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Abstract: In model identification, the existence of uncertainty normally generates negative impact on the accuracy and 
performance of the identified models, especially when the size of data used is rather small. With a small data set, least 
squares estimates are biased, the resulting models may not be reliable for further analysis and future use. This study 
introduces a novel robust model structure selection method for model identification. The proposed method can successfully 
reduce the model structure uncertainty and therefore improve the model performances. Case studies on simulation data and 
real data are presented to illustrate how the proposed metric works for robust model identification.  
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1. Introduction 

The procedure of model identification includes several steps including data collection and processing, selection of model 
representation, model structure detection and selection, model parameter estimation, and model validity test [25]. A wide 
variety of model types have been developed for nonlinear input-output system identification, modelling and control, for 
example, nonlinear autoregressive with exogenous inputs (NARMAX) model [15], neural networks [13,16,20,26], 
Bayesian network [19], fuzzy model [11,27,36,37,39], wavelet models [5,8,31,38] and so on. Among these, the NARMAX 
model is one of the most commonly used model types for many real-world applications including ecological systems [22], 
environmental systems [3], space weather [1,10,34], medicine [4], societal [18] and neurophysiological [21] sciences, etc.   

Broadly speaking, data based modelling approaches can be categorized into two groups: parametric and nonparametric. 
Nonparametric methods are those that do not make strong assumptions about the form of the mapping functions (that map 
the model "input" variables to the model "output" variables). Most existing artificial neural networks are nonparametric 
approaches. In [24] it is stated that "Nonparametric methods are good when you have a lot of data and no prior knowledge, 
and when you don’t want to worry too much about choosing just the right features” (p.757). One of the advantages of 
neural networks is that in general they can achieve relatively higher performances in dealing with complicated data 
modelling problems defined in high dimensional space. However, the model structure of most neural networks is very 
complicated and cannot be simply written down. In addition, neural networks models often involve a large number of 
variables and take a long time for training. General neural networks models cannot provide a transparent model structure, 
where the significance of individual variables and the role of their interactions are invisible. Moreover, the implementation 
of some nonparametric approaches for example Bayesian networks normally would need a huge number of samples.  In 
comparison with neural networks models, parametric NARX models use a nonlinear polynomial structure and often only 
need a small number of effective model terms to describe the system. It can be achieved by selecting a number of most 
important model terms by an orthogonal forward regression (OFR) algorithm [14,33], so that it generally only requires a 
relatively small number of input and output data points [6,30]. In many applications (e.g. [3],[4]), where the main objective 
of the modelling tasks is not only to predict future behavior, but also reveal and understand which model variables are most 
important and how the candidate variables interactively affect the system behavior, parametric models are usually become 
a first choice.     

Under some specific conditions and assumptions, most existing model identification methods work well and can provide 
sufficiently reliable models for most applications. However, in many cases where there is modelling uncertainty (e.g. in 
data, model form and structure, parameters, noise level, etc.), the identified models may lack reliability and thus less useful. 
This is particularly true when the available data set is small. This study focuses on parametric models and aims to answer 
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the following challenging question. Given a small set of experimental data of a system, how to build a model that best 
represents the underlying system dynamics hidden in the data? Most data modelling approaches can generate good models 
that best fit the data themselves, but the models may not be able to represent well the inherent dynamics of the original 
system because of different kinds of uncertainties. For small data modelling problems, the difficulty of finding reliable 
models is often exacerbated due to the small sample size of data. It is observed that for a small data modelling problem, 
small changes in a few or even a single sample can cause a large effect on model estimation. Thus, another question that 
arises is: how to reduce the model uncertainty (i.e. increase the model reliability) for small size data modelling problems? 

It is not straightforward, if not impossible, to induce a robust model from a small sample size data, no matter what kind 
of system identification or data modelling algorithm are employed. In additional to noise and the size of samples, other 
types of factors can also lead to model uncertainty. For example, a data based modelling approach may just simply assumes 
a specific model type to represent the data but the specified model structure is completely different from the true system 
model; some driven variables may be immeasurable or ignored. All this is embedded in the aphorism “all models are wrong, 
but some are useful” [9]. In fact, for all system identification problems, model type selection and structure detection is 
usually an instrumentally important task. For the same data based modelling problem, different types of models often have 
different properties and performance, with different interpretation of the data. Even for the same model type, different 
algorithms could lead to different final model representations. The reason is simple: when the true model is unknown, all 
the identified models could be wrong because of uncertainty and the incompleteness of information. Effectively dealing 
with uncertainty (model structure, parameter, prediction, etc.) has become an important topic in many research fields, for 
example, soil changes [23], carbon and water fluxes at the tree scale [17]. In all scientific research, it nearly always needs 
to consider uncertainty, from various perspective such as, sources of uncertainty, techniques of quantifying uncertainty, 
decision making under strong uncertainty conditions, etc. 

With the above observations, this study aims to develop a new approach to find a robust model structure to reduce 
uncertainty in model identification especially when sample size is small. Based on a data resampling approach, combined 
with an orthogonal forward regression (OFR) algorithm [14,33], a robust model structure selection (RMSS) method is 
designed to reduce model uncertainty and improve model performance. This is especially useful for the following two 
scenarios of data based modelling problem: i) modelling from multiple small sample size datasets (e.g. many datasets for 
a same system but generated under different experimental conditions; ii) modelling for a non-stationary system where 
although the key system dynamics can be represented using a single model structure, different model parameters are needed 
to adaptively reflect the change of system behaviors at different times.  

In summary, the main contribution of the work lies in the new robust common model structure detection method for 
solving two challenging problems frequently encountered in practical system identification and data-driven modelling, 
namely, (a) reliable model identification from small sample data, and (b) robust common model determination from several 
or many experimental datasets.   

The reminder of this paper is organized as follows. In Section 2, the classic nonlinear autoregressive moving average 
with exogenous inputs (NARMAX) model and orthogonal forward regression (OFR) algorithm are briefly reviewed. In 
Section 3, the proposed robust model structure selection (RMSS) method is introduced. Section 4 presents case studies of 
both simulation data and real data. The study is summarized in Section 5. 

 

2. Overview of NARMAX model and OFR algorithm 

This study focuses on linear-in-the-parameters representation including NARMAX model. The OFR algorithm is used 
to detect the significant model terms and establish parsimonious model structures. 

 

2.1 NARMAX model 

The nonlinear autoregressive moving average with exogenous inputs (NARMAX) model [15] was developed for black-
box system identification where the true model structure is assumed to be unknown. The general NARMAX model 
structure is: ݕሺݐሻ ൌ ݐሺݕሾܨ െ ͳሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐሺݑ െ ͳሻǡ ǥ ǡ ݐሺݑ െ ݊௨ሻǡ ݁ሺݐ െ ͳሻǡ ǥ ǡ ݁ሺݐ െ ݊ሻሿ                   (1) 
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where ݕሺݐሻ and ݑሺݐሻ are systems output and input signals; ݁ሺݐሻ is a noise sequence with zero-mean and finite variance. ݊௬ ǡ݊௨ǡ and ݊  are the maximum lags for the system output, input and noise. ܨሾήሿ is some nonlinear function. Many of the 
traditional linear and nonlinear model type, for example, AR, ARM and NARX model can be treated as special cases of 
NARMAX model. There are several advantages of NARX and NARMAX model: first, the model structure can be 
determined in a stepwise way by selecting the significant model terms by an orthogonal forward regression (OFR) 
algorithm; second, the identification procedure is not time consuming and easy to implement; third, the polynomial form 
of the model provides a transparent and parsimonious representation of the system which is easy to understand and use. 
These advantages can be realized using an OFR method, which can effectively and efficiently select model terms, from a 
huge number of candidate model terms. 

2.2 Term Selection using OFR algorithm 

The classic OFR algorithm, firstly introduced in [14], was originally developed as a subset selection method for nonlinear 
modelling problems where the nonlinearity is unknown in advance and the desirable model terms cannot be specified. The 
OFR method was proposed in solving such ‘black-box’ system identification problems. The basic idea behind this method 
is to use an error reduction ratio (ERR) [14] index, to measure the significance of candidate model terms and generate a 
rank according to the contribution made by each of the model terms to explaining the variation of the response variable. 
At each step, one model term can be selected from the candidate sets according to their ERR ranking. After each term is 
selected, it is removed from the bases and the bases are then transformed to new orthogonalized bases for the next terms 
selection procedure.  The OFR algorithm can be described as follows:  

 

2.2.1 Problem Statement 

A polynomial NARX model can be written as the following linear-in-the-parameters form:  ݕሺݐሻ ൌ σ ሻெୀଵݐ߮ሺߠ  ݁ሺݐሻ                                                                    (2)                       

where ߮ ሺݐሻ are the model terms generated from the regressor vector ࣖሺݐሻ ൌ ሾݕሺݐ െ ͳሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐሺݑ െ ͳሻǡ ǥ ǡ ݐሺݑ െ݊௨ሻሿ ், ߠ are the unknown parameters and M is the number of candidate model terms.  

Let ࢟ ൌ ሾݕሺͳሻǡ ǥ ǡ ் ሺܰሻሿݕ  be the output vector of N sampled observations and ࢾ ൌ ሾ ߮ሺͳሻǡ ǥ ǡ  ߮ሺܰሻሿ ்  be the 
vector formed by the m-th model term ሺ݉ ൌ ͳǡ ʹǡ ǥ ǡ ܦ ሻ. A dictionary of all the candidate model terms can be written asܯ ൌ ሼ ߮ଵǡ ǥ ǡ  ߮ெሽ . And let ܦ ൌ ൛ ߮భ ǡ ǥ ǡ  ߮ൟ be a subset of ݊ model terms, from the full set ܦ, where ሼ݈ଵǡ ǥ ǡ ݈ሽ ሼͳǡא ʹǡ ǥ ǡ ࢟   :can be well explained ݕ  so thatܦ ሽ. Thus, the term selection problem for the (2) is to find a subsetܯ ൌ σ ࣂ ୀଵࢾ    (3)                                             ࢋ

 

2.2.2 Model Term Selection 

The classic OFR method uses a simple and effective ERR index, to measure the contribution of each model term in 
exampling the system. For the full dictionary ܦ, the ERR index of each candidate model term can be calculated by:  ܴܴܧሺଵሻሾ݅ሿ ൌ ሺ࢟ ࢾሻమሺ࢟࢟ሻሺࢾ ࢾሻ                                                                            (4)                       

where ݅ ൌ ͳǡ ʹǡ ǥ ǡ The first selected model term can then be identified as:  ݈ଵ  .ܯ ൌ ݃ݎܽ                        ሺଵሻሾ݅ሿൟ                                                                (5)ܴܴܧଵஸஸெ൛ݔܽ݉

Then the 1st significant model term of the subset can be selected as ߮భ , and the 1st associated orthogonal variable can 
be defined as ଵ ൌ ߮ భ. After removalࢾ భ from ܦ, the dictionary ܦ is then reduced to a sub-dictionary ܦெିଵ, consisting 
of ܯ െ ͳ model candidates. At step ݏ ሺݏ  ʹሻ, the ܯ െ ݏ  ͳ bases are first transformed into new group of orthogonalised 

base ሾଵሺ௦ሻǡ ଶሺ௦ሻǡ ǥ ǡ ெି௦ାଵሺ௦ሻ ሿwith orthogonlization transformation. ሺ௦ሻ ൌ ࢾ െ σ ೝೝೝೕࢾ ௦ିଵୀଵ                                         (6)                       
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where ሺݎ ൌ ͳǡ ʹǡ ǥ ǡ ݏ െ ͳሻ are orthogonal vectors, ࢾሺ݆ ൌ ͳǡ ʹǡ ǥ ǡ ܯ െ ݏ  ͳ) are the basis of unselected model terms 

of subset ܦெି௦ାଵand ሺ௦ሻሺ݆ ൌ ͳǡ ʹǡ ǥ ǡ ܯ െ ݏ  ͳሻ  are the new orthogonalised bases. The rest of the model terms can then 

be identified step by step using the ERR index of orthogonalised subsets ܦெି௦ାଵ:  

ሺ௦ሻሾ݆ሿܴܴܧ ൌ ሺ࢟ೕሺೞሻሻమሺ࢟࢟ሻሺೕሺೞሻ ೕሺೞሻሻ                                      (7)                       

݈௦ ൌ ݃ݎܽ  ሺଵሻሾ݆ሿൟ                                    (8)ܴܴܧଵஸஸெି௦ାଵ൛ݔܽ݉

 

2.2.3 Model size determination 

The selection procedure can be terminated when specific conditions are met. The number of model terms to be included 
in the final model can be determined by several model selection criteria, for example, the Generalised Cross-Validation 
(GCV) [8], a modified Generalised Cross-Validation Criteria based on Mean-Square-Error (MSE) [22], a modified ESR 
(Error Signal Ratio) index [28] and the adjustable prediction error sum of squares (APRESS) [6]. In this study, the APRESS 
is used to determine the number of model terms.  It is given as:   ܵܵܧܴܲܣሺ݊ሻ ൌ ቀ ேேିఒቁଶ                        ሺ݊ሻ                                      (9)ܧܵܯ

where ܰ  is the number of observations, ݊ is the number of selected model terms, ߣ is a small positive number and ܧܵܯሺ݊ሻ 
is the mean square error. The optimal number of model terms is often chosen as:  ݊௧ ൌ ݃ݎܽ ݉݅݊ଵஸஸெሼܵܵܧܴܲܣሺ݊ሻሽ                                (10) 

The above procedure is referred to as forward regression with orthogonal least squares (FROLS) or simply orthogonal 
forward regression (OFR) algorithm [7,14]. 

 

3. Robust model structure selection method 

Following the discussions in the previous section, the OFR method is used to select a small number of significant terms 
to establish a best model structure. For many real modelling tasks, there are several commonly seen situations where the 
OFR algorithm cannot be directly used to generate best models, for example: i). the data are usually recorded from a series 
of experiments under different experimental conditions, or the system itself is non-stationary and needs to be observed for 
a long-time scale. In these scenarios, the model structure might be varying with time and/or with the change of external 
environmental conditions. ii). The true model structure of the system is unknown and cannot be well represented by any of 
the candidate model terms in the dictionary. Thus, it is impossible to find a perfect model structure and there will always 
be uncertainty of model structure. iii). the data is corrupted with strong noises which makes the OFR estimation biased. 
The bias could be extremely obvious when data size is small, since a small change of a single term can bring a huge 
difference on the estimated model.  Under these conditions, the OFR method may fail to find a best model structure that 
can well represent the system. Therefore, the RMSS method is needed for capturing and reducing the model uncertainty 
and thus improving the overall model predictive performance. 

In the following, a novel RMSS method is proposed. The basic idea of the new method is first illustrate using a simple 
example, and the procedure of the method is then presented.  

 

3.1 Basic idea 

Consider a scenario where a total number of ܭ datasets are available, all of which are generated from a same system 
under some different conditions. The primary objective is to find a common model that best fits all the ܭ datasets. The new 
method uses a concept of overall mean absolute error (OMAE); it is defined as the average of ܭ individual mean absolute 
errors (MAE) which are calculated when a model (or a new model term is included in an existing model) to fit all the ܭ 
datasets. Consider two datasets (as shown in Table 1): 
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Table 1 
Variables of two datasets 

 x1 x2 x3 y 
 1 1 0 1 

dataset 1 0 1 1 2 
 1 1 1 5 
 1 0 0 4 
 0 1 0 2 

dataset 2 1 1 1 1 
 0 0 0 3 
  1 0 0 1 

 

Assuming that one and only one variable (among x1, x2, and x3) is used to fit the two datasets, then which one can give a 
minimum OMAE value? This can be done by calculating the individual MAE values one by one. For example, the 

individual mean absolute error ߳ଵሺଵሻ of the variable  x ଵሺଵሻ for dataset 1 can be calculated as:  

߳ଵሺଵሻ ൌ ଵସ ฯݕሺଵሻ െ ଵሺଵሻฯଵ ݔ ଵሺଵሻߙ ൌ ଵସ ብݕሺଵሻ െ  ௫ భሺభሻ ௬  ሺభሻ ௫ భሺభሻ ௫ భሺభሻ ଵሺଵሻብଵ ݔ  ൌ ଵସ ቯെʹǤ͵͵͵͵ʹǤͲͲͲͲͳǤͲǤ ቯଵ ൌ ͳǤ                          (11) 

MAEs for x2 and x3 can be calculated in a similar way for datasets 1. Similar calculations can be performed to dataset 
2. There is a total number of 6 individual MAEs.  The OMAEs can be calculated, as shown in Table 2. As the OMAE 
value of x1 is smaller than the other two, x1 should be the best choice for fitting the two datasets. Note that once the first 
model term is determined, a second model term can be chosen to join the first one, and then a third one, and on. The 
detailed descriptions of the general procedure of the RMSS method is given in next section. 

Table 2 
MAE and OMAE values of x1, x2, and x3  

Term MAE (dataset 1) MAE (dataset 2) OMAE   ݔଵ 1.6667 1.2500 1.4583  ݔଶ 2.1667 1.0833 1.6250  ݔଷ 2.0000 1.5000 1.7500 

 

3.2 Robust model structure selection method 

The RMSS method can be summarized into several steps:  

 
3.2.1 Resampling process (for small size data) 

Assume that the original data can be described by a ܰ ൈ  :as follows ࢊ matrix ܯ

ࢊ ൌ ሾ ࢾଵǡ ǥ ǡ ெሿࢾ  ൌ ൦ ଵሺͳሻߜ  ଵሺʹሻߜ ଶሺͳሻߜ  ଶሺʹሻߜ  ڮ ڭெሺʹሻߜ ெሺͳሻߜ  ڰ ଵሺܰሻߜ ڭ ଶሺܰሻߜ  ڮ  ெሺܰሻ൪                    (12)ߜ 

where ሼ ࢾଵǡ ǥ ǡ  and ܰ is the number of data (candidate model terms ܯ generated from) candidate basis vectors ܯ ெሽ isࢾ 
points. The original dataset can be regrouped to form ܭ  sub-datasets through some resampling methods e.g. random 
sampling or bootstrap (see [29,32] and the references therein). The k-th sub-dataset can be described by a ܰ ᇱ ൈ       :matrix ܯ
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ሺሻࢊ ൌ ଵሺሻǡࢾൣ ǥ ǡ ெሺሻ൧ࢾ ൌ ێێۏ
ۍێ ଵሺሻሺͳሻߜ ଵሺሻሺʹሻߜଶሺሻሺͳሻߜ ଶሺሻሺʹሻߜ ڮ ڭெሺሻሺʹሻߜெሺሻሺͳሻߜ ڰ ଵሺሻሺܰᇱሻߜڭ ଶሺሻሺܰᇱሻߜ ڮ ۑۑےெሺሻሺܰᇱሻߜ

ېۑ
                                 

(13) 

where the associated candidate basis vectors become ቄ઼ଵሺሻǡ ǥ ǡ ઼ெሺሻቅ and ܰ ᇱ is the number of data points in each sub-dataset. 

Remark 1: For small size data, the original dataset is resampled by removing one of the data points each time until all the 
data points have been picked out once (leaving one sample out), so that ܰᇱ ൌ ܰ െ ͳ and ܭ ൌ ܰ. Thus, the uncertainty 
brought by removing or adding a single data point can be reduced by finding a single common model for the K sub-datasets. 
The resampling process is used for the situations when the data size is small and the effect of a single data point can be 
significant for determining the final model structure and model parameters. 

 

3.2.2 The OMAEs of model terms for K sub-datasets 
To find a robust model structure that best fits all the ܭ sub-datasets, an MAE matrix is calculated using the data from all 

the ܭ sub-datasets. In the first step search, the MAE matrix is defined as: 

ሺଵሻ ࢸ ൌ ێێۏ
ۍێ ߳ଵሺଵሻ ߳ଶሺଵሻ߳ଵሺଶሻ ߳ଶሺଶሻ ڮ ߳ெሺଵሻ߳ெሺଶሻڭ ڰ ଵሺሻ߳ڭ ߳ଶሺሻ ڮ ߳ெሺሻۑۑے

ېۑ
                                        

(14)                       

where ߳ ሺሻ ሺ݉ ൌ ͳǡ ʹǡ ǥ ǡ ݇ ݀݊ܽ ܯ ൌ ͳǡ ʹǡ ǥ ǡ  ሻ  is the individual MAE value when the m-th candidate model term isܭ
used to approximate output ݕሺሻ in the k-th sub-dataset. It is calculated as: ߳ሺሻ ൌ ଵேᇲ ฮ࢟ሺሻ െ ߙሺሻࢾሺሻฮଵ                                        (15) 

where ߙሺሻ is the parameter. Then, the OMAE associated with the m-th candidate model term which is used to represent 
all the ܭ sub-datasets is defined as:   ߳ҧ ൌ ଵ ሺ߳ሺଵሻ  ߳ሺଶሻ   ǥ   ߳ሺሻሻ                                     (16) 

Remark 2: In addition to the OMAE, there are several other metrics for measuring the overall predicted error of each model 
term, for example: ߶ଵሺݕ ǡ ෝሻ ݕ ൌ ଵே σ ȁݕ௧ െ ௧ෝݕ ȁே௧ୀଵ                                             (17) ߶ଶሺݕ ǡ ෝሻ ݕ ൌ ଵே σ ሺݕ௧ െ ௧ෝݕ ሻଶே௧ୀଵ                                            (18) 

߶ଷሺݕ ǡ ෝሻ ݕ ൌ σ ȁ௬ି௬ෞȁಿసభσ ȁ௬ȁಿసభ ାσ ȁ௬ෞȁಿసభ                                                (19) 

߶ସሺݕ ǡ ෝሻ ݕ ൌ ට భಿ σ ȁ௬ି௬ෞȁಿసభට భಿ σ ȁ௬ȁಿసభ ାට భಿ σ ȁ௬ෞȁಿసభ                                       (20) 

where y and  ݕ ෝ are the observed and predicted system outputs and ܰ is the number of data points. As will be illustrated 
later (e.g. Table 12 in Section IV-B) that Ԅଵሺy ǡ y ෝሻ (MAE) is a better choice. It was argued in some studies that MAE is a 
better metric for model evaluation [12].  

 

3.2.3 OMAE-based term selection and parameter estimation 
Define:  
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݈ଵ ൌ ݃ݎܽ ݉݅݊ଵஸஸெ  ሼ߳ ҧ ሽ                                                              (21)   

Then the 1st significant model terms can be selected as ߮భ . After removal of the basis ࢾభሺሻ from the k-th sub-dataset ሺ݇ ൌ ͳǡ ʹǡ ǥ ǡ ܭ ሻǡ the dictionaries of all theܭ  sub-datasets are then reduced and consists of ܯ െ ͳ model candidates.                       
Similar to that in the conventional OFR algorithm, at step ݏ ሺݏ  ʹሻ, the ܭ dictionaries consist of ܯ െ ݏ  ͳ candidate 
model terms. The ܭ bases are all transformed into a new group of ܭ orthogonalized bases. The orthogonal transformation 
can be implemented using (6) for each single sub-dataset. The MAE matrix at step ݏ can be calculated using the new group 
of ܭ bases, and the MAE matrix is:  

ሺ௦ሻ ࢸ ൌ ێێۏ
ۍێ ߳ଵሺଵሻ ߳ଶሺଵሻ߳ଵሺଶሻ ߳ଶሺଶሻ ڮ ߳ெି௦ାଵሺଵሻ߳ெି௦ାଵሺଶሻڭ ڰ ଵሺሻ߳ڭ ߳ଶሺሻ ڮ ߳ெି௦ାଵሺሻ ۑۑے

ېۑ
                                    (22)                       

The OMAEs of all the candidate terms can then be calculated and the s-th robust model term can be selected to be ߮ೞ, 
with: ݈௦ ൌ ݃ݎܽ ݉݅݊ଵஸஸெି௦ାଵ  ሼ߳ ҧ ሽ                                                             (23)                       

Repeating the recursive process, a number of model terms can be selected to form a linear-in-parameters robust model 
structure. Similar to OFR algorithm, the selection procedure can be terminated when specific conditions are met.  

Assume that a total of ݊ model terms are selected, and for the ݇-th sub-dataset let the output ݕሺሻ be represented by the ݊ selected model terms as:  ࢟ሺሻ ൌ భߠ ሺሻ ࢾభ ሺሻ  ߠమ ሺሻ ࢾమ ሺሻ   ǥ  ࢾ ሺሻߠ ሺሻ                                        (24) 

Following [14,15], the model parameters ߠభ ሺሻǡ మߠ ሺሻǡ ǥ ǡ ߠ ሺሻ  can be calculated through an iterative procedure. 
According to the orthogonalization procedure [14,15], here we define ܭ unity upper triangular matrices first: 

ሺሻ ൌ ێێۏ
ଵଵሺሻܽۍێ ܽଵଶሺሻͲ ܽଶଶሺሻ ڮ ܽଵሺሻܽଶሺሻڭ ڰ Ͳڭ Ͳ ڮ ܽሺሻۑۑے

ېۑ
                                                                   (25) 

 

where ܽ ଵଵሺሻ ൌ ܽଶଶሺሻ ൌ ڮ ൌ ܽሺሻ ൌ ͳ. 
 

From the orthogonalization procedure, the elements of ሺሻ can be calculated as:                 
 ܽሺሻ ൌ ሺೝሺೖሻሻࢾೕሺೖሻሺೝሺೖሻሻೝሺೖሻ     ሺݎ ൌ ͳǡ ʹǡ ǥ ǡ ݆ െ ͳ ܽ݊݀ ݆ ൌ ʹǡ ͵ǡ ǥ ݊ሻ                                          (26) 

 ݃ሺሻ ൌ ሺ࢟ሺೖሻሻೕሺೖሻሺೕሺೖሻሻೕሺೖሻ  ሺ݆ ൌ ͳǡ ʹǡ ǥ ǡ ݊ሻ                                         (27) 

 

The estimates of K groups of parameter vector ࣂ ሺሻ ൌ ሾߠభ ሺሻǡ మߠ ሺሻǡ ǥ ǡ  ሺሻሿ can then be calculated from the triangularߠ

equations  ሺሻࣂ ሺሻ ൌ  ,parameter estimates ܭ ሺሻ. The final model parameter estimation is chosen to be the average of theࢍ
with:  

ೕ  ߠ  ൌ ଵ σ  ୀଵ ೕሺሻ ሺ݆ߠ ൌ ͳǡ ʹǡ ǥ ǡ ݊ሻ         (28) 

Detailed derivation and explanation for the mechanism of the above calculations (25)-(28) can be found in [14] and [15].  

Remark 3: The proposed RMSS method can be summarized into several steps: 1). calculate the OMAE of each candidate 
model term; 2). select the model term according to the OMAEs; 3). remove the selected terms in the dictionary and 
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transformed the rest of bases to form new orthogonalized bases; 4) repeat the first 3 steps until a specific model selection 
criterion is met. 5). parameter estimation. The whole procedure can be described by a diagram as shown in Fig. 1. 

Remark 4:  Note that different from traditional L2-norm based algorithms, e.g. the orthogonal projection pursuit (OPP) 
algorithm [28] that can be proven to converge, the proof of the convergence of the proposed RMSS method is not 
straightforward.  In this study, the focus is on choosing a set of most powerful model terms from a given pool consisting 
of a large number of candidate model terms, through an iterative manner, one term at each search step, until a model with 
an appropriate model terms that gives satisfactory fit to the data is obtained. Instead of strictly prove the convergence of 
the proposed method, we demonstrate the overall performance of the new method through numerical case studies which 
are presented in the next section.      

 

Fig. 1.  Robust model structure selection (RMSS) method 

4. Case studies 

Two simulation examples are presented to test the efficiency of the RMSS method and to show under which conditions 
the proposed method can improve the model performance.  The first example aims to test if the proposed method can pick 
out the correct model terms when data are noise free. The second example investigates the performance of the proposed 
method for modelling problems with different levels of uncertainty (noise). Finally, a case study on Kp index forecast is 
carried out to demonstrate the power of the new method solving a real-world problem. For the convenience of comparative 
analysis, the model identified by OFR method will be referred as ‘regular model’ and the model identified by RMSS 
method will be referred as ‘robust model’. 

 

4.1 Example 1- noise free data modelling 

It is known that most existing model structure selection methods are able to provide sufficiently reliable model, when 
data are clean (i.e. not corrupted with noise).  In the following it will show that both the RMSS method and classic OFR 
method can generate perfect model structure from noise free data. Consider a nonlinear system:  yሺtሻ ൌ ͲǤͷyሺt െ ͳሻ  ͲǤͺݑሺݐ െ ʹሻ  uଶሺt െ ͳሻ െ ͲǤͲͷݕଶሺt െ ʹሻ  ͲǤͷ                                                       (29)          

where the input uሺtሻ was assumed to be uniformly distributed on ሾെͳǡ ͳሿ. A total number of 100 input-output data points 
were generated. The first 70 points were used for model estimation and the remaining 30 points were used for performance 
test. The following candidate variable vector was used for model construction:  ࣖሺݐሻ ൌ ሾyሺt െ ͳሻǡ yሺt െ ʹሻǡ uሺt െ ͳሻǡ uሺt െ ʹሻሿ ்                                                  (30)      
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The initial full model was chosen to be a polynomial form with nonlinear degree of l ൌ ͵. Firstly, the OFR method was 
applied to find the significant model terms according to the ERR ranking. The APRESS values suggest that a model of 5 
terms can be a good choice. Not surprisingly, all the model terms are correctly selected and the parameters are estimated 
correctly. The selected terms and the associated ERR values are shown in Table 3. The RMSS method was also applied to 
the same train data, to select significant terms according to their OMAEs relating to a total number of 70 sub-datasets 
generated through the resampling process. As a result, the RMSS method selected exactly the same model terms as the 
OFR method. The associated OMAEs are shown in Table 4.  

 
 
Table 3 
Selected terms by classic OFR method  

No. Term ERR(100%) Parameter 
1 y(t-1) 78.7770 0.5000 
2 u(t-2) 10.6233 0.8000 
3 u(t-1) ×u(t-1) 8.8996 1.0000 
4 constant 1.3601 0.5000 
5 y(t-2) ×y(t-2) 0.3401 -0.0500 

 
Table 4 
Selected terms by RMSS method 

No. Term OMAE Parameter 
1 y(t-1) 0.5639 0.5000 
2 u(t-2) 0.3831 0.8000 
3 u(t-1) ×u(t-1) 0.1610 1.0000 
4 constant 0.0652 0.5000 
5 y(t-2) ×y(t-2) 0.0000 -0.0500 

 

 
Fig. 2.  SERR and OMAE versus the number of iteration of term selection 

 

Fig. 3.  Statistics prediction performance of regular model and robust model versus the model complexity 
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Note that the OFR and RMSS methods employ two different indicators (i.e., the ERR index and OMAEs to measure the 
contribution of each model term to explaining the variance of response variable. During the process of OFR, the SERR 
(sum of ERR values) is increasing to the maximum value of 100%, which indicates that 100% of the variance of response 
variable can be explained by the selected terms. For the RMSS method, the OMAE is decreasing to 0, which means that 
there is no error in the identified model. The variation of SERR and OMAE of the OFR and RMSS are displayed in Fig. 2. 
It can be easily seen that the model with 5 terms is perfect and can describe 100% of the variance of the response variable. 
The variation of the correlation coefficient and prediction efficiency, with the inclusion of model terms, one by one, is 
shown in Fig. 3. 

 

4.2 Example 2- data with additive white noise 

Now consider a nonlinear system:  ݕሺݐሻ ൌ െݑሺݐ െ ͳሻඥȁݕሺݐ െ ͳሻȁ  ͲǤͶݑଶሺݐ െ ͳሻ  ͲǤͺݑሺݐ െ ʹሻݑ ሺݐ െ ͳሻ   ሻ                                         (31)ݐሺߦ

where the input ݑሺݐሻ was assumed to be uniformly distributed on ሾെͳǡ ͳሿ and ߦሺݐሻ is a white noise with zero mean and 
finite variation. With five different levels of signal to noise ratio, namely, noise-free and SNR = 50, 15, 10, 0 dB, 
respectively, the system was simulated five times. For each SNR case, a total number of 100 input-output data points were 
generated. The first 70 points were used for model estimation and the remaining 30 points were used for performance test. 
The initial full model was chosen to be a polynomial form with maximum time lags of ݊௬ ൌ ݊௨ ൌ ʹ and nonlinear degree 

of ݈ ൌ ͵. Note that the model term ඥȁݕሺݐ െ ͳሻȁ was not included in the specific library of candidate model terms. As a 
consequence, it is impossible to identify a ‘true’ model structure that perfectly represents every single component of the 
system. However, it is possible to use both the OFR and the RMSS method to find model that can well represent the 
simulated data. In what follows, it presents analysis and discussions on whether the RMSS methods can find satisfactory 
models with good predictive performance, under different level of noise.  

Table 5 
Selected terms by OFR and RMSS method  

SNR No. OFR method RMSS method 
noise 
free 

1 u(t-2) ×u(t-2) u(t-2) ×u(t-2) 
2 u(t-1) u(t-1) 
3 u(t-1) ×u(t-1) ×y(t-2) u(t-1) ×u(t-1) ×y(t-2) 
4 u(t-1) ×u(t-2) ×u(t-2) u(t-1) ×u(t-2) ×u(t-2) 
5 u(t-1) ×u(t-2) u(t-1) ×u(t-2) 
6 u(t-1) ×u(t-2) ×y(t-1) u(t-1) ×u(t-2) ×y(t-1) 
7 u(t-2) ×y(t-1) y(t-1) ×y(t-2) 

50db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           
2 u(t-1)                    u(t-1)                    
3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  
4 u(t-1) ×u(t-2) ×u(t-2)  u(t-1) ×u(t-2) ×u(t-2)  
5 u(t-1) ×u(t-2)           u(t-1) ×1(t-2)           
6 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  
7 u(t-2) ×y(t-1) y(t-1) 

15db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           
2 u(t-1)                    u(t-1)                    
3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  
4 u(t-1) ×u(t-2) ×u(t-2)  u(t-1) ×u(t-2) ×u(t-2)  
5 u(t-1) ×u(t-2)           u(t-1) ×u(t-2)           
6 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  
7 u(t-1) ×u(t-2) ×y(t-2)  u(t-1) ×u(t-2) ×y(t-2)  
8 u(t-2) ×y(t-1)           u(t-1) ×u(t-1)           

10db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           
2 u(t-1)                    u(t-1)                    
3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  
4 u(t-1) ×u(t-2)           u(t-1) ×u(t-2)           
5 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  
6 y(t-1) ×y(t-2)           u(t-2) ×y(t-2)           
7 y(t-1) ×y(t-2) ×y(t-2)  u(t-1) ×u(t-1) ×u(t-2)  
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8 u(t-1) ×u(t-2) ×u(t-2)  y(t-2) ×y(t-2) ×y(t-2)  
9 u(t-1) ×u(t-1) ×u(t-2) u(t-1) ×u(t-2) ×y(t-2) 

0db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           
2 u(t-1)                    u(t-1)                    
3 u(t-2) ×u(t-2) ×y(t-2)  u(t-2) ×u(t-2) ×y(t-2)  
4 u(t-1) ×u(t-1) ×y(t-1)  y(t-1) ×y(t-1)           
5 u(t-1) ×u(t-2)           u(t-2) ×y(t-2)           
6 u(t-1) ×u(t-1)           u(t-2) ×u(t-2) ×u(t-2)  
7 y(t-1) ×y(t-1)           u(t-2) ×y(t-2) ×y(t-2)  
8 y(t-1) ×y(t-2)           y(t-1) ×y(t-1) ×y(t-1)  
9 y(t-1) ×y(t-1) ×y(t-1)  u(t-1) ×u(t-1) ×y(t-2) 

Both the OFR and RMSS methods were applied to the simulated data with different levels of noises (noise-free, SNR = 
50, 15, 10, 0 dB). The model complexity was determined by the APRESS metric. The selected model terms by the two 
methods are shown in Tables 5. It can be observed that for most cases, the two methods select the same model terms for 
the first few steps. This is reasonable because these terms are the most significant terms and make major contribution to 
explaining the variance of system output and leaving one sample out (this scheme is used in RMSS method but not in OFR) 
does not affect the order of the selected terms. However, the two methods start to select different model terms after a few 
steps. These model terms give smaller contributions to explaining the variance in output signal, and a small change of 
single sample might affect result of selection of these terms. In other words, the less significant model terms are more 
sensitive to the effect of noise. 

As mentioned earlier, the classic OFR method uses ERR index as measure to select model terms; the measure is defined 
as how much (in percentage) of the variance in the response signal can be explained by a newly included model term. The 
RMSS method uses OMAE instead, which is a measure of the averaged prediction error in relation to a great number (say ܭ) of models estimated from ܭ sub-datasets generated from the original data through a resampling process. Therefore, the 
resulting robust model should provide better overall predictive performances than the regular model. The performance 
statistics of the regular and robust models are given in Table 6.  The results show that with the decrease in SNR values, the 
performance of the models identified by both the OFR method and the robust method decreases, due to the increase of 
uncertainty. It should be stressed that even for the noise-free case, both of the two methods fail to detect the true model 

structure, because the model component ݑሺݐ െ ͳሻඥȁݕሺݐ െ ͳሻȁ is actually not in the pre-defined library of candidate model 
terms. 

Table 6 
Performance statistics of the regular model, robust model, lasso algorithm and neutral networks under different noises  

SNR Level performance statistic regular  
NARX model 

robust  
NARX model 

lasso 
algorithm 

neural 
network* 

noise-free correlation coefficient 0.9365 0.9497 0.9335 0.9070 
 predicted efficiency 0.8534 0.8754 0.8573 / 

50 dB correlation coefficient 0.9374 0.9463 0.9343 0.9273 
 predicted efficiency 0.8560 0.8721 0.8587 / 

15 dB correlation coefficient 0.9117 0.9208 0.9114 0.8292 
 predicted efficiency 0.7899 0.8135 0.7808 / 

10 dB correlation coefficient 0.8339 0.8758 0.8550 0.7712 
 predicted efficiency 0.6219 0.7366 0.7025 / 

0 dB correlation coefficient 0.3780 0.4311 0.4931 0.3740 
 predicted efficiency 0.0426 0.1846 0.2221 / 

* The number of layers is 10 and the training algorithm is Levenberg-Marquardt. The algorithm was run for 10 times and 
the averaged correlation coefficient is recorded.  

Comparing the performance statistics of the regular and robust NARX models given, it is clear that the robust models 
outperform the regular models in all the cases. In addition, the improvement of the robust models is significant when SNR 
is quite low say at 10 dB and 0 dB.  Fig. 4-6 show the model prediction of the regular and robust models for the three cases: 
noise-free and SNR=15dB and 0dB, respectively. As can be seen from the figures, the differences of predicted and observed 
output become more significant with the increase of noise level. It can be noted in Fig. 6 that there are some extremely 
large values in predicted output from the regular model, and the robust model is more conservative in prediction, where 
the amplitudes of the predicted values are in general smaller than that of the classical model but closer to the true values.  

We also compared the performances of proposed RMSS method with other two nonlinear identification methods: lasso 
and neural networks. Lasso aims to the degree of the freedom of a given model structure by shrinking the coefficients of 
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unnecessary model terms to zero. The lasso method can be easily adapted to many application scenarios where the desired 
response signal is assumed to be of a sparse representation of a set of independent signals (predictors).However, lasso 
could fail to produce stable subset selection results when the predictors are highly correlated. The performances of the two 
methods are evaluated based on the models with the same number of model terms. From the results in Table 6, the robust 
NARX model outperforms the lasso method in most of the cases (noise-free, SNR=50, 15, 10 dB). This is because the 
orthogonal forward regression (OFR) algorithm used in RMSS can effectively solve sever correlation and ill-conditioning 
problems [30,33]. Regarding all the five cases, the performances of the neural network models are lower than those of the 
other two methods. This might be because that the size of the data is very small, and that the power of neural networks is 
cannot be fully exploited for this small size data modelling problem. More importantly, the proposed RMSS method has 
the following superiorities: i). the procedure is easy to implement and not time-consuming; ii). the identified model clearly 
indicates the information of the most important model terms; iii). the identified model provides a transparent and 
parsimonious linear-in-the-parameters representation, which can be easily generalized to new data. It is worth mentioning 
that in this example, all the robust models were built using only 70 data points, which is quite small. This means the 
proposed RMSS method may promise an effective data driven modelling approach for nonlinear systems, especially for 
small size data with strong uncertainty. Overall, these results show the clear advantage of the proposed RMSS method in 
nonlinear model identification. 

In addition, for the case of SNR=15dB, three extra robust models are obtained based on the other three different measures 
defined in (21)-(23), respectively. The performance statistics of all the four models are given in Table 7 and it turns out 
that the robust model selected by OMAE over performs the other three models.    

Table 7 
Comparison of the performances of robust models identified based on different measures 

Measures ߶ଵ ߶ଶ ߶ଷ ߶ସ 
Correlation Coefficient 0.9208 0.9202 0.8667 0.8667 

Predicted Efficiency 0.8135 0.8059 0.7018 0.7018 
 

 

 

Fig. 4.  One-step-ahead (OSA) predictions of robust model and regular model (noise free) 

 

Fig. 5.  One-step-ahead (OSA) predictions of robust model and regular model (SNR is 15dB) 
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Fig. 6.  One-step-ahead (OSA) predictions of robust model and regular model (SNR is 10dB) 

 

4.3 Example 3- Kp index Forecasting 

Magnetic disturbance can affect many equipment and systems on or nearby earth, for example, navigation systems, 
communication systems, satellites, and power grid, etc. They can be paralyzed and unreliable during these severe magnetic 
situations. In order to understand and forecast the geomagnetic activity, the Kp (planetarische Kennziffer) index was first 
introduced by Bartels in 1949 [2]. The value of Kp index ranges from 0 (very quiet) to 9 (very disturbed) in 28 discrete 
steps, resulting values of 0, 0+, 1-, 1, 1+,2-, 2, 2+, …, 9 [35].  The Kp index has been recorded and updated since last 
century and become an important dataset to study space weather. The correlation between Kp index and solar wind 
parameters has been discovered by many researches. Normally, the solar wind variables are treated as the model inputs and 
Kp index is treated as the model output. A full description of the solar wind variables and derived variables is summarized 
in Table 8. 

 
Table 8 
Kp index and solar wind variables 

Name Model variable Description ܭ y Kp index ܸ u1 solar wind speed/velocity (flow speed) [kmȀs] ݏܤ u2 southward interplanetary magnetic field  u3 solar wind pressure (flow pressure) [nPa] ݊ u4 solar wind density (proton density) [nȀcc] ܸݏܤ u5 V ൈ BsȀͳͲͲͲ ඥ u6 square root of  

 

The Kp index was sampled every 3 hours and the solar wind variables were sampled every 1 hour. It should be noted 
that this study aims to build the models using robust method to predict Kp index 3 hours ahead. Therefore, the unit of time 
lags of both input and output is 3 hours. For example, ݕሺݐ െ ʹሻ is the Kp index recorded 6 hours before ݕሺݐሻ and ݑସሺݐ െ ͳ) 
is the solar wind speed recorded 3 hours before ݑସሺݐሻǤ A total number of 150 input-output data points of the 2011 are 
selected for the case study. The maximum time lags are chosen as ݊௨ ൌ ʹ and the nonlinear degree is 2. The first 100 
samples are used for training and the remaining 50 samples are used for testing. The model is selected using only input lag 
variables, without using autoregressive variables. The first 4 model terms selected by OFR method and RMSS method are 
shown in the following table 9 and table 10.  

Table 9 
Selected terms by OFR method for Kp model 

No Term ERR(100%) Parameter 
1 u6(t-1) 79.6551 7.7057e+00 
2 u2(t-1) ×u2(t-1) 5.3507 4.0605e+02 
3 u1(t-1) 2.5907 2.3494e+00 
4 u2(t-2) 0.3058 7.4787e+00 

 
Table 10 
Selected terms by RMSS method For Kp model 

No Term OMAEs Parameter 
1 u6(t-1) 0.85592 6.4929e+00 
2 u2(t-1) 0.74081 5.0490e+01 
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3 u1(t-1) ×u6(t-2) 0.68803 2.0516e+01 
4 u5(t-1) 0.65544 -8.2486e+04 

 
The performance statistics of the two models are given in Table 11 and Fig. 7 presents comparisons between the model 

outputs and the associated measurements. Clearly, the overall performance of the robust model is better than the regular 
model and that produced by the lasso algorithm. The performance of the neural network model is slightly better than the 
robust NARX model. However, it is worth noting that the robust NARX model uses a much less number of model terms 
to provide a transparent and parsimonious representation, which is easy to interpret and use. Although the correlation 
between the measurements and the corresponding prediction of the neural network model is higher, the model itself is very 
complicated and difficult to write down. In contrast, the RMSS method and NARX model provide a transparent and 
parsimonious representation, which is simple where all the interactive relation among variables is clear. In general, the 
RMSS method achieves   a good trade-off between model complexity and model performance. Overall, the robust NARX 
model can be a good choice for Kp index predictions.  

 
 
 
 
 
 
 
 
Table 11 
Performance statistics of the regular model and robust model on Kp forecast 

Performance Statistics regular model robust model lasso neural networks* 
Correlation Coefficient 0.7132 0.8056 0.6109 0.8368 
Predicted Efficiency 0.2927 0.6304 0.3202 / 

Normalized Root Mean Square Error 0.2449 0.1750 0.3506 / 
* The number of layers is 10 and the training algorithm is Levenberg-Marquardt. The algorithm was run for 10 times and 
the averaged correlation coefficient is recorded.  

 

Fig. 7.  One-step-ahead (OSA) predictions of robust model and regular model for Kp index 

 

5. Conclusion 

This article focuses on improving model identification methods from small size data. When the size of data is small or 
data is corrupted with noises, there is large uncertainty of model structure and parameter. These conditions can bring a 
negative effect on the model structure selection process of the classic OFR method. In this study, the RMSS method is 
proposed to enhance the classic OFR algorithm by selecting the robust significant model terms according to the OMAEs 
of resampled sub-datasets. The new method is tested on two simulation examples and a real data application. The results 
suggest that the new method can improve the prediction performance of modelling problems, especially when the data size 
is small and there are strong noises and unknown system components. The advantage of this robust model is that it can 
better capture the inherent dynamics of the whole dataset and thus can be well generalized to new data. Thus, the new 
method can be applied for small sample size and multiple datasets problems. 

This paper does not analyse model uncertainty (e.g. the uncertainty existing in both model structure and model 
parameters) and its effect on model generalization performance. Inspired by the concepts and ideas proposed for fuzzy and 
neural network modelling techniques (e.g. [11], [26],[27],[37],[39]),  one of our future research directions would be 
focusing on quantitative analysis of model uncertainty.      
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