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Abstract
Background: It is well documented that the modelling of health relajeality of life
(HRQoL) data is difficult as the distribution of such data fie strongly right/left
skewed and it includes a significant percentage of obsengaéit oneObjectives. To
develop a series of two-part models (TPM) that deal thitse issuedM ethods. Data
from the UK Medical Research Council (MRC) Myeloma tidltwere used to examine
the relationship between the European Organization foraRdsend Treatment of
Cancer (EORTC) QLQ-C30/QLQ-MY20 scores and the European Qolmgrmions
(EQ-5D) utility score. Four different TPM models were deped. The models fitted
included TPM with normal regression, TPM with normal regjoes with variance a
function of participant characteristics, TPM with {bgnsformed data and TPM with
gamma regression and a log link. The cohort of 1839 patientsliwided into 7586
derivation sample, to fit the different models, and 25%gaton sample to assess the
predictive ability of these models by comparing predictedadosgrved mean EQ-5D
scores in the validation set, unadjusteti @Rd Root Mean square Error (RMSE).
Results: Predictive performance in the derivation dataset dependetieoariterion
used, with Radjusted-Rfavouring the TPM model with normal regression and mean
predicted error favouring the TPM model with gamma regras3ihe TPM model with
gamma regression performs best within the validation datas#gr all criteria
Conclusions. TPM regression models provide flexible approachesstimate mean
EQ-5D utility weights from the EORTC QLQ-C30/QLQ-MY20 for useegiconomic

evaluation.

Key words Bayesian methods; EQ-5D; Multiple Myeloma; Quality of L ifi@o-part
models; Cat-utility analysis; MCMC



1. Introduction

Preference-based measures of health related qualityedHRQol are widely used
to calculate quality adjusted life years (QALYS) for useast effectiveness analyses.
Examples of these are the European QoL-5 DimensionsS@Questionnaire [1}he
six-dimensional health state short forBH6D) [2] and Health Utility Index 2HUI-

[I) [3] instruments. QALYs are formed as a weighted sunif@felxpectancy, where
each year is weighted on a HRQoL scale that reflecsdbefices that people would
make to attain or avoid the particular states in tlyeses. In such measures, zero and
one are assigned specific meanings. At a HRQoL valwnefa person would not
make any sacrifices for better health and they are said to be in ‘full health’. In contrast,
those with a HRQoL value of zero occupy a state ‘as bad as dead’, in the sense that they
would swap a 100% certainty of death for remaining in tlzé sonce dead, a HRQoL

value of zero is also assigned.

As a HRQoL value of one represents the state where anpeosimnger sacrifices to
obtain better health, HRQoL does not usually exceed oneftend has a noticeable
‘spike’ here. As most people are only willing to make moderate sacrificedalth,
HRQoL values lie tend to at the higher end of the measutesvate, with some
observations displaying extrergdbw levels of HRQoL. In principle, there is no lower
bound to a HRQoL value, so that support may include large wegalues. Thus,
HRQoL values often have a noticeable density spike atindea negatively-skewed
distribution. In contrast the disutility of a headifate (formed as one minus the HRQoL
value), has a significant percentage of zero-disutilityesland is positively skewed.
The disutility of a particular health state therefeshares the same characteristics as

cost data, including heteroskedasticity.

Most studies modelling HRQoL data use linear regression assuroimmgainand
homooscedastic error terrf®-6]. The latter condition is unlikely to be satisfied for
bounded variables for mean values close to bourjdélférnative regression methods
that model HRQoL data include censored least absolute dev{@icAD) models [8,
9], Tobit models [8, 1pand median regression [9]. Of these, CLAD and Tobit augh

model an underlying latent variable, which is censored at Sunch models are not



necessarily appropriate for HRQoL data because preferereeseasured on a scale
where values cannot be ovér(‘no HRQoL deficit”) [8]. Median regression also
addresss the non-normality of the datfill]. However, the regression usually
concentratesn the mean rather than the median when HRQoL data gressed on
individual covariates to predict QALYs [8-]LO

One approach advocated to address the problem generated lyneeHRQoL
observations is to apply avo-part model (TPM) [12-15] on disutilitySuch an
approach fits two separate models. Firstly, a logisticassion model is used to predict
whether patients indicate any HRQoL deficit. Secondly,tifmse individuals who
indicate nonzero disutility, a regression model is fittedstimate the magnitude of the
deficit. This approach is broadly similar to existing approaches dealiigcost data.
For example, Cooper et al [13] have proposed a Bayd$tm in which a logistic
regression model was used first to predict the conditiowdigility of observing zero
costs in the sample, followed by a linear regression nfitekel to the log-transformed
cost applied to those individuals reporting positive costss phaper, and similar
approaches elsewhere [16}Ifovide flexible approaches to regress the mean of an

outcome with truncated support such as HRQoL on covariates

This paper focuses on the application of four different Tpkkifications of increasing
complexity to predict HRQoL utility in myeloma patient$e paper is organised with
the next section describing the motivating data for thdets described herein. Then
Section 3 outlines the models used for the analysis imgudssessment of model
complexity, model fit and assessment of model predict®ection 4 illustrates the
application of the proposed method to the analysis of HRdzb& from the case study
presented in Section 2. Finally, the implications ofrémults and directions for future

research conclude the paper.

2. Motivating data set
2.1 Measures

The EuroQol 5D is recommended for use in economic evahsaltip National Institute
for Health and Care Excellence (NICE) [18], with the EQ-&DFL9] used here This

measure classifies patients into one of 243 health statgsg in five dimensions



(alongside additional states for ‘dead’ and ‘unconscious’): mobility; self-care; usual
activities; pain/ discomfort; and anxiety/depression. Theléeof each dimension are
roughly: none, moderate, and severe. The EQ-5D is of deratedstvalidity and
reliability [1, 20] and population values are available for both Whe [21] and
elsewhere [22].

The European Organization for Research and Treatmentuode€ Quality of Life
Questionnaire Core 30 (EORTC QLQ-C30) is a commonly-used insttufoe
measuring general cancer quality of life. It has beanstated into more than 65
languages and is used widely internationally [2Blcovers several health domains, as
well as cancer-specific symptoms of disease, the sidecteffof treatment,
psychological distress, physical functioning, sociakrnacttion, global health, and
quality of life. Most of the questions have a categorieaponse (Not at all; A little;
Quite a bit; and Very much), with two questions relying orudeeof a Visual Analogue
Scale (VAS). The raw questionnaire responses are traredotonproduce scores (0-
100) on a set of five function scales (physical, rolept@mal, cognitive, and social
functioning) and nine symptom scales, along with a scplesenting global quality of
life. Higher scores indicate better functioning and meegere symptoms on the
functioning and symptom scales, respectively. The EORTC -QBQ scale has

undergone extensive psychometric testing [24].

The myeloma cancer module QLQ-MY20 is acceptable for use@petients varying
in disease level and treatment modality (i.e. surgemymoitherapy, radiotherapy and
hormonal treatment). It should always be used as aleompt to the QLQ-C30. The
myeloma module is designed to assess the symptoms andfeals ef treatment and
their impact on everyday life [25]. The module compriseqstions addressing four
domains of QoL important in myeloma: body image, diseagaptoms, treatment side
effects and future perspective. The module was developeddaug®o the guidelines,
and approved after formal review. As with the EORTC QLQ-@36stions, the QLQ-
MY20 questions have a hierarchical response with ordinaésdoainsformed ta O-
100 scale and each domain analysed separately. Both QLQ-C30/afad domain
scores aree-transformed to 0-1 scaland for this to allow values to mirror the overall

potential contribution to quality of life.



2.2. Data source

The EORTC QLQ-C30 and QLQ-MY20 instruments are mapped onto th8[EQ-
instrument using data from MYELOMAX [26]. This randomized controlled trial of
the effectiveness of new treatment regimens at both ad&g)(CVAD vs. C-Thal-Dex
or C-Thal-Dex attenuated; sodium clodrinate vs zoledronic arid)maintenance (no
therapy vs thalidomide). The trial needed a sampleodiz600 patients enlisted across
hospitals in the UK, New Zealand and South Africa oveeé&ry. Overall, the trial
recruited 1839 patients, who provided a total of 3184 observations

3. Model development and validation

In this section we develop a series of TRMhat take into account the typical
characteristics of HRQoL datall models shown are implemented from a Bayesian
perspective using Gibbs sampling MCMC methods freely availabikeirspecialist
software WinBUGS [27]. The WIinBUGS code is available from ¢beresponding
author. MCMC methods permit great flexibility in the speaifion of complex non-
standard models and also facilitate the computation of momlmplexity and fit

statistics for non-nested models [28].

In each model, the utility weight from the EQ-5D isatexd as our dependent variable.
Our covariates were the summary scores from eactedf9tdomains of the EORTC
QLQ-C30 and QLQ-MY20, which we treated as continuous variabieaddition to
respondent-level covariates such as age and gender. lirthetathere are up to 22
covariate parameters in our models, being a constant & EORTC dimensions, and

up to 2 demographic covariates.

The data set described in the previous section was rpliailearning sample, which
consisted of data from a Z&derivation sample of patients and was used to fit the
different models. A validation sample was formed andswts of the remaining

patients and was used to assess the predictive ability diftbieent candidate models.

L http://clincancerres.aacrjournals.org/content/early/2013008078-0432.CCR-12-3211



Whilst our approach selects derivation/validation by patfensimplicity we index by
observations (¥ 1, 2, ..., 3184). Had missingness been defined at a patient lewl, thi
would have led to complete data at a point in time beingpved and classified as

having ‘missing’ data, on the basis that missing data exists at a different time point.

Four different TPMs of increasing complexity were fittedhe data:
1) TPM with second part normal regression,

2) TPM with second part normal regression with variancenation of participant
characteristics,

3) TPM with second part lognormal regression, and

4) TPM with second part gamma regression with a log link.

All models considered were developedthin a Bayesian framework using ‘vague’
prior distributions throughout and implemented in the fremhgilable WinBUGS
software [27]. In this application, Bayesian methods pievia useful tool for fitting
complex, non-standard models. For a morelepth description of Bayesian methods

and their application in healthcare see [28].

3.1 Model development

As already mentioned above, previous evidence suggestshth&Q-5D score is
skewed toward the upper bound. If the EQ-5D utility of obs&nvatis Y; then we
define disutility asD; =1 —Y;. In TPMs, we are interested in first estimating the
likelihood of D; = 0 (alternativelyY;=1) and secondly how larg®; in the case it is
nonzero. By doing this, TPMs essentially attempt to filter off widuals with zero-
disutility, and then a distribution to the remainder. ficethose individuals who have a

nonzero disutility).

Algebraically, letd, be a dummy variable, which takes value 1 wher- 0 and the

value 0 otherwise. Utility, as our estimated variable ter#st, is then calculated based

on both the likelihood of a nonzero disutility and the expe size of any non-zero



disutility. All four models have a common functional fomrthe first part (Part Ajas

follows:

d. ~ Bernoulli(p;)
logit [p,] =, +a Xy +...+ X5y, (1)

where p; is the probability of observing a disutility<,; indicates values for the k

covariates for individual i (i.e. 19 QLQ scores plus agd gendey and the «,

parameters are estimated within the logistic modehdse cases, the vague priors used

set are as follows
Ayyeesyy ~ N (O, 10%).

To assess the importance of addressing these potentialecdties, four different (Part

B) models are also fitted to estimate disutility wiign> 0.

Model 1: Normally distributed Part B

For those individuals who have a nonzero disutility, Baot the model becomes:
(O | D, > 0) ~ N(g4 ’62)
i = Po+ BiXy + oot Xy (2)

whereX. s indicate observation-specific values for the 21 cotesidi.e. 19 QLQ

scores, age and gendeahdg, ’s are the regression parameters to be estimated. Vague

prior distributions were specified as follows:
Bor-fo; ~ N(0,10%), o2 ~ InverseGama(0.001,0.007)

Model 2: Normally distributed Part B with variance a function of age and gender,

In Model 2, the TPM Model 1 again has a normal conditidigiribution but allows

variance to be a function of participant charactesstin this model we allowed the

logarithm of the variance to also be a function of @§e; ) and gender X, ); that is:
(D | D, > 0) ~ N(g ’Giz)
i = Po+ BiXy +ot B Xy

Log(o'iz) =6, +0, X5 + 0, Xy (3)



where agairX ;s indicate individual values for the 21 covariates ghts are the

estimated parameters. Prior distributions were specified as:
Por-f321:05,0,,0, ~N(G, 10°)

Model 3 Lognormally distributed Part B

In Model 3, the disutility is estimated with a similar egouato Model 1 but assumes

a lognormal distribution with uniform variance acrossesations. Here, Part B is:
(D, | D, > 0) ~ LN (z,5°)
M = Po+ BiXy ot Xy (4)

whereX ;s indicate observation-specific values for the 21 catesi (i.e. 19 QLQ

scores, age and gender), gfids are the regression parameters to be estimated. Vague

prior distributions were specified as follows:
Bor-fo; ~ N(0,10%), o? ~ InverseGama(0.001,0.007)

Model 4 Gamma distributed Part B with a log link.

The fourth model specified disutility as a Gamma regressitina log link function.

Here, the log of mean disutilities is modelled as ationoof the covariates. Both the

mean value by observation:() and the common variances{) are related to the

parameters of the Gamma distributioms ). (Here,u;, =a /b, ando? =a /b?)
In this mode| Part B is:
(D, | D, > 0) ~ Gamma(a, ,b)
a =ub andb =y /6°
09( 1) = Py + B Xy + oot B X oy (5)

As before, the 22 parametefl are estimated in the log-linear model and include the

constant term, 20 QLQ scores, and covariates for age awgmPrior distributions

were specified as:

Bor-for ~ N(0,10%), o? ~ InverseGarma(0.001,0.007) .



3.2 Model prediction

To assess the predictive ability of Models 1-4 each waseaptdi derive utilities for
both the derivation and validation samples of the dotfoindividuals with myeloma.
The expected deficit in HRQoL is expressed as the exgppeman disutility (in the case
that one is observed in a particular observation) iptigil by the probability of

observing a nonzero disutility, and is given by the equatiéns(g8) below:

As a similar/common first part appears across the modelsrsveléfine the expected
likelihood of a disutility as:

expla, + o, Xy +...+ ¢ Xy)

p, =P(D; >0) = '
1+expla, + o, Xy +... 4 Xy)

Models 1 and 2:
For the second part of the TPMs in Models 1 and 2, tmelitonal expectation

E(D, | D, > 0) from the second stage (2) equals:
E(D; |D; >0) = B, + B Xy +...t By Xy + E(g | D; > 0),

In TPMs, this last term is assumed to equal zero inrasinto other approaches, for
example, Heckman’s [29] sample selection model. The relative merits ofitAM have
been the subject of a vigorous debate in the literaturegi@jmuch of the discussion

focuses on this assumption. Thus,
E(Di | Di > 0) = ﬂo +ﬂ1X1i +"'+ﬂ21X2]i .
Note that the unconditional expectation of the dependamhteD, ,E(D,), is given

by
E(D,) = P(D, >0).E(D, | D, > 0)+ P(D, = 0).E(D, | D, =0).

Then, sinc&(D, | D, =0) =0, it follows that

E(D,) =P(D; >0).E(D; |D; >0) = (8, + B Xy +oot B X55) B -

Thereforefor Models 1 and 2, predicted health (as one minus disuigity)

YAi =1—(By + B Xy + .ot B Xo3) By (6)

Model 3:

10



In a similar way, Model 3’s lognormal formula for estimated disutility yields an

expected healtbf:

YAi =1-[exp(B, + B Xy +"'+ﬁ21x2]j)+%o-2]pi (7)

And for Model 4:

Y =1-exp(B, + B Xy + .ot B X05) Py (8)

The performance of all models was compared by caloglatie proportion of variance
they explained in both the derivation and validation sesplsing the unadjusted R
and adjusted Rstatistics measuring the goodness of fit between thecpeddand
observed values [9,31].

As the intended purpose of our TPM models is to predicirisan EQ-5D scores based
onthe mean EORTC QLQ C-30/QLQ-MY20 domain scores, we compapedteted
versus observed mean EQ-5D scores in the overall vialiddata set and calculate the
mean absolute prediction erroifhe validity of candidate models is also estimated

using root mean square error (RMSE) criterion for thermea
~ 12
RMSE=(S" (v, ¥ /7f (©)

whereT is the number of observations in the test sample.

Finally, the performance of the models fitted above wss edbmpared by calculating
the Bayesian Deviance Information Criterion (DIC) [28] whémmbines measures of

both model fit and model complexity. It is defined by,
DIC = D+ P,

where D is the posterior mean deviance aRd is a measure of model complexity
which may be termed the effective number of parametéiesDIC is similar to Akaike
Information Criterion (AIC) [32] and is interpreted asBayesian measure of fit
penalised for increased model complexity. The minimum DI®@usnthe model best
fitting the data [28]

11



4. Results

4.1. Study cohort

The entire study population consisted of 3184 observations (18&ntpa 331
observations (10%) had the EQ-5D utility weight missing and 2s2reations (8%
had missing values for at least one component of EORTC QR@GQLQ-MY20.
Overall, 510 observations had at least one of EQ-5D, EORTC @R@ACQ-MY20

or demographic data values missingilhe complete case analysis was therefore
performed on a cohort of 2674 observations (i.e. 3184-510=2674vatises from
1658 patients); the derivation sample had 2003 observations (12dAtgadnd the

validation sample had 671 observations (414 pajients

Table 1 presents the baseline characteristics of tive pojpulation, the complete case
cohort, and our validation and derivation set. The nagaof the entire population was
64.75 years and 59% were males, both of which were in lirfrethét complete case
cohort and the derivation and validation data sets. Teergations with missing values
typically came from an older and more female sanipd@ the observations without
missing values. However, tlg)-5D scores and 19 components of the EORTC QLQ-
C30/QLQ-MY20 produced similar means and interquartile ranges (IQRssboth
the missing and complete sets. The correlatigris3 and > 0.3) between the EORTC
QLQ-C30/QLQ-MY20 domains and the EQ-5D scores were also explaretithe
results from the final column of Table 1 showed that dgpnoeadiarrhoea and body

image hadveak correlations with the EQ-5D scores.

To this end, we consider the design characteristicstbfthe derivation and validation
samples. In Table 2 we show the mean and count fol@4&Q-5D health states
observed in the derivation sample whereas Table 3 psefentorresponding results
for the 79 states observed in the validation sample. ##&0f9 states in the validation
sample also appeared in the derivation sample, witetsimtes accounting for 99% of
the validation datasetThis substantial overlap suggests that we should éxpec

substantially similar fit between the validation and derbratamples.

4.2. Modd estimation

12



For each modela burn-in of 10000 iterations was allowed to reach convergence.
Convergence was asses$gdexamining the Gelman-Rubin convergence statistic for
two MCMC sequences with different initial valug&3]. These were followed by a

further 20,000 iterations for parameter estimation purposes.

Tables 4 and 5 summarise each the estimated distribétiothe parameters (including
the 19 QLQ coefficients) in terms of mean and assocg&i@acredible intervals. Table
4 presents the model predicting whether or not a persdikely to report full

health/zero disutility, which is used as the first patheftwo part models for Models
1-42. Of the 19 coefficients on QLQ domaing, (to a;4), 12 have credible intervals
including 0, with zero disutility associated with higher scoresmotional functioning,
fatigue, physical functioning, and role functioning, but lowsarses on appetite loss,
disease symptoms and pain. Table 5 presents the equiakeihiutions for the various
Part B models. In only fivdomains did the coefficient’s credible intervals exclude

zero in all models; here, higher EQ-5D scores (lower diggtivas associated with
higher scores for emotional functioning, physical functionfatyre perspectives and
fatigue but lower scores for disease symptoms and pairDSthecredible intervals for

age and gender included zero in all four models.

4.3. Model reliability and validation

Table 6 presents th& Ridjusted B mean prediction error statistics and RMSE for each
model No model clearly dominates across both derivation andatiah tasks. Models

1 and 2 (normal Part B with/without variance influenced d¢py and gender) perform
best within the derivation dataset undétajusted-Rcriteria, and explain around %0

of variation; the best performing model on the validatiataset is the TPM with
Gamma regression and log link, which explains around 68% dftiae The TPM with
Gamma regression and log link also provides the best perioatzsed or) lowest
root mean squared error within the validation datasetiiaidwest mean predicted
error in the two datasets. Finally, the DIC, used to assesiplexity and fit of the

models to the derivation sample was also explored, aand’'#M with second part

2 Models 1-4 were estimated individually as joint Part A Bad B. However, théour different “Part

A” regressions led to very similar results and each had the same paraeséitaates (including estimates
of standard error) up to 5 decimal places. Thus, it sufficesst state one. For completeness, Part A of
Model 1 was reported in Table 4.

13



lognormal regression was found (Table 7) to provide thefhdés the data (DIC = -
943). The TPM with Gamma regression and log link was also fooquidvide a good
fit to the data though (DIC = -890.2

5. Discussion

The aim of this paper was to enable the estimatida@®bD health state values based
on the EORTC QLQ-C30 data using a Bayesian framework. We dewedoped a
series of Bayesian TPM regression models and have fhandhe TPM model with
normal regression and the TPM model with normal regreswith variance a function
of participant characteristics perform best within theivdéion dataset under
R?/adjusted R criteria, and explains around 70% of variation; thet Ipesforming
model on the validation dataset was the TPM with Gammassigpn and log link,
which explains around 68% of the data. A key advantage afRiMs presented here
is that the zero utility observations are separated fte non-zero utility observations,
thus removing the need fatransformation before a standard regression modelean b
fitted. If zero disutility and non-zero disutility responses araeletl to come from
different data generating processes it is then possibéxplore the determinants of

these by including different sets of covariates in the parts of the model.

All four models presented heuneed ‘vague’ prior distributions and were implemented
using MCMC methods the software package WinBUGS. This environment provides
significant flexibility in model specification as it fitbnstandard models, such as those
TPM models presented in this papém, a single modelling framework, and all
parameter estimation uncertainty is automatically ipooated into the results [B4
Furthermore, the DIC for model selection is also ab#glas its computation has been
coded intoWwinBUGS. It would have been possible to use Bayes factors instead to
guantify the relative ability of thiour modelsn predicting the data [35]. However, in
comparison to DIC, the use of Bayes factors require nméive prior distributions

which we did not have here.

The Tobit Model is another approach to address data witmgedffects [36]. This

approach may be considered more efficient than the TRMIss the normality and

14



homoscedasticity assumptions are violated B8]. It is worth mentioning that Tobit
model was also fitted to the EORTC QLQ-C30 data (results metrghand residuals
were examined against the predictor variables. We have foahththresiduals were
not constant across the level of each predictor andiisdaba empirically suggest that
the Tobit model at least violates the assumption afdsredasticity. Latent Class and
Heckman sample selection models are also consideethalie approads to the
TPM to address data with ceiling effects. However, therenislbestablished debate
in health econometrics over the merits of the tatezsusTPM modelsas of which of
these works best empirically [B9

There is a scope for using more complex models suchmasadized linear models [40
41] and survival-type models to predict utilities. The latterttisaative due to the lack
of assumptions required regarding the errof fidwell as their potential to cope with
censored data. It is worth mentioning that implementing soetiels in an MCMC
setting and using WinBUGS would be possible. It is perhaps worthianary thata
TPM with second part beta regression was also fittetida&ORTC QLQ-C30 data
(results not shown but available upon request from thenlgaatithor),but didn’t
provide further improvement over the four models presergeel We believe that the
explanation for this finding is due to only 8% of the pasamd EQ-5D scores at the
ceiling of one. Indeed, in a healthy population, where a suliteity higher proportion
may have been at the ceiling, models suchRigl with second part beta regressam
even models presented here may have better performadditional work includes
dealing with missing follow-up utility data which, again, couldibeorporated and
implemented in MCMC setting using the Bayesian multiplputation approach as

mentioned by Kharroubi et al [42].

This paper has proposed four alternative TPM models for limgdand predicting
utilities. Although it is not possible to recommend ondipalar model for analysing
utility data in general, due to the specific charactessticeach data set and therefore
the need for a series of different models to be fittebraodel fit assessed, the analyses
presented have demonstrated how utility data may bglsticrwardly modelled using
Bayesian hierarchical models, and model fit and complesbessed using the DIC,

which is straightforward to compute in a MCMC analysis. Sowdels provide
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important information for the planning of future services and higgdgad may also be

used to inform cost-effectiveness analyses.

In conclusion, we found that mean EQ-5D utility weights ba accurately estimated
using a TPM regression mapping algorithm from the EORTC QBQ-QLQ-MY20
Whilst previous models for mapping the EORTC QLQ-C30 to the EQx3 i3,
44], this is the first model to our knowledge to explicithnsider a myeloma subgroup
and to include the MY-20 data. Such a model will be of sigmificse to investigators
conducting economic evaluations, pgneratingpreference-based utility weights in

patients with myeloma.
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Table 1. Baseline Characteristics of Study Cohort (Kharroubi gt5j).

Missing Data Complete

Entire population EQ-5D QLQ-MY20 Case Cohort Derivation Set Validation Set p
No of patients 1839 318 240 1658 1244 414
No of obn 3184 331 252 2674 2003 671
Age, mean(IQR) 64.75 (58-72) 65.6 (58-73) 67.53 (60-76) 64.45 (58-72) 64.4 (58-72) 64.62 (58-72)
Male, % 59.22 56.6 55 59.89 59.97 59.66
EQ-5D, mean(IQR) 0.52(0.26-0.76) NA 0.47(0.19-0.76) 0.52(0.26-0.76) 0.52(0.26-0.76) 0.52(0.26-0.76)
PF, mean(IQR) 58.05(40-80) 58.11(40-80) NA 58.29(40-80) 58.02(40-80) 58.08(40-80) 0.75
RF, mean(IQR) 42.16(0-66.67) 41.53(0-66.67) NA 42.40(0-66.67) 42.17(0-66.67) 42.09(0-66.67) 0.68
DY, mean(IQR) 32.24(0-66.67) 32.43(0-66.67) NA 32.01(0-33.34) 32.10(0-33.34) 31.74(0-66.67) -0.26
PA, mean(IQR) 44.01(16.67-66.67) | 48.26(16.67-83.34) NA 43.46(16.67-66.67) 43.33(16.67-66.67) | 43.84(16.67-66.67) -0.70
FA, mean(IQR) 51.52(33.34-66.67) | 51.20(33.34-66.67) NA 51.45(33.34-66.67) 51.34(33.34-66.67) | 51.79(33.34-66.67) -0.61
SL, mean(IQR) 34.77(0-66.67) 35.47(0-66.67) NA 34.60(0-66.67) 34.47(0-66.67) 35.02(0-66.67) -0.35
AP, mean(IQR) 29.68(0-66.67) 30.73(0-66.67) NA 29.24(0-66.67) 29.51(0-66.67) 28.47(0-33.34) -0.45
NV, mean(IQR) 13.20(0-16.67) 14.81(0-16.67) NA 12.93(0-16.67) 13.13(0-16.67) 12.34(0-16.67) -0.36
CO, mean(IQR) 32.41(0-66.67) 35.84(0-66.67) NA 32.11(0-66.67) 31.84(0-66.67) 32.94(0-66.67) -0.39
DI, mean(IQR) 10.07(0-0) 11.95(0-0) NA 9.81(0-0) 10.18(0-0) 8.70(0-0) -0.10
CF, mean(IQR) 73.10(50-100) 72.53(50-100) NA 73.22(66.67-100) 73.13(66.67-100) 73.50(66.67-100) 0.48
EF, mean(IQR) 70.24(58.34-91.67) | 70.09(55.56-91.67) NA 70.38(58.34-91.67) 70.51(58.34-91.67) | 70.00(58.34-91.67) 0.51
SF, mean(IQR) 50.11(16.67-83.34) | 50.86(16.67-83.34) NA 50.09(16.67-83.34) 50.08(16.67-83.34) | 50.10(16.67-83.34) 0.64
FI, mean(IQR) 20.54(0-33.34) 19.51(0-33.34) NA 20.61(0-33.34) 21.32(0-33.34) 18.48(0-33.34) -0.30
QL, mean(IQR) 51.15(33.34-66.67) | 48.93(33.34-66.67) NA 51.53(33.34-66.67) 51.46(33.34-66.67) | 51.71(33.34-66.67) 0.64
DS, mean(IQR) 31.91(13.34-50) 34.18(16.67-50) NA 31.59(11.12-46.67) 32.04(11.12-50) 30.22(13.34-44.45) -0.62
SE, mean(IQR) 23.77(11.12-33.34) | 24.15(11.12-33.34) NA 23.66(11.12-33.34) 23.57(11.12-33.34) | 23.93(11.12-33.34) -0.51
BI, mean(IQR) 70.98(33.34-100) 73.15(66.67-100) NA 71.09(33.34-100) 71.72(33.34-100) 67.20(33.34-100) 0.28
FP, mean(IQR) 48.16(33.34-66.67) | 46.71(22.23-66.67) NA 48.33(33.34-66.67) 48.95(33.34-66.67) | 45.49(22.23-66.67) 0.35

Note: PF, physical functioning; RF, role functioning; Dyspnoea; PA, pain; FA, fatigue; SL, insomnia; AP, appkiss; NV, Nausea and vomiting; CO, constipation; DI,
diarrhoea; CF, cognitive functioning; EF, emotional fumitig; SF, social functioning; Fl, financial difficultie®L, quality of life; DS, disease symptoms; SE, sidects;
BI, body image; FP, future perspective; NA, not applicable; p, correlation coefficient.
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Table 2: Mean and count for 104 health states in the derivationlsamp

State Mean n State Mean n State Mean n State Mean n
11111 1 169 12232 0.053 1 21332 0.03 7 23322 0.079 8
11112 0.848 62 12311 0.452 1 21333 -0.135 2 23323 -0.086 1
11113 0.414 3 12321 0.329 3 22111 0.746 1 23332 -0.184 8
11121 0.796 88 12322 0.258 2 22132 0.02 1 23333 -0.349 4
11122 0.725 57 12331 0.066 1 22211 0.71 9 31311 0.242 2
11123 0.291 1 12332 -0.005 3 22212 0.639 9 31312 0.171 1
11211 0.883 55 21111 0.85 21 22213 0.205 1 31322 0.048 1
11212 0.812 21 21112 0.779 10 22221 0.587 64 31323 -0.117 1
11221 0.76 115 21121 0.727 34 22222 0.516 117 32131 -0.154 1
11222 0.689 68 21122 0.656 12 22223 0.082 10 32222 0.002 1
11223 0.255 8 21131 0.195 3 22231 0.055 20 32311 0.138 5
11232 0.157 4 21211 0.814 38 22232 -0.016 39 32312 0.067 2
11311 0.556 4 21212 0.743 22 22233 -0.181 7 32313 -0.098 1
11312 0.485 2 21221 0.691 164 22311 0.383 9 32321 0.015 1
11321 0.433 14 21222 0.62 145 22312 0.312 9 32322 -0.056 10
11322 0.362 11 21223 0.186 8 22313 0.147 3 32323 -0.221 1
11323 0.197 1 21231 0.159 18 22321 0.26 48 32331 -0.248 1
11331 0.17 1 21232 0.088 28 22322 0.189 119 32332 -0.319 5
11332 0.099 2 21233 -0.077 1 22323 0.024 7 32333 -0.484 3
11333 -0.066 2 21311 0.487 12 22331 -0.003 22 33311 0.028 2
12112 0.744 1 21312 0.416 8 22332 -0.074 61 33312 -0.043 1
12132 0.089 1 21313 0.251 2 22333 -0.239 9 33321 -0.095 2
12213 0.274 1 21321 0.364 31 23222 0.137 1 33322 -0.166 4
12221 0.656 7 21322 0.293 45 23231 -0.055 1 33331 -0.358 3
12222 0.585 10 21323 0.128 5 23311 0.273 1 33332 -0.429 14
12231 0.124 2 21331 0.101 6 23321 0.15 2 33333 -0.594 7
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Table 3: Mean and count for 79 health states in the validatiorpEam

State Mean n State Mean N State Mean n
11111 1 51 21132 0.124 1 22313 0.147 1
11112 0.848 21 21211 0.814 16 22321 0.26 13
11121 0.796 30 21212 0.743 8 22322 0.189 38
11122 0.725 18 21221 0.691 51 22323 0.024 5
11131 0.264 2 21222 0.62 54 22331 -0.003 4
11211 0.883 20 21223 0.186 3 22332 -0.074 19
11212 0.812 16 21231 0.159 8 22333 -0.239 2
11213 0.378 1 21232 0.088 5 23222 0.137 3
11221 0.76 28 21233 -0.077 1 23311 0.273 1
11222 0.689 24 21311 0.487 4 23321 0.15 1
11223 0.255 4 21312 0.416 3 23322 0.079 6
11311 0.556 2 21321 0.364 9 23323 -0.086 1
11312 0.485 1 21322 0.293 13 23332 -0.184 3
11321 0.433 5 21323 0.128 2 31322 0.048 1
11322 0.362 3 21331 0.101 3 32313 -0.098 1
12212 0.708 2 21332 0.03 5 32321 0.015 1
12221 0.656 4 22121 0.623 1 32322 -0.056 2
12222 0.585 2 22211 0.71 3 32331 -0.248 2
12312 0.381 1 22212 0.639 3 32332 -0.319 4
12321 0.329 1 22221 0.587 32 32333 -0.484 3
12322 0.258 1 22222 0.516 50 33311 0.028 1
12332 -0.005 1 22223 0.082 1 33321 -0.095 1
13322 0.148 1 22231 0.055 4 33322 -0.166 2
21111 0.85 2 22232 -0.016 9 33332 -0.429 5
21112 0.779 1 22233 -0.181 2 33333 -0.594 1
21121 0.727 7 22311 0.383 1

21122 0.656 8 22312 0.312 1
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Table 4: Results of first part of Models-14

QLQ domain* Coefficient (credible interval)
a, (Constant) 15.65 (11.54, 20.10)
a, Appetite Loss 2.233 (0.766, 3.820)
a, Body Image -0.172 (-1.205, 0.881)
as Cognitive Functioning 1.124 (-0.729, 2.810)
Qy Constipation -0.292 (-1.268, 0.701)
as Diarrhoea 1.253 (-0.357, 2.958)
[ Disease Symptoms 4.934 (2.235, 7.739)
ay Dyspnoea -0.332 (-1.485, 0.798)
Qg Emotional Functioning -6.648 (-9.105, -4.415)
Qg Fatigue -2.105 (-4.017, -0.209)
10 Financial Difficulties 1.145 (-0.204, 2.594)
aqq Future Perspective -0.664 (-1.818, 0.463)
aqy Nausea and Vomitingg -0.013 (-2.846, 2.908)
@13 Pain 5.874 (3.645, 8.201)
QAqa Physical Functioning -6.703 (-9.398, -4.095)
s Quality of Life -1.706 (-3.563, 0.138)
A6 Role Functioning -2.929 (-4.529, -1.251)
a7 Side Effects -0.544 (-3.521, 2.503)
Qg Social Functioning 0.063 (-1.477, 1.592)
Q19 Insomnia/Sleep -0.628 (-1.708, 0.471)
a,, (age) -0.009 (-0.034, 0.0142)
a,, (female) -0.202 (-0.740, 0.316)

Note: (*) All variables are included as 100x standard QL@ains. Values given as posterior mean (central 95% crediblwahit Estimates shown in bold are those who

have credible intervals excluding zero.
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Table5: Results of second part models (Models4)

QLQ*

Model 1

Model 2

Model 3

Model 4

B, (Constant)

0.885 (0.793, 0.972)

0.876 (0.782, 0.961)

-0.221 (-0.392, -0.047)

-0.223 (-0.374, -0.050)

By

AP

0.051 (0.017, 0.086)

0.053 (0.018, 0.086)

0.066 (-0.001, 0.134)

0.076 (0.013, 0.144)

B

Bl

0.023 (-0.005, 0.052)

0.024 (-0.005, 0.053)

0.048 (-0.008, 0.104)

0.040 (-0.023, 0.094)

Bs

CF

0.017 (-0.031, 0.064)

0.014 (-0.033, 0.060)

0.078 (-0.016, 0.170)

0.106 (0.031, 0.182)

Ba

CO

0.015 (-0.014, 0.044)

0.016 (-0.013, 0.045)

0.000 (-0.057, 0.057)

0.006 (-0.057, 0.054)

Ps

DI

-0.054 (-0.097, -0.011)

-0.058 (-0.101, -0.016)

-0.077 (-0.161, 0.006)

-0.091 (-0.176, -0.011)

Be

DS

0.124 (0.062, 0.185)

0.129 (0.067, 0.190)

0.208 (0.090, 0.328)

0.189 (0.072, 0.303)

By

DY

-0.038 (-0.071, -0.006)

-0.037 (-0.069, -0.005)

-0.045 (-0.107, 0.018)

-0.050 (-0.106, 0.014)

Ps

EF

-0.145 (-0.197, -0.092)

-0.144 (-0.199, -0.091)

-0.241 (-0.346, -0.137)

-0.266 (-0.378, -0.168)

Po

FA

-0.088 (-0.147, -0.027)

-0.085 (-0.144, -0.025)

-0.144 (-0.261, -0.026)

-0.121 (-0.231, -0.011)

:810

Fl

0.002 (-0.029, 0.033)

0.002 (-0.028, 0.031)

0.053 (-0.007, 0.113)

0.038 (-0.020, 0.095)

:811

FP

-0.073 (-0.115, -0.031)

-0.071 (-0.112, -0.029)

-0.144 (-0.226, -0.059)

-0.136 (-0.223, -0.070)

:812

NV

0.020 (-0.032, 0.071)

0.020 (-0.031, 0.072)

0.041 (-0.061, 0.143)

0.042 (-0.056, 0.140)

:813

PA

0.218 (0.171, 0.265)

0.217 (0.171, 0.264)

0.463 (0.370, 0.553)

0.463 (0.375, 0.557)

,814—

PF

-0.510 (-0.568, -0.452)

-0.515 (-0.571, -0.457)

-0.955 (-1.066, -0.843)

-0.820 (-0.909, -0.718)

Bis

QF

-0.090 (-0.153, -0.025)

-0.081 (-0.142, -0.020)

-0.117 (-0.237, 0.001)

-0.119 (-0.236, 0.013)

:816

-0.038 (-0.086, 0.011)

-0.034 (-0.083, 0.014)

-0.200 (-0.294, -0.105)

-0.257 (-0.337, -0.173)

:817

SE

0.086 (0.002, 0.172)

0.092 (0.011, 0.175)

0.113 (-0.053, 0.271)

0.141 (-0.033, 0.313)

:818

SF

-0.055 (-0.100, -0.012)

-0.056 (-0.101, -0.011)

-0.129 (-0.214, -0.044)

-0.139 (-0.214, -0.069)

[319

SL

0.009 (-0.022, 0.040)

0.008 (-0.022, 0.039)

0.013 (-0.046, 0.074)

0.012 (-0.046, 0.069)

B2 (2ge)

0.000 (-0.001, 0.001)

0.000 (-0.001, 0.001)

0.000 (-0.002, 0.002)

0.001 (-0.001, 0.003)

B, (female)

-0.015 (-0.034, 0.04)

-0.014 (-0.033, 0.005)

-0.015 (-0.053, 0.021)

-0.007 (-0.042, 0.030)

g

0.191 (0.184, 0.197)

NA

0.372 (0.360, 0.384)

0.189 (0.184, 0.197)

9 (Constant) NA 3.438 (3.241, 3.633) NA NA
9, (age) NA -0.009 (-0.016, -0.003) NA NA
0, (female) NA -0.084 (-0.217, 0.047) NA NA

Note: PF, physical functioning; RF, role functioning; DY, glysea; PA, pain; FA, fatigue; SL, insomnia; AP, appetite IN85 Nausea and vomiting; CO, constipation; DI, diarrhde®,
cognitive functioning; EF, emotional functioning; SF, socialdtioning; FI, financial difficulties; QL, quality of lifeDS, disease symptoms; SE, side effects; Bl, body infage future
perspective; NA, not applicable; (*) All variables areluded as 100x standard QLQ domains. Values given as posterdor (central 95% credible interval). Estimates shoviroid are those
who have credible intervals excluding zero.

25



Table 6: Model performance based on central estimate

Derivation data set

Validation data set

R? Adjusted R Mean predicted R? Adjusted R Mean predicted] RMSE
error error
Model 1 0.7005 0.6940 0.1431 0.6787 0.6572 0.1471 0.1892
Model 2 0.7005 0.6937 0.1430 0.6778 0.6552 0.1472 0.1894
Model 3 0.6864 0.6797 0.1463 0.6714 0.6494 0.1466 0.1913
Model 4 0.6959 0.6893 0.1387 0.6803 0.6589 0.1394 0.1887
Note: R, proportion of variance explained by the mod&dtimates shown in bold are best performing models.
Table 7: Overall DIC for the fitted models
Model 1 Model 2 Model 3 Model 4
D -337.6 -345.0 -988.2 -934.6
Py 44.76 46.53 45.20 44.46
DIC -292.8 -298.5 -943.0 -890.2




