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Abstract

For the flexible operation of mono-ethanol-amine-based post-combustion carbon

capture processes, recent studies concentrate on model-based protocols which

require underline model parameters of carbon capture processes for controller

design. In this paper, a novel application of the model-free adaptive control

algorithm is proposed that only uses measured input-output data for carbon

capture processes. Compared with proportional-integral control, the stability

of the closed-loop system can be easily guaranteed by increasing a stabilizing

parameter. By updating the pseudo-partial derivative vector to estimate a dy-

namic model of the controlled plant on-line, this new protocol is robust to plant

uncertainties. Compared with model predictive control, tuning tests of the pro-

tocol can be conducted on-line without non-trivial repetitive off-line sensitivity

or identification tests. Performances of the model-free adaptive control are

demonstrated within a neural-network carbon capture plant model, identified

and validated with data generated by a first-principle carbon capture model.
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1. Introduction1

1.1. Background2

Power generation from fossil fuel combustion is the single largest contributor3

of CO2 emission [1]. The mono-ethanol-amine (MEA)-based post-combustion4

carbon capture (PCC) [2] technology is feasible for the large-scale CO2 ab-5

sorption since it can be achieved with relative simple retrofits of conventional6

fossil-fuel power plants [3]. To compensate load variations, for instance, due to7

intermittent renewable power sources, a fossil-fuel power plant usually supplies8

flexible power generation and sometimes serves as a swing generator for the9

power network. These inevitably cause fluctuations of the emitted flue gas flow10

rate and the mass fraction of CO2 in the flue gas which are external distur-11

bances [4] of the MEA-based PCC process and deteriorate model-based control12

performances. A control protocol for the process must be robust when con-13

fronting these uncertainties. Furthermore, for a tight CO2 emission target [4] or14

a time-variant CO2 allowance market condition [5], the plant controller should15

be appropriately designed such that the closed-loop system has fast responses.16

1.2. Literature review17

Previous studies of MEA-based PCC processes concentrated on proportional-18

integral (PI) control [4, 6, 7] with the relative gain array pairing strategy. Due19

to the optimality and flexibility requirements, recently, model predictive con-20

trol (MPC) is implemented for the process [8, 9]. This model-based method21

is more appreciated since its optimality leads to fast responses or lower en-22

ergy consumption according to a diverse range of the real-time objectives or23

scheduled load variations of a power plant. Although a dynamic PCC model24

[1] can be constructed in terms of the rigorous rate-based approach consider-25

ing both chemical and physical properties, such a first-principle model is too26
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complicated for the model-based control [10, 11]. An identified model serving27

as the underline model is imperative to reduce the model complexities while28

ensure the model-based control performances. Previous studies focused on the29

optimal operation of the model-based control such as MPC but paid little at-30

tention to system identification before implementing such a control protocol.31

On the other hand, when the PCC process operation is coupled with a power32

plant [4], uncertain conditions of the power plant may degrade dynamic perfor-33

mances of the carbon capture facilities. For instance, fluctuations of either the34

flue gas flow rate or the CO2 mass fraction in the flue gas, dependent on the35

power plant load conditions, will change the operating point of the PCC pro-36

cess. These disturbances cause extra mismatches between the model and the37

controlled non-linear PCC plant, which is classified as model uncertainties. A38

large number of sensitivity [6] or identification [12] tests for different operating39

points of the controlled plant must be conducted before the controller can be40

properly tuned and implemented on-line. It makes the model-based controller41

design a non-trivial issue.42

1.3. Aim of the paper and its novelties43

In this paper, a novel model-free adaptive control (MFAC) protocol [13, 14]44

is applied to a non-linear MEA-based PCC plant model identified based on a45

validated neural network model using the validated data [15] generated by a first-46

principle model. Compared with PI control using predefined tuning parameters47

around fixed operating points, MFAC uses compact form dynamic linearisation48

(CFDL) or partial form dynamic linearisation (PFDL) to form a time-variant49

PCC model on-line, inferring that the model adapts to plant operating point50

changes. Compared with the model-based protocol which requires non-trivial51

sensitivity or identification tests to determine a model for off-line tuning before52

on-line implementation, MFAC has a simpler tuning procedure. The identified53
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PCC model is only used for the initial off-line tuning. Thereafter, the tuning54

parameters can be flexibly retuned on-line with the measured input-output data55

of the controlled non-linear PCC plant. No model parameters identified off-line56

are required on-line. The underline model parameters, however, are essential for57

model-based protocols. They are used to ensure the stability and performances58

of the closed-loop system, inferring a complex and repetitive off-line tuning pro-59

cedure. PI control requires no underline model parameters same as MFAC, but60

its stability analysis is based on models. MFAC can easily guarantee stability61

by a stabilizing parameter.62

1.4. Outline of the paper63

This paper is organized as follows. Firstly, the system identification problem64

is discussed to build a validated non-linear PCC model with a neural network65

structure using the data generated by a first-principle model. Secondly, com-66

pared with generalized predictive control (GPC), MFAC is designed based on67

an iterative algorithm including on-line linear model update, control policy up-68

date and a reset rule. Thirdly, with the identified PCC model serving as the69

controlled non-linear plant, simulation results of MFAC are presented compared70

with PI control and GPC. Conclusions are given in the end.71

2. Model development72

2.1. Dynamic modelling of the post-combustion carbon capture process73

The first-principle dynamic model of the PCC process in this paper has74

been developed in gPROMS® with the rate-based approach using the design75

and operation specifications in [17]. All the reactions in PCC are assumed76

to attain equilibrium. Validation of this model was made using data of pilot77

plants [4, 15]. The flow diagram (Fig. 1) shows the flue gas is initially fed into78

the bottom of the absorber while the lean MEA solution is injected from the79
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Fig. 1. The process flow diagram of a PCC plant [16, 17].

top. After chemical reactions between CO2 and the lean MEA countercurrently80

in the column, the purified gas with less CO2 is vented to the atmosphere while81

a carbon-rich MEA solution is pumped into the downstream lean/rich cross heat82

exchanger and exchanges energy with the lean solution from the stripper. The83

stripper has the analogous structure as the absorbers. The pre-heated rich MEA84

from the exchanger outlet is pumped to the upper-stage and heated up when85

flowing down through the column. The heat is provided via a reboiler which86

separates CO2 from the rich MEA and reproduces the lean MEA to process87

the consecutively discharged flue gas. Although a rigorous model can be built88

considering chemical reactions, it is too complex for control design [10]. A89

feasible mathematical model must be identified [8].90

2.2. Identification of neural networks for dynamic carbon capture processes91

For the PCC process which is complex and non-linear, neural networks92

[18, 19] can be selected to identify mathematical models based on off-line data93

generated by the above first-principle model. Note that the tracking problem94

of the carbon capture level is primarily considered in Section 3. For brevity,95

the lean loading and the re-boiler temperature are assumed to be fixed around96
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0.28mol/mol and 387K, respectively, for all cases in the later simulations. On97

that basis, a model related to the carbon capture level dynamics is built with98

three inputs and one output. The three inputs are the flue gas flow rate (kg/s),99

d1(t), mass fraction of CO2 in the flue gas, d2(t) and the lean MEA flow rate100

(kg/s), u(t), respectively. The output is the CO2 or carbon capture level (%),101

denoted by y(t). The candidate models of this process are neural networks with102

one hidden layer. Referring to Fig. 2, the model structure is represented by103

ŷ(t+ 1) = wT z(x(t)) + bo (1)

where ŷ(t + 1) is the estimated capture level of the carbon capture process at104

time t+1; w = (w1, w2, · · · , wH)T ∈ R
H and bo ∈ R are the weight vector and105

the bias, respectively, between the hidden and output layers; and x(t) ∈ R
n is106

the input features at time t and defined as x(t) , (x1(t), x2(t), · · · , xn(t))
T =107

(y(t), y(t−1), · · · , y(t−na+1), d1(t), d1(t−1), · · · , d1(t−nd1+1), d2(t), d2(t−108

1), · · · , d2(t−nd2 +1), u(t), u(t− 1), · · · , u(t−nb +1))T with n = na +nb +109

nd1 + nd2. na, nb, nd1, and nd2 are model orders which must be determined110

in terms of model performances. z(x) is the output of the hidden layer, i.e.,111

z(x) , (z1, z2, · · · , zH)T = g(Vx + b) ∈ R
H with g(·) being an element-wise112

activation function for each entry of Vx + b where V ∈ R
H×n and b ∈ R

H
113

are the weight matrix and the bias vector, respectively, between the input layer114

and hidden layer. Without losing generality, for h ∈ R, the scalar activation115

function is logistic, i.e., g(h) = 1/(1+ exp(−h)). For a specific candidate model116

based on neural networks, the model parameters are weights (w, V) and biases117

(bo, b) which should be identified using the input and output data from the first-118

principle model. The total number of model parameters including weights and119

biases for the above neural network is D = [(n+2) ·H]+1. To avoid overfitting120

[20], for two candidate models with similar model validation performances, the121
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model with less complexty, i.e., smaller D, is preferred.122

Fig. 2. A multi-input-single-output neural network with one hidden layer.

2.3. Model order selection with AIC123

Akaike’s information criterion (AIC) is used to determine the number of124

model parameters D0. For a candidate model, i.e., the model structure (Eq. (1))125

with a specific hidden layer size H and model orders, the residual is defined as126

the difference between the observation and the one-step-ahead prediction of127

the output, which is ǫ(t) = y(t) − ŷ(t). y(t) is the observed capture level of128

PCC processes. On that basis, the AIC value is estimated by AIC = ln(σ̂2) +129

2D0/N with σ̂2 = (1/N)
∑N

t=1 ǫ(t)
2 where σ̂ is an estimate of the noise standard130

deviation σ; N is the number of data samples; and D0 = D+1 is the number of131

model parameters including σ. In practice, the model orders may not be exactly132

selected by AIC. Residual analysis is used to validate the candidate models.133

2.4. Residual analysis134

The residual analysis [12] suggests a validated model has residuals ǫ(t)135

which are serially independent and unrelated to past inputs. Two correlation-136
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based intermediate variables are defined as R̂N
ǫ (τ) = (1/N)

∑N

t=1 ǫ(t)ǫ(t − τ)137

and R̂N
ǫu(τ) = (1/N)

∑N

t=1 ǫ(t)u(t − τ). ζ1(τ) and ζ2(τ) are then defined as138

ζ1(τ) = (N/σ̂4) · (R̂N
ǫ (τ))2 ∼ χ2(1) and ζ2(τ) =

√

N/σ̂2P (τ)R̂N
ǫu(τ) ∼ N (0, 1)139

with P (τ) = (1/N)
∑N

t=1 u(t−τ)2. For a validated model, ζ1(τ) and ζ2(τ) should140

be within the α-level confidence intervals determined by the chi-squared- and141

normally-distributed random variables, respectively.142

3. Model-based and model-free control protocols143

The tracking problem of the carbon capture level y(t) for the controlled144

non-linear PCC plant is considered in this section. The manipulated input is145

the lean MEA flow rate u(t) [4, 6]. The disturbances are the flue gas flow rate146

(kg/s) d1(t) and the mass fraction of CO2 in the flue gas d2(t). Two possible147

protocols are discussed. One is model-based, called GPC; the other is MFAC.148

MFAC should be more favourable since it can be implemented easily on-line149

without models identified off-line.150

3.1. Generalized predictive control151

The advanced model-based protocol called GPC is briefly introduced, which152

requires an underline model (i.e., a prediction model) of the controlled plant153

A(q−1)y(t+ 1) = B(q−1)u(t) + L(q−1)d(t) +
e(t+ 1)

∆
(2)

where d(t) , (d1(t), d2(t))
T , A(q−1) = 1 + a1q

−1 + a2q
−1 + · · · + ana

q−na ,154

B(q−1) = b0+ b1q
−1+ b2q

−1+ · · ·+ bnb−1q
−nb+1, L(q−1) = l0+ l1q

−1+ l2q
−1+155

· · ·+ lnl−1q
−nl+1, ∆ = 1− q−1, and li ∈ R

1×2. The control objective is defined156

as157

J = (r− y)TQ(r− y) + uTRu (3)
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where Q ∈ R
Nr×Nr , R ∈ R

Nr×Nr , r = (r(t+1), r(t+2), · · · , r(t+Nr))
T , y =158

(ŷ(t+1), ŷ(t+2), · · · , ŷ(t+Nr))
T , u = (∆u(t), ∆u(t+1), · · · , ∆u(t+Nr−1))T ,159

and d = (d(t)T , d(t+1)T , · · · , d(t+Nr − 1)T )T . Using Diophantine equation160

[21] iterations, the objective is rewritten as J = (Gu+ f′− r)TQ(Gu+ f′− r)+161

uTRu where f′ is the filtered responses [21]. The control policy is then derived162

as163

u = (GTQG+R)−1GTQ(r− f′) (4)

where only the first row of u is implemented for the controlled plant. Note that164

for a model-based protocol, the underline model parameters from sensitivity or165

identification tests are usually required. For this specific GPC algorithm, the166

model parameters are A(q−1), B(q−1) and L(q−1) which approximate the PCC167

plant in some standard mathematical form (Eq. (2)). These model parameters168

are the indispensable priori knowledge for the model-based control design. To169

implement the control policy (Eq. (4)), both the matrix G and the filter f′170

should be determined by A(q−1), B(q−1) and L(q−1) beforehand, which infers171

that GPC is model-based.172

3.2. Model-free adaptive control173

The PCC process is commonly modelled by first-principle strategies such as174

equilibrium-based or rate-based approaches [3], which infers that the process175

involves non-linearities. Note that the time-variant flue gas flow rate, d1(t) and176

the mass fraction of CO2 in flue gas, d2(t) may cause variations of the process177

operating point. Thus, non-linearities will lead to mismatches between the178

controlled plant and the underline model of the model-based controllers, such179

as GPC. The model-free protocol [14] can form a dynamic linear model on-180

line for the controlled non-linear plant with a pseudo-partial derivative (PPD)181
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vector Φ(t). No off-line model parameters are required when the controller is182

implemented in real time. As the process operating point varies, Φ(t) adapts to183

the changes. The control method with Φ(t) is termed as PFDL which describes184

the relationship between the input and the output with185

∆y(t+ 1) = Φ(t)∆U(t) (5)

where Φ(t) = (φ1(t), φ2(t)), · · · , φL(t)) ∈ R
1×L and ∆U(t) = (∆u(t), ∆u(t −186

1), · · · , ∆u(t−L+1))T ∈ R
L. u(t), the lean MEA flow rate, is the manipulated187

input while y(t), the capture level, is the controlled output. When L = 1, Eq. (5)188

is reduced to the CFDL-based description. True Φ(t) can be estimated by Φ̂(t)189

based on the optimisation problem of JΦ = (1/2)‖Φ̂(t)− Φ̂(t− 1)‖2 subject to190

∆y(t) = Φ̂(t)∆U(t−1) which can be solved by the modified projection algorithm191

[14]. A control objective is defined as JU = ‖r(t+1)− y(t+1)‖2 +λ‖∆U(t)‖2.192

By minimizing both JΦ and JU, the on-line model update is193

Φ̂(t) =Φ̂(t− 1)

+
η(∆y(t)− Φ̂(t− 1)∆U(t− 1))∆UT (t− 1)

µ+ ‖∆U(t− 1)‖2
(6)

and the control policy update is194

u(t) =u(t− 1) +
ρ1φ̂1(t)(r(t+ 1)− y(t))

λ+ |φ̂1(t)|2

−

φ̂1(t)
L
∑

m=2
ρmφ̂m(t)∆u(t−m+ 1)

λ+ |φ̂1(t)|2
(7)
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where Φ̂(t) = (φ̂1(t), φ̂2(t)), · · · , φ̂L(t)) ∈ R
1×L and r(t+ 1) is the set-point of195

the output. For stability of the closed-loop system, the reset rule is196

φ̂1(t) = φ̂1(1), if |φ̂1(t)| < b or |φ̂1(t)| > αb

or sign(φ̂1(t)) 6= sign(φ̂1(1)). (8)

Eqs. (6), (7) and (8) form the iterative algorithm of the MFAC protocol [13].197

To apply this algorithm, tuning parameters within constraints (i.e., η ∈ (0, 1),198

µ > 0, ρ = (ρ1, ρ2, · · · , ρL)
T with ρm ∈ (0, 1) for any m, λ > λmin > 0,199

α > 1, and b > 0) should be determined by the user. η and µ are related to200

the adaptive performances of the dynamic linear model for the controlled PCC201

plant. ρ and λ are related to the control performances for the plant. For fast202

responses, η and ρ should be increased while for smooth dynamics, µ and λ203

should be increased. The PPD vector Φ̂(t) is updated on-line without using any204

prior knowledge of the off-line model, which implies the iterative algorithm is205

model-free. Arbitrary initial conditions of Φ̂(t = 1) should be specified to set206

up the iteration.207

Compared with PI control, the above iterative method is easy to guarantee208

stability. If the closed-loop system is unstable or marginally stable, only the209

stabilizing parameter λ should be increased for the stabilization while PI control210

requires stability analysis such as the Nyquist criterion to determine whether211

to increase or decrease tuning parameters. In addition, the Nyquist criterion is212

a model-based method requiring model parameters. Furthermore, PI control is213

generally designed around fixed operating points while MFAC forms an adaptive214

dynamic linear model using on-line model update (Eq. (6)), i.e., MFAC already215

considers model uncertainties and should have strong robustness.216

Compared with GPC requiring a prediction model, MFAC can be easily217

tuned on-line with measured input-output data of the controlled plant. If the218
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underline model is inaccurate, the performances of GPC will be deteriorated.219

For the PCC process which is sensitive to ambient environments and is non-220

linear, a large number of sensitivity or identification tests should be conducted221

around different operating points of the controlled plant before the controller can222

be applied on-line. MFAC only uses input-output data of the PCC plant. No223

off-line model parameters are necessary for the on-line control implementation.224

The identified mathematical model of the PCC process is only used for the225

initial off-line tuning. Afterwards, if the control performance is unsatisfactory,226

MFAC can be retuned on-line [13] without off-line models. However, if the227

control performance of a model-based controller is poor, the model may be228

re-identified off-line based on new data generated by the first-principle model,229

which is non-trivial. Therefore, the implementation of MFAC is easier.230

4. Simulation results231

4.1. Identification of a carbon capture plant model with neural networks232

The observed data for the plant model identification are generated by the233

first-principle PCC model [17] with the sampling time Ts = 2.5 s. During234

preprocessing, dc-offsets of both the input features x(t) and output y(t) are235

removed. The model structure is a neural network with an unknown hidden236

layer size and model orders, both reflected by D0, the total number of model237

parameters. In Section 2, D0 is determined by na, nb, nd1
, nd2 and H. To238

reduce the number of candidate models, nb = nd1 = nd2 with the hidden layer239

size H = 1 is assumed for the initial model order selection. Only na and240

nb should be determined to fix D0. For both na and nb ranging from 1 to241

10, the model performances are quantized by AIC. Theoretically, the selected242

model orders should have the minimum AIC value (Fig. 3a), i.e., na = 10 and243

nb = 5. The model order pair selected by Akaike’s information criterion with a244
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correction for finite sample sizes (AICc) or Bayesian information criterion (BIC)245

[20] is na = 5 and nb = 5.246

na

2 4 6 8 10

nb

1 2 3 4 5 6 7 8 9

ai
c

1e
2

8

6

4

2

0

aicmin

(a) AIC values.

2 4 6 8 10
na

2

4

6

8

10

n b

pass
fail

(b) Whiteness and independence test.

Fig. 3. Model order searching results.

Correspondingly, the selected candidate models must pass the whiteness and247

independence tests so as to validate their performances on approximating the248

first principle PCC model [17]. The tests are conducted not only for the models249

selected by AIC, AICc or BIC, but the candidate models with orders around250

the neighbours of the criterion-based ones, i.e., na and nb are searched within251

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The hidden layer size H is enumerated from 1 to252

10. For each specified H and na-nb pair, a validated model must meet two253

constraints: (a) It can achieve a good fit (over 90% fit) with the observed data254

generated by the first-principle model; (b) the residual ǫ(t) of the candidate255

model can pass whiteness and independence tests. If there exists any H such256

that the whiteness and independence tests are passed, this na-nb pair is recorded257

with “pass” (Fig. 3b). Although the model order pair, na = 5 and nb = 5, is258

selected by AICc or BIC, the corresponding candidate model fails the tests259

(Fig. 3b). Table 1 only gives the smallest hidden layer sizes Hmin with respect260

to some typical model order pairs (determined by AIC, AICc, BIC, etc.) such261

that the candidate models can pass the whiteness and independence tests. It is262

observed that if the model has passed the tests, the fit percentage is generally263
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over 90%. Instead of the above constraints for validated models, the number of264

model parameters D0 is further considered to avoid over-fitting. A candidate265

model with na = 10, nb = 1, and Hmin = 1 is finally selected since D0 =266

(n+ 2) ·H + 2 = 17 is the smallest among all the validated models. According267

to input and output dynamics (Fig. 4) of the selected model, its fit percentage268

is 98.41% for the one-step-ahead prediction. In addition, the fit percentage of269

the multi-step-ahead prediction for the carbon capture level is 93.43%. This270

value is lower than 98.41% of the one-step-ahead prediction but still exceeds271

90%. The residual analysis (Fig. 5) of the model indicates ζ1(τ) and ζ2(τ) are272

within the 99% confidence intervals.273

Table 1

Validated model orders and fit percentages.

(na, nb) Hmin fit ( %)
(5, 5) / /
(7, 5) 3 97.77
(10, 1) 1 98.41
(10, 5) 1 98.42

Table 2

Controller design.

PI CFDL-MFAC PFDL-MFAC
Kp 0.01 µ 0.002 0.002
Ki 0.017 λ 25 40

ρ (1) (0.8, 0.05, 0.001)T

α 200 200
η 0.4 0.4
b 0.1 0.1
L 1 3

Φ̂(1) (3) (3, −5, −2)

4.2. Model-free adaptive controller design274

The performances of CFDL- and PFDL-MFAC are evaluated based on the275

previous validated non-linear PCC plant model, i.e., the controlled plant in the276
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Fig. 4. Plant dynamics.
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Fig. 5. Residual analysis with 99% confidence level.

subsequent sections. PI control results are also given for comparisons. The277

lean MEA flow rate is the manipulated input while the carbon capture level is278

the controlled output. The original controlled plant is supposed to be free of279

disturbances. During the tuning process, Kp and Ki (Table 2) of PI control [17]280

are tuned to ensure tracking performances of the capture level as best as possible.281

Then, instead of PI control, MFAC can be tuned as discussed in Subsection 3.2282

and implemented to achieve similar performances (Fig. 6a) with the designed283

tuning parameters (Table 2). Although the number of tuning parameters for284

MFAC is larger than that for PI control, MFAC is easy to ensure stability [14].285

PI control needs extra stability analysis of the closed-loop system.286

Afterwards, the time-variant disturbances, i.e., the flue gas flow rate and the287
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Fig. 6. MFAC and PI control results.
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CO2 mass fraction of the flue gas (Fig. 7), are applied to the controlled non-linear288

PCC plant, which can be periodical ramp changes due to the variations of power289

generation [4]. Simultaneously, the reference signal of the carbon capture level290

is generated identically to the one of the undisturbed system (Fig. 6a). Based291

on the previous tuning parameters (Table 2), only the capture level deviations292

from the references (Fig. 6b) are plotted, where PFDL-MFAC has the smoothest293
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transient responses of the output, i.e. the smallest carbon capture level devia-294

tions than the PI control and CFDL-MFAC algorithms. PFDL-MFAC is better295

(Fig. 6b) than CFDL, since time-variant PPD Φ̂(t) of PFDL with a longer length296

L = 3 (Table 2) adaptively catches more system dynamics. CFDL-MFAC with297

fewer tuning parameters than PFDL-MFAC, however, can be designed more298

easily for simple plants [14]. Both CFDL- and PFDL-MFAC can guarantee sta-299

bility by increasing the stabilizing parameter λ. Time-variant Φ̂(t) for CFDL300

and PFDL (Fig. 8) dynamically estimate the controlled non-linear plant.301
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Fig. 8. PPD vector dynamics.

4.3. Comparison between model-based and model-free controllers302
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PFDL-MFAC is compared with GPC in this subsection. Note that the con-303

trolled non-linear PCC plant is the validated neural network selected in Subsec-304

tion 4.1. The prediction model (Eq. (2)) is linearised based on this non-linear305

plant using the first-order Taylor approximation so as to derive A(q−1), B(q−1)306

and D(q−1). These polynomials inevitably generate model uncertainties due307

to plant non-linearities. There exist mismatches between the output responses308

of the prediction model, the controlled non-linear plant and the first-principle309

model (Fig. 9a). Based on the prediction model, to implement the GPC algo-310

rithm, the time horizon Nr, and the weight matrices Q and R in the control311

objective (Eq. (3)) should be determined by the user. Nr is the concerned time312

horizon. Q is the penalty of the tracking error (i.e., r(t+ k)− y(t+ k)) within313

the time horizon Nr. R is the penalty of the manipulated input deviation (i.e.,314

∆u(t + k) = u(t + k) − u(t + k − 1)) within the time horizon Nr. The control315

objective (Eq. (3)) indicates there should be trade-off between the tracking er-316

ror and the input manipulation. For the smooth input dynamics, entries of Q317

should be large while those of R should be small. In contrast, for the fast output318

responses, entries of Q should be small while those of R should be large. In this319

case study, the best performance of GPC is obtained with the tuning parame-320

ters of Nr = 3, Q = 1 · INr×Nr
and R = 30 · INr×Nr

where INr×Nr
∈ R

Nr×Nr
321

is an identity matrix. Simultaneously, Fig. 9b shows PFDL-MFAC achieves a322

similar tracking performance as GPC. Nevertheless, an underline model should323

be identified before the tuning parameters of GPC can be tested on-line. The324

model not only lacks non-linearities of the controlled plant but is usually ob-325

tained with off-line sensitivity or identification tests. Both of them make the326

tuning procedure more complex than MFAC.327
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5. Conclusions328

We have identified a validated non-linear PCC plant model using the data329

generated by a first-principle model. The candidate models are approximately330

located by model order selection criteria such as AIC, AICc and BIC, and then331

searched around the neighbours of the criterion-determined model orders. The332

plant model can pass residual analysis and fit well with the data set.333

We have implemented the PI control and the model-free algorithms, namely,334

CFDL- or PFDL-MFAC within the validated non-linear PCC plant model.335

PFDL-MFAC has shown the best performance when confronting model uncer-336

tainties caused by time-variant disturbances. CFDL-MFAC, however, can be337

tuned easily since it has fewer tuning parameters. Both CFDL- and PFDL-338

MFAC can guarantee the stability of the closed-loop system by the stabilizing339

parameter λ, easier than PI control using the model-based Nyquist criterion.340

We have compared PFDL-MFAC with a model-based method called GPC.341

PFDL-MFAC can be more flexibly tuned on-line without model parameters342

determined during the off-line system identification. GPC, however, must be343

applied based on underline models, which is linearised around specified equilib-344

rium points of the controlled non-linear plant. Extra time should be taken to345

ensure the model performances. When performances of such a model-based con-346

troller are unsatisfactory, re-identification of underline models may be required,347

which is non-trivial. Consequently, PFDL-MFAC can be flexibly designed and348

implemented easily on-line with a simplified off-line tuning process.349
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