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Abstract 

Recent advances in three-dimensional printing technology have led to a rapid expansion of its 

applications in tissue engineering. The present study was designed to develop and characterize an in 

vitro multi-layered human alveolar bone, based on a 3D printed scaffold, combined with tissue 

engineered oral mucosal model. The objective was to incorporate oral squamous cell carcinoma (OSCC) 

cell line spheroids to the 3D model at different anatomical levels to represent different stages of oral 

cancer. Histological evaluation of the 3D tissue model revealed a tri-layered structure consisting of 

distinct epithelial, connective tissue, and bone layers; replicating normal oral tissue architecture. The 

mucosal part showed a well-differentiated stratified oral squamous epithelium similar to that of the 

native tissue counterpart, as demonstrated by immunohistochemistry for cytokeratin 13 and 14. 

Histological assessment of the cancerous models demonstrated OSCC spheroids at three depths 

including supra-epithelial level, sub-epithelial level, and deep in the connective tissue-bone interface.1 

                                                           
Abbreviations: 3DP, Three-dimensional printing; OSCC, oral squamous cell carcinoma; ABMM, 
alveolar bone and oral mucosal model; CBMM, cancerous bone oral mucosal model; DMEM, 
Dulbecco’s Modified Eagles Medium; PBS, phosphate buffered saline; OMM, Oral mucosal model; 
NOM, normal oral mucosa; H & E, haematoxylin and eosin; SEM, scanning electron microscopy. 
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 The 3D tissue engineered composite model closely simulated the native oral hard and soft 

tissues and has the potential to be used as a valuable in vitro model for the investigation of 

bone invasion of oral cancer and for the evaluation of novel diagnostic or therapeutic 

approaches to manage OSCC in the future. 

Keywords: Bone, tissue engineering, oral mucosa, 3D printing, oral cancer. 

1. Introduction 

Tissue engineering owes most of its advances to improvements in novel biomaterial-based 

technologies that can accurately replicate the heterogeneous nature of native organs and tissues. 

Three-dimensional printing (3DP) is an innovative technique that offers an entirely new 

method of reconstructing complex tissues comprising intricate 3D microarchitectures, such as 

bone, cartilage, skin, and blood vessels (Bose et al., 2018; Lanza et al., 2014). 3DP has also 

been used to create physiologically-relevant in vitro models which can be applied as 

alternatives to conventional 2D and animal models in a number of research settings, such as 

disease modelling and drug screening (Pati et al., 2016; Sean and Anthony, 2014). Numerous 

methods have been developed to fabricate bone tissue engineering scaffolds including 

particulate leaching, freeze-drying, and phase separation. Although a high scaffold porosity 

can be achieved using these methods, numerous properties of the scaffold’s internal structure 

– such as pore size, shape and interconnectivity – are difficult to control (Thavornyutikarn et 

al., 2014). In contrast, 3DP can produce the desired structure with defined dimensions by 

utilizing computer-aided design (CAD) technologies (Asa’ad et al., 2016; Bose et al., 2012; 

Bose et al., 2013; Sears et al., 2016). It enables mimicking bone’s hierarchy through 

construction of multiscale scaffolds with small and large pores and high interconnectivity 

which in turn directly related to scaffold performance since it influence bone growth and 

strength (Egan et al., 2017; Wang et al., 2017).  



3 

 

One of the applications by which the advantages of 3DP can be exploited, is fabrication of 

reproducible constructs to be used for in vitro disease modelling. Oral squamous cell carcinoma 

(OSCC) is the most common Head & Neck malignancy, and accounts for approximately 90% 

of all oral and oropharyngeal tumours (Chi et al., 2015). To date, several authors have 

undertaken 3D in vitro modelling of OSCC using soft tissue-only constructs (Che et al., 2006; 

Colley et al., 2011; Kataoka et al., 2010). However, OSCC frequently invades the underlying 

alveolar bone due to close anatomical relationship of these two entities (Ebrahimi et al., 2011; 

Goda et al., 2010). Indeed, tumours of the tongue, retromolar region, and floor of mouth invade 

the mandible in 42%, 48%, and 62% of cases, respectively (Brown et al., 2002). Therefore, the 

absence of a bone-equivalent construct within the soft tissue models limits their validity in 

translating in vitro findings which are heavily influenced by the presence or absence of bony 

invasion. A suitable 3D in vitro model which combines both soft and hard tissues is therefore 

desirable in achieving a more sophisticated model of OSCC progression. 

The aim of this study was to use this 3D printed bone scaffold to construct an in vitro tissue 

engineered composite human alveolar bone and oral mucosal model (ABMM) and examine the 

potential application of this model in the investigation of oral cancer progression by further 

developing a cancerous bone oral mucosal model (CBMM). 

2. Materials and methods 

2.1. Materials 

All materials were purchased from Sigma Aldrich, UK unless otherwise stated. Gingival 

biopsies and bone chips were obtained with written, informed consent, from patients 

undergoing elective oral surgery at Charles Clifford Dental Hospital, Sheffield, UK, with the 

appropriate ethical approval from the UK National Research Ethics Services Committee 

(number 15/LO/0116). The cell line UPCI-SCC090 was received under Material Transfer 

Agreement from Prof. S. Gollin, University of Pittsburgh School of Public Health, Pittsburgh. 
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2.2. Isolation and cultivation of primary human gingival and bone cells 

Normal human oral keratinocytes and fibroblasts were isolated from oral mucosa biopsies as 

previously described (Colley et al., 2011). Briefly, biopsies were collected and incubated for 

16 hours at 4ௗ°C in 0.25% trypsin-EDTA solution in order to separate the epithelium from 

connective tissue. Following enzymatic digestion, oral keratinocytes were scraped and plated 

at a density of 6×104/cm2 with an equal number of irradiated mouse 3T3 feeder layers in 

Green’s medium (Rheinwald and Green, 1975). Fibroblasts were isolated from connective 

tissue by digestion with 0.05% (w/v) collagenase type I (Gibco, USA) at 37 °C for 4 hours. 

Then cells were centrifuged and cultured in complete DMEM (DMEM- GlutaMAX™ 

supplemented with 10% foetal bovine serum, 625 ng/mL fungizone, and 100 IU:100 mg ml-1 

Penicillin/Streptomycin). Both keratinocytes and fibroblasts were fed three times a week until 

confluency and then used at passage 2. 

Primary alveolar human osteoblasts were isolated from aspirated waste bone chips, collected 

from patients undergoing osteotomy prior to dental implant placement (Clausen et al., 2006; 

Jonsson et al., 1999; Mailhot and Borke, 1998). Bone fragments were cultured as explants in 

complete DMEM supplemented with 50µg/ml L-ascorbic acid 2-phosphate. The culture was 

left undisturbed for 7 days as any dislodgment of explants may impede cell outgrowth. Medium 

was replaced 2-3 times/week until the culture attained confluency, whereby cells were 

subcultured, and used in the 3rd passage. 

2.3. 3DP bone scaffold fabrication 

The detailed method used to print bilayer scaffold replicating the cortico-cancellous alveolar 

bone architecture has been described previously (Almela et al., 2017). In brief, an injectable ȕ-

Tricalcium phosphate paste was prepared (Sigma, US) and plotted using a 3D-bioprinter 

(EnvisionTEC, Germany) to form a disc of 10 mm × 2 mm thickness. Scaffolds were air-dried 
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overnight and then sintered at 1100 oC. Prior to use, scaffolds were autoclaved and prewetted 

with medium for 24h. 

2.4. Construction of normal alveolar bone mucosal models (ABMMs) 

Oral mucosal models (OMMs) were constructed as previously described (Dongari-Bagtzoglou 

and Kashleva, 2006). A solution of 10×DMEM, FBS 8.5% (v/v), L-glutamine 2 mM, 

reconstitution buffer (22 mg ml−1 sodium bicarbonate and 20 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid), and 5 mg ml-1 rat-tail type I collagen (R & D system, UK) was 

prepared and neutralized by 1M sodium hydroxide to pH=7.4. Then, 1 ml of fibroblasts 

suspension was added at a concentration of 2×105 fibroblasts per model and 2 ml of the 

resultant fibroblast-containing collagen mixture was transferred to cell culture transwell inserts 

(0.4 µm pore size, Millipore), incubated at 37 °C for 2 hours until solidified, then completely 

submerged in complete DMEM for 3 days. Following that, 1 ×106 keratinocytes were seeded 

in each model and kept in submerged culture for 4 days after which OMMs were raised to 

air/liquid interface and cultured for a further 10 days.  

Bone constructs were prepared by dropwise seeding of each scaffold with 2×106 osteoblasts. 

After 24 hours of culture in complete DMEM /ascorbic acid, cell-scaffold constructs were 

suspended in a spinner bioreactor (Branstead Stem, UK) which continuously spun for 17 days 

at a rate of 30 rpm. The medium was changed every other day and once the cultures of bone 

constructs and OMMs were complete, both tissues were combined using a fibrin adhesive 

sealant (ARTISS, Baxter, UK). The resultant ABMMs were then cultured at air/liquid interface 

for additional 5 days, after which the models were processed for assessment and 

characterisation. 

 

 



6 

 

2.5. Construction of cancerous bone mucosa model (CBMMs) 

Tumour spheroids were generated from UPCI-SCC090 cells using the liquid overlay method 

as previously described (Carlsson and Yuhas, 1984). A 96-well plate was coated with 1.5% 

type V agarose (w/v in serum-free DMEM). Then, 100 µl of cell suspension containing a 1×104 

UPCI-SCC090 were added to each well. The cells were incubated for 4 days and medium 

changed every 48h. CBMMs were then generated by addition of 30-35 spheroids of UPCI-

SCC090 to ABMMs at different steps of model preparation to produce three distinct levels of 

OSCC. Spheroids were added either to epithelium (carcinoma in situ), epithelium and 

connective tissue layers, and connective tissue and bone interface. 

2.6. Characterization of mucosal part 

Frozen sections of OMMs were prepared for histological and immunofluorescent examination. 

14 µm sections were stained with haematoxylin and eosin (H&E) and imaged using an 

Olympus BX51 microscope and Colourview IIIu camera with associated Cell^D software 

(Olympus Soft Imaging Solutions, GmbH, Münster, Germany).  

For immunofluorescent staining, sections were washed with phosphate buffered saline (PBS), 

permeabilized with 0.2 % (v/v) Triton x-100, and then blocked with 1 % (w/v) bovine serum 

albumin (BSA) in 0.1 % (v/v) PBS-Tween for 1 hour. Sections were then incubated overnight 

at 4 ºC with anti-cytokeratin 13 (1:100, Abcam) and anti-cytokeratin 14 (1:100, Abcam). IgG 

isotype was use in negative control sections. Following that, secondary antibodies were added 

and images were captured using Carl Zeiss microscope and colour view QI click camera with 

associated Image-Pro Plus.7.0.1 software (Zeiss Ltd, Germany). 

2.7. Characterization of bony part by scanning electron microscopy (SEM) 

SEM was performed to observe cellular morphology at the end of culture. Constructs were 

removed from the culture medium, washed in PBS, fixed with 3% of glutaraldehyde, and 

dehydrated in gradient concentrations of 50, 60,70%, 80%, 90% and 100% ethanol. Samples 
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were sputter-coated with gold (~20 nm) and images were then captured at an acceleration 

voltage of 15 kV using a scanning electron microscope (Philips XL-20, USA). 

2.8. Histological examination of ABMMs and CBMMs 

Samples were fixed in 4 % (w/v) paraformaldehyde for 24 hours and then embedded in 2-

hydroxyethyl methacrylate resin (Technovit 7100, Heraeus Kulzer) according to 

manufacturer’s instructions. Ground sections were prepared for H&E staining by cutting the 

block into 100-150 µm sections (IsoMet® 1000 precision saw, Buehler UK Ltd, UK) then the 

thickness was further reduced to 30-35 µm by grinding with silicon carbide papers of P800 and 

P1200 roughness (Buehler ™ Metaserv, UK). 

2.9. Quantitative real-time PCR (qRT-PCR) examination of ABMMs 

To evaluate the osteogenic and epithelial differentiation of ABMM, the expression of the 

osteogenesis and epithelial associated markers were assessed using qRT-PCR (Motor gene Q, 

QIAGEN, Germany). Following snap freezing and grinding of ABMMs, RNA extraction 

(Isolate II RNA, BioLine, UK) and complementary DNA (cDNA) (Life Technologies, UK) 

were performed according to manufacturer’s instructions. Genes encoding the following 

markers were investigated; Alkaline phosphatase (ALP), Osteopontin (OP), Osteonectin (ON), 

Osteocalcin (OC), Collagen I (COL1), Cytokeratin 10 (CK10), and Cytokeratin 13 (CK13). B-

2-Microglobulin was used as a reference control gene (All Applied biosystem, UK). The 

positive controls of bone and epithelial component were alveolar osteoblasts and keratinocytes, 

respectively while the negative control was OMM for bone and no cDNA sample for 

epithelium. The threshold cycle (Ct) was normalized against the reference gene (ǻ Ct) and the 

expression relative to it was calculated.  
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2.10. Statistics 

Data are representative of three independent experiments. All the measurements were 

conducted in triplicate (n=3) and the results were reported as mean ± SD using GraphPad 

Prism v7.0 (GraphPad Software, La Jolla, CA). 

3. Results 

3.1. Histological and immunofluorescent examination of mucosal part. 

OMMs displayed a multi-layered well-developed stratified squamous oral epithelium 

consisting of distinct basal, intermediate, and superficial non-keratinized layers overlying 

collagen-populated fibroblasts in a way mimicking NOM (Fig. 1A and B). Oral keratinocytes 

showed flattened appearance as they reached the superficial layer while the basal layer had 

cuboidal cells. Cytokeratin (CKs) analysis showed strong expression of CK13 throughout the 

entire epithelium of OMM and NOM (Fig. 1C and D). CK14 was strongly expressed in the 

basal layer while it downregulated in the intermediate layer and disappeared in the superfacial 

layer (Fig. 1F and G).  

3.2. SEM evaluation of the bony part. 

Fig. 2A and 2B demonstrated that porous and compact side of a cellular scaffold, respectively. 

SEM imaging of bony component of ABMM revealed the macroporous scaffold structure that 

supported the cell adhesion, penetration, and growth on both surfaces of the scaffold. The 

proliferated cells in the porous side showed elongation and orientation along the scaffold 

strands which indicates that the osteoblasts spread and align along the surface microstructures 

(Fig. 2C). The pores and strands in the compact side, however, were completely covered by 

cellular layer (Fig. 2D). 
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3.3. Histological assessment of ABMMs and CBMMs 

ABMMs demonstrated a histological structure consisting of oral mucosa adhered to the 

underlying bone scaffold, simulating the native oral hard and soft tissues (Fig. 3A). The 

uppermost surface displayed a continuous stratified epithelium covering a connective tissue 

densely populated with fibroblasts. A thin band of cell infiltrated fibrin was revealed at the 

bone mucosa interface. The pores of 3DP scaffold containing two apparently viable cell layers; 

a central mass of fusiform cells partially-aligned with each other, and a separate mural 

monolayer of rounded cells within a more eosinophilic matrix along the inner pore surfaces 

(Fig. 3B). Such cellular alignment was noticed in native oral bone (Fig. 3C). 

CBMMs displayed a combined bone and oral mucosal structure with clearly visible tumour 

spheroids located at different depths. Fig. 4A illustrates the histological pattern of OSCC in 

which tumour cells located in the epithelium (carcinoma in situ). Fig. 4B represents OSCC in 

the epithelium and connective tissue while Fig. 4C demonstrates tumour cells at the connective 

tissue in direct contact with bone. 

3.4. qRT-PCR assessment of ABMMs 

Of all genes investigated, COL1 and ON had the highest expression within ABMMs. Bone-

specific genes including ALP, OC, and OP as well as epithelial markers; CK10 and CK13 

were detected with CK13 showing higher level. The trend of gene expression in ABMM was 

observed in the osteoblasts (positive control) although the expression of OC and OP was 

minimal. Undetectable OC and OP as well as the negligible amount of ALP (0.0002) in the 

mucosal part of the model (negative control) indicated the osteogenic specificity of these 

markers. Conversely, COL1 and ON were detected in mucosa which demonstrated that these 

markers can be expressed by cells other than bone cell (Fig. 5). 
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4. Discussion 

The demand for engineering human tissue equivalents for both clinical and experimental 

purposes is increasing. In the oral and maxillofacial area, several promising studies have 

replicated various orofacial tissues such as cartilage, skin, bone, and periodontium (Pallua and 

Suschek, 2010). Tissue engineering of bone (Ferracane et al., 2014; Thavornyutikarn et al., 

2014) and oral mucosa (Kinikoglu et al., 2015; Moharamzadeh et al., 2012) in particular, has 

been extensively investigated using different biomaterials and techniques. However, a truly 

representative model of the complex tissues native to the orofacial region requires a 

combination of multiple cells and/or tissues in a single composite construct. Here, we have 

successfully developed and characterized an in vitro, 3DP, human alveolar bone-mucosal 

model resembling the native oral hard and soft tissues, and furthermore demonstrated the 

feasibility of using this model to investigate OSCC progression. 

3D printing holds a remarkable promise particularly for tissue engineering by providing a 

robust and rapid approach to fabricate and assemble tissue with a structural control at macro, 

micro, and even nanoscale with lower cost and higher flexibility and efficiency. The main 

advantage of 3D printing technologies is their capability to produce complex 3D objects rapidly 

from a computer model with varying internal and external structures. Two strategies are 

involved in this technology; the first one includes cell seeding of complex printed scaffold 

while the second strategy aims to deliver cells and structure simultaneously using scaffold-

based or scaffold-less approach (Zhu, 2016). 

The histological structure and expression of key epithelial markers associated with 

stratification, differentiation, and keratinization were similar between normal and engineered 

mucosa. This is consistent with the findings of recent studies characterizing engineered oral 

mucosa and comparing it with normal human oral mucosa (Buskermolen et al., 2016; Jennings 
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et al., 2016). Similar to other OMMs (Chai et al., 2010; Kinikoglu et al., 2009), the model used 

in this study showed the characteristics of a para-keratinized epithelium, as demonstrated by 

the weak expression of CK10 and strong expression of CK13, two established biomarkers of 

suprabasal cells in keratinized and non-keratinized stratified epithelium, respectively (Reibel 

et al., 1989). In contrast, other studies revelaed strong expression of CK10 in superficial layer 

(Moharamzadeh et al., 2008; Tra et al., 2012). Such a difference between these oral mucosal 

models may be attributed to the fact that oral keratinocytes appear to maintain the properties 

of their original donor epithelia, which may be either keratinized (gingiva and palate) or non-

keratinized (buccal mucosa) (de Luca et al., 1990). Regardless of keratinization status, the 

epithelium in our model appeared well-differentiated, with discernible superficial and basal 

layers. Such enhancement of epithelial maturation may be a result of the interactions between 

fibroblasts and keratinocytes via soluble factors, such as interleukin-1beta secreted by 

keratinocytes, which in turn regulates the expression of keratinocyte growth factor in 

fibroblasts (Okazaki et al., 2003; Rakhorst et al., 2006; Witte and Kao, 2005). Regarding gene 

expression, although all the marker encoded genes were detected, COL1 and ON expressions 

were higher than the remaining markers. The high expression of COL1 in our model was 

expected, as collagen is the most abundant component of bone extracellular matrix, constituting 

90% of its organic component (Allori et al., 2008), and moreover due to further collagen 

secretion by fibroblasts present in the mucosal component of the model (Schwarz, 2015). 

Osteonectin is a major non-collagenous extracellular matrix component of bone. This Calcium 

binding glycoprotein is present mainly in active osteoblasts, osteoprogenitor cells and 

immature osteocytes, whereas it is absent in mature osteocytes and therefore it is considered 

an osteogenic differentiation marker indicating bone formation (Jundt et al., 1987). The main 

role of ON in active bone mineralisation is to selectively bind newly-secreted collagen fibrils 

with apatite crystals. By implication, the presence of ON in high levels suggests that abundant 
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collagenous matrix will also be concomitantly secreted, as was observed in our model (Termine 

et al., 1981). However, the co-expression of ON with collagen has been reported in cells other 

than osteoblasts such as fibroblasts and pulp cells which have a high rate of collagen turnover 

(Shiba et al., 1995). This may explain the concomitant expression of ON and COL1 in OMM 

(negative control) while all other bone specific markers were un detectable.  

This gene expression pattern can be understood within the context of the gradual cell and tissue 

changes that occur over the steady process of bone formation, including proliferation, matrix 

maturation, and mineralization. In the matrix formation, cells synthesize significant levels of 

collagen and growth factors to support matrix formation and their own proliferation. The 

subsequent mineralization stage is marked by the expression of proteins that have affinity to 

mineral phases, such as OC, OP, and ON (Lian et al., 1998). 

 Regarding CBMM, many studies have shown that once the OSCC has invaded the mandible, 

it may progress through the bone in an erosive, infiltrative or mixed pattern (Slootweg and 

Muller, 1989). In this study, we may determine the interaction between different kind of tumour 

microenvironment layers that influence the cancer growth, progression and metastasis. The 

effect of the gravity could be excluded, as it was noticed dissemination of the tumour cells on 

the roof of bone marrow as seen in fig. 4, and the SCC spheroids were seeded on vertical 

direction on the top of the model. However, it should be kept in mind that the size of spheroids 

and the length of their culture, are limited by the absence of angiogenesis; the innermost tumour 

cells may therefore become quiescent and ultimately apoptose or necrose. The lack of oxygen 

& nutrients, as well as the accumulation of waste products and decreased pH can result in a 

central necrotic core when the spheroid’s size exceeds 500 – 600 µm (Friedrich et al., 2007). 

Although present on a more macroscopic scale, changes in pH, oxygen tension and nutrient 

availability also occur in vivo as a result of cancer growth outstripping vascular supply, and 
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therefore these features within our model may replicate those properties of cancer which 

contribute to tumour resistance to therapy and cytokine release. 

Although it is appreciated that the total culture period of 22 days is relatively shorter compared 

to the in vivo implantation studies that are usually extended for months, such experimental 

design was necessary. First, finite life span and limited proliferative potential of primary cells 

impeding culture for long time because cells undergo apoptosis (Jilka et al., 1998). Second, the 

composite model is cultured at a static air/liquid interface condition after the incorporation of 

the soft and hard tissues on final days, extended static culture may deprive the deeper parts of 

the multilayer tissue from oxygen and nutrients causing cell death and tissue necrosis. 

Nevertheless, establishment of a tissue engineered in vitro 3D oral cancer model by co-

culturing cancer spheroids and multiple types of normal human cells within appropriate multi-

layered scaffolds represents a promising approach to simulate in vivo tumour 

microenvironment and the clinical situation as closely as possible.  

5. Conclusion 

Our data suggest that the normal human alveolar bone and mucosa relationship can be 

replicated in vitro. The developed model has the potential to provide a more reliable human 

cell-based alternative to 2D or animal models for various in vitro applications. In addition, the 

development of 3D multi-layered oral cancer model provides a representative tool to engineer 

and study oral cancer at different anatomical levels. It has the potential to be further developed 

and characterized to be used for the assessment of novel diagnostic or therapeutic approaches 

to manage OSCC in the future. 
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Figure legends: 

Fig. 1. Mucosa part of ABMM display similar characteristics to normal oral mucosa 

(NOM). Engineered oral mucosa were generated by culturing oral keratinocytes on top of a 

fibroblast-populated collagen scaffold and compared with human oral mucosa. Image showing 

H &E histological section (A and B) and immunofluorescent analysis for cytokeratin 13 (C-

E), cytokeratin 14 (F-H) Representative images are from three independent experiments (Scale 

bars = 100 µm).  
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Fig. 2. SEM micrographs of bony component of ABMM. Image showing the porous and 

compact sides of 3DP scaffold without cells (A and B) and bony part of ABMM (C and D) 

(Scale bars = 25 µm). 

 

Fig. 3. H&E stained histological ground section of 3DP ABMM. The image showing full-

thickness, multi-layered 3DP bone mucosal construct consisting of a stratified oral epithelium, 

connective tissue layer adherent to the underlying 3DP bone (A). The bony part showing the 

pores of the scaffold containing two apparently viable cell layers; a central mass of fusiform 

cells partially-aligned with each other (red arrows), and a separate mural monolayer of rounded 

cells (blue arrows) (B). This cellular alignment was noticed in natural alveolar bone (C) (Scale 

bars: A = 500 µm; B and C = 100 µm).  

Fig. 4.  H&E stained histological ground sections of CBMM representing OSCC 

spheroids with different anatomical level. Red arrows indicate to tumor spheroids in 

epithelium (A); the epithelium and connective tissue (B); and connective tissue layer in direct 

contact with the bone (C) (Scale bars =200 µm).  

Fig. 5. qRT-PCR analysis of the osteogenic and epithelial gene expression ABMM. The 

osteogenic genes; OC, ALP, OP, ON, and COL1 and epithelial genes; CK10 and CK13 were 

detected in the composite model and positive controls (human oral osteoblasts and 

keratinocytes for bone and epithelial components, respectively). Negative control for bone 

(OMM) revealed undetectable osteogenic genes except ON and COL1 which can be 

expressed by non-bony cells. 
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