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Abstract 25 
Counter to established dogma, the central nervous system (CNS) has a regeneration capacity and is 26 
moderately plastic. Traditionally such changes have been recognised through development, but more recently 27 
this has been documented in adult through learning and memory or during the advent of trauma and disease. 28 
One of the causes of such plasticity has been related to changes in the extracellular matrix (ECM). This 29 
complex scaffold of sugars and proteins in the extracellular space alters functionality of the surrounding tissue 30 
through moderation of synaptic connections, neurotransmission, ion diffusion, and modification to the 31 
cytoskeleton. Here we discuss the role of the ECM in CNS plasticity in development and the adult. Further, we 32 
shall determine how the ECM affects normal neuronal functioning in critical processes such as memory. Finally, 33 
we shall assess how the ECM contributes to adverse CNS changes in injury and disease, concentrating on how 34 
this matrix may be targeted for therapeutic intervention.  35 
 36 
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The extracellular matrix (ECM) is a complex framework of molecules in the extracellular space which occupies 66 
~20% of the total adult brain volume (Nicholson and Sykova, 1998). It is comprised of secreted proteins and 67 
glycans which act to support the functional activity of the surrounding tissue. The ECM is implicated in the 68 
modulation of many of the dynamic events in the central nervous system (CNS), including inflammation, 69 
myelination, synaptogenesis, plasticity and recently the development of the tetrapartite theory of synaptic 70 
signalling has been proposed (Dityatev and Rusakov, 2011). Indeed, the composition and turnover of the ECM 71 
affects the rate of local neurotransmission and plasticity through modulating synapse formation, signal 72 
transduction, ion diffusion, and cytoskeletal dynamics (Gundelfinger et al., 2010). During development, the ECM 73 
facilitates the proliferation and outgrowth of neurons to form functioning synapses (Stranahan et al., 2013). In 74 
the adult, its composition is less permissive, and functions more to maintain the proper functioning of the CNS. 75 
One of the key extracellular matrix structures pivotal to these functions are the perineuronal nets (PNNs), highly-76 
condensed lattice-like structures that form around specific neurons as one of the last steps of neural 77 
development at the end of circuit maturation (Pizzorusso et al., 2002; Yamaguchi, 2000).  78 
  79 
There are typically three types of ECM found within the adult brain and spinal cord. These are 1) the standard 80 
diffuse ECM which surrounds all cellular structures, 2) the PNNs, and 3) that which is membrane bound. All 81 
three types of ECM demonstrate substantial dynamic changes within the CNS and are tightly regulated. This 82 
control comes from both de novo synthesis and proteolytic cleavage (Carulli et al., 2006), and thus the ECM is 83 

subject to dynamic local and global changes through the course of an individual’s lifetime. The focus of this 84 
review is the endogenous plasticity exhibited within the CNS which is mediated through the ECM. In this review, 85 
our focus is the basic structures of the ECM which influence plasticity, ECM effects on development and 86 
maintenance in the adult. Further, we discuss new research detailing the role of the ECM in normal brain 87 
functions including neurotransmission, learning and memory and how the ECM may contribute to dysfunction in 88 
pathological disease states such CNS injury, schizophrenia, Alzheimer’s disease, and addiction. As such, this 89 
review shall concentrate on the themes and current information relating to how the ECM affects cellular 90 
properties and plasticity as well as how it alters in the progression of disease.  91 
 92 
 93 
2. CSPGs and ECM in the CNS 94 

The effects of the ECM on cellular properties, plasticity and disease are a direct consequence of its 95 
composition. While different types and compartments of ECM have specific properties and components (see 96 
PNNs section below), there are over 300 proteins which have been found to comprise the central core of tissue, 97 
called the matrisome. In the CNS, this includes glycoproteins (which have numerous functions), chondroitin 98 
sulphate and heparan sulphate proteoglycans (Hynes and Naba, 2012). The composition and structure of the 99 
ECM varies dynamically through changes in synthesis, breakdown in the extracellular space through enzymes  100 
such as matrix metalloproteases (MMPs) and through internalization and breakdown in lysosomes (Freitas-101 
Rodriguez et al., 2017). Of the many molecules that make up the CNS matrix, chondroitin sulphate 102 
proteoglycans (CSPGs), have an important role in modulating CNS plasticity and regeneration.  103 
 104 
2.1 CSPGs  105 
There are at least 16 different types of CSPGs within the nervous system. Together these macromolecules 106 
comprise a key component of the ECM (Herndon and Lander, 1990). Each CSPG consists of a core protein 107 
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backbone upon which glycosaminoglycan (GAG) chains of chondroitin sulphate (CS) are attached by a 108 
tetrasaccharide linkage, the number varying from one to many depending on the protein core (Fig. 1) (Kjellen 109 
and Lindahl, 1991; Silbert and Sugumaran, 2002). The unbranched CS chains are composed of repeating 110 
disaccharide units of glucuronic acid (GluA) and N-acetylgalactosamine (GalNAc) that are attached to the core 111 
protein through an O-linkage to serine residues (Fig. 2) (Bandtlow and Zimmermann, 2000; Iozzo and Murdoch, 112 
1996). The repeating disaccharide units (up to 25-50 per chain) of the CS-GAGs are responsible for many of the 113 
properties of the molecules. Each disaccharide moiety within the CS-GAG chain may be differentially sulphated 114 
(Properzi, 2004; Properzi et al., 2003), affecting functionality (reviewed in (Kwok et al., 2008; 2011)). These 115 
sulphation patterns change during development and ageing, and also differ between CNS regions and between 116 
PNNs and diffuse matrix within the adult CNS and determine the specific binding features of the CS-GAGs with 117 
other molecules, and thus the inhibitory properties of specific CSPGs within the ECM (Brown et al., 2012; 118 
Dickendesher et al., 2012; Gama et al., 2006). For example, the prevalent CS-GAG disaccharides within the 119 
adult mouse brain are CS-A (sulphated at the 4 position) and CS-C (sulphated at the 6 position), although CS-D 120 
and CS-E (disulphated 2,6 and 4,6) are also present in lower amounts (Carulli et al., 2006; Maeda et al., 2010). 121 
Within a single glycan chain more than one of these sulphation patterns can be present.  CS-A, CS-C and CS-E 122 
are upregulated following injury (Brown et al., 2012; Gilbert et al., 2005; Lin et al., 2011; Properzi et al., 2005; 123 
Wang et al., 2008).  124 
 125 
Other than the CS chains, the CSPG core protein can further define the functionality of the CSPG, particularly in 126 
the case of neural/glial antigen 2 (NG2) which exists in glycanated and non-glycanated forms (Levine, 2016). Of 127 
the many CSPG members, the lecticans/hyalectan family (aggrecan, versican, neurocan and brevican) are the 128 
most plentiful in the CNS. The lecticans generally have a link domain through which they can bind to the long 129 
hyaluronan (HA) chains that are present throughout the ECM, and at particularly high density on neuronal 130 
surface where they are the backbone of the PNNs. The lecticans also have a tenascin-binding domain which is 131 
important for the formation of the condensed structure of the PNNs (Brückner et al., 2003; Geissler et al., 2013). 132 
The most abundant CSPGs in the CNS are neurocan and brevican, and they are uniquely CNS specific 133 
(Seidenbecher et al., 1995; Yamada et al., 1994). Other CSPGs, such as NG2, neuroglycan-C, biglycan, 134 
decorin and appican are also present outside the CNS (Asher et al., 2000; Matsui et al., 1998; Oohira et al., 135 
2004).  136 
 137 
2.2 How do CSPGs limit growth and plasticity in the CNS? 138 
CSPGs are inhibitory to neuronal outgrowth and extension. Neuronal growth cones become dystrophic upon 139 
contact with CSPGs although vesicle formation and membrane turnover continues (Tom et al., 2004). 140 
Regeneration or its failure is a balance between inhibitory and permissive molecules in the environment and the 141 
intrinsic regenerative state of the axons, with embryonic axons being able to grow in many inhibitory 142 
environments that block the growth of mature axons. The sulphation pattern of the CS-GAG chains has a strong 143 
influence, with the CS-A form (which is upregulated after injury) being more inhibitory than CS-C (Wang et al., 144 
2008).  145 
 146 
While concentrations of the various types of CSPG vary, these macromolecules are typically ubiquitous 147 
throughout the CNS. Subsequently, it is important to determine the mechanism through which they act to affect 148 
cellular properties and plasticity. The effect of these large macromolecules upon neurons is caused by 149 
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interactions with both the protein core and the attached CS-GAG chains (Dou and Levine, 1994; Fidler et al., 150 
1999; Friedlander et al., 1994; Iijima et al., 1991; Lander et al., 1982; Milev et al., 1994; Nakanishi et al., 2006; 151 
Oohira et al., 1991; Smith-Thomas et al., 1995). However, the specific mechanism through which they exert 152 
these effects has not been fully elucidated but is known to involve multiple processes including microtubule 153 
stabilisation (Ertürk et al., 2007; Hellal et al., 2011), the RhoA/ROCK pathway (Borisoff et al., 2003; Conrad et 154 
al., 2005; Dubreuil et al., 2003; Dyck et al., 2015; Monnier et al., 2003), epidermal growth factor receptor (Cua et 155 
al., 2013; Koprivica, 2005), the Nogo receptor (Dickendesher et al., 2012), integrin signalling (Orlando et al., 156 
2012; Tan et al., 2011), activation of protein kinase A (PKA) (Kuboyama et al., 2013) and the binding to other 157 

ECM molecules, such as Semaphorin 3A (Dick et al., 2013; Vo et al., 2013). Recently, CSPG receptors RPTP 158 

(receptor protein tyrosine phosphatase sigma) and LAR (leukocyte common antigen-related) have been 159 
identified (Fry et al., 2010; McLean et al., 2002; Shen et al., 2009; Thompson et al., 2003; Zhou et al., 2014) and 160 
shown to mediate inhibition of neuronal regeneration. Whether these receptor-mediated effects and pathways 161 
will ultimately converge upon one universal mechanism for CSPGs inhibition on neuronal growth has yet to be 162 
determined. However, these data show the extraordinary diversity of effects that CSPGs have upon the cells 163 
and cellular properties within the CNS and subsequently the multitude of ways in which regeneration and 164 
plasticity may be affected.  165 
 166 
2.3 Perineuronal nets (PNNs) 167 
One of the functions of CSPGs within the CNS is as a constituent component of the PNNs which surround the 168 
soma and proximal neurites of mainly parvalbumin (PV) expressing inhibitory neurons and are formed at the 169 
closure of critical periods (Guimaraes et al., 1990; Matthews et al., 2002). Their major components are CSPGs, 170 
HA, tenascin-R and members of the hyaluronan and proteoglycan link proteins (HAPLNs) family (Kwok et al., 171 
2011). Secreted CSPGs bind to the dense pericellular coat of HA produced by HA synthases (Fig. 2) CSPG/HA 172 
binding is then stabilised by a HAPLN, which binds both the CSPG (through the Ig region) and HA through 173 
conserved cysteine residues (Fig. 2) (Mahoney et al., 2001; Oohashi et al., 2002; Spicer et al., 2003). HAPLNs 174 
are essential for PNN development. Indeed, HAPLN deficiency restricts the PNN to a diffuse, immature state 175 
and CSPG localisation is diminished (Bekku et al., 2012; Carulli et al., 2010; Kwok et al., 2010). The different 176 
HAPLNs may be responsible for distinct CSPG binding, as revealed by knockout studies. In the deep cerebellar 177 
nuclei HAPLN4 knockout decreased localisation of neurocan and brevican to the PNN, while leaving aggrecan 178 
localisation unaltered (Bekku et al., 2012). Indeed, aggrecan and phosphacan localisation to the PNN is, at least 179 
partially, dependent on HAPLN1 expression (Carulli et al., 2010). PNNs typically surround fast-spiking or 180 
GABAergic interneurons (Brückner et al., 1993; Härtig et al., 1994) but a form of PNN is also found around other 181 
neurons in the CNS, particularly cortical pyramidal neurons (Matthews et al., 2002), and various neurons in the 182 
spinal cord (Galtrey et al., 2008). More information on the structure of PNNs can be found in (Miyata and 183 
Kitagawa, 2017). 184 
 185 
Only a small proportion of CS-GAGs  in the adult rodent brain (~2%) are present in the CSPGs composing the 186 
PNNs (Deepa et al., 2006). Removal of CS-GAGs (the light green strands in Fig. 2), including those composing 187 
the PNNs, using a bacterial enzyme chondroitinase ABC (ChABC) enhances regeneration after spinal cord 188 
injury (Bradbury et al., 2002), reactivates ocular dominance plasticity (Pizzorusso et al., 2002; 2006), allows 189 
unlearning of fear memory (Gogolla et al., 2009) and enhances novel object recognition memory in an 190 
Alzheimer’s disease model (Yang et al., 2015). It appears to be these 2% of CS-GAGs present in CSPGs from 191 
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the PNNs are the key to the effects on plasticity. Prevention of PNN formation by knockout of link protein (Carulli 192 
et al., 2010) or aggrecan (unpublished results) has the same effect as ChABC treatment. As such, the CSPGs 193 
in the PNN have been shown to regulate the local plasticity of the neuron they surround. Please refer to section 194 
3 and 4 in this article for more detail on this enzyme and its effects.  195 
 196 
The traditionally recognised role for PNNs within the CNS is that of neuroprotection (Brückner et al., 1993). The 197 
polyanionic nature of the CSPGs and HA in the PNNs shields the neurons from neurotoxic molecules such as 198 
potassium or glutamate (Brückner et al., 1993; Choi and Rothman, 1990; Morris and Henderson, 2000) and 199 
oxidative stress (Cabungcal et al., 2013). In addition, PNNs optimise the local environment to ensure efficient 200 
functioning of the neurons. Indeed, the PNN can affect the ionic balance across the neuronal membrane and, in 201 
particular, chloride gradient/transport which can then determine the polarity of the GABAA receptor mediated 202 
response. Apart from chloride transporters, the charge carried by the proteoglycans of the ECM can control 203 
transmembrane chloride flux and the extracellular chloride concentration (Glykys et al., 2014). Interestingly, 204 
PNN formation in neonates can be altered by reducing synaptic input to motoneurons (Kalb and Hockfield, 205 
1994). The formation of this structure occurs at the same time as the tripartite synapse (Pyka et al., 2011). 206 
Collectively, these data are indicative of the PNNs function in the protection and mediation of typical neuronal 207 
function. Due to the importance of the ECM and PNNs in cellular properties and plasticity, the question remains 208 
whether they perform the same functions for all the cells they surround and in all areas of the CNS. While their 209 
basic function is largely known, recent evidence suggests that the specific components of the ECM mediate 210 
specific effects upon cellular function and activity. Both these effects will be discussed within the following 211 
sections. 212 
 213 
 214 
3. PNNs in development and in the adult 215 
 In the adult CNS, after the end of the critical periods, most forms of plasticity are much reduced. Traditionally, 216 
this is thought to be when ECM components become stabilised. However, in the developing juvenile brain, 217 
particularly during the critical periods that occur after synaptogenesis is complete (around 4-5 years old in 218 
humans), large changes in the pattern of connections driven by external experience are possible, largely due to 219 
the differential composition of the ECM. This was classically shown in the visual cortex, where occlusion of one 220 
eye during the critical period caused the cortical neurons to favour connections from the non-deprived eye, 221 
which would not have happened if the occlusion was performed after the closure of the critical period 222 
(Pizzorusso et al., 2002). Interestingly, CS removal in the visual cortex by ChABC injection reactivates the 223 
plasticity, allowing remapping of cortical neurons to the deprived eye to take place in the adult visual cortex after 224 
critical period closure (Pizzorusso et al., 2006) and illustrating the importance of CS-GAGs in the induction of 225 
plasticity within the CNS. The specific window for this period of plasticity and length of the critical period depend 226 
on the neuronal systems and are different between species.  227 
 228 
Overall the mature CNS lacks the juvenile level of plasticity (Gundelfinger et al., 2010). Although the main 229 
decline in plasticity occurs at the closure of critical periods, there is a further continuing decline during the 230 
course of normal ageing, one of the consequences of which is progressive cognitive impairment, and loss of the 231 
ability to compensate for the effects of neurodegenerative disease (Morrison and Baxter, 2012; Yang et al., 232 
2017). This effect is clearly seen in the diminishing spatial learning and memory of adults and has been 233 
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demonstrated across several species (Gallagher and Rapp, 1997; Maurer et al., 2017; Rosenzweig and Barnes, 234 
2003). There is some synapse loss in ageing and much more in Alzheimer’s disease, but memory impairment, 235 
does not correlate closely with  neuronal and synapse loss in aged animals (Burke and Barnes, 2006; Gray and 236 
Barnes, 2015; Rapp et al., 2002). The limited plasticity of the mature CNS cannot be understood just in terms of 237 
intrinsic changes to the cells but rather that their plastic potential has become latent. Recently, the ECM has 238 
been found to inhibit and restrict adult CNS plasticity as removal of this matrix uncovered levels of plasticity 239 
previously only seen in young animal (Pizzorusso et al., 2006; Romberg et al., 2013; Stamenkovic et al., 2017; 240 
Yang et al., 2015). However, the mechanisms by which the ECM limits plasticity in the CNS are not well 241 
characterised. Nonetheless, CSPGs and particularly those CSPGs in PNNs are known to play a key role. 242 
Indeed, the role of CSPGs in the control of plasticity has mostly been revealed by using the bacterial enzyme 243 
chondroitinase ABC (ChABC) to digest the CS-GAG chains. This treatment can reactivate plasticity in several 244 
parts of the CNS, but it digests CSPGs both in and out of PNNs. Further, knockouts of HAPLN1 link protein, 245 
tenascin-R and aggrecan all lead to attenuated PNNs, and all have the same effect as ChABC on plasticity, 246 
implicating the CSPGs in PNNs in the control of plasticity ((Brückner et al., 1998; Carulli et al., 2010), 247 
unpublished results). The HAPLN family, in particular, play an essential role in PNN development as their 248 
expression coincides with the closure of the critical period. Indeed, knockdown of HAPLNs delays critical period 249 
closure (Carulli et al., 2010; Oohashi et al., 2002; PopeláĜ et al., 2017). In recent years, the development of 250 
specific knock outs and antibodies have allowed the mechanisms by which the ECM governs plasticity to be 251 
studied in greater resolution, although there is still much work to be done to determine exactly how these 252 
individual components affect specific cellular functions.  253 
 254 
3.1 CS sulphation changes in development and aging 255 
Formation of ECM components has been shown critical to the initiation of developmental stages. Indeed, CS 256 
accumulation is required for starting the critical period as knock out of chondroitin sulfotransferases has been 257 
shown to block the onset of this developmental stage (Hou et al., 2017). Interestingly, the accumulation of CS 258 
chains in the PNN enables the closing of the critical period, via sequestration of Otx2 (Beurdeley et al., 2012; 259 
Hou et al., 2017). This may support GABAergic neuron maturation, further precipitating critical period closure 260 
(Ueno et al., 2017b), and mediating specific cellular functions. CS-GAGs have been shown to bind several 261 
different proteins which are potential effectors of the PNNs. An example is Semaphorin3A, which binds 262 
specifically to PNNs and has strong effects on synapse dynamics and neurite growth. This binding is dependent 263 
on the sulphation pattern of the CS chains, with CS-E attracting both Sema3A and Otx2 (Dick et al., 2013; 264 
Gama et al., 2006; Sugiyama et al., 2008). The spatial position, not the overall charge of the sulphate groups, 265 
on the CS chain determines the binding properties (Gama et al., 2006). A small proportion of CS chains remains 266 
unsulphated, 3% in the diffuse ECM and 10% in the PNN fraction, which may give rise to a different functionality 267 
(Bertolotto et al., 1996; Deepa et al., 2006; Jenkins and Bachelard, 1988a). 268 
 269 
The sulphation pattern of CS has been found to change during embryonic development from a high CS-C (6-270 
sulphates): CS-A (4-sulphates) ratio of 2:1 in early embryonic development to a low 1:1 ratio at birth (Kitagawa 271 
et al., 1997). This change could contribute to the development of the PNNs in the critical period (Ueno et al., 272 
2017a). After the critical periods, there is a further change, and the ratio also changes throughout life as the 273 
levels of CS-C progressively decrease with an almost complete loss in aged brains (Foscarin et al., 2017; 274 
Jenkins and Bachelard, 1988a). Nonetheless, it is important to note this reduction is specific to the PNNs 275 
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(Foscarin et al., 2017). This change causes greater inhibition of neurite out-growth in dorsal root ganglion 276 
culture, an effect not being observed when younger PNN extracts were used. It is assumed that the increasingly 277 
inhibitory PNNs in the aged brain participate in the loss of memory and cognition in the elderly (Foscarin et al., 278 
2017). These data show that specific CS sulphation in the PNNs of aging brains made these structures more 279 
inhibitory, decreasing plasticity and, simultaneously, affecting memory formation (see 4.4). These data leads 280 
credence to the idea that specific components of the ECM and PNNs will alter when functionality is changed. 281 
 282 
3.2 Further changes in age related plasticity  283 
Apart from the PNNs, age-dependent changes are also observed in the diffuse ECM, affecting CNS plasticity 284 
and cellular properties. Ageing is associated with increased background inflammation throughout the CNS 285 
(Villeda et al., 2011). Sterile inflammation activates astrocytes that then produce HA (Cargill et al., 2012). 286 
Reactive astrocytes also produce higher levels of chondroitin 4-sulphate (CS-A) chains due to up-regulated 287 
expression of chondroitin 4-sulfotransferase (Wang et al., 2008), causing a more inhibitory environment in the 288 
ECM. Further, HA levels in the grey matter ECM also increase with age (Cargill et al., 2012; Jenkins and 289 
Bachelard, 1988a; Sherman et al., 2015). This rise may be due to an increase in HA synthase 1 (HAS1; a 290 
membrane bound enzyme which facilitates the production of HA) in reactive astroglia or an increase in astroglia 291 
numbers. The high level of HA in the aged population is suggestive of a lack of plasticity during aging and 292 
impairment of memory and learning (Moon et al., 2014; Solis et al., 2012) indicative of how the ECM effects the 293 
progression of neurological decline. 294 
 295 
PNNs are dynamic structures, the number and density of which can change in response to external events. for 296 
example, behavioural reinforcement can reduce PNN numbers in both the cortex and the cerebellum (Carulli et 297 
al., 2013; Pizzorusso et al., 2002). Further, PNNs are also removed as a result of epileptic events (Miyata and 298 
Kitagawa, 2016).  It is also probable that there are frequent changes in PNNs at the level of individual synapses 299 
and dendritic regions, although this has not been proven. As such, PNNs are critical to the development and 300 
progression of some neurological diseases. These changes can be caused both by changes in the synthesis of 301 
matrix molecules with age, and also through changes in enzymatic degradation. The PNNs are targets of matrix 302 
metalloproteinase (MMP)-9 and several other MMPs (Rossier et al., 2015). This pairing has been linked to 303 
plasticity as exposure to enriched environment (EE) caused a decrease in PNN staining in the lateral deep 304 
cerebellar nucleus, a reduction that is abrogated in MMP-9 knockout (KO) mice (Stamenkovic et al., 2017). 305 
Further, MMP-9 and PNNs were found to co-localise after EE exposure, suggesting that MMP-9 secretion is a 306 
cause of the decrease in PNN staining. The remodelling of the PNNs by MMP-9 allows dendritic spine 307 
modification and greater plasticity by enabling synaptogenesis (Stawarski et al., 2014). MMP-9 expression is 308 
upregulated in ageing but no corresponding decrease in PNN staining is observed (Romero et al., 2010; Ueno 309 
et al., 2017b). This suggests an upregulation in the expression of MMP-9 does not directly translate into an 310 
increase in the MMP activity. However, there are several MMP inhibitors that exist to balance MMP activity and 311 
control digestion. Also, recruitment of MMP to the PNNs is dependent on a corresponding increase in tenascin 312 
C. Another possibility is due to an increased permeability of the basement membrane, reducing the amount of 313 
MMP-9 in the brain (Brkic et al., 2015; Lepelletier et al., 2017). This reduction of functional MMP-9 could then 314 
prevent adequate remodelling of the PNNs during learning and may contribute to the thickening of the matrix 315 
observed in aged rats (Ueno et al., 2017b).  316 
 317 
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3.3 Memory and Alzheimer’s Disease - a role for the ECM 318 
Memory is a form of plasticity. Digestion of CSPGs with ChABC or attenuation of PNNs in HAPLN and aggrecan 319 
knockout animals have the same effect on object recognition memory, with a prolongation of memory out 320 
beyond 48 hrs compared with less than 12 hrs in normal animals (Romberg et al., 2013). In fear memory, 321 
ChABC application to the amygdala restores the juvenile pattern of unlearning (Gogolla et al., 2009), while in 322 
the auditory system, hyaluronidase restores agility to learning new patterns (Frischknecht et al., 2009). Because 323 
memory changes are seen in transgenics that specifically affect PNNs, these structures are implicated in the 324 
control of memory. A probable mechanism is the control of inhibitory synaptic inputs onto PV GABAergic 325 
interneurons. Memory events increase the number of these inhibitory synapses, relieving inhibition in the 326 
cortical circuits that the PV neurons control. ChABC treatment also allows a greater number of inhibitory 327 
synapses to form, so increasing local cortical excitability (Donato et al., 2013). Ageing is the major risk-factor for 328 
neurodegenerative diseases such as Alzheimer’s disease (AD). Alzheimer’s and related conditions are 329 
accompanied by the widespread loss of neurons and synapses and also by a general increase in inflammation 330 
in the CNS. The inflammation has many consequences, but in the ECM it leads to greater levels of HA in AD 331 
brains compared to age matched controls (Jenkins and Bachelard, 1988b), which can reduce neurogenesis and 332 
may affect myelination (Hollands et al., 2016; Moon et al., 2014). Inflammation may also change the sulphation 333 
pattern of CSPGs, but this has not yet been investigated.  334 
 335 
AD is characterised by a loss of memory as a result of neuronal and synaptic dysfunction (Pozueta et al., 2013). 336 
It is reasonable to think of AD pathology as a form of CNS lesion in which function might be restored by 337 
enhancing plasticity to enable bypass circuits to form around damaged neurons. In order to test this idea, 338 
plasticity in a tauopathy and amyloid beta model was stimulated by injection of ChABC into the rodent brain. In 339 
both models, memory was restored, using object recognition memory in the tauopathy mice, contextual fear 340 
conditioning in the amyloid beta model (Vegh et al., 2014; Yang et al., 2015). ECM digestion restored synaptic 341 
transmission as shown by the restoration of long term depression (LTD) in the hippocampus. However, the 342 
effect of ChABC on the matrix is temporary, and PNNs return within five weeks, and as this happens memory is 343 
again impaired (Yang et al., 2015). Similar restoration of memory occurred when the inhibitory chondroitin 4-344 
sulphate CS-A was specifically targeted using an anti-chondroitin 4-sulphate antibody. Memory loss also occurs 345 
in ageing, and during this process there is a change in the sulphation of CSPGs in the PNNs, with a loss of 346 
permissive 6-sulphated CS-C and an increase in inhibitory CS-A (Foscarin et al., 2017). It is very likely that this 347 
change in the inhibitory properties of the PNNs could be responsible for some of the memory changes in 348 
ageing. The mechanism of restoration of memory in neurodegeneration by ChABC is presumably a combination 349 
of enabling sprouting to make bypass circuits, and effects on the excitability of cortical circuits due to increased 350 
inhibitory inputs to PV interneurons described above.  351 
 352 
How might PNNs be involved in memory? Removal or reduction of the PNNs leads to a permissive neuronal 353 
profile, allowing synaptogenesis onto PV interneurons and encouraging memory formation (de Vivo et al., 2013; 354 
Quattromani et al., 2017; Yang et al., 2017). In the aged brain, the increasing inhibitory nature and numbers of 355 
the PNNs keep PV positive interneurons in an inhibitory profile, probably causing a deficit in memory and 356 
learning (Donato et al., 2013; Ueno et al., 2017b). This suggests that the cognitive impairment observed in 357 
ageing is partly due to a failure to establish new synapses rather than a loss of established synapses and 358 
highlights how ECM mediated restrictions on CNS plasticity have key functional effects upon individuals. 359 
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Modification of the ECM in the adult could facilitate further learning or help protect from neurodegeneration. 360 
However, the mechanism through which the ECM affects cellular properties and restricts plasticity in the 361 
juvenile, adult or degenerative state is not yet fully know. Nonetheless, ECM modification holds great promise 362 
as a potential tool to modify the neuronal effects of aging. 363 
 364 
 365 
4. ECM involvement in neuronal excitability and synaptic plasticity 366 

As previously described, ECM surrounds neurones and affects the vital cellular functions of neuronal excitability 367 
and synaptic transmission.  368 
 369 
4.1 Neuronal excitability 370 
The role of PNNs in modulating activity has been studied both in vitro and in vivo, mainly though the enzymatic 371 
removal of CS with ChABC. PNNs both in vivo and in vitro mostly surround PV-positive GABAergic neurons, so 372 
most of the findings relate to these cells. In hippocampi cultures from neonate mice (maintained in vitro for 15-373 
19 days), degradation of PNNs around PV positive inhibitory interneurons with the enzyme increased 374 
interneuron excitability without affecting the number or distribution of perisomatic GABAergic presynaptic 375 
terminals (Dityatev et al., 2007). Conversely blockade of action potentials, transmitter release, Ca2+ permeable 376 
AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the 377 
extracellular accumulation of PNNs components in cultured neurons (Dityatev et al., 2007). These data suggest 378 
that, within this region of the brain, there might be a feedback loop through PNNs act to control neuronal 379 
excitability. However, these data are contrary to results obtained in vitro on mice cortical slices. ChABC 380 

treatment on P70 cortical slices showed a reduced excitability on PV-positive fast-spiking cortical neurons 381 
(Balmer, 2016). Similarly, in the visual cortex, removal of PNNs in vivo by ChABC decreased inhibition and 382 

increased gamma activity (Lensjo et al., 2017). Indeed, ChABC treatment lowered mean spiking activity of 383 
putative inhibitory units (Lensjo et al., 2017). This would suggest that specific neuronal functions are maintained 384 
through the occurrence of the PNNs. Moreover, high-frequency gamma oscillations (30–80 Hz) of the cortex are 385 
highly correlated with activity in the PV+ cells (Cardin et al., 2009). These results are consistent with the findings 386 
discussed above in which ChABC treatment allows an increase in inhibitory inputs onto PV GABAergic neurons, 387 
decreasing their activity and allowing increased excitability in the cortex (Donato et al., 2013). Finally, in the 388 
auditory brainstem where some of the fastest and most precisely firing neurons are housed (Bertolotto et al., 389 
1996; Blosa et al., 2013; Härtig et al., 2001), principal neurons in the medial nucleus of the trapezoid body 390 
(MNTB) are able to follow extremely fast afferent stimulation (>1 kHz) with incredible accuracy (Kim et al., 391 
2013). Removal of PNNs with ChABC does not affect the firing ability (of up to 1kHz) of the MNTB neurons but 392 
reduce their excitability and the gain of spike output (Balmer, 2016). From what we have said previously, one 393 
might expect the sulphation pattern of PNNs to affect their influence on neurons. The overexpression of 394 
chondroitin 6-O-sulphate transferase 1 (C6st1), an enzyme which is responsible for the production of 395 
chondroitin 6-sulphates, prevents the maturation of some of the electrophysiological properties of PV 396 
interneurons (Miyata et al., 2012), and the PNN neurons show greater depolarisation and wider action potentials 397 
(Miyata et al., 2012).These data reveal some ways in which the CNS ECM maintains and regulates neuronal 398 
function based upon activity and thus affecting cellular properties. 399 
 400 
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Other than inhibitory neurons, PNNs and ECM changes have also been shown to affect excitatory neurons. For 401 
example, in the CA2 region of the hippocampus, PNNs are mostly found surrounding excitatory synapses of 402 
pyramidal neurons (Celio, 1993; Costa et al., 2007; Fuxe et al., 1997). However, these intrinsic properties of 403 
CA2 pyramidal neurons are not altered in response to PNN degradation (Carstens et al., 2016). Similarly, 404 
ChABC treatment does not affect the mean activity of putative excitatory units in vivo in the visual cortex (Lensjo 405 
et al., 2017). These data may suggest that PNNs help regulate the functions of glutamatergic neurons, but are 406 
not essential for their normal functioning within the CNS. More data is required to refine and develop these 407 
points. However, recent evidence has shown that the PNN protein brevican can mediate cellular responses 408 
through activity-dependent gating of PV+ interneurons (Favuzzi et al., 2017). With the GABAergic interneurons, 409 
cortical PV+ (as opposed to the somatostatin+) interneurons facilitate the balance of neuronal activity between 410 
excitation and inhibition, particularly through learning (Froemke, 2015) and has been linked to psychiatric 411 
disorders (Hu et al., 2014). Favuzzi et al., (2017) demonstrated that the PNN brevican modifies PV+ interneuron 412 
excitability and therefore their synaptic outputs by controlling synaptic AMPA receptor level imput and potassium 413 
channel localisation on these PV+ neurones. Further that activity dynamically regulates PNN brevican levels. As 414 
such, it is shown that PNN components are dynamic and can individually help co-ordinate specific responses to 415 
experience. 416 
 417 
4.2 Synaptic plasticity 418 
Synaptic plasticity is a consequence of de novo formation of synapses or from transient but strictly controlled 419 
proteolysis at the synapse (Magnowska et al., 2016). The presence of ECM CSPGs, particularly brevican, on 420 
the neuronal surface limits the lateral diffusion of AMPA-type glutamate receptors. Enzymatic removal of HA, 421 
the PNN scaffold, increases extra-synaptic receptor diffusion and the exchange of synaptic AMPA receptors 422 
(Frischknecht et al., 2009). NMDA-type glutamate receptor function and trafficking are also strongly influenced 423 
by components of ECM including reelin, MMPs and integrins (Groc et al., 2006; Shi and Ethell, 2006). These 424 
data demonstrate how the ECM affects the specific functionality of CNS cells and their properties. 425 
 426 
The ECM within the CNS has been shown to affect plastic changes on the functional properties at the synapse, 427 
acting in both the short-term and the long-term. In the presence of bicuculline (a GABAA receptor antagonist), no 428 
significant differences in basal excitatory synaptic transmission or AMPAR/NMDAR ratio was observed after 429 
ChABC treatment in CA2 region of hippocampal slices (Carstens et al., 2016). Similarly, treatment with ChABC 430 
did not interfere with short term plasticity (Bukalo et al., 2001). By contrast, decreased short-term potentiation 431 
and depression was observed in knockout mice for tenascin-R (Bukalo et al., 2001). Alternatively, substantial 432 
work has shown similarly important effects of ECM upon long-term synaptic plasticity. Under normal 433 
physiological condition, CA1 neurons show a typical long term potentiation (LTP) under a “pairing protocol”, 434 
while CA2 neurons do not. However, LTP of excitatory synapses in the CA2 stratum radiatum (SR) can be 435 
altered to a level comparable to that induced at CA1 synapses, via ChABC treatment (Carstens et al., 2016). 436 
These results are at variance with the ones obtained in CA1 region of hippocampus. In this latter, LTP is 437 
similarly reduced in mice knockout for tenascin-R and after treatment with ChABC. However, LTD in KO mice 438 
for tenascin-R is normal but impaired after treatment with ChABC (Bukalo et al., 2001). These data show that 439 
the local ECM can modulate the plasticity in specific areas of the CNS. The mechanism for this modulation, and 440 
precisely why some areas are more affected than others requires further exploration. However, these data 441 
clearly demonstrate the importance of the ECM in modulation of CNS functional activity and cellular properties.  442 
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 443 
 444 
5. ECM plasticity in CNS disorders and injury 445 

The component molecules of the ECM alter and reorganise either in response to or in the development of 446 
disease and injury. There are many years of evidence showing the importance of ECM upregulation following 447 
insult to the CNS, particularly in the formation of the glial scar, and how this may prevent functional recovery 448 
over-time. However, recent evidence has shown that downregulation of the ECM is additionally correlated with 449 
and probably important in psychiatric disorders including schizophrenia, mood disorders, autism, and addiction. 450 
Here we shall discuss how the pathophysiology of the ECM changes in the progression of each of these 451 
conditions, highlighting potential ways in which manipulation of the ECM may be therapeutically useful. 452 
 453 
5.1 Upregulation of ECM components: injury, stroke, and brain tumours  454 
Over the last two decades, experimental research has shown the effect of ECM upregulation following injury 455 
and trauma to the CNS and how, without intervention, this contributes to a reduction of plasticity and failure to 456 
functionally recovery.  457 
 458 
5.1.1 CNS injury and stroke 459 

Stroke and injury to the CNS cause substantial alterations in the ECM. The trauma leads to the migration of 460 
activated astrocytes, oligodendrocyte precursor cells, and microglia into the site of injury and, subsequently, the 461 
formation of scar tissue (Asher et al., 2000). This deposition of densely compacted tissue performs a biphasic 462 
response to injury where acutely it seals the area, preventing further damage, restricting inflammation, sealing 463 
the blood-brain barrier and supporting neurons, but chronically can act as a barrier blocking functional recovery 464 
(Anderson et al., 2016; Renault-Mihara et al., 2008; Rolls et al., 2009). Interestingly, formation of the astrocytic 465 
scar has been shown to be partly instigated by plastic changes in type I collagen in the fibrotic ECM at the 466 
lesion core which acts on astrocytes by integrin binding and N-cadherin, signalling formation of the tissue (Hara 467 
et al., 2017). Indeed, recent studies have shown that scar forming reactive astrocytes become quiescent and 468 
unreactive a week following spinal cord injury (Hara et al., 2017), indicating the short time window that is 469 
required to form this permanent barrier surrounding the site of trauma.  470 
 471 
Key molecules in this scar tissue are CSPGs with neurocan, versican, brevican, and NG2 predominating at the 472 
site of trauma and (without intervention) remain constant throughout the patient’s life (Asher et al., 2000; 2002; 473 
Buss et al., 2009; Galtrey and Fawcett, 2007). The high CSPG content in the scar can inhibit axon regeneration, 474 
outgrowth, and plasticity (Alilain et al., 2011; Barritt et al., 2006; Borisoff et al., 2003; Bradbury et al., 2002; Dou 475 
and Levine, 1994; Fitch and Silver, 2008; Friedlander et al., 1994; Snow et al., 1990; Tang et al., 2003). Davis et 476 
al. demonstrated that dorsal root ganglion neurons form dystrophic growth cone formation in areas of CSPG 477 
upregulation (Davies et al., 1997; 1999). However, removal of astrocytes in regions of CNS damage can reduce 478 
the scarring reaction, but has adverse effects through loss of the ability of astrocytes to control inflammation, 479 
stimulate resealing of the blood-brain barrier, protect neurons and other functions (Anderson et al., 2016). 480 
Interestingly, while CSPGs have been shown to increase at the site of injury after stroke, they are reduced in the 481 
PNNs of the peri-infarct area. This suggests that a local plastic and endogenous response may occur to 482 
reactivate activity in the local area of the trauma (Hobohm et al., 2005; Madinier et al., 2014). 483 
 484 
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As the CSPG rich area can be a significant obstacle against functional regeneration and recovery following 485 
injury, it is not surprising that they are a target for treatment strategies. These can be broadly divided into four 486 
areas. The first being to target the CSPG, offsetting its effects through the use of monoclonal antibodies to aid 487 
functional recovery through an increase in axon conduction and excitement (Tan et al., 2006; Ughrin et al., 488 
2003). However, this is not the only experimental method readily used to reduce CSPG inhibition. The most 489 
common method is through the breakdown of CS-GAGs with the application of ChABC (Huang et al., 2003; 490 
2000; Prabhakar et al., 2005; Tkalec et al., 2000; Yamagata et al., 1968). An alternative is to target CSPG 491 
glycanation through knockdown of a key enzyme (Grimpe et al., 2005). These CSPG strategies have had 492 
substantial success at causing axonal regrowth both in vitro and in vivo, using a variety of animal species, 493 
numerous different models and at a variety of time points post injury. The effects can be maximised in 494 
combination with rehabilitation strategies that can direct the plasticity (Alilain et al., 2011; Garcia-Alias et al., 495 
2011; Wang et al., 2011). Alternatively, the core proteins of CSPGs can be digested by the endogenously 496 
produced disintegrin-like and MMPs with thrombospondin type 1 motif 4 (ADAMTS4) (Apte, 2009; Lemarchant 497 
et al., 2014; Tauchi et al., 2012) and matrix MMPs (Larsen et al., 2003; Lemke et al., 2010) to aid recovery 498 
following spinal cord injury. Other methods being  employed experimentally to reduce the inhibitory CSPGs is to 499 
prevent their formation through the use of DNA enzymes (Grimpe, 2004), prevention of enzyme conversion 500 
(Nigro et al., 2009), or gene deletions (Takeuchi et al., 2013), although the clinical application of these 501 
techniques is limited.  Overall, treatments targeting CSPGs after CNS damage have shown very consistent 502 
results in a variety of animal models and species. To date the only clinical trial has been in canine spinal cord 503 
injury, where ChABC injection enhanced recovery (Jeffery et al., Brain in press), but there have been no clinical 504 
trials in human patients; this step is very overdue,  505 
 506 
5.1.2 Brain tumours 507 

Similar to injury and trauma, a number of molecules in the ECM are upregulated around brain tumours. This 508 
includes increases in tenascin-C (Bellail et al., 2004). Located near blood vessel walls, tenascin-C acts to 509 
facilitate angiogenesis in the primary tumour region. It has been shown that targeting drugs to tumours using 510 
RNAi against tenascin-C increases the patient’s life by 10ௗweeks in glioblastoma multiforme and 18ௗ weeks in 511 
grade III astrocytoma (Wyszko et al., 2008). Similarly, secreted protein acidic and rich in cysteine (SPARC) has 512 
been shown to increase in astrocytomas and meningiomas, decreasing cellular growth and increasing cell 513 
invasion (Bellail et al., 2004; Rempel et al., 1999; 2001; 1998). Further, it has recently been shown through KO 514 
experiments that brevican facilitates the progression and motility of cells in glioma, although has not required to 515 
maintain these characteristics perhaps indicating a time dependent effect for the ECM component in tumour 516 
progression (Dwyer et al., 2014). Perhaps one of the most highly upregulated ECM molecules in gliomas and 517 
meningiomas is HA, and the molecules receptors hyaluronan-mediated motility receptor (RHAMM) and CD44 518 
(Delpech et al., 1993). Recent interest in the role of HA in cancer progression has increased as the high 519 
molecular mass hyaluronan produced by the naked mole rat was shown critical for the animal’s resistance to 520 
cancer development (Tian et al., 2013). However, the effect of increasing HA and its receptors in human brain 521 
tumours is to augment cellular migration and thus invasion (Bellail et al., 2004). As a number of malignancies 522 
express the HA receptor CD44, it has been used as a target for directed nanoparticle coupled therapies. This 523 
has led to increased delivery of paclitaxel to brain tumour cells in a rodent model, increasing life expectancy 524 
(Mittapalli et al., 2013). While the mechanism is unclear, the upregulation of ECM components in both the brain 525 
tumour stroma and parenchyma have been shown to facilitate cellular growth and invasion. However, there is 526 
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also great potential to use these upregulated molecules for targeted treatment of the condition and thus to use 527 
these plastic changes to extend life expectancy.  528 
 529 
5.2 ECM components in psychiatric disorders  530 
Numerous studies have demonstrated alterations in ECM regulation, components, and formation in individuals 531 
with CNS disorders. For example, alterations in the expression of reelin have been demonstrated in the 532 
numerous areas of the brain associated with patients on the autism spectrum (Fatemi, 2005; Hussman et al., 533 
2011; Weiss et al., 2009). These data suggest that the consequence of abnormalities in ECM formation and 534 
maintenance have wide-reaching implications. Here we shall discuss how decreases in ECM components are 535 
linked to psychiatric disorders as diverse as addiction, schizophrenia and mood disorders. 536 
 537 
5.2.1 Addiction 538 

Modifications of ECM occur during the development of addiction disorders. Cocaine has been shown to induce 539 
changes in neural ECM in both human patients and rodent models (Mash et al., 2007; Smith et al., 2014). 540 
Interestingly, evidence suggests that PNNs in the prefrontal cortex (PFC) initially decrease during the initial 541 
stages of heroin self-administration but are increased with continuing exposure to the drug suggesting that 542 
PNNs may be depleted during acquisition of addiction and then increased during  consolidation (Van den Oever 543 
et al., 2010). Breakdown of PNNs using ChABC enhanced the extinction of morphine- or cocaine-induced 544 
conditional place preference and decreased rates of behaviour reinstatement in experimental models of opioid 545 
addiction (Slaker et al., 2015; Xue et al., 2014). This may be caused by a reduction in activation of the neurons 546 
previously surrounded by the PNN (Slaker et al., 2015). These data were replicated following assessment with 547 
heroin self-administration (Xue et al., 2014). Similarly, both mRNA and protein levels of HA, brevican, tenascin-548 
R in the medial pre-frontal cortex decreased following forced removal of self-administered heroin as compared 549 
to animals that self-administered saline (Van den Oever et al., 2010). The levels of CSPG recovered following 550 
cue-induced reinstatement of drug self-administration. Further, with the reoccurrence of heroin self-551 
administration, the frequency of spontaneous inhibitory postsynaptic currents increased. These data give 552 
another example where PNN components or turnover is dynamically mediated by alterations in experience and 553 
the environment (Van den Oever et al., 2010). Further, that drug-associated cues correlate to an increase in 554 
interneuronal GABAergic activity which may alter with changes in the PNN surrounding these neurons. Xue et 555 
al. additionally showed that only animals with ChABC mediated breakdown of PNNs and extinction training 556 

showed increased levels of GluR1, GluR2 and BDNF (Xue et al., 2014). This may further indicate that PNN 557 
removal facilitates neuronal plasticity but requires additional environmental influence or training to ensure the 558 
plasticity evoked can be functionally harnessed. However, it is likely that the plasticity induced by ECM 559 
modification alone is not sufficient to induce addictive behaviours, one would require additional environmental 560 
cues or behavioural training to develop these traits. Nonetheless, the promising evidence linking such plastic 561 
changes to the development of disorders suggests that PNN components may be targets for therapeutic 562 
intervention. 563 
 564 
5.2.2 Schizophrenia 565 
Schizophrenia is a polygenic disorder which typically is first exhibited at late adolescence/early adulthood, 566 
stages at which the amygdala, entorhinal cortex, and PFC (brain areas associated with the disease) mature 567 
(Woo, 2014). There is evidence to suggest that errors within brain development facilitate development of the 568 
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disorder (Halim et al., 2003; Lewis et al., 2012; Woo, 2014). Essentially, that altered neurotransmission inhibits 569 
gamma oscillations in schizophrenic individuals, which are critical for cognitive function (Lewis et al., 2005; Sun 570 
et al., 2011; Woo, 2014). ECM components are implicated through their effects on growth, migration and 571 
development of neurons and through PNNs.  572 
 573 
The majority of evidence linking ECM changes and schizophrenia concern PNNs and reelin. Regions of the 574 
brain associated with schizophrenia demonstrate a ~60-75% decrease in PNNs, altered glial CSPG expression, 575 
and altered expression of PNN components and metalloproteases (Mauney et al., 2013; Pantazopoulos et al., 576 
2013; 2015; 2010; Pietersen et al., 2014). In addition, the components of PNNs have been shown altered in 577 
form or density in schizophrenic individuals. For example, recent genetic analysis has confirmed the correlative 578 
link between a neurocan variant in PNNs and altered cortical folding in schizophrenic patients (Muhleisen et al., 579 
2012; Schultz et al., 2014). These data suggest that significant areas of the schizophrenic brain have substantial 580 
alterations in ECM. This may increase periods of synaptic instability, reduce pruning, and facilitate 581 
neurotransmission by reducing ion buffering in cortical networks facilitating development of the disorder 582 
(Mauney et al., 2013; Woo, 2014).  583 
 584 
In addition to the evidence concerning PNNs, there is strong evidence to suggest that the development of 585 
schizophrenia is associated with reductions in the expression of the ECM component reelin in the hippocampus 586 
and PFC (Fatemi et al., 2000; Impagnatiello et al., 1998). This downregulation occurs simultaneously with 587 
alterations in GABA metabolism and receptor expression un-associated with changes in GAD67 expression 588 
(Impagnatiello et al., 1998; Liu et al., 2001). Reelin is important for the regulation of NMDA subunit expression in 589 
synapses (Campo et al., 2009; Iafrati et al., 2014). As such it is possible that glutamatergic input through these 590 
reelin modulated receptors may underlie the neuronal GABAergic dysfunction evident within the disorder (Woo, 591 
2014). Collectively, these data show a clear correlation between schizophrenia and events in the ECM. Whether 592 
they are causative is not proven, but it is conceivable that the ECM is involved in the formation of schizophrenia 593 
and thus there could be possible routes for potential intervention in the disorder. However, the mechanism of 594 
PNN involvement and development has yet to be fully elucidated which may limit clinical application of any 595 
treatment.  596 
 597 
5.2.3 Mood disorders 598 

Major depressive disorder and bipolar disorder have a similar neurobiology and affect similar brain areas 599 
including the PFC and hippocampus and are associated with disruption to neurodevelopment and plasticity 600 
(Martinowich et al., 2009). As such, the ECM components within these regions have the potential to contribute 601 
to the pathology of the disorder. Post-mortem studies have demonstrated reductions in the PNNs across a 602 
number of nuclei in the amygdala of depressed patients (Pantazopoulos et al., 2015). Although humans with 603 
bipolar disorder and rodent models do not show such trends, they more regularly demonstrate alteration in 604 
neurocan (Cichon et al., 2011; Mauney et al., 2013; Zhou et al., 2001). Nonetheless, similar to schizophrenia, 605 
decreases in reelin additionally occur in areas of the brain associated with both major depression and bipolar 606 
disorder (Fatemi, 2005; Guidotti et al., 2000; Lussier et al., 2011). Further, bipolar disorder has been associated 607 
with a variant of the reelin gene (Goes et al., 2010). However, the decrease in ECM components and the 608 
development of mood disorders is currently no more than a strong association, possibly indicating that they 609 
contribute to the development of the disorder but alone are not causal. To determine this the mechanism of 610 
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ECM plasticity and the development of mood disorders must be determined. However, the advent of these 611 
changes in patients suggests a potential use of ECM modification as a facilitation to the treatment of these 612 
psychological disorders. 613 
 614 

 615 
6. Conclusion 616 

Both long-standing and emerging evidence shows that the ECM is essential for the normal functioning, cellular 617 
properties, and plasticity of the CNS. That its composition and formation are important from development 618 
(enabling plasticity and growth within neuro-circuitry) to the adult (where it stabilises the neural networks 619 
formed). Indeed, it has been shown that removal of ECM components in the adult can cause an increase in 620 
plasticity. However, this system is dynamic, as the activity in the neural circuitry changes, so does the 621 
composition of the ECM, facilitating continued learning and optimisation of CNS function. Indeed, through its 622 
functions as a buffer and regulating ion diffusion, recent evidence has shown the ECM of the CNS is critical for 623 
the formation of memory and learning, fundamental functions of the brain. The data presented here also 624 
demonstrate how perturbations in the composition of the ECM is related to numerous disease and disorder 625 
states. This includes Alzheimer’s disease, stroke, trauma, mood disorders, diseases on the autism spectrum, 626 
brain tumour progression, Schizophrenia, and addiction. However, the mechanism of these disease progression 627 
and its relationship to changes in the ECM is not often clear, thus it is not known if the alterations in matrix are a 628 
causal factor in the initiation or progression of these disorders. It is important to understand this as ECM 629 
components in the CNS could be valuable targets for therapeutic intervention in clinical disease states. Indeed, 630 
due to the ubiquitous nature of the ECM within the CNS, this matrix hold substantial potential for affecting 631 
neuromodulation and plasticity within multiple systems and areas in the brain and spinal cord simultaneously.  632 
 633 
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Figures: 1281 
 1282 
 1283 

 1284 
 1285 
Fig. 1: Schematic of chondroitin sulphate (CS) chain attachment to the proteoglycan core. CS chains are 1286 
assembled onto proteoglycan cores via a serine attached O-linkage, which must first be assembled. The CS 1287 
chain is then formed from alternating monosaccharides by a family of different glycosyltransferases. CS chain 1288 
length can vary between 25-50 disaccharide units. The chains can then be further modified by the addition of 1289 
sulphate groups onto the disaccharide components creating distinct species. Sulphation on the fourth position or 1290 
the 6th of N-acteylgalactosamine (GalNAc) produces either monosulphated CS-A or CS-C. GalNAc can be dual 1291 
sulphated at both positions to create CS-E. CS-C can be further sulphated on the second position of the 1292 
glucuronic acid (GlcA) residue. Within one CS chain several sulphation patterns can be present. 1293 
 1294 
 1295 
 1296 

 1297 
Fig 2: Schematic of the perineuronal net (PNN). The PNN forms a macromolecular structure around the cell and 1298 
is formed of several components. The backbone of the PNN are the hyaluronan (HA) chains. These large 1299 
unbranched chains are docked onto the cell surface by their synthase. The HA provide the backbone on which 1300 
the CSPGs can dock. Their binding to the HA chains is stabilised by the HAPLN family. Tenascin R is then 1301 
thought to condense the PNN further by acting as a cross-linker between attached CSPGs. Together they form a 1302 
rich polyanionic environment. 1303 
 1304 
 1305 


