ Side Effects -0.544 (-3.521, 2.503) ߙଵ଼ Social Functioning 0.063 (-1.477, 1.592) ߙଵଽ Insomnia/Sleep -0.628 (-1.708, 0.471) ߙଶ଴ (age)  -0.009 (-0.034, 0.0142) ߙଶଵ (female)  -0.202 (-0.740, 0.316) 

Note: (*) All variables are included as 100x standard QLQ domains. Values given as posterior mean (central 95% credible interval). Estimates shown in bold are those who 
have credible intervals excluding zero.  
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Table 5: Results of second part models (Models 1-- 4) 

 QLQ* Model 1 Model 2 Model 3 Model 4 ߚ଴ (Constant)  0.885 (0.793, 0.972) 0.876 (0.782, 0.961) -0.221 (-0.392, -0.047) -0.223 (-0.374, -0.050) ߚଵ AP 0.051 (0.017, 0.086) 0.053 (0.018, 0.086) 0.066 (-0.001, 0.134) 0.076 (0.013, 0.144) ߚଶ BI 0.023 (-0.005, 0.052) 0.024 (-0.005, 0.053) 0.048 (-0.008, 0.104) 0.040 (-0.023, 0.094) ߚଷ CF 0.017 (-0.031, 0.064) 0.014 (-0.033, 0.060) 0.078 (-0.016, 0.170) 0.106 (0.031, 0.182) ߚସ CO 0.015 (-0.014, 0.044) 0.016 (-0.013, 0.045) 0.000 (-0.057, 0.057) 0.006 (-0.057, 0.054) ߚହ DI -0.054 (-0.097, -0.011) -0.058 (-0.101, -0.016) -0.077 (-0.161, 0.006) -0.091 (-0.176, -0.011) ߚ଺ DS 0.124 (0.062, 0.185) 0.129 (0.067, 0.190) 0.208 (0.090, 0.328) 0.189 (0.072, 0.303) ߚ଻ DY -0.038 (-0.071, -0.006) -0.037 (-0.069, -0.005) -0.045 (-0.107, 0.018) -0.050 (-0.106, 0.014) ଼ߚ EF -0.145 (-0.197, -0.092) -0.144 (-0.199, -0.091) -0.241 (-0.346, -0.137) -0.266 (-0.378, -0.168) ߚଽ FA -0.088 (-0.147, -0.027) -0.085 (-0.144, -0.025) -0.144 (-0.261, -0.026) -0.121 (-0.231, -0.011) ߚଵ଴ FI 0.002 (-0.029, 0.033) 0.002 (-0.028, 0.031) 0.053 (-0.007, 0.113) 0.038 (-0.020, 0.095) ߚଵଵ FP -0.073 (-0.115, -0.031) -0.071 (-0.112, -0.029) -0.144 (-0.226, -0.059) -0.136 (-0.223, -0.070) ߚଵଶ NV 0.020 (-0.032, 0.071) 0.020 (-0.031, 0.072) 0.041 (-0.061, 0.143) 0.042 (-0.056, 0.140) ߚଵଷ PA 0.218 (0.171, 0.265) 0.217 (0.171, 0.264) 0.463 (0.370, 0.553) 0.463 (0.375, 0.557) ߚଵସ PF -0.510 (-0.568, -0.452) -0.515 (-0.571, -0.457) -0.955 (-1.066, -0.843) -0.820 (-0.909, -0.718) ߚଵହ QF -0.090 (-0.153, -0.025) -0.081 (-0.142, -0.020) -0.117 (-0.237, 0.001) -0.119 (-0.236, 0.013) ߚଵ଺ RF -0.038 (-0.086, 0.011) -0.034 (-0.083, 0.014) -0.200 (-0.294, -0.105) -0.257 (-0.337, -0.173) ߚଵ଻ SE 0.086 (0.002, 0.172) 0.092 (0.011, 0.175) 0.113 (-0.053, 0.271) 0.141 (-0.033, 0.313) ߚଵ଼ SF -0.055 (-0.100, -0.012) -0.056 (-0.101, -0.011) -0.129 (-0.214, -0.044) -0.139 (-0.214, -0.069) ߚଵଽ SL 0.009 (-0.022, 0.040) 0.008 (-0.022, 0.039) 0.013 (-0.046, 0.074) 0.012 (-0.046, 0.069) ߚଶ଴ (age)  0.000 (-0.001, 0.001) 0.000 (-0.001, 0.001) 0.000 (-0.002, 0.002) 0.001 (-0.001, 0.003) ߚଶଵ (female)  -0.015 (-0.034, 0.04) -0.014 (-0.033, 0.005) -0.015 (-0.053, 0.021) -0.007 (-0.042, 0.030) (0.197 ,0.184) 0.191  ߪ NA 0.372 (0.360, 0.384) 0.189 (0.184, 0.197) ߠ (Constant)  NA 3.438 (3.241, 3.633) NA NA ߠଵ (age)  NA -0.009 (-0.016, -0.003) NA NA ߠଶ (female)  NA -0.084 (-0.217, 0.047) NA NA 

Note: PF, physical functioning; RF, role functioning; DY, dyspnoea; PA, pain; FA, fatigue; SL, insomnia; AP, appetite loss; NV, Nausea and vomiting; CO, constipation; DI, diarrhoea; CF, 
cognitive functioning; EF, emotional functioning; SF, social functioning; FI, financial difficulties; QL, quality of life; DS, disease symptoms; SE, side effects; BI, body image; FP, future 
perspective; NA, not applicable; (*) All variables are included as 100x standard QLQ domains. Values given as posterior mean (central 95% credible interval). Estimates shown in bold are those 
who have credible intervals excluding zero.  
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Table 6: Model performance based on central estimate 

 Derivation data set Validation data set 
 R2 Adjusted R2 Mean predicted 

error 
R2 Adjusted R2 Mean predicted 

error 
RMSE 

Model 1 0.7005 0.6940 0.1431 0.6787 0.6572 0.1471 0.1892 

Model 2 0.7005 0.6937 0.1430 0.6778 0.6552 0.1472 0.1894 

Model 3 0.6864 0.6797 0.1463 0.6714 0.6494 0.1466 0.1913 

Model 4 0.6959 0.6893 0.1387 0.6803 0.6589 0.1394 0.1887 

Note: R2, proportion of variance explained by the model; Estimates shown in bold are best performing models. 

 

 

 

Table 7: Overall DIC for the fitted models 

 Model 1 Model 2 Model 3 Model 4 


D  -337.6 -345.0 -988.2 -934.6 

DP  44.76 46.53 45.20 44.46 

DIC -292.8 -298.5 -943.0 -890.2 

 

 


