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1. Introduction 

   The growing concern on safeguarding the environment from the harmful effect of global warming caused by the 

release of large quantities of CO2 into the environment; mainly from fossil fuels utilization for energy production; 
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Abstract 

In this paper, Aspen Plus® models of biomass gasification process combined with plasma reactor for tar removal 
and plasma gasification process were developed respectively, validated and analyzed thermodynamically. The 
analysis shows that plasma technology is capable of producing syngas with acceptable tar content for gas turbine 
application. However, this comes with a huge energy penalty. For example, within the context of the analysis carried 
out in this paper, the thermodynamic efficiency of the biomass gasification process combined with plasma tar 
cleaning was found to be 43.6% while that of the plasma gasification process was 37.3% despite its higher bio-
syngas calorific value. The lower efficiency recorded for the plasma gasification process occurs as a result of the 
higher electrical energy required to attain the high temperature needed for the gasification of the biomass material. 
As a result of the low efficiency, plasma tar cleaning of raw bio-syngas or plasma gasification, although 
technologically feasible, may not be a viable route for producing bio-syngas for gas turbine application. However, it 
may be a viable option for energy storage if the plasma reactor will be powered with electricity from wind and other 
renewable energy resources during off peak period. 
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has triggered a renewed interest in the use of renewable energy resources. One of the areas in which biomass can 

help to reduce CO2 emission into the environment is in gas turbine application by replacing natural gas with bio-

syngas. 

1.1. Bio-syngas Production from Biomass 

Bio-syngas is produced from biomass through the thermochemical conversion route. During the process, thermal 

energy is applied to biomass material at elevated temperature and controlled oxygen and/or steam to produce 

permanent gases, char and tars. The process involves three main stages which include: drying, pyrolysis and 

gasification [1]. During the drying stage the free water contained in the biomass is evaporated. This is followed by a 

pyrolysis which occurs at around 400 oC to release pyrolytic volatiles, pyrolytic water (chemically bond water), char 

and primary tar which consist of mainly oxygenated compounds. The pyrolytic water, primary tar and moisture are 

generally referred to as the bio-oil. The pyrolysis products are further gasified to produce raw bio-syngas otherwise 

known as product gas or permanent gas. The gasification process occurs at a higher temperature (about 700 – 850 
oC) and is mainly characterized by further cracking of pyrolysis (primary) tar in order to produce permanent gases 

(raw bio-syngas) as well as secondary and tertiary tar compounds [2]. Alternatively, syngas can be produced from 

biomass material using plasma gasification technology. In this process, plasma is used to decompose the biomass 

material to produce syngas.  

1.2. Raw Bio-syngas Tar Cleaning 

Tar is a term generally used to describe a complex mixture of condensable hydrocarbons which includes single ring 

to multiple ring aromatics and other oxygen containing hydrocarbons [3]. It is an undesirable component in the bio-

syngas due to the problems associated with its condensation as it causes blockage in process equipment and devices 

[3]. Gas turbines have a maximum tar tolerance of no more than 0.5 mg/Nm3.  However, raw bio-syngas usually 

contain high tar concentration which makes it unsuitable for gas turbine and other high end applications without 

prior tar removal. Tar removal is carried out by either chemical or physical treatment. Detailed research on the 

different tar cleaning techniques are well covered in the literature [5-8,9, 10] and thus will not be repeated here. This 

work will focus on the use of plasma technology for tar removal from bio-syngas.  

Plasma technology can generate active species which initiates the chemical reactions that can lead to tar reduction. 

There are many discussions, especially in the patent literature, on the possibilities of using both thermal and non-

thermal plasma technology for waste gasification, dry reforming and tar reduction from gasifier [11-13].  This paper 

will compare via modelling; the thermodynamic performance of biomass gasification process combined with ex-situ 

plasma tar cleaning against that of a plasma gasification process. The modelling will be carried out using Aspen Plus 

coupled with FORTRAN subroutines. 

1.4 Novel contribution of this study  

Although several studies have been carried out in literature, both experimental and modelling, in the area of biomass 

gasification and plasma reforming of various gaseous species such as methane, ethylene, naphthalene, to the authors 

knowledge, no work has been reported in the literature on the integration of plasma reactor downstream of a 

biomass gasification process for tar removal from the raw bio-syngas stream for gas turbine application. 

Furthermore, most works on plasma uses a model tar compound in their analysis instead of a real syngas 

composition from biomass gasification process. However, in this paper, the thermodynamic analysis was based on a 

typical bio-syngas composition instead of a model tar compound which makes it a more realistic. 

2. Process Description 

2.1. Biomass gasification process 

The biomass gasification technology adopted in this paper is based on the technology proposed in [14, 15]. The 
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process comprises of dual fluidized bed reactor which utilises steam as the gasification agent. During the process, 

biomass is gasified in a steam blown bubbling fluidised bed reactor. Residual char leaves the gasification zone with 

the bed material (usually sand) and enters the circulating fluidised bed riser where it is combusted with air [15].   

 

2.3 Plasma gasification and Plasma Tar Cleaning process 
 
The plasma gasification process presented in this work is based on the non-transferred arc DC plasma torch 

technology proposed in [16]. The pulse corona plasma reactor modelled in this paper is based on the experimental 

work carried out in [3]. The system consists of a cylindrical tubular flow reactor which is a wire-cylinder type 

corona and a pulsed-power source. 

3. System Modeling with Aspen Plus 

The Aspen Plus® process flow diagram of the proposed biomass gasification combined with ex-situ plasma tar 

cleaning process and the plasma gasification process are shown in Figures 1a and 1b. The biomass gasification 

process is modelled using detailed kinetic mechanism [14] while the plasma gasification and plasma tar cleaning 

processes are modelled using complete equilibrium approach [17]. In the process, the biomass material (stream 1) 

undergoes pyrolysis in an isothermal reactor (PYROLY) which is coupled to a FORTRAN subroutine to predict the 

pyrolysis product yield (stream 2) based on pyrolysis correlation given in [14]. The pyrolysis yield (stream 2) is then 

mixed with steam (stream S1) (the gasifying agent) and introduced into the gasifier (GASIFY (process a) or 

HTZPLAS (process b)) where gasification takes place according to either the gasification kinetics presented in [14] 

(process a) or chemical equilibrium (process b) to produce gasification products (stream 4). The solid products are 

separated from the volatiles in the SPLITTER. In process a, the volatiles (stream 5) are sent to the plasma reactor 

(PLASMA) where tar cleaning operation takes place to produce low tar syngas (stream 7) while in process b, the 

high temperature syngas from the High Temperature Zone (HTZ) of the gasifier is quenched at Low Temperature 

Zone (LTZ) by preheating the incoming biomass feed. In both cases, the char is decomposed and combusted with air 

to produce flue gas (stream 10) and ash (stream 11) respectively. The following assumptions were made while 

modelling the biomass gasification in Aspen Plus [3]. 

 In process a, gasification and the plasma processes take place at atmospheric pressure and 760 oC 

 In process b, the HTZ and the LTZ are assumed to be at 2500 oC and 1250 oC respectively [16]. 

 The main components of the pyrolysis products include CO, H2, CO2, CH4, C2H4, C2H6, water and tar. 

 The plasma process is modelled using Gibbs minimization approach [16] 

 As naphthalene is regarded as one of the most stable tar compounds [3], the empirical correlation for tar 

conversion used in this model is based on naphthalene conversion in a pulsed corona discharge.  

 Steam is used as the gasifying agent with steam to biomass ratio of  0.75 [15] 

 The steam is assumed to be generated from saturated liquid water removed from the raw bio-syngas. 

 In the plasma gasification process, the steam from the plasma torch is assumed to be at 4000 oC [16] 

 The plasma torch efficiency for the plasma gasification process is assumed to be 86% [16] 

3.1. Pyrolysis and Gasification Process 

For both processes, the pyrolysis volatile mass yield is modelled using equation 1 [3] while the char yield is 

obtained through material balance. The correlation parameters (a, b and c) in equation 1 were obtained from [14]. 

The thermal gasification process was modelled using the reaction kinetics obtained from [14] while the plasma 

gasification process was modelled using Gibbs equilibrium technique.  Tables 1 shows the input parameters used in 

the entire model. 

                                                                cbTaTY
i

 2
                                                                       (1) 

where   𝑌𝑌𝑖𝑖 = mass yield of pyrolysis product based on dry biomass, T = pyrolysis temperature in K 
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Fig. 1. Aspen Plus Process Flow Diagram of (a) Biomass Gasification combined with Ex-Situ Plasma Tar Cleaning 

and (b) Biomass Plasma Gasification 

Table 1: Process input parameters  

Biomass Composition and Plasma Tar Cleaning Process 

Gasification Process 

Biomass mass flowrate 

 

1 kg/s 

      Proximate analysis (wt% dry basis) 

Volatile matter                    83.70 

Fixed carbon                       16.10 

Ash                                       0.20 

 

Ultimate analysis (wt% dry basis) 

    Carbon                        53.60 

    Hydrogen                      5.90 

    Oxygen                       40.30 

Pulse Corona Plasma Process 

Input stream Raw bio-syngas 

 

3.2. Pulse Corona Plasma Process 

The pulse corona process was modelled using empirical correlation generated from the experimental work of [3] 

together with the Gibbs free energy minimization approach presented in [16]. The correlation was used to evaluate 

the tar conversion based on the energy density of the pulse corona while the Gibbs reactor is used to simulate the 

equilibrium composition of gaseous species from the plasma reactor. The correlation for the tar conversion is shown 

in equation 2. 
3648511615

1071.41033.11085.11053.9(%)   x  

 

                                                                      56.11056.410266.1
123                                       (2) 

   where  (%)x  tar conversion,  Energy density (J/l) of the plasma reactor given as shown in equation 3                            

                                                                                  
v

P
                                                                                   (3) 

where P power input to the reactor (W) and v volumetric flowrate of the raw bio-syngas. 

 

The syngas produced during the gasification process (raw bio-syngas) and the one obtained after the tar removal 

with plasma (treated bio-syngas) were evaluated to estimate the tar content using the ideal gas equation while the 

specific calorific value (cv) (MJ/kg) of the biomass and bio-syngas were evaluated using equations 4 and 5 

respectively. 

a 
b 
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                                           S
S

O
HCCV

biomass
38.945.14483.33 








                                                 (4) 

where 𝐶𝐶, 𝐻𝐻, 𝑂𝑂, 𝑆𝑆 = mass fraction of carbon, hydrogen, oxygen and sulphur in the biomass 

                                                  

                                                  
i

iisyngas
HVmCV                                                                                         (5)              

where 𝑚𝑚𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻𝑖𝑖  = mass flowrate of combustible gas components in the syngas (kg/s) and specific heating value 

of the combustible gas components respectively 

 

4. Results and Discussions 

The analyses of the simulation results show that the tar content of the raw bio-syngas from the biomass 

gasification process was about 2.97 mg/Nm3 which makes it unsuitable for gas turbine application. The plasma tar 

cleaning reduces the tar content of the raw bio-syngas to 0.266 mg/Nm3 which is within the acceptable range (<0.5 

mg/Nm3) for gas turbines. Plasma treatment of the raw bio-syngas also improved the caloric value of the syngas due 

to the increase in hydrogen and CO yield. The thermodynamic analysis presented in Table 3 shows that the 

efficiency of the combined plasma gasification with plasma tar cleaning process is about 43.6 %. On the other hand, 

the plasma gasification process produces syngas with higher calorific value due to the higher hydrogen and CO and 

no tar (see Table 2). This ocurs as a result of the high temperature of the HTZ and LTZ of the plasma gasification 

process. However, despite the improvement in syngas caloric value, the thermodynamic efficiency of the plasma 

gasification process was found to be 37.3% which is lower than that of the combined gasification and plasma tar 

cleaning process. The lower efficiency can be attributed to the higher electrical energy required for the plasma 

gasification process to raise the temperature of the gasifying agent (steam) to 4000 oC so as to maintain the HTZ and 

the LTZ of the non-transferred arc plasma reactor at 2500 oC and 1250 oC respectively.  

 

Table 2: Raw/Treated Bio-syngas composition (mole fraction dry basis) 

Component Raw bio-syngas 

(760 oC) 

Plasma treated bio-syngas 

 (760 oC) 

Plasma Gasification (1250 oC)  

CH4 0.206 3.07E-5 1.07E-8 

H2 0.127 0.6270 0.5912 

CO 0.518 0.0922 2.07E-1 

CO2 0.093 0.281 2.01E-1 

C2H4 0.049 9.70E-13 4.81E-16 

C2H6 0.005 3.62E-13 7.42E-19 
aC6H6 0.001 2.52E-5 0 
aC7H8 1.38E-4 4.73E-6 0 
aC6H6O 0 0 0 
aC10H8 1.91E-5 6.56E-7 0 
a = Tar 

Table 3: Thermodynamic analysis 

Process results          Plasma treatment at 760 oC Plasma Gasification at 1250 oC 

Treated syngas calorific value (MW) 9.857 10.929 

Thermal energy requirement for steam 

generation (MW) 

1.693 0 

Electrical power requirement (MW) 1.526 9.927 

Biomass calorific value (MW) 19.38                       19.38 

Total energy input (MW) 22.599 29.307 

Process efficiency   0.436 0.373 

 

 

Conclusion 
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The thermodynamic analysis of biomass gasification process combined with tar removal using plasma technology 

and the plasma gasification process presented in this paper shows that plasma technology is capable of producing 

bio-syngas with acceptable tar concentration for gas turbine application. However, this comes with a huge energy 

penalty. Based on the analysis presented in this work, it can be concluded that plasma tar cleaning of raw bio-syngas 

and plasma gasification, although technologically feasible, may not be an attractive option for tar removal from raw 

bio-syngas especially if the syngas is to be utilized in gas turbines for power generation. However, it may be an 

attractive option for the storage of wind and other renewable electricity during off peak period.  
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