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Abstract 

Intensified stripper used in chemical absorption process based on rotating packed bed (RPB) technology was studied 

through modelling and simulation in this paper. The model was developed by dynamically linking Aspen Plus® rate-

based model with visual Fortran. Suitable correlations for RPB were implemented in Fortran to replace the default 

correlations in Aspen Plus® rate-based model. The standalone stripper model was validated with experimental data. 

The paper compared standalone intensified stripper with conventional stripper using MEA solvent. The result shows 

9.69 times size reduction. Therefore PI has great potential for use in carbon capture application. 
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1. Introduction 

Environmental concern has posed many questions as to the impact of greenhouse gas to those changes currently 

noticed in world climate and the future dangers that will be expected if mitigation measures are not put in place. 

Combustion of coal and petroleum accounts for the majority of the anthropogenic CO2 emissions. Albo et al. [2] 

stated that among the greenhouse gases, CO2 contributes to more than 60% of global warming. Recent report by 

CO2-Earth [4] shows that as on 14 March 2016 CO2 atmospheric concentration stood at 404.47 ppm, this increased 

atmospheric concentration of CO2 affects the radiative balance of the earth surface [3]. 
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PCC for coal-fired power plants using conventional packed columns has been reported by many authors. Dugas 

[8] carried out pilot plant study of PCC in the context of fossil fuel-fired power plants.  Lawal et al. [9-11] carried 

out dynamic modelling and process analysis of CO2 absorption for PCC in coal-fired power plants. In all these 

studies, one of the identified challenges to the commercial roll-out of the technology has been the high capital and 

operating costs which has an unavoidable impact on electricity cost. Approaches such as heat integration and inter-

cooling could reduce the operating cost slightly. However, they limit the plant flexibility and will make operation 

and control more difficult [12]. Process intensification (PI) has the potential to meet this challenge [13-15].  

Study of intensified absorber was reported in Joel et al [16,17] and Agarwal et al. [18]. Joel et al [16] reported 12 

times volume reduction for absorber if using RPB technology as compared to packed column while results from 

Agarwal et al. [18] indicated 7 times volume reduction  if using RPB as compared to conventional packed column. 

The study by Joel et al. [16] uses aqueous MEA solvent while Agarwal et al. [18] uses diethanolamine (DEA) as 

solvent. This is the reason for the differences in size reduction since faster reaction rate means shorter residence time 

and slower reaction rate means longer residence time required for the same capture rate. Jassim et al. [19] reported 

experimental studies on intensified regenerator using RPB. Typical process flow diagram used in this paper is shown 

in Fig. 1 

 

Figure 1 Schematic diagram of an RPB stripper 

1.1. Motivation 

Over 8,000 tonnes of CO2 per day will be released from a typical 500 MWe supercritical coal fired power plant 

operating at 46% efficiency (LHV basis) [20]. Agbonghae et al. [21] reported that two absorbers and one stripper 

will be required for a 400 MWe gas fired combined cycle gas turbine (CCGT) power plant. The two absorbers 

having packing height 19.06 m and 11.93 m in diameter while the stripper has packing height 28.15 m and 6.76 m in 

diameter. These huge packed columns translate into high capital and operating costs. A significant amount of steam 

from power plants has to be used for solvent regeneration. This translates into high thermal efficiency penalty. 

Therefore, it is necessary to look for technological options that will reduce this energy requirement  

1.2. Novel contribution 

There are three novel aspects in this paper: (a) a new first principle model for intensified regenerator using RPB 

was developed which was implemented in Aspen Plus® rate-based model by replacing different correlations for mass 

transfer, interfacial area and liquid hold-up. (b) Steady state validation of the intensified regenerator is performed 
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using experimental data from Jassim et al. [19]. (c) Comparison between RPB based intensified regenerator and PB 

based regenerator was performed. 

2. Model development 

Model for intensified regenerator using RPB does not exist in any commercially available model library 

(including Aspen Plus®). To model intensified regenerator using RPB, the default mass/heat transfer correlations in 

the Aspen Plus® rate-based model were replaced with subroutines written in Intel® visual FORTRAN. The new 

model now represents an intensified absorber/regenerator using RPB. The correlations include: liquid phase mass 

transfer coefficient given by Chen et al. [22], gas-phase mass transfer coefficient given by Chen [23], interfacial area 

correlation estimated by Luo et al. [24] and liquid hold-up correlation given by Burns et al. [25]. Dry pressure drop 

expression was used since it accounts in an additive manner of the drag and centrifugal forces, the gas-solid slip and 

radial acceleration effect [26].  

Implementation procedures 

The procedure used in this paper for modelling and simulation of the RPBs is shown in Fig. 2 

 

3. Model validation 

The experimental data used for the model validation was obtained from Jassim et al. [19]. From their 

experiments, MEA concentrations of 32.9 wt%, 35.7 wt%, 30.8 wt%, 57.4 wt% and 52 wt% were selected for the 

validation study. The equipment specification and process input conditions for the model validation study are shown 

in Tables 1 and 2. In this study, two different rotor speed conditions 800 rpm and 1000 rpm were used. 

Figure 2 Methodology used in this paper [16,17] 
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Table 1 RPB stripper packing specifications 

used by Jassim et al. [19] 

Description value 

RPB outer diameter 0.398 m 

RPB inner diameter 0.156 m 

RPB axial depth 0.025 m 

Packing specific surface 

area 

2132 m2/m3 

Packing void fraction  

(i.e. porosity) 

0.76 

 

 

Table 2 Input process conditions for Run 1 to Run 5 [19] 

 

Runs  

Run 1 Run 2 Run 3 Run 4 Run 5 

Rotor speed (RPM) 800 800 800 1000 1000 

Rich-MEA temperature (oC) 67.1 69 70 57.2 58.4 

Rich-MEA pressure (atm.) 1 1 1 1 1 

Rich-MEA flow rate (kg/s) 0.2 0.2 0.4 0.4 0.2 

Rich-MEA composition (wt. %) 

                      H2O    

                      CO2    

                      MEA   

 

58.116 

8.984 

32.900 

  

54.013 

10.287 

35.700 

  

61.536 

7.664 

30.800 

  

25.142 

17.458 

57.400 

 

32.895 

15.105 

52.000 

Rich-MEA CO2 loading  

 (mol CO2 /mol MEA) 

0.3790 0.3999 0.3454 0.4221 0.4030 

Steam rate (kg/s) 0.072 0.069 0.072 0.069 0.072 
 

Table 3 Simulation results compared to experimental data [19] for Run 1 to Run 5 

 
Runs  

Run 1 Run 2 Run 3 Run 4 Run 5 

Rotor speed (RPM) 800 800 800 1000 1000 

Experimental measurement      

Lean-MEA CO2 loading  

(mol CO2/mol MEA) 

0.321 0.329 0.329 0.403 0.334 

Model prediction      

Lean-MEA CO2 loading 

 (mol CO2/mol MEA) 

0.316 0.295 0.298 0.355 0.320 

Relative error (%) 1.558 10.334 9.422 11.911 4.192 

 

Model validation results are shown in Table 3 which gives percentage error prediction of not more than 12 % on 

the lean-MEA CO2 loading. The lean-MEA CO2 loading was evaluated on mole basis. In summary, the model has 

predicted all experimental data reasonably well with not more than 12% error prediction, the model developed can 

then be use to carry out process analysis in order to study the process behaviour when there is a change in any 

variables. 

4. Comparison between RPB based intensified regenerator and PB based regenerator 

This study was carried out to provide a comparison under some fixed conditions such as Rich-MEA flowrate, 

pressure, temperature, rich-MEA loading and lean-MEA loading between intensified regenerator and conventional 

regenerator. Table 4 is used as the input conditions for the conventional and intensified regenerator. The rotor speed 

for the intensified regenerator is kept constant at 1000 rpm. Regeneration efficiency was kept constant at 37.16 % 

for both the conventional and the intensified regenerators. 
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Table 4 Process conditions for Conventional and RPB regenerator 

Description Conventional 

regenerator 

RPB 

regenerator 

Rich-MEA Rich-MEA 

Rich-MEA temperature (oC) 97 97 

Rich-MEA pressure (atm.) 2 2 

Rich-MEA flowrate (kg/s) 0.300 0.300 

Rich-MEA loading  

(mol CO2/mol MEA) 

0.482 0.482 

Mass-Fraction (%) 

                H2O 

                CO2 

                MEA 

 

58.116 

8.984 

32.900 

 

58.116 

8.984 

32.900 
 

Table 5 Comparison between conventional and RPB stripper 

Description Conventional 

regenerator 

RPB regenerator 

Height of packing (m) 3.700 0.371  (ro) 

  0.152  (ri) 

diameter (m) 0.476 0.167 axial depth 

Packing Volume (m3) 0.659 0.015 

Packing volume reduction  44 times 

Volume of unit (m3) 0.659 a 0.068b 

Volume reduction factor  9.691 times 

Specific area (m2/m3) 151 2132 

Void fraction 0.980 0.760 

Lean-MEA loading (mol 

CO2/mol MEA) 

0.303 0.303 

a Excluding sump 
b Using the assumption given by Agarwal et al [18] 

The study in Table 5 showed 44 times packing volume reduction in an intensified regenerator compared to 

conventional packed column regenerator without sumps. By using the assumption given by Agarwal et al. [18] that 

the casing volume of RPB is 4.5 times the rotating packing volume, then volume reduction compared to 

conventional packed column regenerator is found to be 9.69 times smaller. The height of transfer unit (HTU) for 

conventional packed column regenerator is calculated as 20.8 cm while for the intensified regenerator is 1.7 cm. The 

smaller HTU in RPB regenerator is responsible for smaller RPB regenerator size compared to conventional packed 

column.  

5. Conclusions 

 Intensified stripper using RPB technology was modelled in this study. The steady state model was implemented 

by linking Aspen Plus® and visual FORTRAN. The standalone model developed was validated with experimental 

data reported in Jassim et al. [19]. The model validation shows good agreement with the experimental data. Under 

same process condition there is 9.69 times reduction in volume for intensified stripper compared to conventional 

packed column. This reduction can lead to a decrease in capital investment. 
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