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Abstract

Rumour stance classification, defined as classifying the stance of specific social

media posts into one of supporting, denying, querying or commenting on an ear-

lier post, is becoming of increasing interest to researchers. While most previous

work has focused on using individual tweets as classifier inputs, here we report on

the performance of sequential classifiers that exploit the discourse features inher-

ent in social media interactions or ‘conversational threads’. Testing the effective-

ness of four sequential classifiers – Hawkes Processes, Linear-Chain Conditional

Random Fields (Linear CRF), Tree-Structured Conditional Random Fields (Tree

CRF) and Long Short Term Memory networks (LSTM) – on eight datasets as-

sociated with breaking news stories, and looking at different types of local and

contextual features, our work sheds new light on the development of accurate

stance classifiers. We show that sequential classifiers that exploit the use of dis-

course properties in social media conversations while using only local features,

outperform non-sequential classifiers. Furthermore, we show that LSTM using a

reduced set of features can outperform the other sequential classifiers; this per-

formance is consistent across datasets and across types of stances. To conclude,

our work also analyses the different features under study, identifying those that

best help characterise and distinguish between stances, such as supporting tweets
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being more likely to be accompanied by evidence than denying tweets. We also

set forth a number of directions for future research.

Keywords: stance classification, social media, breaking news, veracity

classification

1. Introduction

Social media platforms have established themselves as important sources for

learning about the latest developments in breaking news. People increasingly use

social media for news consumption [1, 2, 3], while media professionals, such

as journalists, increasingly turn to social media for news gathering [4] and for

gathering potentially exclusive updates from eyewitnesses [5, 6]. Social media

platforms such as Twitter are a fertile and prolific source of breaking news, occa-

sionally even outpacing traditional news media organisations [7]. This has led to

the development of multiple data mining applications for mining and discovering

events and news from social media [8, 9]. However, the use of social media also

comes with the caveat that some of the reports are necessarily rumours at the time

of posting, as they have yet to be corroborated and verified [10, 11, 12]. The pres-

ence of rumours in social media has hence provoked a growing interest among

researchers for devising ways to determine veracity in order to avoid the diffusion

of misinformation [13].

Resolving the veracity of social rumours requires the development of a rumour

classification system and we described in [14], a candidate architecture for such a

system consisting of the following four components: (1) detection, where emerg-

ing rumours are identified, (2) tracking, where those rumours are monitored to

collect new related tweets, (3) stance classification, where the views expressed by

different tweet authors are classified, and (4) veracity classification, where knowl-

edge garnered from the stance classifier is put together to determine the likely

veracity of a rumour.

In this work we focus on the development of the third component, a stance

classification system, which is crucial to subsequently determining the veracity

of the underlying rumour. The stance classification task consists in determining

how individual posts in social media observably orientate to the postings of oth-

ers [15, 16]. For instance, a post replying with “no, that’s definitely false” is

denying the preceding claim, whereas “yes, you’re right” is supporting it. It has

been argued that aggregation of the distinct stances evident in the multiple tweets

discussing a rumour could help in determining its likely veracity, providing, for
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example, the means to flag highly disputed rumours as being potentially false [10].

This approach has been justified by recent research that has suggested that the ag-

gregation of the different stances expressed by users can be used for determining

the veracity of a rumour [13, 17].

In this work we examine in depth the use of so-called sequential approaches to

the rumour stance classification task. Sequential classifiers are able to utilise the

discursive nature of social media [6], learning from how ‘conversational threads’

evolve for a more accurate classification of the stance of each tweet. The use

of sequential classifiers to model the conversational properties inherent in social

media threads is still in its infancy. For example, in preliminary work we showed

that a sequential classifier modelling the temporal sequence of tweets outperforms

standard classifiers [18, 19]. Here we extend this preliminary experimentation in

four different directions that enable exploring further the stance classification task

using sequential classifiers: (1) we perform a comparison of a range of sequen-

tial classifiers, including a Hawkes Process classifier, a Linear CRF, a Tree CRF

and an LSTM; (2) departing from the use of only local features in our previous

work, we also test the utility of contextual features to model the conversational

structure of Twitter threads; (3) we perform a more exhaustive analysis of the

results looking into the impact of different datasets and the depth of the replies

in the conversations on the classifiers’ performance, as well as performing an er-

ror analysis; and (4) we perform an analysis of features that gives insight into

what characterises the different kinds of stances observed around rumours in so-

cial media. To the best of our knowledge, dialogical structures in Twitter have not

been studied in detail before for classifying each of the underlying tweets and our

work is the first to evaluate it exhaustively for stance classification. Twitter con-

versational threads are identifiable by the relational features that emerge as users

respond to each others’ postings, leading to tree-structured interactions. The mo-

tivation behind the use of these dialogical structures for determining stance is that

users’ opinions are expressed and evolve in a discursive manner, and that they are

shaped by the interactions with other users.

The work presented here advances research in rumour stance classification by

performing an exhaustive analysis of different approaches to this task. In particu-

lar, we make the following contributions:

• We perform an analysis of whether and the extent to which use of the se-

quential structure of conversational threads can improve stance classifica-

tion in comparison to a classifier that determines a tweet’s stance from the

tweet in isolation. To do so, we evaluate the effectiveness of a range of
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sequential classifiers: (1) a state-of-the-art classifier that uses Hawkes Pro-

cesses to model the temporal sequence of tweets [18]; (2) two different

variants of Conditional Random Fields (CRF), i.e., a linear-chain CRF and

a tree CRF; and (3) a classifier based on Long Short Term Memory (LSTM)

networks. We compare the performance of these sequential classifiers with

non-sequential baselines, including the non-sequential equivalent of CRF, a

Maximum Entropy classifier.

• We perform a detailed analysis of the results broken down by dataset and by

depth of tweet in the thread, as well as an error analysis to further understand

the performance of the different classifiers. We complete our analysis of

results by delving into the features, and exploring whether and the extent to

which they help characterise the different types of stances.

Our results show that sequential approaches do perform substantially better

in terms of macro-averaged F1 score, proving that exploiting the dialogical struc-

ture improves classification performance. Specifically, the LSTM achieves the

best performance in terms of macro-averaged F1 scores, with a performance that

is largely consistent across different datasets and different types of stances. Our

experiments show that LSTM performs especially well when only local features

are used, as compared to the rest of the classifiers, which need to exploit contex-

tual features to achieve comparable – yet still inferior – performance scores. Our

findings reinforce the importance of leveraging conversational context in stance

classification. Our research also sheds light on open research questions that we

suggest should be addressed in future work. Our work here complements other

components of a rumour classification system that we implemented in the PHEME

project, including a rumour detection component [20, 21], as well as a study into

the diffusion of and reactions to rumour [22].

2. Related Work

Stance classification is applied in a number of different scenarios and domains,

usually aiming to classify stances as one of “in favour” or “against”. This task

has been studied in political debates [23, 24], in arguments in online fora [25,

26] and in attitudes towards topics of political significance [27, 28, 29]. In work

that is closer to our objectives, stance classification has also been used to help

determine the veracity of information in micro-posts [16], often referred to as

rumour stance classification [30, 18, 12, 19]. The idea behind this task is that the
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aggregation of distinct stances expressed by users in social media can be used to

assist in deciding if a report is actually true or false [13]. This may be particularly

useful in the context of rumours emerging during breaking news stories, where

reports are released piecemeal and which may be lacking authoritative review; in

consequence, using the ‘wisdom of the crowd’ may provide a viable, alternative

approach. The types of stances observed while rumours circulate, however, tend

to differ from the original “in favour/against”, and different types of stances have

been discussed in the literature, as we review next.

Rumour stance classification of tweets was introduced in early work by Qazvinian

et al. [16]. The line of research initiated by [16] has progressed substantially with

revised definitions of the task and hence the task tackled in this paper differs from

this early work in a number of aspects. Qazvinian et al. [16] performed 2-way

classification of each tweet as supporting or denying a long-standing rumour such

as disputed beliefs that Barack Obama is reportedly Muslim. The authors used

tweets observed in the past to train a classifier, which was then applied to new

tweets discussing the same rumour. In recent work, rule-based methods have been

proposed as a way of improving on Qazvinian et al.’s baseline method; however,

rule-based methods are likely to be difficult – if not impossible – to generalise to

new, unseen rumours. Hamidian et al. [31] extended that work to analyse the ex-

tent to which a model trained from historical tweets could be used for classifying

new tweets discussing the same rumour.

The work we present here has three different objectives towards improving

stance classification. First, we aim to classify the stance of tweets towards ru-

mours that emerge while breaking news stories unfold; these rumours are unlikely

to have been observed before and hence rumours from previously observed events,

which are likely to diverge, need to be used for training. As far as we know, only

work by Lukasik et al. [30, 32, 18] has tackled stance classification in the context

of breaking news stories applied to new rumours. Zeng et al. [33] have also per-

formed stance classification for rumours around breaking news stories, but over-

lapping rumours were used for training and testing. Augenstein et al. [27, 29]

studied stance classification of unseen events in tweets, but ignored the conversa-

tional structure. Second, recent research has proposed that a 4-way classification

is needed to encompass responses seen in breaking news stories [12, 22]. Mov-

ing away from the 2-way classification above, which [12] found to be limited in

the context of rumours during breaking news, we adopt this expanded scheme to

include tweets that are supporting, denying, querying or commenting rumours.

This adds more categories to the scheme used in early work, where tweets would

only support or deny a rumour, or where a distinction between querying and com-
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menting is not made [27, 28, 29]. Moreover, our approach takes into account the

interaction between users on social media, whether it is about appealing for more

information in order to corroborate a rumourous statement (querying) or to post a

response that does not contribute to the resolution of the rumour’s veracity (com-

menting). Finally – and importantly – instead of dealing with tweets as single units

in isolation, we exploit the emergent structure of interactions between users on

Twitter, building a classifier that learns the dynamics of stance in tree-structured

conversational threads by exploiting its underlying interactional features. While

these interactional features do not, in the final analysis, map directly onto those of

conversation as revealed by Conversation Analysis [34], we argue that there are

sufficient relational similarities to justify this approach [35]. The closest work is

by Ritter et al. [36] who modelled linear sequences of replies in Twitter conversa-

tional threads with Hidden Markov Models for dialogue act tagging, but the tree

structure of the thread as a whole was not exploited.

As we were writing this article, we also organised, in parallel, a shared task

on rumour stance classification, RumourEval [37], at the well-known natural lan-

guage processing competition SemEval 2017. The subtask A consisted in stance

classification of individual tweets discussing a rumour within a conversational

thread as one of support, deny, query, or comment, which specifically addressed

the task presented in this paper. Eight participants submitted results to this task, in-

cluding work by [38] using an LSTM classifier which is being also analysed in this

paper. In this shared task, most of the systems viewed this task as a 4-way single

tweet classification task, with the exception of the best performing system by [38],

as well as the systems by [39] and [40]. The winning system addressed the task

as a sequential classification problem, where the stance of each tweet takes into

consideration the features and labels of the previous tweets. The system by Singh

et al. [40] takes as input pairs of source and reply tweets, whereas Wang et al.

[39] addressed class imbalance by decomposing the problem into a two step clas-

sification task, first distinguishing between comments and non-comments, to then

classify non-comment tweets as one of support, deny or query. Half of the systems

employed ensemble classifiers, where classification was obtained through major-

ity voting [39, 41, 42, 43]. In some cases the ensembles were hybrid, consisting

both of machine learning classifiers and manually created rules with differential

weighting of classifiers for different class labels [39, 41, 43]. Three systems used

deep learning, with [38] employing LSTMs for sequential classification, Chen et

al. [44] used convolutional neural networks (CNN) for obtaining the representa-

tion of each tweet, assigned a probability for a class by a softmax classifier and

Garcı́a Lozano et al. [41] used CNN as one of the classifiers in their hybrid con-
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glomeration. The remaining two systems by Enayet et al. [45] and Singh et al.

[40] used support vector machines with a linear and polynomial kernel respec-

tively. Half of the systems invested in elaborate feature engineering, including

cue words and expressions denoting Belief, Knowledge, Doubt and Denial [42]

as well as Tweet domain features, including meta-data about users, hashtags and

event specific keywords [39, 42, 40, 45]. The systems with the least elaborate

features were Chen et al. [44] and Garcı́a Lozano et al. [41] for CNNs (word

embeddings), Srivastava et al. [43] (sparse word vectors as input to logistic re-

gression) and Kochkina et al. [38] (average word vectors, punctuation, similarity

between word vectors in current tweet, source tweet and previous tweet, pres-

ence of negation, picture, URL). Five out of the eight systems used pre-trained

word embeddings, mostly Google News word2vec embeddings1, whereas [39]

used four different types of embeddings. The winning system used a sequential

classifier, however the rest of the participants opted for other alternatives.

To the best of our knowledge Twitter conversational thread structure has not

been explored in detail in the stance classification problem. Here we extend the

experimentation presented in our previous work using Conditional Random Fields

for rumour stance classification [19] in a number of directions: (1) we perform a

comparison of a broader range of classifiers, including state-of-the-art rumour

stance classifiers such as Hawkes Processes introduced by Lukasik et al. [18],

as well as a new LSTM classifier, (2) we analyse the utility of a larger set of fea-

tures, including not only local features as in our previous work, but also contextual

features that further model the conversational structure of Twitter threads, (3) we

perform a more exhaustive analysis of the results, and (4) we perform an analysis

of features that gives insight into what characterises the different kinds of stances

observed around rumours in social media.

3. Research Objectives

The main objective of our research is to analyse whether, the extent to which

and how the sequential structure of social media conversations can be exploited to

improve the classification of the stance expressed by different posts towards the

topic under discussion. Each post in a conversation makes its own contribution to

the discussion and hence has to be assigned its own stance value. However, posts

in a conversation contribute to previous posts, adding up to a discussion attempting

1https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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to reach a consensus. Our work looks into the exploitation of this evolving nature

of social media discussions with the aim of improving the performance of a stance

classifier that has to determine the stance of each tweet. We set forth the following

six research objectives:

RO 1. Quantify performance gains of using sequential classifiers compared

with the use of non-sequential classifiers.

Our first research objective aims to analyse how the use of a sequential clas-

sifier that models the evolving nature of social media conversations can perform

better than standard classifiers that treat each post in isolation. We do this by

solely using local features to represent each post, so that the analysis focuses on

the benefits of the sequential classifiers.

RO 2. Quantify the performance gains using contextual features extracted

from the conversation.

With our second research objective we are interested in analysing whether the

use of contextual features (i.e. using other tweets surrounding in a conversation to

extract the features of a given tweet) are helpful to boost the classification perfor-

mance. This is particularly interesting in the case of tweets as they are very short,

and inclusion of features extracted from surrounding tweets would be especially

helpful. The use of contextual features is motivated by the fact that tweets in a

discussion are adding to each other, and hence they cannot be treated alone.

RO 3. Evaluate the consistency of classifiers across different datasets.

Our aim is to build a stance classifier that will generalise to multiple differ-

ent datasets comprising data belonging to different events. To achieve this, we

evaluate our classifiers on eight different events.

RO 4. Assess the effect of the depth of a post in its classification performance.

We want to build a classifier that will be able to classify stances of different

posts occurring at different levels of depth in a conversation. A post can be from

a source tweet that initiates a conversation, to a nested reply that occurs later

in the sequence formed by a conversational thread. The difficulty increases as

replies are deeper as there is more preceding conversation to be aggregated for the

classification task. We assess the performance over different depths to evaluate

this.

RO 5. Perform an error analysis to assess when and why each classifier per-

forms best.

We want to look at the errors made by each of the classifiers. This will help

us understand when we are doing well and why, as well as in what cases and with

which types of labels we need to keep improving.

RO 6. Perform an analysis of features to understand and characterise stances
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in social media discussions.

In our final objective we are interested in performing an exploration of differ-

ent features under study, which is informative in two different ways. On the one

hand, to find out which features are best for a stance classifier and hence improve

performance; on the other hand, to help characterise the different types of stances

and hence further understand how people respond in social media discussions.

4. Rumour Stance Classification

In what follows we formally define the rumour stance classification task, as

well as the datasets we use for our experiments.

4.1. Task Definition

The rumour stance classification task consists in determining the type of ori-

entation that each individual post expresses towards the disputed veracity of a

rumour. We define the rumour stance classification task as follows: we have a

set of conversational threads, each discussing a rumour, D = {C1, ...,Cn}. Each

conversational thread C j has a variably sized set of tweets |C j| discussing it, with

a source tweet (the root of the tree), t j,1, that initiates it. The source tweet t j,1 can

receive replies by a varying number k of tweets Repliest j,1
= {t j,1,1, ..., t j,1,k}, which

can in turn receive replies by a varying number k of tweets, e.g., Repliest j,1,1
=

{t j,1,1,1, ..., t j,1,1,k}, and so on. An example of a conversational thread is shown in

Figure 1.

The task consists in determining the stance of each of the tweets t j as one of

Y = {supporting, denying, querying, commenting}.

4.2. Dataset

As part of the PHEME project [13], we collected a rumour dataset associ-

ated with eight events corresponding to breaking news events [22].2 Tweets in

this dataset include tree-structured conversations, which are initiated by a tweet

about a rumour (source tweet) and nested replies that further discuss the rumour

circulated by the source tweet (replying tweets). The process of collecting the

tree-structured conversations initiated by rumours, i.e. having a rumour discussed

in the source tweet, and associated with the breaking news events under study was

2The entire dataset included nine events, but here we describe the eight events with tweets in

English, which we use for our classification experiments. The ninth dataset with tweets in German

was not considered for this work.

9



[depth=0] u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier

after today’s shooting #StandforCanada –PICTURE– [support]

[depth=1] u2: @u1 Apparently a hoax. Best to take Tweet down. [deny]

[depth=1] u3: @u1 This photo was taken this morning, before the shooting. [deny]

[depth=1] u4: @u1 I don’t believe there are soldiers guarding this area right now. [deny]

[depth=2] u5: @u4 wondered as well. I’ve reached out to someone who would

know just to confirm that. Hopefully get response soon. [comment]

[depth=3] u4: @u5 ok, thanks. [comment]

Figure 1: Example of a tree-structured thread discussing the veracity of a rumour, where the label

associated with each tweet is the target of the rumour stance classification task.

conducted with the assistance of journalist members of the Pheme project team.

Tweets comprising the rumourous tree-structured conversations were then anno-

tated for stance using CrowdFlower3 as a crowdsourcing platform. The annotation

process is further detailed in [46].

The resulting dataset includes 4,519 tweets and the transformations of annota-

tions described above only affect 24 tweets (0.53%), i.e., those where the source

tweet denies a rumour, which is rare. The example in Figure 1 shows a rumour

thread taken from the dataset along with our inferred annotations, as well as how

we establish the depth value of each tweet in the thread.

One important characteristic of the dataset, which affects the rumour stance

classification task, is that the distribution of categories is clearly skewed towards

commenting tweets, which account for over 64% of the tweets. This imbalance

varies slightly across the eight events in the dataset (see Table 1). Given that we

consider each event as a separate fold that is left out for testing, this varying im-

balance makes the task more realistic and challenging. The striking imbalance

towards commenting tweets is also indicative of the increased difficulty with re-

spect to previous work on stance classification, most of which performed binary

classification of tweets as supporting or denying, which account for less than 28%

of the tweets in our case representing a real world scenario.

3https://www.crowdflower.com/
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Event Supporting Denying Querying Commenting Total

charliehebdo 239 (22.0%) 58 (5.0%) 53 (4.0%) 721 (67.0%) 1,071

ebola-essien 6 (17.0%) 6 (17.0%) 1 (2.0%) 21 (61.0%) 34

ferguson 176 (16.0%) 91 (8.0%) 99 (9.0%) 718 (66.0%) 1,084

germanwings-crash 69 (24.0%) 11 (3.0%) 28 (9.0%) 173 (61.0%) 281

ottawashooting 161 (20.0%) 76 (9.0%) 63 (8.0%) 477 (61.0%) 777

prince-toronto 21 (20.0%) 7 (6.0%) 11 (10.0%) 64 (62.0%) 103

putinmissing 18 (29.0%) 6 (9.0%) 5 (8.0%) 33 (53.0%) 62

sydneysiege 220 (19.0%) 89 (8.0%) 98 (8.0%) 700 (63.0%) 1,107

Total 910 (20.1%) 344 (7.6%) 358 (7.9%) 2,907 (64.3%) 4,519

Table 1: Distribution of categories for the eight events in the dataset.

5. Classifiers

In this section we describe the different classifiers that we used for our exper-

iments. Our focus is on sequential classifiers, especially looking at classifiers that

exploit the discursive nature of social media, which is the case for Conditional

Random Fields in two different settings – i.e. Linear CRF and tree CRF – as well

as that of a Long Short-Term Memory (LSTM) in a linear setting – Branch LSTM.

We also experiment with a sequential classifier based on Hawkes Processes that

instead exploits the temporal sequence of tweets and has been shown to achieve

state-of-the-art performance [18]. After describing these three types of classifiers,

we outline a set of baseline classifiers.

5.1. Hawkes Processes

One approach for modelling arrival of tweets around rumours is based on point

processes, a probabilistic framework where tweet occurrence likelihood is mod-

elled using an intensity function over time. Intuitively, higher values of intensity

function denote higher likelihood of tweet occurrence. For example, Lukasik et

al. modelled tweet occurrences over time with a log-Gaussian Cox Process, a

point process which models its intensity function as an exponentiated sample of

a Gaussian Process [47, 48, 49]. In related work, tweet arrivals were modelled

with a Hawkes Process and a resulting model was applied for stance classifica-

tion of tweets around rumours [18]. In this subsection we describe the sequence

classification algorithm based on Hawkes Processes.

Intensity Function. The intensity function in a Hawkes Process is expressed as

a summation of base intensity and the intensities corresponding to influences of
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previous tweets,

λy,m(t)=µy+
∑

tℓ<t

I(mℓ = m)αyℓ,yκ(t − tℓ), (1)

where the first term represents the constant base intensity of generating label y.

The second term represents the influence from the previous tweets. The influ-

ence from each tweet is modelled with an exponential kernel function κ(t − tℓ) =

ω exp(−ω(t − tℓ)). The matrix α of size |Y | × |Y | encodes how pairs of labels cor-

responding to tweets influence one another, e.g. how a querying label influences

a rejecting label.

Likelihood function. The parameters governing the intensity function are learnt

by maximising the likelihood of generating the tweets:

L(t,y,m,W ) =

N
∏

n=1

p(Wn|yn) ×
[

N
∏

n=1

λyn,mn
(tn)
]

×p(ET ), (2)

where the likelihood of generating text given the label is modelled as a multi-

nomial distribution conditioned on the label (parametrised by matrix β). The sec-

ond term provides the likelihood of occurrence of tweets at times t1, . . . , tn and

the third term provides the likelihood that no tweets happen in the interval [0,T ]

except at times t1, . . . , tn. We estimate the parameters of the model by maximising

the log-likelihood. As in [18], Laplacian smoothing is applied to the estimated

language parameter β.

In one approach to µ and α optimisation (Hawkes Process with Approximated

Likelihood, or HP Approx. [18]) a closed form updates for µ and α are obtained

using an approximation of the log-likelihood of the data. In a different approach

(Hawkes Process with Exact Likelihood, or HP Grad. [18]) parameters are found

using joint gradient based optimisation over µ and α, using derivatives of log-

likelihood4. L-BFGS approach is employed for gradient search. Parameters are

initialised with those found by the HP Approx. method. Moreover, following

previous work we fix the decay parameter ω to 0.1.

We predict the most likely sequence of labels, thus maximising the likelihood

of occurrence of the tweets from Equation (2), or the approximated likelihood in

4For both implementations we used the ‘seqhawkes’ Python package: https://github.com/

mlukasik/seqhawkes
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case of HP Approx. Similarly as in [18], we follow a greedy approach, where we

choose the most likely label for each consecutive tweet.

5.2. Conditional Random Fields (CRF): Linear CRF and Tree CRF

We use CRF as a structured classifier to model sequences observed in Twitter

conversations. With CRF, we can model the conversation as a graph that will

be treated as a sequence of stances, which also enables us to assess the utility

of harnessing the conversational structure for stance classification. Different to

traditionally used classifiers for this task, which choose a label for each input

unit (e.g. a tweet), CRF also consider the neighbours of each unit, learning the

probabilities of transitions of label pairs to be followed by each other. The input

for CRF is a graph G = (V, E), where in our case each of the vertices V is a tweet,

and the edges E are relations of tweets replying to each other. Hence, having a data

sequence X as input, CRF outputs a sequence of labels Y [50], where the output of

each element yi will not only depend on its features, but also on the probabilities

of other labels surrounding it. The generalisable conditional distribution of CRF

is shown in Equation 3 [51].

p(y|x) =
1

Z(x)

A
∏

a=1

Ψa(ya, xa) (3)

where Z(x) is the normalisation constant, and Ψa is the set of factors in the

graph G.

We use CRFs in two different settings.5 First, we use a linear-chain CRF

(Linear CRF) to model each branch as a sequence to be input to the classifier. We

also use Tree-Structured CRFs (Tree CRF) or General CRFs to model the whole,

tree-structured conversation as the sequence input to the classifier. So in the first

case the sequence unit is a branch and our input is a collection of branches and

in the second case our sequence unit is an entire conversation, and our input is a

collection of trees. An example of the distinction of dealing with branches or trees

is shown in Figure 2. With this distinction we also want to experiment whether it

is worthwhile building the whole tree as a more complex graph, given that users

replying in one branch might not have necessarily seen and be conditioned by

tweets in other branches. However, we believe that the tendency of types of replies

observed in a branch might also be indicative of the distribution of types of replies

in other branches, and hence useful to boost the performance of the classifier when

5We use the PyStruct to implement both variants of CRF [52].
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using the tree as a whole. An important caveat of modelling a tree in branches is

also that there is a need to repeat parts of the tree across branches, e.g., the source

tweet will repeatedly occur as the first tweet in every branch extracted from a

tree.6

A

A1

A11

 A111

A2

A3

A31

Tweet  

conversation

Source tweet

Branches

Replying  

tweets

A12

Figure 2: Example of a tree-structured conversation, with two overlapping branches highlighted.

To account for the imbalance of classes in our datasets, we perform cost-

sensitive learning by assigning weighted probabilities to each of the classes, these

probabilities being the inverse of the number of occurrences observed in the train-

ing data for a class.

5.3. Branch LSTM

Another model that works with structured input is a neural network with Long

Short-Term Memory (LSTM) units [53]. LSTMs are able to model discrete time

series and possess a ‘memory’ property of the previous time steps, therefore we

propose a branch-LSTM model that utilises them to process branches of tweets.

6Despite this also leading to having tweets repeated across branches in the test set and hence

producing an output repeatedly for the same tweet with Linear CRF, this output does is consistent

and there is no need to aggregate different outputs.
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Figure 3: Illustration of the input/output structure of the LSTM-branch model

Figure 3 illustrates how the input of the time step of the LSTM layer is a

vector that is an average of word vectors from each tweet and how the information

propagates between time steps.

The full model consists of several LSTM layers that are connected to several

feed-forward ReLU layers and a softmax layer to obtain predicted probabilities of

a tweet belonging to certain class. As a means for weight regularisation we utilise

dropout and l2-norm. We use categorical cross-entropy as the loss function. The

model is trained using mini-batches and the Adam optimisation algorithm [54].7

The number of layers, number of units in each layer, regularisation strength,

mini-batch size and learning rate are determined using the Tree of Parzen Estima-

tors (TPE) algorithm [57]8 on the development set.9

The branch-LSTM takes as input tweets represented as the average of its word

vectors. We also experimented with obtaining tweet representations through per-

word nested LSTM layers, however, this approach did not result in significantly

better results than the average of word vectors.

Extracting branches from a tree-structured conversation presents the caveat

7For implementation of all models we used Python libraries Theano [55] and Lasagne [56].
8We use the implementation in the hyperopt package [58].
9For this setting, we use the ‘Ottawa shooting’ event for development.
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that some tweets are repeated across branches after this conversion. We solve

this issue by applying a mask to the loss function to not take repeated tweets into

account.

5.4. Summary of Sequential Classifiers

All of the classifiers described above make use of the sequential nature of

Twitter conversational threads. These classifiers take a sequence of tweets as in-

put, where the relations between tweets are formed by replies. If C replies to B,

and B replies to A, it will lead to a sequence “A→ B→ C”. Sequential classifiers

will use the predictions on preceding tweets to determine the possible label for

each tweet. For instance, the classification for B will depend on the prediction

that has been previously made for A, and the probabilities of different labels for B

will vary for the classifier depending on what has been predicted for A.

Among the four classifiers described above, the one that differs in how the

sequence is treated is the Tree CRF. This classifier builds a tree-structured graph

with the sequential relationships composed by replying tweets. The rest of the

classifiers, Hawkes Processes, Linear CRF and LSTM, will break the entire con-

versational tree into linear branches, and the input to the classifiers will be linear

sequences. The use of a graph with the Tree CRF has the advantage of build-

ing a single structure, while the rest of the classifiers building linear sequences

inevitably need to repeat tweets across different linear sequences. All the linear

sequences will repeatedly start with the source tweet, while some of the subse-

quent tweets may also be repeated. The use of linear sequences has however the

advantages of simplifying the model being used, and one may also hypothesise

that inclusion of the entire tree made of different branches into the same graph

may not be suitable when they may all be discussing issues that differ to some

extent from one another. Figure 2 shows an example of a conversation tree, how

the entire tree would make a graph, as well as how we break it down into smaller

branches or linear sequences.

5.5. Baseline Classifiers

Maximum Entropy classifier (MaxEnt). As the non-sequential counterpart of

CRF, we use a Maximum Entropy (or logistic regression) classifier, which is also a

conditional classifier but which will operate at the tweet level, ignoring the conver-

sational structure. This enables us to directly compare the extent to which treating

conversations as sequences instead of having each tweet as a separate unit can

boost the performance of the CRF classifiers. We perform cost-sensitive learning
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by assigning weighted probabilities to each class as the inverse of the number of

occurrences in the training data.

Additional baselines. We also compare two more non-sequential classifiers10:

Support Vector Machines (SVM), and Random Forests (RF).

5.6. Experiment Settings and Evaluation Measures

We experiment in an 8-fold cross-validation setting. Given that we have 8

different events in our dataset, we create 8 different folds, each having the data

linked to an event. In our cross-validation setting, we run the classifier 8 times,

on each occasion having a different fold for testing, with the other 7 for training.

In this way, each fold is tested once, and the aggregation of all folds enables ex-

perimentation on all events. For each of the events in the test set, the experiments

consist in classifying the stance of each individual tweet. With this, we simulate

a realistic scenario where we need to use knowledge from past events to train a

model that will be used to classify tweets in new events.

Given that the classes are clearly imbalanced in our case, evaluation based

on accuracy arguably cannot suffice to capture competitive performance beyond

the majority class. To account for the imbalance of the categories, we report the

macro-averaged F1 scores, which measures the overall performance assigning the

same weight to each category. We aggregate the macro-averaged F1 scores to get

the final performance score of a classifier. We also use the McNemar test [59]

throughout the analysis of results to further compare the performance of some

classifiers.

It is also worth noting that all the sequential classifiers only make use of pre-

ceding tweets in the conversation to classify a tweet, and hence no later tweets are

used. That is the case of a sequence t1, t2, t3 of tweets, each responding to the pre-

ceding tweet. The sequential classifier attempting to classify t2 would incorporate

t1 in the sequence, but t3 would not be considered.

6. Features

While focusing on the study of sequential classifiers for discursive stance clas-

sification, we perform our experiments with three different types of features: local

features, contextual features and Hawkes features. First, local features enable

us to evaluate the performance of sequential classifiers in a comparable setting

10We use their implementation in the scikit-learn Python package, using the

class weight=“balanced” parameter to perform cost-sensitive learning.
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to non-sequential classifiers where features are extracted solely from the current

tweet; this makes it a fairer comparison where we can quantify the extent to which

mining sequences can boost performance. In a subsequent step, we also incorpo-

rate contextual features, i.e. features from other tweets in a conversation, which

enables us to further boost performance of the sequential classifiers. Finally, and

to enable comparison with the Hawkes process classifier, we describe the Hawkes

features.

Table 2 shows the list of features used, both local and contextual, each of

which can be categorised into several subtypes of features, as well as the Hawkes

features. For more details on these features, please see Appendix A.

Local features

Lexicon

Word embeddings

POS tags

Negation

Swear words

Content formatting
Tweet length

Word count

Punctuation
Question mark

Exclamation mark

Tweet formatting URL attached

Contextual features

Relational

Word2Vec similarity wrt source tweet

Word2Vec similarity wrt preceding tweet

Word2Vec similarity wrt thread

Structural

Is leaf

Is source tweet

Is source user

Social

Has favourites

Has retweets

Persistence

Time difference

Hawkes features

Hawkes features
Bag of words

Timestamp

Table 2: List of features.
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7. Experimental Results

7.1. Evaluating Sequential Classifiers (RO 1)

First, we evaluate the performance of the classifiers by using only local fea-

tures. As noted above, this enables us to perform a fairer comparison of the dif-

ferent classifiers by using features that can be obtained solely from each tweet

in isolation; likewise, it enables us to assess whether and the extent to which the

use of a sequential classifier to exploit the discursive structure of conversational

threads can be of help to boost performance of the stance classifier while using

the same set of features as non-sequential classifiers.

Therefore, in this section we make use of the local features described in Sec-

tion Appendix A.1. Additionally, we also use the Hawkes features described in

Section Appendix A.3 for comparison with the Hawkes processes. For the set of

local features, we show the results for three different scenarios: (1) using each

subgroup of features alone, (2) in a leave-one-out setting where one of the sub-

groups is not used, and (3) using all of the subgroups combined.

Table 3 shows the results for the different classifiers using the combinations

of local features as well as Hawkes features. We make the following observations

from these results:

• LSTM consistently performs very well with different features.

• Confirming our main hypothesis and objective, sequential classifiers do

show an overall superior performance to the non-sequential classifiers. While

the two CRF alternatives perform very well, the LSTM classifier is slightly

superior (the differences between CRF and LSTM results are statistically

significant at p < 0.05, except for the LF1 features). Moreover, the CRF

classifiers outperform their non-sequential counterpart MaxEnt, which achieves

an overall lower performance (all the differences between CRF and MaxEnt

results being statistically significant at p < 0.05).

• The LSTM classifier is, in fact, superior to the Tree CRF classifier (all sta-

tistically significant except LF1). While the Tree CRF needs to make use of

the entire tree for the classification, the LSTM classifier only uses branches,

reducing the amount of data and complexity that needs to be processed in

each sequence.

• Among the local features, combinations of subgroups of features lead to

clear improvements with respect to single subgroups without combinations.
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• Even though the combination of all local features achieves good perfor-

mance, there are alternative leave-one-out combinations that perform better.

The feature combination leading to the best macro-F1 score is that combin-

ing lexicon, content formatting and punctuation (i.e. LF123, achieving a

score of 0.449).

Summarising, our initial results show that exploiting the sequential properties

of conversational threads, while still using only local features to enable compari-

son, leads to superior performance with respect to the classification of each tweet

in isolation by non-sequential classifiers. Moreover, we observe that the local fea-

tures combining lexicon, content formatting and punctuation lead to the most ac-

curate results. In the next section we further explore the use of contextual features

in combination with local features to boost performance of sequential classifiers;

to represent the local features, we rely on the best approach from this section (i.e.

LF123).

Macro-F1

HF LF1 LF2 LF3 LF4 LF123 LF124 LF134 LF234 LF1234

SVM 0.336 0.356 0.231 0.258 0.313 0.403 0.365 0.403 0.420 0.408

Random Forest 0.325 0.308 0.276 0.267 0.437* 0.322 0.310 0.351 0.357 0.329

MaxEnt 0.338 0.363 0.272 0.263 0.428 0.415 0.363 0.421 0.427 0.422

Hawkes-approx 0.309 – – – – – – – – –

Hawkes-grad 0.307 – – – – – – – – –

Linear CRF 0.362* 0.357 0.268 0.318 0.317 0.413 0.365 0.403 0.425 0.412

Tree CRF 0.350 0.375* 0.285 0.221 0.217 0.433 0.385 0.413 0.436* 0.433

LSTM 0.318 0.362 0.318* 0.407* 0.419 0.449* 0.395* 0.412 0.429 0.437*

Table 3: Macro-F1 performance results using local features. HF: Hawkes features. LF: local

features, where numbers indicate subgroups of features as follows, 1: Lexicon, 2: Content format-

ting, 3: Punctuation, 4: Tweet formatting. An ’*’ indicates that the differences between the best

performing classifier and the second best classifier for that feature set are statistically significant

at p < 0.05.

7.2. Exploring Contextual Features (RO 2)

The experiments in the previous section show that sequential classifiers that

model discourse, especially the LSTM classifier, can provide substantial improve-

ments over non-sequential classifiers that classify each tweet in isolation, in both

cases using only local features to represent each tweet. To complement this, we

now explore the inclusion of contextual features described in Section Appendix
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A.2 for the stance classification. We perform experiments with four different

groups of features in this case, including local features and the three subgroups

of contextual features, namely relational features, structural features and social

features. As in the previous section, we show results for the use of each subgroup

of features alone, in a leave-one-out setting, and using all subgroups of features

together.

Table 4 shows the results for the classifiers incorporating contextual features

along with local features. We make the following observations from these results:

• The use of contextual features leads to substantial improvements for non-

sequential classifiers, getting closer to and even in some cases outperform-

ing some of the sequential classifiers.

• Sequential classifiers, however, do not benefit much from using contextual

features. It is important to note that sequential classifiers are taking the sur-

rounding context into consideration when they aggregate sequences in the

classification process. This shows that the inclusion of contextual features is

not needed for sequential classifiers, given that they are implicitly including

context through the use of sequences.

• In fact, for the LSTM, which is still the best-performing classifier, it is better

to only rely on local features, as the rest of the features do not lead to any

improvements. Again, the LSTM is able to handle context on its own, and

therefore inclusion of contextual features is redundant and may be harmful.

• Addition of contextual features leads to substantial improvements for the

non-sequential classifiers, achieving similar macro-averaged scores in some

cases (e.g. MaxEnt / All vs LSTM / LF). This reinforces the importance of

incorporating context in the classification process, which leads to improve-

ments for the non-sequential classifier when contextual features are added,

but especially in the case of sequential classifiers that can natively handle

context.

Summarising, we observe that the addition of contextual features is clearly

useful for non-sequential classifiers, which do not consider context natively. For

the sequential classifiers, which natively consider context in the classification pro-

cess, the inclusion of contextual features is not helpful and is even harmful in most

cases, potentially owing to the contextual information being used twice. Still, se-

quential classifiers, and especially LSTM, are the best classifiers to achieve opti-

mal results, which also avoid the need for computing contextual features.
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Macro-F1

LF R ST SO LF+R+ST LF+R+SO LF+ST+SO R+ST+SO All

SVM 0.403 0.335* 0.318 0.260 0.429 0.347 0.388 0.295 0.375

Random Forest 0.322 0.325 0.269 0.328 0.356 0.358 0.376 0.343* 0.364

MaxEnt 0.415 0.333 0.318 0.310 0.434 0.447 0.447 0.318 0.449

Linear CRF 0.413 0.318 0.318 0.334* 0.424 0.431 0.431 0.342 0.437

Tree CRF 0.433 0.322 0.317 0.312 0.425 0.429 0.430 0.232 0.433

LSTM 0.449* 0.318 0.318 0.315 0.445* 0.436 0.448 0.314 0.437

Table 4: Macro-F1 performance results incorporating contextual features. LF: local features, R:

relational features, ST: structural features, SO: social features. An ’*’ indicates that the differ-

ences between the best performing classifier and the second best classifier for that feature set are

statistically significant.

7.3. Analysis of the Best-Performing Classifiers

Despite the clear superiority of LSTM with the sole use of local features, we

now further examine the results of the best-performing classifiers to understand

when they perform well. We compare the performance of the following five clas-

sifiers in this section: (1) LSTM with only local features, (2) Tree CRF with all the

features, (3) Linear CRF with all the features, (4) MaxEnt with all the features,

and (5) SVM using local features, relational and structural features. Note that

while for LSTM we only need local features, for the rest of the classifiers we need

to rely on all or almost all of the features. For these best-performing combinations

of classifiers and features, we perform additional analyses by event and by tweet

depth, and perform an analysis of errors.

7.3.1. Evaluation by Event (RO 3)

The analysis of the best-performing classifiers, broken down by event, is shown

in Table 5. These results suggest that there is not a single classifier that performs

best in all cases; this is most likely due to the diversity of events. However, we see

that the LSTM is the classifier that outperforms the rest in the greater number of

cases; this is true for three out of the eight cases (the difference with respect to the

second best classifier being always statistically significant). Moreover, sequential

classifiers perform best in the majority of the cases, with only three cases where

a non-sequential classifier performs best. Most importantly, these results suggest

that sequential classifiers outperform non-sequential classifiers across the differ-

ent events under study, with LSTM standing out as a classifier that performs best

in numerous cases using only local features.
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Macro-F1

CH Ebola Ferg. GW crash Ottawa Prince Putin Sydney

SVM 0.399 0.380 0.382 0.427 0.492 0.491 0.509 0.427

MaxEnt 0.446 0.425 0.418 0.475 0.468 0.514 0.381 0.443

Linear CRF 0.443 0.619 0.380 0.470 0.412 0.512 0.528 0.454

Tree CRF 0.457 0.557 0.356 0.523 0.441 0.505 0.491 0.426

LSTM 0.465 0.657 0.373 0.543 0.475 0.379 0.457 0.446

Table 5: Macro-F1 results for the best-performing classifiers, broken down by event.

7.3.2. Evaluation by Tweet Depth (RO 4)

The analysis of the best-performing classifiers, broken down by depth of tweets,

is shown in Table 6. Note that the depth of the tweet reflects, as shown in Figure

1, the number of steps from the source tweet to the current tweet. We show results

for all the depths from 0 to 4, as well as for the subsequent depths aggregated as

5+.

Again, we see that there is not a single classifier that performs best for all

depths. We see, however, that sequential classifiers (Linear CRF, Tree CRF and

LSTM) outperform non-sequential classifiers (SVM and MaxEnt) consistently.

However, the best sequential classifier varies. While LSTM is the best-performing

classifier overall when we look at macro-averaged F1 scores, as shown in Section

7.2, surprisingly it does not achieve the highest macro-averaged F1 scores at any

depth. It does, however, perform well for each depth compared to the rest of the

classifiers, generally being close to the best classifier in that case. Its consistently

good performance across different depths makes it the best overall classifier, de-

spite only using local features.

Tweets by depth

0 1 2 3 4 5+

Counts 297 2,602 553 313 195 595

Macro-F1

0 1 2 3 4 5+

SVM 0.272 0.368 0.298 0.314 0.331 0.274

MaxEnt 0.238 0.385 0.286 0.279 0.369 0.290

Linear CRF 0.286 0.394 0.306 0.282 0.271 0.266

Tree CRF 0.278 0.404 0.280 0.331 0.230 0.237

LSTM 0.271 0.381 0.298 0.274 0.307 0.286

Table 6: Macro-F1 results for the best-performing classifiers, broken down by tweet depth.
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7.3.3. Error Analysis (RO 5)

To analyse the errors that the different classifiers are making, we look at the

confusion matrices in Table 7. If we look at the correct guesses, highlighted in

bold in the diagonals, we see that the LSTM clearly performs best for three of

the categories, namely support, deny and query, and it is just slightly behind the

other classifiers for the majority class, comment. Besides LSTM’s overall superior

performance as we observed above, this also confirms that the LSTM is doing

better than the rest of the classifiers in dealing with the imbalance inherent in our

datasets. For instance, the Deny category proves especially challenging for being

less common than the rest (only 7.6% of instances in our datasets); the LSTM still

achieves the highest performance for this category, which, however, only achieves

0.212 in accuracy and may benefit from having more training instances.

We also notice that a large number of instances are misclassified as comments,

due to this being the prevailing category and hence having a much larger num-

ber of training instances. One could think of balancing the training instances to

reduce the prevalence of comments in the training set, however, this is not straight-

forward for sequential classifiers as one needs to then break sequences, losing not

only some instances of comments, but also connections between instances of other

categories that belong to those sequences. Other solutions, such as labelling more

data or using more sophisticated features to distinguish different categories, might

be needed to deal with this issue; given that the scope of this paper is to assess

whether and the extent to which sequential classifiers can be of help in stance

classification, further tackling this imbalance is left for future work.

7.4. Feature Analysis (RO 6)

To complete the analysis of our experiments, we now look at the different fea-

tures we used in our study and perform an analysis to understand how distinctive

the different features are for the four categories in the stance classification prob-

lem. We visualise the different distributions of features for the four categories in

beanplots [60]. We show the visualisations pertaining to 16 of the features under

study in Figure 4. This analysis leads us to some interesting observations towards

characterising the different types of stances:

• As one might expect, querying tweets are more likely to have question

marks.
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SVM

Support Deny Query Comment

Support 0.657 0.041 0.018 0.283

Deny 0.185 0.129 0.107 0.579

Query 0.083 0.081 0.343 0.494

Comment 0.150 0.075 0.053 0.723

MaxEnt

Support Deny Query Comment

Support 0.794 0.044 0.003 0.159

Deny 0.156 0.130 0.079 0.634

Query 0.088 0.066 0.366 0.480

Comment 0.152 0.074 0.048 0.726

Linear CRF

Support Deny Query Comment

Support 0.603 0.048 0.013 0.335

Deny 0.219 0.140 0.050 0.591

Query 0.071 0.095 0.357 0.476

Comment 0.139 0.072 0.062 0.726

Tree CRF

Support Deny Query Comment

Support 0.552 0.066 0.019 0.363

Deny 0.145 0.169 0.081 0.605

Query 0.077 0.081 0.401 0.441

Comment 0.128 0.074 0.068 0.730

LSTM

Support Deny Query Comment

Support 0.825 0.046 0.003 0.127

Deny 0.225 0.212 0.125 0.438

Query 0.090 0.087 0.432 0.390

Comment 0.144 0.076 0.057 0.723

Table 7: Confusion matrices for the best-performing classifiers.

• Interestingly, supporting tweets tend to have a higher similarity with respect

to the source tweet, indicating that the similarity based on word embeddings

can be a good feature to identify those tweets.

• Supporting tweets are more likely to come from the user who posted the

source tweet.

• Supporting tweets are more likely to include links, which is likely indicative

of tweets pointing to evidence that supports their position.

• Looking at the delay in time of different types of tweets (i.e., the time dif-
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ference feature), we see that supporting, denying and querying tweets are

more likely to be observed only in the early stages of a rumour, while later

tweets tend to be mostly comments. In fact, these suggests that discussion

around the veracity of a rumour occurs especially in the period just after it

is posted, whereas the conversation then evolves towards comments that do

not discuss the veracity of the rumour in question.

• Denying tweets are more likely to use negating words. However, negations

are also used in other kinds of tweets to a lesser extent, which also makes it

more complicated for the classifiers to identify denying tweets. In addition

to the low presence of denying tweets in the datasets, the use of negations

also in other kinds of responses makes it more challenging to classify them.

A way to overcome this may be to use more sophisticated approaches to

identify negations that are rebutting the rumour initiated in the source tweet,

while getting rid of the rest of the negations.

• When we look at the extent to which users persist in their participation in

a conversational thread (i.e., the persistence feature), we see that users tend

to participate more when they are posting supporting tweets, showing that

users especially insistent when they support a rumour. However, we observe

a difference that is not highly remarkable in this particular case.

The rest of the features do not show a clear tendency that helps visually dis-

tinguish characteristics of the different types of responses. While some features

like swear words or exclamation marks may seem indicative of how they orient to

somebody else’s earlier post, there is no clear difference in reality in our datasets.

The same is true for social features like retweets or favourites, where one may ex-

pect, for instance, that denying tweets may attract more retweets than comments,

as people may want to let others know about rebuttals; the distributions of retweets

and favourites are, however, very similar for the different categories.

One possible concern from this analysis is that there are very few features that

characterise commenting tweets. In fact, the only feature that we have identified as

being clearly distinct for comments is the time difference, given that they are more

likely to appear later in the conversations. This may well help classify those late

comments, however, early comments will be more difficult to be classified based

on that feature. Finding additional features to distinguish comments from the rest

of the tweets may be of help for improving the overall classification.
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Figure 4: Distributions of feature values across the four categories: Support, Deny, Query and

Comment.
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8. Conclusions and Future Work

While discourse and sequential structure of social media conversations have

been barely explored in previous work, our work has performed an analysis on the

use of different sequential classifiers for the rumour stance classification task. Our

work makes three core contributions to existing work on rumour stance classifi-

cation: (1) we focus on the stance of tweets towards rumours that emerge while

breaking news stories unfold; (2) we broaden the stance types considered in pre-

vious work to encompass all types of responses observed during breaking news,

performing a 4-way classification task; and (3) instead of dealing with tweets as

single units in isolation, we exploit the emergent structure of interactions between

users on Twitter. In this task, a classifier has to determine if each tweet is sup-

porting, denying, querying or commenting on a rumour’s truth value. We mine

the sequential structure of Twitter conversational threads in the form of users’

replies to one another, extending existing approaches that treat each tweet as a

separate unit. We have used four different sequential classifiers: (1) a Hawkes

Process classifier that exploits temporal sequences, which showed state-of-the-art

performance [18]; (2) a linear-chain CRF modelling tree-structured conversations

broken down into branches; (3) a tree CRF modelling them as a graph that in-

cludes the whole tree; and (4) an LSTM classifier that also models the conver-

sational threads as branches. These classifiers have been compared with a range

of baseline classifiers, including the non-sequential equivalent Maximum Entropy

classifier, on eight Twitter datasets associated with breaking news.

While previous stance detection work had mostly limited classifiers to look-

ing at tweets as single units, we have shown that exploiting the discursive char-

acteristics of interactions on Twitter, by considering probabilities of transitions

within tree-structured conversational threads, can lead to substantial improve-

ments. Among the sequential classifiers, our results show that the LSTM clas-

sifier using a more limited set of features performs the best, thanks to its ability to

natively handle context, as well as only relying on branches instead of the whole

tree, which reduces the amount of data and complexity that needs to be processed

in each sequence. The LSTM has been shown to perform consistently well across

datasets, as well as across different types of stances. Besides the comparison of

classifiers, our analysis also looks at the distributions of the different features un-

der study as well as how well they characterise the different types of stances. This

enables us both to find out which features are the most useful, as well as to suggest

improvements needed in future work for improving stance classifiers.

To the best of our knowledge, this is the first attempt at aggregating the conver-
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sational structure of Twitter threads to produce classifications at the tweet level.

Besides the utility of mining sequences from conversational threads for stance

classification, we believe that our results will, in turn, encourage the study of se-

quential classifiers applied to other natural language processing and data mining

tasks where the output for each tweet can benefit from the structure of the entire

conversation, e.g., sentiment analysis [61, 62, 63, 64, 65, 66], tweet geolocation

[67, 68], language identification [69, 70], event detection [71] and analysis of

public perceptions on news [72, 73] and other issues [74, 75].

Our plans for future work include further developing the set of features that

characterise the most challenging and least-frequent stances, i.e., denying tweets

and querying tweets. These need to be investigated as part of a more detailed and

interdisciplinary, thematic analysis of threads [6, 76, 77]. We also plan to develop

an LSTM classifier that mines the entire conversation as a single tree. Our ap-

proach assumes that rumours have been already identified or input by a human,

hence a final and ambitious aim for future work is the integration with our rumour

detection system [20], whose output would be fed to the stance classification sys-

tem. The output of our stance classification will also be integrated with a veracity

classification system, where the aggregation of stances observed around a rumour

will be exploited to determine the likely veracity of the rumour.
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Appendix A. Features

Appendix A.1. Local Features

Local features are extracted from each of the tweets in isolation, and therefore

it is not necessary to look at other features in a thread to generate them. We use

four types of features to represent the tweets locally.

Local feature type #1: Lexicon.

• Word Embeddings: we use Word2Vec [78] to represent the textual content

of each tweet. First, we trained a separate Word2Vec model for each of the

eight folds, each having the seven events in the training set as input data, so

that the event (and the vocabulary) in the test set is unknown. We use large

datasets associated with the seven events in the training set, including all

the tweets we collected for those events. Finally, we represent each tweet as

a vector with 300 dimensions averaging vector representations of the words

in the tweet using Word2Vec.

• Part of speech (POS) tags: we parse the tweets to extract the part-of-speech

(POS) tags using Twitie [79]. Once the tweets are parsed, we represent each

tweet with a vector that counts the number of occurrences of each type of

POS tag. The final vector therefore has as many features as different types

of POS tags we observe in the dataset.

• Use of negation: this is a feature determining the number of negation words

found in a tweet. The existence of negation words in a tweet is determined

by looking at the presence of the following words: not, no, nobody, noth-

ing, none, never, neither, nor, nowhere, hardly, scarcely, barely, don’t, isn’t,

wasn’t, shouldn’t, wouldn’t, couldn’t, doesn’t.

• Use of swear words: this is a feature determining the number of ‘bad’ words

present in a tweet. We use a list of 458 bad words11.

Local feature type #2: Content formatting.

• Tweet length: the length of the tweet in number of characters.

11http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/
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• Word count: the number of words in the tweet, counted as the number of

space-separated tokens.

Local feature type #3: Punctuation.

• Use of question mark: binary feature indicating the presence or not of at

least one question mark in the tweet.

• Use of exclamation mark: binary feature indicating the presence or not of

at least one exclamation mark in the tweet.

Local feature type #4: Tweet formatting.

• Attachment of URL: binary feature, capturing the presence or not of at least

one URL in the tweet.

Appendix A.2. Contextual Features

Contextual feature type #1: Relational features.

• Word2Vec similarity wrt source tweet: we compute the cosine similarity

between the word vector representation of the current tweet and the word

vector representation of the source tweet. This feature intends to capture

the semantic relationship between the current tweet and the source tweet

and therefore help inferring the type of response.

• Word2Vec similarity wrt preceding tweet: likewise, we compute the sim-

ilarity between the current tweet and the preceding tweet, the one that is

directly responding to.

• Word2Vec similarity wrt thread: we compute another similarity score be-

tween the current tweet and the rest of the tweets in the thread excluding

the tweets from the same author as that in the current tweet.

Contextual feature type #2: Structural features.

• Is leaf: binary feature indicating if the current tweet is a leaf, i.e. the last

tweet in a branch of the tree, with no more replies following.
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• Is source tweet: binary feature determining if the tweet is a source tweet

or is instead replying to someone else. Note that this feature can also be

extracted from the tweet itself, checking if the tweet content begins with a

Twitter user handle or not.

• Is source user: binary feature indicating if the current tweet is posted by the

same author as that in the source tweet.

Contextual feature type #3: Social features.

• Has favourites: feature indicating the number of times a tweet has been

favourited.

• Has retweets: feature indicating the number of times a tweet has been

retweeted.

• Persistence: this feature is the count of the total number of tweets posted in

the thread by the author in the current tweet. High numbers of tweets in a

thread indicate that the author participates more.

• Time difference: this is the time elapsed, in seconds, from when the source

tweet was posted to the time the current tweet was posted.

Appendix A.3. Hawkes Features

• Bag of words: a vector where each token in the dataset represents a feature,

where each feature is assigned a number pertaining its count of occurrences

in the tweet.

• Timestamp: The UNIX time in which the tweet was posted.
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