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Estimation and control of wind turbine tower

vibrations based on individual blade-pitch strategies

Wai Hou Lio1, Bryn Ll. Jones2 and J. Anthony Rossiter2.

Abstract—In this paper, we present a method to estimate the
tower fore-aft velocity based upon measurements from blade
load sensors. In addition, a tower dampening control strategy
is proposed, based upon an individual blade pitch control
architecture that employs this estimate. The observer design
presented in this paper exploits the Coleman transformations that
convert a time-varying turbine model into one that is linear and
time-invariant, greatly simplifying the observability analysis and
subsequent observer design. The proposed individual pitch-based
tower controller is decoupled from the rotor speed regulation loop
and hence does not interfere with the nominal turbine power reg-
ulation. Closed-loop results, obtained from high fidelity turbine
simulations, show close agreement between the tower estimates
and the actual tower velocity. Furthermore, the individual-pitch-
based tower controller achieves similar performance compared
to the collective-pitch-based approach but with negligible impact
upon the nominal turbine power output.

Index Terms—State estimation of dynamical systems, Kalman
filter, active damping control, wind energy.

I. INTRODUCTION

Large wind turbines experience uneven and intermittent

aerodynamic loads from the wind and such loads inevitably

contribute to fatigue damage upon the turbine structures. In

order to manage the competing demands of power capture and

load mitigation, most modern turbines employ a combination

of control systems based upon blade pitch actuation. Primary

amongst these is the use of collective pitch control (CPC) [1],

whereby the pitch angle of each blade is adjusted by an equal

amount in order to regulate the rotor speed in above rated

conditions. In addition, individual pitch control (IPC) and

tower damping control can be used to specifically attenuate

unsteady loads that play no part in power generation. The IPC

provides additional pitch demand signals to each blade in

order to balance the loads across the rotor plane, typically in

response to measurements of the flap-wise blade root bending

moments [2]–[4], whilst tower damping control provides a

further adjustment to the collective blade pitch angle in order

to reduce excessive tower vibrations, in response to tower fore-

aft velocity measurements [5]–[8]. Typically, and for reasons

of simplicity of implementation favoured by the industry, IPCs

and tower damping controllers are designed separately from

the CPC, and carefully in order to avoid cross-excitation [9]–

[12].
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At present, most tower damping control strategies assume

a direct measurement of tower motion, typically from a

nacelle-mounted accelerometer (e.g. [4], [13]). However, the

turbine blades and tower are dynamically coupled and from

an estimator design perspective, such interactions may provide

an opportunity for the tower motion to be estimated based

upon the blade load measurements that are already available

to the IPC. If so, this indicates redundancy in the information

provided by the tower motion sensor that can either be

exploited in terms of a reduction in sensor count, or for fault

tolerant control purposes [14]–[16]. Moreover, typical tower

damping control strategies provide an additional blade pitch

signal collectively to all the blades in response to the tower

velocity [13], that is inevitably coupled with the rotor speed

regulation loop, thus, affecting the power output of the turbine.

On the other hand, well-designed IPCs are largely decoupled

from the CPC, thus there are potential benefits to designing

an IPC-based tower damping controller.

The contributions of this paper are thus twofold. Firstly,

a tower vibration observer design is proposed that estimates

the tower fore-aft velocity based solely upon standard blade-

load measurements. Secondly, an individual pitch-based tower

damping control strategy is presented that provides the blade

pitch command to each blade independently and with little

impact on the nominal turbine power regulation.

The remainder of this paper is as follows. Section II presents

the model of the blade and tower dynamics. In Section III,

a linear, time-invariant (LTI) model is derived that captures

the dynamics of the Coleman transform and establishes the

coupling between the blade load sensors and tower motion that

is key in establishing an observable system. The design of a

subsequent tower-top motion estimator and individual pitch-

based tower damping controller is described in Section IV.

In Section V, the performance of the proposed estimator and

controller are demonstrated in simulation upon a high-fidelity

and nonlinear wind turbine model.

Notation

Let R, C and Z denote the real and complex fields and set

of integers, respectively, j :=
√
−1 and let s ∈ C denote a

complex variable. The space R denotes the space of proper

real-rational transfer function matrices and ẋ represents the

time derivative of x. Let vT ∈ R
1×nv denote the transpose

of a vector v ∈ R
nv and V T ∈ R

ny×nz is the transpose of a

matrix V ∈ R
nz×ny . The identity matrix is denoted as I . Let

x̃ denote the deviation of x from its equilibrium x∗.
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Fig. 1: The perturbation on the free-stream stream-wise wind

speed ṽ∞i,l
on the shaded blade element at rl becomes the

apparent wind speed ṽi,l after the effects of the tower fore-aft

velocity ˙̃xfa and rotational velocity ˙̃ϕfa.

II. MODELLING

Typically, the dynamics of the blade flap-wise root-bending
moment and the tower-top fore-aft motion can be modelled as
second-order systems (e.g. [9], [3]), as follows:

¨̃
Mi(t) + 2ζbωb

˙̃
Mi(t) + ω

2
bM̃i(t) = ω

2
bf̃M (θ̃i, ṽi), (1a)

¨̃xfa(t) + 2ζtωt
˙̃xfa(t) + ω

2
t x̃fa(t) = ω

2
t f̃x(θ̃col, ṽcol), (1b)

where M̃i(t), x̃fa(t) denote the deviations of the flap-wise

blade root bending moment of blade i ∈ {1, 2, 3} and tower

fore-aft displacement from an operating point, respectively.

The damping ratio of the blade and tower are ζb, ζt ∈ R

and ωb, ωt ∈ R are the respective natural frequencies of the

blade and tower. The nonlinear aerodynamic forcing functions

on the blade and tower are typically linearised around the

operating wind conditions to obtain the perturbation forces,

f̃M (θ̃i, ṽi) : R × R → R and f̃x(θ̃col, ṽcol) : R × R → R,

defined as follows:

f̃M (θ̃i, ṽi) =
dfM

dθ

∣

∣

∣

∣

θ∗,v∗

θ̃i(t) +
dfM

dv

∣

∣

∣

∣

θ∗,v∗

ṽi,(t), (1c)

f̃x(θ̃col, ṽcol) =
dfx

dθ

∣

∣

∣

∣

θ∗,v∗

θ̃col(t) +
dfx

dv

∣

∣

∣

∣

θ∗,v∗

ṽcol(t), (1d)

where dfM
dθ

, dfx
dθ

∈ R and dfM
dv

, dfx
dv

∈ R are the variations of

the forcing with respect to the pitch angle and apparent wind

speed. The deviations of the blade pitch angle and apparent

wind speed from their steady-states θ∗, v∗ ∈ R are θ̃i(t), ṽi(t),
whilst θ̃col(t) :=

∑

i θ̃i(t), ṽcol(t) =
∑

i ṽi(t) denote the

perturbations in collective pitch angle and the sum of the wind

speed effect on the rotor.

The wind turbine aerodynamic interactions of relevance

to this study are depicted in Figure 1. Owing to variable

blade geometry, the wind-induced forces are not uniformly

distributed on the blades and to model such forces, blade

element/momentum theory is adopted [13], where the blade

is discretised into small elements. Referring to Figure 1,

assuming the blade is rigid, the apparent stream-wise wind

speed perturbation ṽi,l(t) experienced by blade i on span-

wise element l ∈ {1, . . . , L} ⊂ Z is dependent upon the

free-stream wind speed perturbation ṽ∞i,l
(t), deviations of the

fore-aft tower-top velocity ˙̃xfa(t) and the tower-top rotational

velocity ˙̃ϕfa(t) from their equilibria, as follows:

ṽi,l(t) = ṽ∞i,l
(t)− ˙̃xfa(t) + ˙̃ϕfa(t)rl sin

(

φi(t)
)

, (2a)

where rl ∈ R is the radial distance of the l-th blade

element. The azimuthal angle of each blade is defined

as [φ1(t), φ2(t), φ3(t)] := [φ(t), φ(t) + 2π
3 , φ(t) + 4π

3 ],
where φ(t) is the angle of the first blade from the horizontal

yaw axis with respect to the clockwise direction. This work

implicitly assumes the tower is a prismatic beam so that

the ratio between rotation and displacement is 2
3h , where

h ∈ R is the height of the tower [3]. Thus, the fore-aft

rotational velocity of the tower-top can be approximated as
˙̃ϕfa(t) ≈ 2

3h
˙̃xfa(t). Since the focus of this work is on the

blade disturbance induced by the wind, the effect of the wind

perturbations upon the blade, ṽi(t) in (1), can be approximated

by averaging the apparent wind speed perturbations ṽi,l(t)
along the blade, as follows:

ṽi(t) ≈
1

L

∑

l

ṽi,l(t),

= ṽ∞,i(t)− ˙̃xfa(t) + kϕ ˙̃xfa(t) sin
(

φi(t)
)

. (2b)

Inspection of (1) and (2) indicates that coupling exists

between the dynamics of the blade flap-wise root-bending

moment and the tower, which is the key property that un-

derpins the subsequent work in this paper. By substituting (2)

into (1), the state-space representation of (1) can be formulated

as follows:

ẋ(t) = A(t)x(t) +Bu(t) +Bdd(t),

y(t) = Cx(t), (3)

where u(t) := [θ̃1(t), θ̃2(t), θ̃3(t)]
T ∈ R

nu and

y(t) := [M̃1(t), M̃2(t), M̃3(t)]
T ∈ R

ny are the control

inputs and measured outputs, respectively, whilst

d(t) := [ṽ∞,1(t), ṽ∞,2(t), ṽ∞,3(t)]
T ∈ R

nd are the

wind disturbance inputs. The state vector is x(t) :=

[ ˙̃
M1(t),

˙̃
M2(t),

˙̃
M3(t), M̃1(t), M̃2(t), M̃3(t), ˙̃xfa(t), x̃fa(t)]

T ∈
R

nx . Notice that the system matrix A ∈ R
nx×nx is time-

dependent owing to the time-varying nature of the azimuth

angle.

III. TRANSFORMATION TO AN LTI SYSTEM AND

OBSERVABILITY ANALYSIS

For a linear time-varying (LTV) system (3), there exist

techniques for observability analysis and estimator design

(e.g. [17]). However, the problem of establishing the ob-

servability proof and synthesising an estimator for the LTV

system (3) can be greatly simplified by reformulating (3) as

an LTI system. As will now be shown, the key to achieving

this lies in the use of a coordinate transformation based upon

the Coleman Transform.
The Coleman Transform projects the blade loads in the

rotating frame of reference onto the fixed tilt and yaw turbine
axes. The typical Coleman transform Tcm

(

φ(t)
)

∈ R
3×3 is
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defined as follows (e.g. [10] and references therein):

[M̃col(t), M̃tilt(t), M̃yaw(t)]
T = Tcm

(

φ(t)
)

[M̃1(t), M̃2(t), M̃3(t)]
T
,

(4a)

Tcm

(

φ(t)
)

:=
2

3





1
2

1
2

1
2

sin (φ(t)) sin
(

φ(t) + 2π
3

)

sin
(

φ(t) + 4π
3

)

cos (φ(t)) cos
(

φ(t) + 2π
3

)

cos
(

φ(t) + 4π
3

)



 ,

(4b)

where M̃col(t), M̃tilt(t), M̃yaw(t) denote the perturbation on
the collective, tilt and yaw referred flap-wise blade root-
bending moments, respectively. The inverse Coleman trans-
form T inv

cm

(

φ(t)
)

∈ R
3×3 is as follows:

[θ̃1(t), θ̃2(t), θ̃3(t)]
T = T

inv
cm

(

φ(t)
)

[θ̃col(t), θ̃tilt(t), θ̃yaw(t)]
T
,

(4c)

T
inv
cm

(

φ(t)
)

:=





1 sin
(

φ(t)
)

cos
(

φ(t)
)

1 sin
(

φ(t) + 2π
3

)

cos
(

φ(t) + 2π
3

)

1 sin
(

φ(t) + 4π
3

)

cos
(

φ(t) + 4π
3

)



 , (4d)

where θ̃col(t), θ̃tilt(t), θ̃yaw(t) represent the perturbations on

the collective pitch and the referred pitch signals upon the tilt

and yaw axis, respectively. The same also applies to the wind

speed ṽi.

Clearly, the Coleman Transforms are time-dependent, and

hence their dynamics must be factored into any system model

that employs them. As shown in [10] from the perspective

of IPC design, models that arise from the misconceived

treatment of the Coleman Transforms as static projections give

rise to erroneous dynamics, leading to poor IPC performance.

Thus, this work presents the LTI reformulation of (3) with the

correct treatment of the Coleman Transforms in Theorem 3.1.

Theorem 3.1: Assuming a fixed rotor speed and Coleman

transformations (4), the linear time-varying system (3) can be

transformed into the following LTI form:

ξ̇(t) = Aξξ(t) +Bξucm(t) +Bξddcm(t),

ycm(t) = Cξξ(t), (5)

where ycm(t) = [M̃col(t), M̃tilt(t), M̃yaw(t)]
T ∈ R

ny ,

ucm(t) = [θ̃col(t), θ̃tilt(t), θ̃yaw(t)]
T ∈ R

nu , dcm(t) =
[ṽ∞,col(t), ṽ∞,tilt(t), ṽ∞,yaw(t)]

T ∈ R
nd are the referred

measurements of the flap-wise blade moments, pitch angle

signals and wind speeds upon the fixed reference frame, whilst

ξ(t) ∈ R
nξ is the projection of the states associated with the

blade dynamics upon a non-rotating reference frame (19) and

the states of the tower dynamics (20).

Proof: See Appendix A.

Corollary 1: Assuming the model parameters obtained

from linearising the baseline turbine [18], the system (5) is

observable.

Proof: Trivial inspection of the rank of the system’s

observability matrix.

Hence, the tower motion states are observable from measure-

ments of the blade loads alone. This result lays the foundation

for the observer and controller designs of the next section.

Wind
Turbine

Coleman
Transform
Tcm

(

φ(t)
)

Inverse
Coleman
Transform
T inv
cm

(

φ(t)
)

IPC
Kipc(s)

Observer
Γo(s)

Tower
Controller
Kt(s)

M̃col(t)

M̃tilt(t)

M̃tilt(t)

M̃yaw(t)

M̃yaw(t)

θ̃tilt(t)

+ θ̃tilt(t)

θ̃yaw(t)

θ̃yaw(t)

θ̃col(t)

Gcm(s)

M̃1(t)

M̃2(t)

M̃3(t)

θ̃1(t)

θ̃2(t)

θ̃3(t)

M̃col(t)

M̃tilt(t)

M̃yaw(t)

θ̃col(t)θ̃tilt(t)θ̃yaw(t)

ˆ̇xfa(t)θ̃tilt(t)

+

Proposed tower velocity estimation and control system

Fig. 2: Schematic of the proposed estimator and controller.

IV. DESIGN OF THE ESTIMATOR AND CONTROLLER

Figure 2 depicts the architecture of the proposed estima-

tion and control system, where the tower motion estima-

tor produces an estimate ˆ̇xfa(t) of the fore-aft velocity of

the tower-top based on Coleman-transformed blade moment

measurements M̃col(t), M̃tilt(t), M̃yaw(t) and pitch signals

θ̃col(t), θ̃tilt(t), θ̃yaw(t). The individual pitch-based tower con-

troller subsequently employs this estimate to provide addi-

tional referred blade pitch signals upon the tilt axis θ̃tilt(t)
for attenuating the tower motion. Note that this architecture is

deliberately chosen so as to augment, rather than replace the

existing turbine controllers.

A. Estimator design

The system (5) is driven by the wind-induced disturbance,

which consists of slow-moving mean wind speeds and fast-

changing turbulence. We consider these wind speed distur-

bances as coloured noise. Given the known frequency spectra

of these wind speed disturbances, a linear wind model that

is driven by Gaussian white noise w(t) ∈ R
nd is defined as

follows:

ξ̇w(t) = Awξw(t) +Bww(t), dcm(t) = Cwξw(t), (6)

where the system matrices {Aw, Bw, Cw} are determined by

fitting the spectra of the model output to the known spectra of

the wind speed disturbances. Combining the LTI system (5)

and the wind disturbance model (6), we yield the proposed

tower observer as follows:

ẋa(t) = Aaxa(t) +Baucm(t) + Le(t),

ycm(t) = Caxa(t), (7)

where xa(t) = [ξ(t), ξw(t)]
T ∈ R

nxa denotes the state of

the augmented system, whilst L ∈ R
nxa×ny is a steady-state

Kalman filter gain and e(t) ∈ R
ny is the prediction error

between the plant and model output.
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B. Estimation-based controller design

Typically, a tower controller provides an additional collec-
tive blade pitch signal on top of the CPC loop in response
to the tower fore-aft velocity, in order to dampen the fore-
aft structural mode. The excessive vibrations of the tower
are mainly concentrated around the resonant frequency of the
tower (0.32Hz in this work) [13]. However, the collective-
pitch-based approach might affect the rotor speed regulation
loop performance. Thus, this work proposes a novel tower
damping strategy using the existing Coleman transform-based
IPC architecture to decouple the CPC and IPC loops. The
proposed tower controller uses the referred pitch signal upon
the tilt axis in response to the tower-top velocity estimate,
as shown in Figure 2. The key challenge is to separate
the existing IPC loop and the tower damping control loop,
which is particularly important since the tower estimate is
also dependent upon the blade load measurements. To see
this, firstly consider the LTI system (5) in its transfer function
form:

ycm(s) = Gcm(s)ucm(s). (8)

Secondly, consider the existing Coleman transform-based IPC
controller Kipc ∈ R2×2, adopted from [11], [19]:

[

θ̃tilt(s)

θ̃yaw(s)

]

=

[

K
(1,1)
ipc (s) K

(1,2)
ipc (s)

K
(2,1)
ipc (s) K

(2,2)
ipc (s)

]

[

M̃tilt(s)

M̃yaw(s)

]

. (9)

Referring to Figure 2, together with the proposed tower
controller Kt ∈ R and the observer Γob ∈ R1×(nu+ny), the
pitch signal θtilt on the tilt axis becomes:

θ̃tilt(s) = K
(1,1)
ipc (s)M̃tilt(s) +K

(1,2)
ipc (s)M̃yaw(s) +Kt(s)X̂fa(s),

(10)

where the estimate of the tower-top fore-aft velocity X̂fa ∈ R
can be expressed as follows:

X̂fa(s) = Γob(s)[ucm(s), ycm(s)]T , (11a)

Γob(s) := [Γ
(1,1)
ob (s),Γ

(1,2)
ob (s),Γ

(1,3)
ob (s), ...

... Γ
(1,4)
ob (s),Γ

(1,5)
ob (s),Γ

(1,6)
ob (s)]. (11b)

By substituting (11) into (10), the existing IPC Kipc in (9) is
inevitably coupled with the tower controller Kt and becomes
Km

ipc ∈ R2×2, where:

K
m
ipc(s) =

[

K
m(1,1)
ipc (s) K

m(1,2)
ipc (s)

K
(2,1)
ipc (s) K

(2,2)
ipc (s)

]

, (12a)

K
m(1,1)
ipc (s) =

(

I +Kt(s)Γ
(1,2)
ob (s)

)

K
(1,1)
ipc (s) + Γ

(1,5)
ob (s), (12b)

K
m(1,2)
ipc (s) =

(

I +Kt(s)Γ
(1,3)
ob (s)

)

K
(1,2)
ipc (s) + Γ

(1,6)
ob (s), (12c)

Thus the observer introduces undesirable, but inevitable cou-
pling from the tower controller to the existing IPC. Nonethe-
less, the Coleman transform-based IPC typically targets the
static and 3p (thrice per revolution) non-rotating loads caused
by the blade (e.g. 0 and 0.6 Hz) [20], whilst tower loads occur
mainly at the tower resonant frequency (0.32Hz). Therefore,
with a view towards avoiding the undesired couplings, the
tower controller is designed as an inverse notch filter with
gain concentrated at the tower resonant frequency, away from
multiples of the blade rotational frequency:

Kt(s) := Kp

(

s2 + 2D1ωts+ ω2
t

s2 + 2D2ωts+ ω2
t

)

, (13)

where Kp = 0.03, D1 = 10 and D2 = 0.05.

To examine the coupling between the existing IPC and the

proposed tower controller, Figure 3 shows the closed-loop
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Fig. 3: Magnitude Bode plots of the closed-loop sensitivity

functions of (I + GcmKipc(s))
−1 (Solid blue line) and (I +

GcmK
m
ipc(s))

−1 (Dashed red line).

sensitivity functions of the original IPC controller S(s) :=
(I + GcmKipc(s))

−1 and the coupled controller structure

Sm(s) := (I + GcmK
m
ipc(s))

−1. It is clear from the figure

that the disturbance gain of the coupled control structure

remains similar to the original IPC, which is also still largely

unaffected across all frequencies. In addition, the coupled

control structure and the existing controller possesses the same

robust stability margin (0.39), suggesting the proposed design

does not affect the robustness of the original IPC.

V. NUMERICAL RESULTS AND DISCUSSION

This section presents simulation results to demonstrate the

performance of the proposed estimator and estimation-based

controller for the tower fore-aft motion. The turbine model

employed in this work is the NREL 5MW turbine [18] and

the simulations are conducted on FAST [21]. This turbine

model is of much greater complexity than the linear model (7).

All degrees-of-freedom were enabled, including flap-wise and

edge-wise blade modes, in addition to the tower and shaft

dynamics.

A. Estimator Performance

The proposed observer (7) was compared with a typical

double-integrator Kalman-filter design based on measurements

from the tower fore-aft accelerometers (e.g. [13]), subse-

quently referred to as the baseline design. All measurements

were perturbed with additive white noise and simulations were

conducted under three time-varying wind field test cases: (i)

above-rated; (ii) below-rated and (iii) full operating wind

conditions.

Simulations in Figure 4 were conducted under a time-

varying wind field with a mean wind speed of 18 ms−1

and a turbulence intensity of 5%, with the hub-height wind

speed shown in Figure 4a. It can be seen that in Figure 4b

good agreement was achieved between the proposed and

baseline design and actual tower velocity. Nonetheless, small

discrepancies for both methods are revealed by evaluating the

estimate error magnitude, auto-correlations and spectra, shown

in Figures 4c, 4d and 4e, respectively. A residual test [22] was

adopted, that suggests the estimate errors would be white noise
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Fig. 4: Test case (i) with the above-rated wind conditions.

if perfect models were used by the observer. Figure 4d shows

the error correlations, with those of the proposed method

being significantly less than the baseline. The improvements

in estimation error are obtained in the low frequency range,

as shown in Figure 4e.

Similar simulations were conducted for the below-rated

wind condition in Figure 5, with mean wind speed of 8 ms−1

and turbulence intensity of 5% as shown in Figure 5a. Note

that in this test case, the model parameters were linearised

around 8 ms−1. The performance and residual tests are shown

in Figures 5b, 5c, 5d, and 5e. Figure 5b shows that the

proposed and baseline methods both achieved good state

estimation. However, compared to the test case (i), the residual

test reveals that the estimate errors tend to be larger in the
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Fig. 5: Test case (ii) with the below-rated wind conditions.

below-rated wind conditions, as shown in Figure 5c and 5e.

This is caused by modelling uncertainties since the rotor speed

varies significantly in low wind speed conditions. Nonetheless,

in Figure 5d, the error auto-correlation for the proposed design

is relatively lower than the baseline.
A test case with full operating wind conditions was in-

cluded, as shown in Figure 6, in order to evaluate the perfor-
mance of both designs during changing operating conditions.
A wind field was increased incrementally by 2ms−1 every 20
seconds, as shown in Figure 6a. The proposed design used
both observers in the test case (i) and (ii) for the below-
rated and above-rated wind conditions. The following heuristic
switching policy was employed to overcome the transition
between wind conditions:

ẋfa(t) =
∑

κ

ρκ(t)ẋfa,κ(t),
∑

κ

ρκ(t) = 1, (14)
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Fig. 6: Test case (iii) with wind steps in 2ms−1 increments

across the full operating wind conditions.

where κ ∈ {1, 2} is the index of observers designed in the

below-rated and above-rated wind conditions, whilst ρκ ∈ R

denotes the weighting on the tower estimate of the κ-th esti-

mator. Note that there is no switching policy for the baseline

double-integrator model. The performance and residual test of

both designs are demonstrated in Figures 6b, 6c, 6d, and 6e.

In Figure 6b, good agreement is shown between the true tower

signal and the estimates from both the proposed and baseline

observers. During the transition of the operating conditions,

the switching of turbine controllers caused an oscillation on

the tower fore-aft velocity at 110 s, resulting in relatively large

errors for both designs. As shown in Figure 6c, the error

magnitude from the proposed observer is relatively smaller

than that from the baseline. This is because the blade load

TABLE I: Performance of the proposed controllers

Nominal IP-based design CP-based design

σ(ẋfa) 1.00 0.55 0.58

σ(θ̇) 1.00 1.05 1.06
σ(ω) 1.00 1.00 1.02
Egen 1.00 1.00 0.98

The performances of the individual-pitch-based (IP-based) and
collective-pitch-based (CP-based) controllers, normalised with respect to that
of the nominal cases without any tower controller. The notation σ denotes

the variance and Egen is the energy generated.

sensors employed by the proposed method are better able to

discern changes in wind and tower loadings on the turbine

structure compared to a tower accelerometer. Thus, faster

convergence with lower error is achieved, particularly in the

low frequency range, as shown in Figure 6e. In addition, in

Figure 6d, it is clearly seen that the error auto-correlation of

the proposed method was closer to zero, suggesting its residual

was almost white noise. That indicates the proposed design

together with the switching policy (14) is a more accurate

model compared to the baseline.

B. Controller Performance

To showcase the use of the tower estimate, a novel

individual-pitch-based tower damping control strategy is pro-

posed that uses θ̃tilt as an input. The proposed strategy is

compared with (i) a collective pitch-based tower controller

whose input is the collective pitch θ̃col (e.g. [13]) and (ii)

a nominal case with no tower controller. Simulations were

conducted under a wind case, shown in Figure 7a, with a

mean wind speed of 18 ms−1 and turbulence intensity of 5%.

Figure 7b reveals that the tower vibrations were dampened

effectively by both the proposed method and the collective

pitch-based controller, with a marginal associated increase in

the blade pitch activity, as shown in Figure 7c.

The key benefit of the individual-pitch-based design is

that it is decoupled from the existing CPC loop, owing to

the inherent properties of the Coleman transforms. This can

be demonstrated by evaluating the rotor speed as shown in

Figure 7d. The collective pitch-based design was coupled

with the CPC due to the shared use of the collective pitch

demand signals, affecting the nominal power output regulation

adversely, whilst a small discrepancy can be seen between

the individual-pitch-based design and nominal case, which

is mainly caused by the changes in wind speed induced

by the tower motion. Given that the individual-pitch-based

design uses the IPC architecture, its influences on the tilt

and yaw loads upon the fixed reference frame were examined

in Figure 7e and 7f. Compared to the collective pitch-based

design, the individual-pitch-controller imposed slightly larger

tilt and yaw loads at the tower resonant frequency, upon the

non-rotating turbine structure. However, relative to the peak

loads, these were insignificant. Numerical results of these

comparisons are summarised in Table I.

VI. CONCLUSION

The contributions of this paper lay in the extraction of useful

additional information from existing blade load sensors and
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Fig. 7: Performance of the nominal, individual-pitch-based and

collective-pitch-based controllers.

in the subsequent design of a novel individual pitch-based

tower damping control strategy. The coupling between states

in both rotating and fixed frames of reference led to an initial

system model that was linear but time-varying, and so the

Coleman Transforms were employed to manipulate this into a

simpler LTI model. The key to this lay in the inclusion of the

frequency splitting effects of the transforms. Having verified

observability, a state estimator was synthesised that produced

good estimates of the tower fore-aft motion, based solely upon

the blade-load measurements. This was subsequently used

in a novel individual pitch-based tower damping controller.

This additional controller was augmented into a conventional

controller architecture and it was shown to not interfere with

the nominal power regulation loop. Closed-loop simulations

upon a high-fidelity and non-linear turbine model showed good

state estimates were achieved by the observer for a range

of load cases covering the below-rated, above-rated and full

operating wind conditions. Furthermore, the individual-pitch-

based tower controller achieved similar performance compared

to the collective-pitch-based approach and with no degradation

on the turbine power output.

APPENDIX A

PROOF OF THEOREM 3.1

Consider the azimuth angle φ(t) = ω0t under one operating
wind condition, the proof uses the following properties:

L[u(t) sinφ(t)] = L

[

u(t)
j(e−jω0t − ejω0t)

2

]

,

=
j

2

(

u(s+ jω0)− u(s− jω0)
)

, (15a)

L [u(t) cosφ(t)] = L

[

u(t)
ejω0t + e−jω0t

2

]

,

=
1

2

(

u(s− jω0) + u(s+ jω0)
)

, (15b)

where u(t) is an arbitrary input signal and u(s) is
its Laplace transform. Substituting identities (15) into Coleman
transformations (4) yields:





M̃col(s)

M̃tilt(s)

M̃yaw(s)



 =
2

3
C−





M̃1(s− jω0)

M̃2(s− jω0)

M̃3(s− jω0)



+
2

3
C+





M̃1(s+ jω0)

M̃2(s+ jω0)

M̃3(s+ jω0)





+
1

3
C0





M̃1(s)

M̃2(s)

M̃3(s)



 , (16a)





θ̃1(s)

θ̃2(s)

θ̃3(s)



 = C
T
−





θ̃col(s− jω0)

θ̃tilt(s− jω0)

θ̃yaw(s− jω0)



+ C
T
+





θ̃col(s+ jω0)

θ̃tilt(s+ jω0)

θ̃yaw(s+ jω0)





+ C
T
0





θ̃col(s)

θ̃tilt(s)

θ̃yaw(s)



 , (16b)
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where C−, C+ and C0 are defined as:

C− :=
1

2





0 0 0
0 1 −j
0 j 1









0 0 0
sin(0) sin( 2π

3
) sin( 4π

3
)

cos(0) cos( 2π
3
) cos( 4π

3
)



 , (16c)

C+ : =
1

2





0 0 0
0 1 j
0 −j 1









0 0 0
sin(0) sin( 2π

3
) sin( 4π

3
)

cos(0) cos( 2π
3
) cos( 4π

3
)



 , (16d)

C0 : =





1 1 1
0 0 0
0 0 0



 . (16e)

Substituting (2) into (1a), the Laplace transform of the blade
moment model (1a) becomes:

M̃i(s) = GMθ(s)θ̃i(s) +GMv(s)ṽ∞i
(s) +GMx(s)X̂fa(s)

+GMϕ(s)X̂fa(s+ jω0) +GMϕ(s)X̂fa(s− jω0), (17)

where X̂fa ∈ R denote the Laplace transform of ˆ̇xfa. Substitut-

ing (16) into (17) yields the following Coleman-transformed

model in a fixed reference frame:





M̃col(s)

M̃tilt(s)

M̃yaw(s)



 =





GMθ(s) 0 0
0 G+

Mθ(s) G−

Mθ(s)
0 −G−

Mθ(s) G+
Mθ(s)









θ̃col(s)

θ̃tilt(s)

θ̃yaw(s)





+





GMv(s) 0 0
0 G+

Mv(s) G−

Mv(s)
0 −G−

Mv(s) G+
Mv(s)









ṽ∞,col(s)
ṽ∞,tilt(s)
ṽ∞,yaw(s)





+





GMx(s)
G+

Mϕ(s)

−G−

Mϕ(s)



 X̂fa(s), (18a)

where the subscript G+, G− ∈ R are defined as:

G
+(s) :=

G(s+ jω0) +G(s− jω0)

2
, (18b)

G
−(s) := j

G(s+ jω0)−G(s− jω0)

2
. (18c)

The state-space representation of (18) can be described as
follows:

ẋb(t) = Abxb(t) +Bbucm(t) +Bbvdcm(t) +Bbt
˙̃xfa(t),

ycm(t) = Cbxb(t). (19)

where Ab ∈ R
nb×nb , Bb ∈ R

nb×nu , Bbv ∈ R
nb×nd , Bbt ∈

R
nb×nt , Cb ∈ R

ny×nb are time-invariant matrices (see [23]).

Next, consider the tower dynamics in (1b) which is already

upon a non-rotating reference frame, and its state-space rep-

resentation as follows:

ẋt(t) = Atxt(t) +Btucm(t) +Btvdcm(t), ˙̃xfa(t) = Ctxt(t),
(20)

where xt(t) = [ ˙̃xfa, x̃fa]
T denotes the state of the tower

dynamics.
Finally, combining (19) and (20) yields the LTI model (5),

defined as follows:

ξ̇(t) = Aξξ(t) +Bξucm(t) +Bξddcm(t),

ycm(t) = Cξξ(t), (21a)

where ξ(t) = [xb(t), xt(t)]
T ∈ R

nξ and the time-invariant
matrices are defined as follows:

Aξ =

[

Ab BbtCt

0 At

]

, Bξ =

[

Bb

Bt

]

, Bξd =

[

Bbv

Btv

]

, Cξ =
[

Cb 0
]

.

(21b)
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