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Abstract: In model identification, the existence of uncertainty normally generategivegmpact on the accuracy and
performance of the identified models, especially when the size of datasusgder small. With a small data set, least
squares estimates are biased, the resulting models may not be reliable &ordodlysis and future use. This study
introduces a novel robust model structure selection method for idedéfication. The proposed method can successfully
reduce the model structure uncertainty and therefore improve the paofitglnances. Case studies on simulation data and
real data are presented to illustrate how the proposed metric works for maduled identification.
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1. Introduction

The procedure of model identification includes several steps including dlatetioa and processing, selection of model
representation, model structure detection and selection, model parameter estimatioogeingalidity test [25]. A wide
variety of model types have been developed for nonlinear input-caipt#m identification, modelling and control, for
example, nonlinear autoregressive with exogenous inputs KN®R model [15, neural networks [136,20,26],
Bayesian networkl[9], fuzzy model 11,27 36,3739, wavelet models [5,8.1,38] and so on. Among these, the NMR X
model is one of the most commonly used model types for mahwoelal applications including ecological systems [22],
environmental systems [3], space weather [1,10,34], medicingdeigtal [18] and neurophysiological [21] sciences, etc.

Broadly speaking, data based modelling approaches can be categorized groupg parametric and nonparametric.
Nonparametric methods are those that do not make strong assumptions afooot tighe mapping functions (that map
the model "input" variables to the model "output" variables). Most existing artifieilal networks are nonparametric
approaches. In [24] it is stated that "Nonparametric methods are googaethkave a lot of data and no prior knowledge,
and when you don’t want to worry too much about choosing just the right features” (p.757). One of the advantages of
neural networks is that in general they can achieve relatively highfarmances in dealing with complicated data
modelling problems defined in high dimensional space. However, tiokelnstructure of most neural networks is very
complicated and cannot be simply written down. In addition, neetalarks models often involve a large number of
variables and take a long time for training. General neural networks models$ peowide a transparent model structure,
where the significance of individual variables and the role of their interaetierisvisible. Moreover, the implementation
of some nonparametric approaches for example Bayesian networks gommald need a huge number of samples. In
comparison with neural networks models, parametric NARX models use agavriolynomial structure and often only
need a small number of effective model terms to describe the systembk e@hieved by selecting a number of most
important model terms by an orthogonal forwaegression (OFR) algorithm [14,33], so that it generally only requires a
relatively small number of input and output data point3(j6Jn many applications (e.qg. [3],[4]), where the main objective
of the modelling tasks is not only to predict future behavioralsat reveal and understand which model variables are most
important and how the candidate variables interactively affect the systemdseparametric models are usually become
a first choice.

Under some specific conditions and assumptions, most existing moddiddéinti methods work well and can provide
sufficiently reliable models for most applications. However, in many cabese there is modelling uncertainty (e.g. in
data, model form and structure, parameters, noise level, etc.), theiégdiemididels may lack reliability and thus less useful.
This is particularly true when the available data set is small. This study farnupasametric models and aims to answer
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the following challenging question. Given a small set of experimental afaa system, how to build a model that best
represents the underlying system dynamics hidden in the data? Masiodisiéing approaches can generate good models
that best fit the data themselves, but the models may not be able to repedbtire imherent dynamics of the original
system because of different kinds of uncertainties. For small datellmgdoroblems, the difficulty of finding reliable
models is often exacerbated due to the small sample size of data. It is oltsatfeda small data modelling problem,
small changes in a few or even a single sample can cause a largereffeadel estimation. Thus, another question that
arises is: how to reduce the model uncertainty (i.e. increase the model reliadnilgg)dll size data modelling problems?

It is not straightforward, if not impossible, to induce a robust maodet & small sample size data, no matter what kind
of system identification or data modelling algorithm are employed. liiiawial to noise and the size of samples, other
types of factors can also lead to model uncertainty. For example, a databasdithg approach may just simply assumes
a specific model type to represent the data but the specified model structomepigtely different from the true system
model; some driven variables may be immeasurable or ignored. All this is embedded in the aphorism “all models are wrong,
but some are useful” [9]. In fact, for all system identification problems, model type selectionsandture detection is
usually an instrumentally important task. For the same data based mopedligm, different types of models often have
different properties and performance, with different interpretatiomefdata. Even for the same model type, different
algorithms could lead to different final model representations. The reasorpls:sivhen the true model is unknown, all
the identified models could be wrong because of uncertainty andchmpfeteness of information. Effectively degin
with uncertainty (model structure, parameter, prediction, etc.) has becampatant topic in many research fields, for
example, soil changes [23], carbon and water fluxes at the tree stall[dll scientific research, it nearly always needs
to consider uncertainty, from various perspective such as, soofeamcertainty, techniques of quantifying uncertainty,
decision making under strong uncertainty conditions, etc.

With the above observations, this study aims to develop a new approfict gorobust model structure to reduce
uncertainty in model identification especially when sample size is small. Bagedata resampling approach, combined
with an orthogonal forward regression (OFR) algorithm [14,83]pbust model structure selection (RMSS) method is
designed to reduce model uncertainty and improve model performanees especially useful for the following two
scenarios of data based modelling problem: i) modelling from multiple smallesainp datasets (e.g. many datasets for
a same system but generated under different experimental conditionsgdé)limgfor a non-stationary system where
although the key system dynamics can be represented using a single motiekstdifferent model parameters are needed
to adaptively reflect the change of system behaviors at different times.

In summary, the main contribution of the work lies in the newsbbammon model structure detection method for
solving two challenging problems frequently encountered in practys&trs identification and data-driven modelling,
namely, (a) reliable model identification from small sample data, andl{b3troommon model determination from several
or many experimental datasets.

The reminder of this paper is organized as follows. In Section 2, the claslieeapautoregressive moving average
with exogenous inputs (NARMAX) model and orthogonal forward regmeq©FR) algorithm are briefly reviewed. In
Section 3, the proposed robust model structure selection (RMSS) methivddsced. Section 4 presents case studies of
both simulation data and real data. The study is summarized in Section 5.

2. Overview of NARMAX model and OFR algorithm

This study focuses on linear-the-parameters representation including NARMAX model. The OFR algoritheeds
to detect the significant model terms and establish parsimonious modéalrssu

2.1 NARMAX model

The nonlinear autoregressive moving average with exogenous (MARMAX) model [15] was developed for black-
box system identification where the true model structure is assumed to beavankfhe general NARMAX model
structure is:

y(t) =F[y(t—1), ...,y(t — ny),u(t —1),..,u(t—ny),e(t—1),..,e(t —ny) (1)



wherey(t) andu(t) are systems output and input signalg;) is a noise sequence with zero-mean and finite variangce.
n,, andn, are the maximum lags for the system output, input and rndjigds some nonlinear function. Many of the
traditional linear and nonlinear model type, for example, AR, ARM and NARX nuztiebe treated as special cases of
NARMAX model. There are several advantages of NARX and NARMAX model: finst,nmodel structure can be
determined in a stepwise way by selecting the significant model ternas lmythogonal forward regression (OFR)
algorithm; second, the identification procedure is not time consuamdgasy to implement; third, the polynomial form
of the model provides a transparent and parsimonious representatiorsgétdm which is easy to understand and use.
These advantages can be realized using an OFR method, which canedffectil/efficiently select model terms, from a
huge number of candidate model terms.

2.2 Term Selection using OFR algorithm

The classic OFR algorithm, firstly introduced in [14], was originallyedi@yed as a subset selection method for nonlinear
modelling problems where the nonlinearity is unknown in advang¢hendesirable model terms cannot be specified. The
OFR method was proposed in solving such ‘black-box’ system identification problems. The basic idea behind this method
is to use an error reduction ratio (ERR)][1#dex, to measure the significance of candidate model terms and generate a
rank according to the contribution made by each of the model terms to exgliaimariation of the response variable.

At each step, one model term can be selected from the candidate sets accdhdiinge®®R ranking. After each term is
selected, it is removed from the bases and the bases are then transforeveatihogonalized bases for the next terms
selection procedure. The OFR algorithm can be described as follows:

2.2.1 Problem Statement

A polynomial NARX model can be written as the following linéathe-parameters form:
Y(t) = Zin=10m®m (t) + e(t) 2)
whereg,, (t) are the model terms generated from the regressor v@@tpe= [y(t — 1), ...,y(t - ny),u(t —-1),..,u(t -

n,)] 7, 6,, are the unknown parameters avds the number of candidate model terms.

Lety = [y(1),..,y(N)] T be the output vector of N sampled observations &pe- [ ¢,, (1), ..., o, (N)] T be the
vector formed by the m-th model tem = 1, 2, ..., M). A dictionary of all the candidate model terms can be written as
D={¢y, .., pu}. And letD, ={ ¢, ..., ¢, } be a subset of model terms, from the full sé, where{l,, ...,1,} €
{1, 2, ..., M}. Thus, the term selection problem for the (2) is to find a sulssb thaty can be well explained:

y= Zln=1 Bli ali t+e (3)

2.2.2 Model Term Selection

The classic OFR method uses a simple and effective ERR index, to méesaomtribution of each model term in
exampling the system. For the full dictiondrythe ERR index of each candidate model term can be calculated by:

Wi — 07 8)?
ERR™1 = Gyl o ()

wherei =1, 2,..., M. The first selected model term can then be identified as:

l, =arg 1m,aJIgI{ERR(l) [i]} (5)
<is
Then the 1st significant model term of the subset can be seleatged asd the 1st associated orthogonal variable can
be defined ag, = §,,. After removalp,, from D, the dictionaryD is then reduced to a sub-dictiondry_;, consisting

of M — 1 model candidates. At stap(s > 2), theM — s + 1 bases are first transformed into new group of orthogonalised
() () (s)

baselq;”,q; ", ..., q;,_s.1]With orthogonlization transformation.
T
() _ -1 94
q;" =8 - XS 4 (6)



whereq,(r = 1, 2,...,,s — 1) are orthogonal vector§;(j = 1, 2,..,M — s + 1) are the basis of unselected model terms
of subseDM_Hlanqu.S)(j =1, 2,..,M —s+ 1) arethe new orthogonalised bases. The rest of the model terms can then
be identified step by step using the ERR index of orthogonalisegtsily, .. 4:

o"q{™?

ERR®[j] = ——L7— 7
o™n@” ¢
= @y
k=arg, max (ERROL) ®)

2.2.3 Model size determination

The selection procedure can be terminated when specific conditions are nmainitier of model terms to be included
in the final model can be determined by several model selection criteria, foplexdne Generalised Cross-Validation
(GCV) [8], a modified Generalised Cross-Validation Criteria based on Mean-SquargSE) R2], a modified ESR
(Error Signal Ratio) index [28] and the adjustable prediction erroio$guares (APRESS) [6]. In this study, the APRESS
is used to determine the number of model terms. It is given as:

N 2
APRESS(n) = (5-) MSE(n) 9)
whereN is the number of observationsjs the number of selected model terthss a small positive number aMISE (n)
is the mean square error. The optimal number of model terms is oftsenchs:

Noptimar = Arg 172115711\4{‘4PRESS(7L)} (10)

The above procedure is referred to as forward regression with orthéemstasquares (FROLS) or simply orthogonal
forward regression (OFR) algorithm [7]14

3. Robust model structure selection method

Following the discussions in the previous section, the OFR methoddgsaselect a small number of significant terms
to establish a best model structure. For many real modelling tasks, there aakcewaronly seen situations where the
OFR algorithm cannot be directly used to generate best models, for exantpéedata are usually recorded from a series
of experiments under different experimental conditions, or the sytelhis non-stationary and needs to be observed for
a long-time scale. In these scenarios, the model structure mighryiegvwith time and/or with the change of external
environmental conditions. ii). The true model structure of the systenki®wm and cannot be well represented by any of
the candidate model terms in the dictionary. Thus, it is impossible ta firifect model structure and there will always
be uncertainty of model structure. iii). the data is corrupted with stioisgs which makes the OFR estimation biased.
The bias could be extremely obvious when data size is small, since a smgk diaa single term can bring a huge
difference on the estimated model. Under these conditions, the OFR methdaiint@jind a best model structure that
can well represent the system. Therefore, the RMSS method is neededddngagnd reducing the model uncertainty
and thus improving the overall model predictive performance.

In the following, a novel RMSS method is proposed. The basic idéee afew method is first illustrate using a simple
example, and the procedure of the method is then presented.

3.1 Basic idea

Consider a scenario where a total numbeK afatasets are available, all of which are generated from a same system
under some different conditions. The primary objective is to find a @ymmodel that best fits all thé datasets. The new
method uses a concept of overall mean absolute error (OMAE); it is defined seréigeaofK individual mean absolute
errors (MAE) which are calculated when a model (or a new model temoligled in an existing model) to fit all tike
datasets. Consider two datasets (as shown in Table 1):



Tablel
Variables of two datasets

X
a

dataset 1

dataset 2
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Assuming that one and only one variable (amongzxand %) is used to fit the two datasets, then which one can give a
minimum OMAE value? This can be done by calculating the individual MAKes one by one. For example, the

individual mean absolute erref® of the variablex §1) for dataset 1 can be calculated as:

O —-2.3333

w_1l,o_ o O _1|l,@_x" vy || _1f] 20000 | _

61 4 y al xl 4 x(l)Tx(l) x1 2 16667 16667 (11)
P 1 0.6667 I,

MAESs for % and % can be calculated in a similar way for datasets 1. Similar calculations caridrenpdrto dataset
2. There is a total number of 6 individual MAEs. The OMAESs can be calcuigeshown in Table 2. As the OMAE
value of x is smaller than the other two, should be the best choice for fitting the two datasets. Note that oncetthe firs
model term is determined, a second model term can be chosen to jaisttbed, and then a third one, and on. The
detailed descriptions of the general procedure of the RMSS method is givext section.

Table2
MAE and OMAE values of x1, x2, and x3
Term MAE (dataset 1) MAE (dataset 2) OMAE
X 1.6667 1.2500 1.4583
Xy 2.1667 1.0833 1.6250
X3 2.0000 1.5000 1.7500

3.2 Robust model structure selection method
The RMSS method can be summarized into several steps:

3.2.1 Resampling process (for small size data)
Assume that the original data can be describedMyaV matrixd as follows:

1) &M 8y
=6, 8,0=| 5@ 8O " @ (12)
51(N) 52(N) 6M(N)

where{ é,, ..., 6,,}is M candidate basis vectors (generated fidroandidate model terms) aitis the number of data
points. The original dataset can be regrouped to férsub-datasets through some resampling methods e.g.nnando
sampling or bootstrap (see [22] and the references therein). The k-th sub-dataset can be describld kW matrix:
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(13)
where the associated candidate basis vectors bek&im;a.. , SS,‘)} andN’ is the number of data points in each sub-dataset.

Remark 1: For small size data, the original dataset is resampled by removing one afahpouhts each time until all the
data points have been picked out once (leaving one sample out), 80 thaf — 1 andK = N. Thus, the uncertainty
brought by removing or adding a single data point can be redydediing a single common model for the K sub-datasets.
The resampling process is used for the situations when the data sizallisnd the effect of a single data point can be
significant for determining the final model structure and model parameters

3.2.2 The OMAEs of model terms for K sub-datasets
To find a robust model structure that best fits allkhgub-datasets, an MAE matrix is calculated using the data from all
the K sub-datasets. In the first step search, the MAE matrix is defined as:

GG &
po |’ & ar
| : " :
[e® 0 .. ]

(14)

wheree,(,’f) (m=1, 2,..,Mand k =1, 2,...,K) is the individual MAE value when the m-th candidate model term is
used to approximate output®) in the k-th sub-dataset. It is calculated as:

en’ = lly® — a8, (15)

wherea,(,'f) is the parameter. Then, the OMAE associated with the m-th candidate modelhieins used to represent
all theK sub-datasets is defined as:

€Em = %(e,(i) + e,(,f) + ..+ e,(,lf)) (16)

Remark 2: In addition to the OMAE, there are several other metrics for measuringehal predicted error of each model
term, for example:

~ 1 ~
$:(v,9) =~ XiLaly: — 7l 17

-~ 1 ~
$,(0,9) = L Lo (e — 7)? (18)
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(v, y) = (20)

wherey and y are the observed and predicted system outputdaadhe number of data points. As will be illustrated
later (e.g. Table 12 in Section IV-B) thppf(y,¥) (MAE) is a better choice. It was argued in some studies that MAE is a
better metric for model evaluation [12]

3.2.3 OMAE-based term selection and parameter estimation
Define:



Ly =arg min {&n} (21)

Then the 1st significant model terms can be selectgr] a#\fter removal of the basi&ﬁ‘) from the k-th sub-dataset

(k =1,2,...,K), the dictionaries of all th& sub-datasets are then reduced and consist -efl model candidates.
Similar to that in the conventional OFR algorithm, at stép > 2), theK dictionaries consist df — s + 1 candidate
model terms. Th& bases are all transformed into a new grouff ofthogonalized bases. The orthogonal transformation
can be implemented using (6) for each single sub-dataset. The MAE atati@ps can be calculated using the new group
of K bases, and the MAE matrix is:

@ @ @
€1 &7 Eyos
) @) )
pe =€ €& EM—s+1 (22)
K ' K ' (Kj
lfi ) Gé LR 6M—s+1J

The OMAEs of all the candidate terms can then be calculated and thebsighmwdel term can be selected taphe
with:

Iy=arg min {&,} (23)

1smsM-s+1

Repeating the recursive process, a number of model terms can be deléoteda linearin-parameters robust model
structure. Similar to OFR algorithm, the selection procedure can be termivtegadspecific conditions are met.

Assume that a totalf n model terms are selected, and for khilh sub-dataset let the outpe® be represented by the
n selected model terms as:

y© =0,%s"+0 ®s®+ .+ ©s ® (24)

Following [14,15], the model parameteig®,6,,®,...,6, ® can be calculated through an iterative procedure.
According to the orthogonalization procedure [14,15], here we dEfimeity upper triangular matrices first:

() (r) ()
A1 A Qg ]
(k) ()
A® =| 0 ay Aon | (25)

l 0:0
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whereaﬁ) = aé’? =.=a¥) =1.

From the orthogonalization procedure, the elemen#'8fcan be calculated as:

(ONT s (K)
(k) _ (ar ) Slj

Clr]- —W (r=1,2,...,j—1andj=2,3,...n) (26)

k) _ 0")Tq;®

i (q(.k))qu(k) (] =1,2,.. ,n) (27)
]

The estimates of K groups of parameter vegtét = [9,,*,8,,%, ..., 6, ®] can then be calculated from the triangular

equationsA®e®) = g The final model parameter estimation is chosen to be the averagekopétemeter estimates,
with:

1 N
6 T ;Zﬁil Gl(]_l) (G=12,..,n) (28)

Detailed derivation and explanation for the mechanism of the above calcu{@89#{28) can be found in [14] and [15].

Remark 3: The proposed RMSS method can be summarized into several steps: 1ateafeuDMAE of each candidate
model term; 2). select the model term according to the OMAEs; 3). removeldiited terms in the dictionary and



transformed the rest of bases to form new orthogonalized basepe4} the first 3 steps until a specific model selection
criterion is met. 5). parameter estimation. The whole procedure can be desgribdihpram as shown in Fig. 1.

Remark 4: Note that different from traditional L2-norm based algorithms, e.g. thegwnal projection pursuit (OPP)
algorithm [28] that can be proven to converge, the proof of theecgence of the proposed RMSS method is not
straightforward. In this study, the focus is on choosisgtaof most powerful model terms from a given pool consisting
of a large number of candidate model terms, through an iterative manaderanat each search step, until a model with
an appropriate model terms that gives satisfactory fit to the data is obtaisieddl of strictly prove the convergence of
the proposed method, we demonstrate the overall performance of theatked through numerical case studies which
are presented in the next section.

original data
(input-output data points)

¥

resample the datato form
K sub-datasets

calculate OMAEs of each
candidate term in the -
candidate dictionary

!

select the term with
smallest OMAE

.

remove the selected terms
from the candidate
dictionary

check
APRESS
criterion

if more terms are needed

ifenough terms are selected

estimate the parameters of
selected terms

Fig. 1. Robust model structure selection (RMSS) method
4. Case studies

Two simulation examples are presented to test the efficiency of the RMSS maihitodshow under which conditions
the proposed method can improve the model performance. The &irspkxaims to test if the proposed method can pick
out the correct model terms when data are noise free. The second exangilgatesethe performance of the proposed
method for modelling problems with different levels of uncertainbjs@). Finally, a case study on Kp index forecast is
carried out to demonstrate the power of the new method solvingaadedlproblem. For the convenience of comparative
analysis, the model identified by OFR method will be referred as ‘regular model’ and the model identified by RMSS
method will be referred as ‘robust model’.

4.1 Example 1- noise free data modelling

It is known that most existing model structure selection methods aréogtevide sufficiently reliable model, when
data are clean (i.e. not corrupted with noise). In the following it wilvstiat both the RMSS method and classic OFR
method can generate perfect model structure from noise free data. Cansiadinear system:

y(t) = 0.5y(t — 1) + 0.8u(t — 2) + u?(t — 1) — 0.05y%(t — 2) + 0.5 (29)

where the inputi(t) was assumed to be uniformly distributed[ef1, 1]. A total number of 100 input-output data points
were generated. The first 70 points were used for model estimation arddiaing 30 points were used for performance
test. The following candidate variable vector was used for model congtructio

I() = [yt —1),y(t —2),ult— D,ult-2)]" (30)



The initial full model was chosen to be a polynomial form with nonlinear de@iee 8. Firstly, the OFR method was
applied to find the significant model terms according to the ERR rankimgAPRESS values suggest that a model of 5
terms can be a good choice. Not surprisingly, all the model teerenectly selected and the parameters are estimated
correctly. The selected terms and the associated ERR values are shown in TAbBI&BISS method was also applied to
the same train data, to select significant terms according to their OMAESs relatinipted number o0 sub-datasets
generated through the resampling process. As a result, the RMSS method selaciigdhe same model terms as the
OFR method. The associated OMAEs are shown in Table 4

Table3
Selected terms by classic OFR method
No. Term ERR(100%) Parameter
1 y(t-1) 78.7770 0.5000
2 u(t-2) 10.6233 0.8000
3 u(t-1) xu(td) 8.8996 1.0000
4 constant 1.3601 0.5000
5 y(t-2) xy(t-2) 0.3401 -0.0500
Table4
Selected terms by RMSS method
No. Term OMAE Parameter
1 y(t-1) 0.5639 0.5000
2 u(t-2) 0.3831 0.8000
3 u(t-1) xu(td) 0.1610 1.0000
4 constant 0.0652 0.5000
5 y(t-2) xy(t-2) 0.0000 -0.0500
105 0.6
'8
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Fig. 2. SERR and OMAE versus the number of iteration of term selection
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Note that the OFR and RMSS methods employ two different indicators (i.e., the@#&and OMAESs to measure the
contribution of each model term to explaining the variance of respamsbhe. During the process of OFR, the SERR
(sum of ERR values) is increasing to the maximum value of 100fléhvindicates that 100% of the variance of response
variable can be explained by the selected terms. For the RMSS method, thei©W§B&Eeasing to 0, which means that
there is no error in the identified model. The variation of SERR and OMAe OFR and RMSS are displayed in Fig. 2
It can be easily seen that the model with 5 terms is perfect an@senibé 100% of the variance of the response variable.
The variation of the correlation coefficient and prediction efficiency, with the ioclug model terms, one by one, is
shown in Fig. 3.

4.2 Example 2- data with additive white noise
Now consider a nonlinear system:

y(©) = —u(t — 1)y/|y(t — D]+ 0.4u%(t — 1) + 0.8u(t —2)u (t —1) + &(t) (31)

where the input:(t) was assumed to be uniformly distributed[ef1, 1] and{(t) is a white noise with zero mean and
finite variation. With five different levels of signal to noise ratio, namelyise-free and SNR = 50, 15, 10, 0 dB,
respectively, the system was simulated five times. For each SNR case, a tial 0fih©0 input-output data points were
generated. The first 70 points were used for model estimation and theingn¥impoints were used for performance test.
The initial full model was chosen to be a polynomial form with maximum timedbgs = n,, = 2 and nonlinear degree

of [ = 3. Note that the model tert;yﬂly(t — 1)| was not included in the specific library of candidate model terms. As a
consequence, it is impossible to identify a ‘true’ model structure that perfectly represents every single component of the
system. However, it is possible to use both the OFR and the RMSS ntetfiod model that can well represent the
simulated data. In what follows, it presents analysis and discussiamsedher the RMSS methods can find satisfactory
models with good predictive performance, under different level of noise

Tableb

Selected terms by OFR and RMSS method

SNR No. OFR method RMSS method
noise 1 u(t-2) xu(t2) u(t-2) xu(t2)
free 2 u(t-1) u(t-1)
3 u(t-1) xu(t-1) xy(t2) u(t-1) xu(t-1) xy(t2)
4 u(t-1) xu(t-2) xu(t2) u(t-1) xu(t-2) xu(t2)
5 u(t-1) xu(t2) u(t-1) xu(t2)
6 u(t-1) xu(t-2) xy(td) u(t-1) xu(t-2) xy(td)
7 u(t-2) xy(t1) y(t-1) xy(t-2)
50db 1 u(t-2) xu(t-2) u(t-2) xu(t-2)
2 u(t-1) u(t-1)
3 u(t-1) xu(t-1) xy(t-2) u(t-1) xu(t-1) xy(t-2)
4 u(t-1) xu(t-2) xu(t-2) u(t-1) xu(t-2) xu(t-2)
5 u(t-1) xu(t-2) u(t-1) x1(t-2)
6 u(t-1) xu(t-2) xy(t-1) u(t-1) xu(t-2) xy(t-1)
7 u(t-2) xy(t1) y(t-1)
15db 1 u(t-2) xu(t-2) u(t-2) xu(t-2)
2 u(t-1) u(t-1)
3 u(t-1) xu(t-1) xy(t-2) u(t-1) xu(t-1) xy(t-2)
4 u(t-1) xu(t-2) xu(t-2) u(t-1) xu(t-2) xu(t-2)
5 u(t-1) xu(t-2) u(t-1) xu(t-2)
6 u(t-1) xu(t-2) xy(t-1) u(t-1) xu(t-2) xy(t-1)
7 u(t-1) xu(t-2) xy(t-2) u(t-1) xu(t-2) xy(t-2)
8 u(t-2) xy(t-1) u(t-1) xu(t-1)
10db 1 u(t-2) xu(t-2) u(t-2) xu(t-2)
2 u(t-1) u(t-1)
3 u(t-1) xu(t-1) xy(t-2) u(t-1) xu(t-1) xy(t-2)
4 u(t-1) xu(t-2) u(t-1) xu(t-2)
5 u(t-1) xu(t-2) xy(t-1) u(t-1) xu(t-2) xy(t-1)
6 y(t-1) xy(t-2) u(t-2) xy(t-2)
7 y(t-1) xy(t-2) x y(t-2) u(t-1) xu(t-1) xu(t-2)
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8 u(t-1) xu(t-2) xu(t-2) y(t-2) xy(t-2) xy(t-2)

9 u(t-1) xu(t-1) xu(t2) u(t-1) xu(t-2) xy(t2)
0db 1 u(t-2) xu(t-2) u(t-2) xu(t-2)

2 u(t-1) u(t-1)

3 u(t-2) xu(t-2) xy(t-2) u(t-2) xu(t-2) xy(t-2)

4 u(t-1) xu(t-1) xy(t-1) y(t-1) xy(t-1)

5 u(t-1) xu(t-2) u(t-2) xy(t-2)

6 u(t-1) xu(t-1) u(t-2) xu(t-2) xu(t-2)

7 y(t-1) xy(t-1) u(t-2) xy(t-2) x y(t-2)

8 y(t-1) xy(t-2) y(t-1) xy(t-1) xy(t-1)

9 y(t-1) xy(t-1) xy(t-1) u(t-1) xu(t-1) xy(t2)

Both the OFR and RMSS methods were applied to the simulated data witardiféarels of noises (noise-free, SNR =
50, 15, 10, 0 dB). The model complexity was determined by theEASRmetric. The selected model terms by the two
methods are shown in Tables 5. It can be observed that for mest tfastwo methods select the same model terms for
the first few steps. This is reasonable because these terms are the nifosdrgigerms and make major contribution to
explaining the variance of system output and leaving one sampleisutcfiieme is used in RMSS method but not in OFR)
does not affect the order of the selected terms. However, the two methaddto select different model terms after a few
steps. These model terms give smaller contributions to explaining the variamagpun signal, and a small change of
single sample might affect result of selection of these terms. In ottrelsywthe less significant model terms are more
sensitive to the effect of noise.

As mentioned earlier, the classic OFR method uses ERR index as measure to seleaermsdble measure is defined
as how much (in percentage) of the variance in the response signal cateibedxoy a newly included model term. The
RMSS method uses OMAE instead, which is a measure of the averagetiqgresiror in relation to a great number (say
K) of models estimated froii sub-datasets generated from the original data through a resampling prbeestr€, the
resulting robust model should provide better overall predictive performamaeshe regular model. The performance
statistics of the regular and robust models are given in Table 6. The resultthat with the decrease in SNR values, the
performance of the models identified by both the OFR method andhibstnmethod decreases, due to the increase of
uncertainty. It should be stressed that even for the tigeease, both of the two methods fail to detect the true model

structure, because the model compongit— 1)./|y(t — 1)| is actually not in the pre-defined library of candidate model
terms.

Table6
Performance statistics of the regular modabust modellasso algorithm and neutral networks under different noises
SNR Level performance statistic regular robust lasso neural
NARX model NARX model algorithm network*
noise-free correlation coefficient 0.9365 0.9497 0.9335 0.9070
predicted efficiency 0.8534 0.8754 0.8573 /
50 dB correlation coefficient 0.9374 0.9463 0.9343 0.9273
predicted efficiency 0.8560 0.8721 0.8587 /
15dB correlation coefficient 0.9117 0.9208 0.9114 0.8292
predicted efficiency 0.7899 0.8135 0.7808 /
10 dB correlation coefficient 0.8339 0.8758 0.8550 0.7712
predicted efficiency 0.6219 0.7366 0.7025 /
0dB correlation coefficient 0.3780 0.4311 0.4931 0.3740
predicted efficiency 0.0426 0.1846 0.2221 /

* The number of layers is 10 and the training algorithm is LeseppMarquardt. The algorithm was run for 10 times and
the averaged correlation coefficient is recorded

Comparing the performance statistics of the regular and robust NA&¥Is given, it is clear that the robust models
outperform the regular models in all the cases. In addition, the impemterhthe robust models is significant when SNR
is quite low say at 10 dB and 0 dB. Fig. 4-6 show the maeéligtion of the regular and robust models for the three cases:
noise-free and SNR=15dB and 0dB, respectively. As can be seethie figures, the differences of predicted and observed
output become more significant with the increase of noise level. beamoted in Fig. 6 that there are some extremely
large values in predicted output from the regular model, and the nolodstl is more conservative in prediction, where
the amplitudes of the predicted values are in general smaller than that of the clazs$&dluhcloser to the true values.

We also compared the performances of proposed RMSS method with athesrtlimear identification methods: lasso
and neural networkd asso aims to the degree of the freedom of a given model structuneifikirey the coefficients of
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unnecessary model terms to zerbeTasso method can be easily adapted to many application scenarios where tHe desire
response signal is assumed to be of a sparse representation of a separidedt signals (predictors).However, lasso
could fail to produce stable subset selection results when the predictoighfyebrrelated. The performances of the two
methods are evaluated based on the models with the same number of mugldFtem the results in Table 6, the robust
NARX model outperforms the lasso method in most of the cases (ne&seSINR=50, 15, 10 dBThis is because the
orthogonal forward regression (OFR) algorithm used in RMSS can effgcsiniele sever correlation and ill-conditioning
problems [30,33]. Regarding all the five cases, the performarficks neural network models are lower than those of the
other two methods. This might be because that the size of the data $nadl, and that the power of neural networks is
cannot be fully exploited for this small size data modelling problemeNuoportantly the proposed RMSS method has
the following superiorities: i). the procedure is easy to implement artthres-consuming; ii). the identified model clearly
indicates the information of the most important model terms; iii). the identifiedel provides a transparent and
parsimonious lineain-the-parameters representation, which can be easily generalized to néeivisiatarth mentioning
that in this example, all the robust models were built using onlgai@ points, which is quite small. This means the
proposed RMSS method may promise an effective data driven modelfingaap for nonlinear systemsspecially for
small size data with strong uncertainty. Overall, these results show thadleatage of the proposed RMSS method in
nonlinear model identification.

In addition, for the case of SNR=15dB, three extra robust models aresabb@ised on the other three different measures
defined in (21)-(23), respectively. The performance statistics of afbthlemodels are given in Table 7 and it turns out
that the robust model selected by OMAE over performs the other thredsmod

Table7
Comparison of the performances of robust models identified basatfesart measures
Measures b, b, b5 b4
Correlation Coefficient 0.9208 0.9202 0.8667 0.8667
Predicted Efficiency 0.8135 0.8059 0.7018 0.7018

15 observation
1 regular model prediction -
robust model prediction
5 05 -
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Fig. 4. One-step-ahead (OSA) predictions of robust model and regular mods free)
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Fig. 5. One-step-ahead (OSA) predictions of robust model and regular réd¢iRli$ 15dB)
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Fig. 6. One-step-ahead (OSA) predictions of robust model and regular modeli{3R&B)

4.3 Example 3- Kp index Forecasting

Magnetic disturbance can affect many equipment and systems @antyrearth, for example, navigation systems,
communication systems, satellites, and power grid, etc. They can be pheaigzenreliable during these severe magnetic
situations. In order to understand and forecast the geomagnetic athieigp (planetarische Kennziffer) index was first
introduced by Bartels in 1949 [2]. The value of Kp index rariges 0 (very quiet) to 9 (very disturbed) in 28 discrete
steps, resulting values of 0, 0+, 1-, 1, 1#2-2+, ..., 9 [35]. The Kp index has been recorded and updated since last
century and become an important dataset to study space weather. Hi&tioorbetween Kp index and solar wind
parameters has been discovered by many researches. Normalljatlhérsvariables are treated as the model inputs and
Kp index is treated as the model output. A full description of the solar \aiables and derived variables is summarized
in Table 8.

Table8
Kp index and solar wind variables
Name Model variable Description
Kp y Kp index
%4 Uy solar wind speed/velocity (flow speednj/s]
Bs uz southward interplanetary magnetic field
p Uz solar wind pressure (flow pressuraPh]
n U4 solar wind density (proton density) fcc]
VBs Us V x Bs/1000
ﬁ Us square root op

The Kp index was sampled every 3 hours and the solar wind variablesamapéed every 1 hour. It should be noted
that this study aims to build the models using robust method to predictd&yp 3 hours ahead. Therefore, the unit of time
lags of both input and output is 3 hours. For examy(le— 2) is the Kp index recorded 6 hours befg(@) andu,(t — 1)
is the solar wind speed recorded 3 hours baig(e). A total number of 150 input-output data points of the 2011 are
selected for the case study. The maximum time lags are chosgn=a2 and the nonlinear degree is 2. The first 100
samples are used for training and the remaining 50 samples arensstifig. The model is selected using only input lag
variables, without using autoregressive variables. The first 4 model terms sble@E® method and RMSS method are
shown in the following table 9 and taldle.

Table9

Selected terms by OFR method for Kp model
No Term ERR(100%) Parameter
1 Us(t-1) 79.6551 7.7057e+00
2 Up(t-1) x wp(t-1) 5.3507 4.0605e+02
3 uy(t-1) 2.5907 2.3494e+00
4 ux(t-2) 0.3058 7.4787e+00

Table 10

Selected terms by RMSS method For Kp model
No Term OMAEs Parameter
1 Us(t-1) 0.85592 6.4929e+00
2 Up(t-1) 0.74081 5.0490e+01
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3 Un(t-1) X Us(t-2) 0.68803 2.0516e+01
4 Us(t-1) 0.65544 -8.2486e+04

The performance statistics of the two models are given in Table 11 artiff@sents comparisons between the model
outputs and the associated measurements. Clearly, the overall perfoohtireeobust model is better than the regular
model and that produced by the lasso algorithhe performance of the neural network model is slightly betterttran
robust NARX model. However, it is worth noting that the robusRX model uses a much less number of model terms
to provide a transparent and parsimonious representation, which is dassrpoet and useAlthough the correlation
between the measurements and the corresponding prediction of thenetweoak model is higher, the model itself is very
complicated and difficult to write down. In contragie RMSS method and NARX model provide a transparent and
parsimonious representation, which is simple where all the interactive relationy asmoables is clear. In generdie
RMSS method achieves good trade-off between model complexity and model perform@wegall, the robust NARX
model can be a good choice for Kp index predictions.

Table11
Performance statistics of the regular model and robust model forégast
Performance Statistics regular model robust model lasso neural networks*
Correlation Coefficient 0.7132 0.8056 0.6109 0.8368
Predicted Efficiency 0.2927 0.6304 0.3202 /
Normalized Root Mean Square Error 0.2449 0.1750 0.3506 /

* The number of layers is 10 and the training algorithm is Levenbarquardt. The algorithm was run for 10 times and
the averaged correlation coefficient is recorded.

15 T T
observation
— 10+ regular model prediction -
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Sample Index (train:1-100 test:101-150)

Fig. 7. One-step-ahead (OSA) predictions of robust model and regular foo#g index

5. Conclusion

This article focuses on improving model identification methods from simelldata. When the size of dasesmall or
data is corrupted with noises, there is large uncertainty of model s&r@tdrparameter. These conditions can bring a
negative effect on the model structure selection process of the classic @rédmin this study, the RMSS method is
proposed to enhance the classic OFR algorithm by selecting the robustaigmfodel terms according to the OMAEs
of resampled sub-datasets. The new method is tested on two simukatioples and a real data application. The results
suggest that the new method can improve the prediction perfornfamoelelling problems, especially when the data size
is small and there are strong noises and unknown system compoheatadvantage of this robust model is that it can
better capture the inherent dynamics of the whole dataset and thus can benesdlized to new data. Thus, the new
method can be applied for small sample size and multiple datasets problems.

This paper does not analyse model uncertainty (e.g. the uncertaistingexn both model structure and model
parameters) and its effect on model generalization performance. Inspifegldnncepts and ideas proposed for fuzzy and
neural network modelling techniques (e.g. [11], [26],[27].]B®]), one of our future research directions would be
focusing on quantitative analysis of model uncertainty.
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