

This is a repository copy of *Symptoms at lung cancer diagnosis are associated with major differences in prognosis*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/130243/

Version: Published Version

Article:

Athey, V.L., Walters, S.J. orcid.org/0000-0001-9000-8126 and Rogers, T.K. (2018) Symptoms at lung cancer diagnosis are associated with major differences in prognosis. Thorax, 73 (12). pp. 1177-1181. ISSN 0040-6376

https://doi.org/10.1136/thoraxjnl-2018-211596

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Symptoms at lung cancer diagnosis are associated with major differences in prognosis

Victoria L Athey, ¹ Stephen J Walters, ² Trevor K Rogers³

► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ thoraxinl-2018-211596).

¹Chest Clinic, Rotherham Hospital, Rotherham, UK ²ScHARR, University of Sheffield, Sheffield, UK ³Chest Clinic, Doncaster Royal Infirmary, Doncaster, UK

Correspondence to

Dr Trevor K Rogers, Chest Clinic, Doncaster Royal Infirmary, Doncaster DN2 5LT, UK; trevorrogers@nhs.net

Received 28 January 2018 Revised 6 March 2018 Accepted 12 March 2018

ABSTRACT

We report a cohort study of survival of patients with lung cancer presenting to a single multidisciplinary team between 1997 and 2011, according to symptoms at presentation. The overall median survival of the 3800 lung cases was 183 days (95% CI 171 to 195). There was a statistically significant difference in survival between the 12 symptom groups identified both without and with adjustment for the prognostic variables of age, gender and histology (P<0.001). Compared with the cough-alone symptom group, the risks of dying or HRs were significantly higher for the groups presenting with breathlessness (HR 1.86, 95% CI 1.54 to 2.24, n=359), systemic symptoms (HR 1.91, 95% CI 1.48 to 2.45, n=95), weight loss (HR 2.46, 95% CI 1.90 to 3.18, n=106), chest pain (HR 1.96, 95% CI 1.56 to 2.45, n=159), cough with breathlessness (HR 1.59 95% CI 1.28 to 1.98, n=177), neurological symptoms (HR 3.07, 95% CI 2.45 to 3.84, n=155) and other symptom combinations (HR 2.05, 95% CI 1.75 to 2.40, n=1963). Cough may deserve particular prominence in public health campaigns.

INTRODUCTION

We have previously reported an attempt to improve the timeliness of diagnosis of lung cancer by raising the awareness of cough as a possible symptom.¹ Cough was chosen because it is a common lung cancer symptom and does not necessarily imply advanced disease. In this study we have investigated the extent to which the various presentations of lung cancer may predict outcome.

METHODS

This was a retrospective cohort study. An original database was designed to identify the presenting symptoms elicited at the first secondary care contact for all cases reviewed in the Doncaster-Bassetlaw lung cancer multidisciplinary team (MDT) meeting, presenting between 1 October 1997 and 1 March 2011. Only cases with a histological diagnosis of lung cancer or a clinical diagnosis based on the opinion of the lung MDT and with a consistent subsequent clinical course were included. We identified 10 groups comprising the most common symptomatic presentations, an asymptomatic group presenting with an abnormal radiograph and a group with rarer symptoms/symptom combinations (see table 1).

We preferred the date of first MDT discussion as the reference point from which survival was measured, as the date of diagnosis could sometimes be significantly delayed; this generally occurred within 3 weeks of initial presentation and was available for

all cases, irrespective of mode of presentation.

Statistical methods are given in online supplementary appendix 1.

RESULTS

The Consolidated Standards of Reporting Trials diagram (figure 1) describes the case selection. A similar average age at presentation and a male predominance were found in all symptom groups (table 1).

The overall median survival of the 3800 lung cases was 183 days (95% CI 171 to 195), and was significantly better for patients presenting with cough (n=226, 398 days; 95% CI 316 to 480), haemoptysis (n=188, 308 days; 95% CI 248 to 368), cough and haemoptysis (n=100, 370 days; 95% CI 300 to 440), and lower respiratory tract infection (n=52, 410 days; 95% CI 218 to 602). Survival after cough presentations was similar to that of the abnormal radiograph group (see table 2 and Kaplan-Meier curves in figure 2). The difference in survival between the 12 symptom groups was statistically significant both without (log-rank P<0.001) and with adjustment for the prognostic variables of age, gender and histology (ie, small cell lung cancer (SCLC) vs non-small cell cancer (NSCLC)) (P<0.001).

We undertook a symptom group × SCLC interaction analysis because of the more aggressive behaviour of this tumour. The 518 cases with SCLC were more likely to present with 'other' symptom combinations (62.9%) and were less likely to present with cough/haemoptysis (9.3%) or with an asymptomatic radiological abnormality (2.9%). Although the survival of the SCLC group was significantly poorer, there was no statistical evidence of a presenting symptom cluster by SCLC interaction (P=0.40), indicating that the effects of presenting symptoms on survival are similar across the SCLC and NSCLC patient groups.

DISCUSSION

There are several possible explanations for the far superior prognosis of symptomatic patients presenting with cough (either simple, associated with haemoptysis or with purulent sputum), with a median survival approximately twice as long as that seen after any other symptomatic presentation. Most obviously these symptoms were associated with earlier stage and consequent higher radical treatment rates. It is therefore possible that these symptoms may correspond to discovery at an earlier stage in the natural history of the cancer when patients are still amenable to curative treatment.

Other putative factors that a priori may have

To cite: Athey VL, Walters SJ, Rogers TK. Thorax Epub ahead of print: [please include Day Month Year]. doi:10.1136/ thoraxinl-2018-211596

Systemic

Cough and

Other

Table 1 Demographics, stage, histology and radical treatment rates according to 12 presenting symptom features (n=3800)

Cough and

Abnorma

Continued

Brief communication

Total cases recorded on the database betweer 1^{st} October 1997 and 3^{rd} August 2011 n = 6953

No date of 1^{st} MDT recorded n = 77

6876 records

Table 1 Continued													
	Cough	Abnormal radiograph	Haemoptysis	Cough and haemoptysis	LRTI	Breathlessness	Weight loss	Systemic symptoms	Chest pain	Cough and breathlessness	Neurological	Other combinations	Total
Total	226 (100)	219 (100)	188 (100)	100 (100)	52 (100)	359 (100)	106 (100)	95 (100)	159 (100)	177 (100)	155 (100)	1962 (100)	3798 (100)
Performance st	tatus												
0	74 (40)	53 (34)	48 (34)	30 (36)	13 (30)	29 (11)	21 (26)	7 (10)	48 (37)	27 (18)	15 (12)	257 (16)	623 (21)
1	75 (41)	47 (30)	55 (38)	36 (43)	17 (40)	74 (28)	21 (26)	18 (25)	42 (33)	63 (43)	27 (21)	528 (34)	1003 (33)
2	24 (13)	24 (15)	17 (12)	9 (11)	9 (21)	65 (24)	14 (18)	13 (18)	19 (15)	31 (21)	26 (20)	340 (22)	591 (20)
3	6 (3)	18 (11)	20 (14)	5 (6)	2 (5)	60 (22)	16 (20)	14 (19)	18 (14)	18 (12)	22 (17)	292 (19)	491 (16)
4	3 (3)	16 (10)	3 (2)	3 (4)	2 (5)	40 (15)	8 (10)	21 (29)	2 (2)	9 (6)	38 (30)	158 (10)	305 (10)
Total	184 (10)	158 (100)	144 (100)	83 (100)	43 (100)	268 (100)	80 (100)	73 (100)	129 (100)	148 (100)	128 (100)	1575 (100)	3013 (100)

Other symptoms category includes gastrointestinal symptoms, hoarse voice, wheeze, facial swelling, mass, fracture, fall and strido

LRTI was diagnosed when clinical features strongly suggested an infective component, including sputum purulence, fever and acute constitutional symptoms. Systemic symptoms included otherwise unexplained weight loss and lethargy. Neurological symptoms were mostly due to cerebral metastases.

Performance status score: The Eastern Cooperative Oncology Group score runs from 0 to 5, with 0 denoting perfect health and 5 death: 0—asymptomatic (fully active, able to carry on all predisease activities without restriction); 1—symptomatic but completely ambulatory (restricted in physically strenuous activity but ambulatory and capable of all self-care but unable to carry out any work activities; up and about more than 50% of waking hours); 3—symptomatic, >50% in bed, but not bedbound (capable of only limited self-care, confined to bed or chair); 5—death BAC, bronchioloalveolar carcinoma; chemo, chemotherapy; LRTI, lower respiratory tract infection; multimodality therapy (chemotherapy and either radiotherapy or surgery); NSCLC-nos, non-small cell lung cancer, not otherwise specified; Pall XRT, palliative radiotherapy; rad XRT, radical radiotherapy; BSC, best supportive care; SCLC, small cell lung cancer.

serendipitous discovery. The cough symptom groups were more multidisciplinary team. be only a minor survival advantage for squamous with cough include histological type, response to symptoms and contributed to the improved survival of patients presenting Cases with a date of 1^{st} MDT discussion on or after the 1^{st} March 2011 n = 289 Post mortem diagnoses/Died prior to discussion n=186 Incomplete records n = 255 Consolidated Standards of Reporting Trials diagram. MDT, 3800 records analysed 3886 records 4141 records 4327 records 6587 records

cause, could give rise to overdiagnosis bias and lead-time bias. Most cases of overdiagnosis in screening studies are due to expected, small cell carcinomas were infrequently identified survival following adjustment for histology suggests that histo-45 months, respectively2), and the persistence of the superior often associated with squamous cancer (32%-38%, compared and cough with purulent sputum fared just as well as those with haemoptysis. Because patients with cough without haemoptysis as asymptomatic radiological changes or with isolated cough/ logical type was not a determinant of improved prognosis. As nomas over adenocarcinomas (adjusted median survival 44 vs with 16%-25% for other presentations). There appears to haemoptysis, more rapid response to symptoms does not seem to Serendipitous discovery, when symptoms are due to another screening studies cell carcidue to

Brief communication

Table 2 Unadjusted and adjusted HRs for dying, from Cox proportional hazards multiple regression model, for presenting symptom groups compared with cough-alone symptom group

	Unadjusted	95% CI for HR			Adjusted* HR	95% CI for HR			
Symptom category	HR	Lower	Upper	P values		Lower	Upper	P values	
Abnormal radiograph vs cough	1.01	0.81	1.26	0.921	0.98	0.79	1.22	0.876	
Haemoptysis vs cough	1.19	0.95	1.48	0.130	1.19	0.96	1.49	0.117	
Cough and haemoptysis vs cough	0.96	0.73	1.26	0.755	0.98	0.74	1.29	0.874	
LRTI vs cough	1.10	0.77	1.56	0.609	1.06	0.74	1.51	0.756	
Breathlessness vs cough	1.86	1.54	2.24	< 0.001	1.74	1.44	2.10	< 0.001	
Systemic symptoms vs cough	1.91	1.48	2.45	< 0.001	1.74	1.35	2.24	< 0.001	
Weight loss vs cough	2.46	1.90	3.18	< 0.001	2.36	1.82	3.06	< 0.001	
Chest pain vs cough	1.96	1.56	2.45	< 0.001	1.99	1.59	2.49	< 0.001	
Cough and breathlessness vs cough	1.59	1.28	1.98	< 0.001	1.52	1.23	1.90	< 0.001	
Neurological vs cough	3.07	2.45	3.84	< 0.001	3.06	2.44	3.83	< 0.001	
Other symptom combinations vs cough	2.05	1.75	2.40	< 0.001	2.04	1.74	2.39	< 0.001	
Age (years)					1.02	1.02	1.03	< 0.001	
Gender (female)					0.91	0.85	0.98	0.007	
Histology (small cell cancer)					1.18	1.07	1.31	0.001	

Unadjusted analysis, n=3800; adjusted analysis, n=3796.

An HR >1 means patients in the symptom group have a greater risk or hazard of dying than patients in the reference (cough alone) symptom group.

Other symptom combinations category includes gastrointestinal symptoms, hoarse voice, wheeze, facial swelling, mass, fracture, fall and stridor.

LRTI, lower respiratory tract infection.

bronchioloalveolar cell/minimally invasive adenocarcinomas, of which there was no excess in our study, suggesting that over-diagnosis is unlikely to be responsible. Lead-time bias is also unlikely to explain our results because the survival rates out to 5 years and beyond from diagnosis remained superior in the cases

presenting with coughs, indicating a higher rate of cure.

We were unable to correct for comorbidity, which may have contributed to additional presenting symptoms such as breathlessness, weight loss and so on, and may have mediated some of the outcome differences observed. It is also possible that

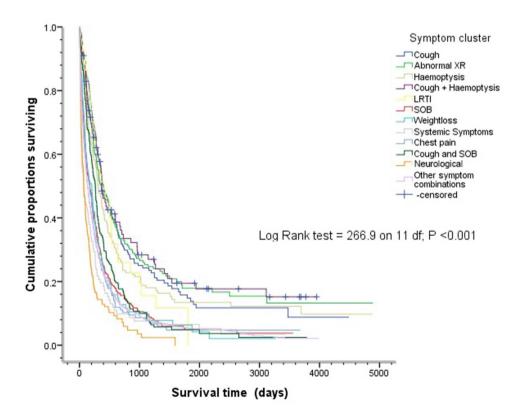


Figure 2 Kaplan-Meier curves for overall survival (in days) for the 12 symptom groups for the 3800 lung cancer cases. LRTI, lower respiratory tract infection. XR, X-ray. SOB, shortness of breath

^{*}Adjusted for age, gender and histology (small cell lung cancer, yes or no).

patients presenting with a single symptom in primary care could have developed additional symptoms in the interval leading up to secondary care assessment, especially with more aggressive cancers.

Ades and colleagues using case—control methodology failed to show any relationship between lung cancer symptoms recorded in primary care and disease stage, concluding that there is little prospect of improving outcomes by earlier detection of symptomatic disease. Although our population was likely to be slightly later in the natural history of the condition, our findings seem to contradict that conclusion, at least in relation to the symptom of cough. This may be because our study is much more powerful, with theirs only including 247 patients with lung cancer.

It is probable that these results are generalisable to British patients presenting with lung cancer. We do not yet know for certain that expediting the diagnosis in patients complaining of isolated cough in its various forms will improve outcomes, but these symptoms are certainly logical choices for awareness campaigns.

Contributors The research was planned by TKR, who also designed the database used. Additional data were collected by VLA , who performed the initial statistical analysis and drew up the first draft of the manuscript. SJW collaborated on the statistical analysis, separately replicated it and performed the additional analysis requested by the reviewers. TKR and SJW extensively revised the document into the present form. TKR is responsible for the overall content as guarantor.

Competing interests None declared.

Patient consent Detail has been removed from this case description/these case descriptions to ensure anonymity. The editors and reviewers have seen the detailed information available and are satisfied that the information backs up the case the authors are making.

Ethics approval South Yorkshire Research Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Additional data available on request.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

- 1 Athey VL, Suckling RJ, Tod AM, et al. Early diagnosis of lung cancer: evaluation of a community-based social marketing intervention. *Thorax* 2012;67:412–7.
- 2 Chansky K, Sculier JP, Crowley JJ, et al. The International Association for the Study of Lung Cancer Staging Project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol 2009;4:792–801.
- 3 Ades AE, Biswas M, Welton NJ, et al. Symptom lead time distribution in lung cancer: natural history and prospects for early diagnosis. Int J Epidemiol 2014;43:1865–73.
- 4 Biswas M, Ades AE, Hamilton W. Symptom lead times in lung and colorectal cancers: what are the benefits of symptom-based approaches to early diagnosis? Br J Cancer 2015:112:271–7.