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Abstract

A probabilistic description is essential for understanding the dynamics in many systems due to

uncertainty or fluctuations. We show how to utilise time-dependent probability density functions

to compute the information length L, as a Lagrangian measure that counts the number of different

states that a quantum system evolves through in time. Using L, we examine the information

change associated with the evolution of initial Gaussian wave packets and elucidate consequences

of quantum effects.
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I. INTRODUCTION

A probabilistic description is essential for understanding the dynamics in many systems

due to uncertainty or fluctuations. This is especially the case for out-of-equilibrium systems

which exhibit significant fluctuations such as; turbulence in astrophysical and laboratory

plasmas, forest fires, the stock market, and biological ecosystems [1–3]. A full knowledge of

Probability Density Functions (PDFs), especially time-dependent PDFs, becomes essential

to describe these systems. Once computed analytically, numerically, or constructed from

data, time-dependent PDFs provide a system-independent way of quantifying the change

in information during time-evolution by the number of statistically different states that a

system passes through in time [4–10]. (Note that we use information for statistically different

states, refraining ourselves from the debate on the exact definition of information (see, e.g.

[11, 12])). Crudely, a unit of information change can be inferred when a PDF moves the

distance equal to its width; two PDFs with the same width are indistinguishable when

their mean positions differ less than the width. On the other hand, doubling/halving PDFs

induces a logarithmic increase in information. In order to do this systematically, we first

define the dynamical time τ(t) [4–10],

E ≡ 1

[τ(t)]2
=

∫

1

p(x, t)

[

∂p(x, t)

∂t

]2

dx. (1)

Where τ(t) is the characteristic time scale over which the information changes. Having

units of time, τ(t) quantifies the correlation time of a PDF. Alternatively, 1/τ quantifies the

(average) rate of change of information in time. A particular path which gives a constant

valued E is a geodesic along which the information propagates at the same speed [7] (c.f.

see Appendix A). The total change in information between initial and final times, 0 and t

respectively, is then defined by measuring the total elapsed time in units of τ as:

L(t) =
∫ t

0

dt1
τ(t1)

=

∫ t

0

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

dt1. (2)

L(t) is a Lagrangian quantity, uniquely defined as a function of time t for a given initial PDF,

and represents the total number of statistically distinguishable states that a system evolves

through. It thus provides a very convenient methodology for measuring the distance between

p(x, t) and p(x, 0) continuously in time for a given p(x, 0). More details on theoretical
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background (e.g. the relation to statistical distance in Hilbert space and the relative entropy)

and applications of E and L can be found in Appendix A and [4–11, 13].

In Quantum Mechanics (QM), stochasticity arises due to the uncertainty relation

∆x∆p ≥ ~

2
even in the absence of external noise. In particular, in the semi-classical

limit, h serves as a unit of information in the p − x phase space since each quantum state

corresponds to a classical volume h; the total number of states is the classical volume of

phase space divided by h. Associated with the time evolution of a quantum system, ex-

ploring different parts of the phase space, is information change. A wider PDF corresponds

to a wave function with large variance in QM and occupies a larger x region in the phase

space; it is thus expected to cause more change in information, opposite to what is expected

in classical systems. The main aim of this paper is to elucidate consequences of quantum

effects (e.g. uncertainty relation, quantisation), addressing the issue noted above.

Specifically, to gain a key insight, we consider the evolution of Gaussian wave packets for

a particle under no force and constant force, and for harmonic oscillators including damped

harmonic oscillators [14]. We demonstrate an interesting dual role of PDF width and the

effect of energy quantisation on L. We utilise the known exact propagators to compute time-

dependent PDFs for a given initial Gaussian wave packet, referring readers to [14–22]. Note

that our approach is quite different from the traditional spectral analysis where the main fo-

cus is on the computation of energy eigenvalues and eigenstates or the transition probability.

In fact, an interesting oscillation in PDF width is shown, which received much less attention.

II. FREE-PARTICLE GAUSSIAN WAVE PACKETS:

To make this paper self-contained, we start with a brief recap on free-particle wave

packets. A propagator K(x, x′; t) for a particle with mass m in the 1-Dimension (1D) is

well-known (e.g. see [22])

K(x, x′; t) =

√

m

2πi~t
exp [−m(x− x′)2

2i~t
]. (3)

At t = 0, we consider a Gaussian wave function localised around x′ = 0

ψ(x′, 0) =

[

2β0
π

]
1

4

e−β0x′2+ik0x′

, (4)

3



where k0 = p(t = 0)/~ is the wave number at t = 0, dx = (2β0)
−1/2 is the width of the wave

packet, and p is the momentum. From ψ(x, t) =
∫∞
−∞ dx′K(x, x′; t′)ψ(x′, 0), we can then

find the following PDF P (x, t) = |ψ(x, t)|2:

P (x, t) =

√

β

π
exp

[

−β (x− 〈x〉)2
]

, (5)

where

β =
2β0m

2

m2 + (2~β0t)2
, 〈x〉 = v0t =

~k0t

m
. (6)

Here, v0 is the constant velocity and the angular brackets denote the average. Eq. (4) is

obviously Gaussian with the mean 〈x〉 = v0t and the variance ∆(t) = 〈(x− 〈x〉)2〉 = 2d2x,

∆(t) =
1

2β
=

1

4β0
+
β0~

2t2

m2
= ∆(0) +

~
2t2

4∆(0)m2
. (7)

The first term in Eq. (7) is due to the variance of the initial PDF, ∆(0) = 〈(x(0)−〈x(0)〉)2〉 =
1

4β0
. The second term in Eq. (7) represents the spreading of the wave packet/PDF in time

due to quantum effects, which disappears in the classical limit ~ → 0 as β = β(0) = 2β0.

These quantum effects give rises to a super-diffusion∝ t2, occurring faster than the Brownian

motion ∆ ∝ t, in the limit of a very narrow initial wave packet (as β(0) → ∞).

We can find L for the PDF in Eq. (5) (by using 〈(x− 〈x〉)4〉 = 3〈(x− 〈x〉)2〉2) (e.g. see
[7]) as:

E =
1

2β2

(

dβ

dt

)2

+ 2β

(

d〈x〉
dt

)2

(8)

= 2t2
1

(T 2 + t2)2
+ 2β0

T 2

T 2 + t2
v20. (9)

Here, we defined a characteristic time T = m
2~β0

. It is interesting to rewrite T using

∆x(0)∆p(0) ∼ ~

2
so that 1

4β0
= ∆(0) = (∆x(0))2 ∼ ~

2

4
1

(∆p(0))2
∼ ∆x(0)

2(∆k(0))
:

T ∼ m∆x(0)

~(∆k(0))
∼ ∆x(0)

∆v0
, (10)

where ∆v0 = ∆p(0)/m. Thus, T represents the characteristic timescale for the spreading

of the initial Gaussian wave packet. The first and second terms in Eqs. (8)-(9) are due to

the change in the variance and mean value of the PDF, respectively. For t≪ T , the change

in the mean value dominates over the first term, giving a constant value E ∼ 2β0v
2
0 (i.e. a

geodesic). The second term in Eq. (9) in general gives L ∼
√
2β0 v0T sinh−1

(

t
T

)

, leading to
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L ∝ t for small t; L increases at the rate v0T/dx (the distance the PDF moves during the

spreading time T divided by the width of ψ). When t ∼ T , the spreading of the free-particle

wave packet no longer permits a geodesic. Interestingly, for t ≫ T , both terms in Eq. (9)

become ∝ t−2, and L increases logarithmically with t as ∝ ln t. The logarithmic dependence

is essentially due to the increase in differential entropy S(t) = −
∫

dxP (x, t) lnP (x, t). The

ratio η of the second to the first term in Eq. (9) is

η = T 2β0v
2
0 ∼

(

p(0)
√

∆(0)

~

)2

,

where p(0) = mv0 and ∆(0) = (4β0)
−1. Physically, η1/2 represents the number of different

states in the phase space covered by the movement of the PDF with the width
√

∆(0) and

momentum p(0). When η ≫ 1, the movement of the PDF is the main source of the informa-

tion change while when η ≪ 1, the change in the width of the PDF is mainly responsible.

III. G

aussian wave packets under a constant force: A robust geodesic solution is possible under

the influence of a constant force F . To show this, we replace 〈x〉 in Eq. (5) by (e.g. see [23])

〈x〉 = ~k0t

m
+
Ft2

2m
. (11)

Eq. (9) is now to be replaced by

E = 2t2
1

(T 2 + t2)2
+ 2β0

T 2

T 2 + t2
v20

[

1 +
Ft

~k0

]2

. (12)

Eq. (12) shows the interesting possibility of having a constant value of E for a sufficiently

large t as the increase in the momentum ∝ Ft compensates the increase in the width of

PDF ∝ t. Specifically, as t→ ∞, Eq. (12) is reduced to

√
E → F

~
√
2β0

∼ Fdx
~
, L → (Ft)dx

~
. (13)

In Eq. (13), Ft represents the momentum due to the constant force F while dx = (2β0)
−1/2

is the width of the initial wave packet. Thus, Ftdx in Eq. (13) represents the phase volume

covered by the motion due to the constant force F in the p− x phase space. Alternatively,
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one unit of the information change occurs whenever the constant force F causes the motion

over the volume ~. We now show that similar results are also obtained when we compute L
by using the PDF in the momentum space P (p, t) (see [23]):

P (p, t) =

√

α

π
e−α(p−(mv0+Ft))2 ,

E = 2αF 2, L =
√
2αFt, (14)

where α = 1
2~2β0

. Thus, a (non-zero) constant E (geodesic) is induced by the force F .

Furthermore, L =
√
2αFt ∼ (Ft)∆(0)/~, similarly to L in Eq. (13). In view of the comple-

mentary relations between position and momentum in quantum systems, this is an elegant

result since it shows the robustness of L in either position or momentum representation for

a geodesic solution.

IV. QUANTUM HARMONIC OSCILLATOR:

A Quantum Damped Harmonic Oscillator (QDHO) is described by the following Hamil-

tonian H

H =
p2

2m
e−γt +

1

2
mω2x2eγt. (15)

Here, ω =
√

κ
m
is the natural frequency of the Quantum Simple Harmonic Oscillator (QSHO)

when γ = 0; κ is a spring constant; γ is the damping parameter. For the significance and

details on the CK oscillator and/or controversial issues, please see [14–21] and references

therein. The propagator for the Hamilton in Eq. (15) (e.g. see [14–22]) is

K(x, t; x′, 0) =
eγt/4

[(

2πi~
mΩ

)

sin (Ωt)
]

1

2

exp (iφ), (16)

where

Ω2 =

√

ω2 − 1

4
γ2,

φ =
mΩ

2~

[

cot (Ωt)
(

x2 + x′2
)

− 2xx′

sin (Ωt)

]

− γm

4~

(

x2 − x′2
)

, (17)

where x = e
γt

2 x.
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A. QSHO

When γ = 0, Eqs. (15)-(16) recover the QSHO, and the ground state has the initial wave

function ψ(x′, 0) given by Eq. (4) with β0 =
mω
2~

and k0 = 0. We are interested in the time

evolution of the Gaussian wave packet with an arbitrary β0 and k0. Thus, from Eq. (4) and

Eq. (16) with Ω = ω and γ = 0, we obtain (also see [23])

ψ(x, t) =

[

2β0
π

]
1

4 eγt/4

[(

2πi~
mΩ

)

sin (Ωt)
]

1

2

√

π

Q
e−G(x−〈x〉)2 , (18)

where

〈x〉 = ~k0
mω

sin (ωt),

Q = β0 −
im

2~
ω cot (ωt),

G =
(mω)2

4~2Q sin2 (ωt)2
− imω

2~
cot (ωt). (19)

Eqs. (18)-(19) then give us

P (x, t) =

√

β

π
e−β(x−〈x〉)2 , (20)

where

β =
2β0

χ sin2 (ωt) + cos2 (ωt)
, (21)

where χ =
(

2~β0

mω

)2
. It is worth noting that the apparent periodic variation of β in Eq. (21)

disappears when the initial wave function in Eq. (4) is the energy eigenfunction for the

ground state (i.e. χ = 1); Eq. (21) reduces to β = 2β0 = β(0). That is, the ground state

remains in the ground state, ψ keeping the original width, as expected. When the width

of ψ(x′, 0) in Eq. (4) deviates from that of the ground state wave function, β in Eq. (21)

oscillates in time with the frequency 2ω, the amplitude of oscillation increasing with the

deviation. Examples are shown in Figure 1 for χ =
(

2~β0

mω

)2
= 0.5 and 2 for ω = 1.

The oscillation in β has an interesting consequence on L. To see this, by using Eqs.

(18)-(20) in Eq. (8), we find

E =
1

2

∣

∣

∣

∣

ω(χ− 1) sin (2ωt)

(χ− 1) sin2 (ωt) + 1

∣

∣

∣

∣

2

+
χω2k20 cos

2 (ωt)

(χ− 1) sin2 (ωt) + 1
, (22)

where again χ =
4~2β2

0

m2ω2 . The first and second terms in Eq. (22) represent the change in

the information due to the spreading of the wave packet/PDF and the movement of the
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FIG. 1: The evolution of β
2β0

for QSHO and χ =
(

2~β0

mω

)2
= 0.5 and 2: ω = 1.

wavepacket/PDF, respectively. In general, both terms in E oscillate with the frequency 2ω.

For instance, the first term in Eq. (22) becomes zero whenever t = n π
2ω
, while the second

term becomes zero at t = (2n + 1) π
2ω

(where n is any positive integer including zero). The

periodicity in E leads to equally spaced increments in L every time interval π
2ω
.

To appreciate this, we first look at the case χ = 1 when the initial ψ(x′, 0) is in the

ground state. In this case, there is no change in the width of the PDF; the first term in

Eq. (22) vanishes. E is solely from the second term due to the movement of the PDF peak,

which leads to

L =
2
√
β0~k0
m

∫ t

0

dt1
∣

∣cos (ωt1)
∣

∣ = l∗k0

[

N + | sin (ωt)|tt0
]

. (23)

Here, N = mod
(

tω
π

)

(β0 =
mω
2~

) and t0 =
Nπ
2ω

. l∗ =
√

2~
mω

is the characteristic length scale in

QSHO, representing the amount by which the oscillator must be displaced from its centre

in order for the potential energy to be equal to the quantized ground state energy 1
2
~ω (i.e.,

1
2
~ω ∼ 1

2
mω2l2∗). Alternatively, l∗ provides the resolution in space in view of the change in

potential energy. Two spatial points with a distance less than l∗ apart are indistinguishable

as the difference in the potential energy between these two points is less than the ground

state energy. The periodic part of L in Eq. (23) permits us to define L0 = l∗k0 as a quantum

L so that L = NL0+ (continuous part). Eq. (23) then means that whenever the QSHO

changes its mean position by l∗, it increases the information length by L0. Using k0 = p0/~,

we can see that L0 = l∗k0 =
l∗p0
~
, representing one unit of the information change due to the

change in phase volume by ~ in the p− x phase space, similarly to the case of free particle

wave packets discussed above.

In general when χ 6= 1, it is instructive to look at the effects of the first and second terms
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in Eq. (22) separately. First, the spreading of wave packets/PDF, the first term in Eq. (22),

gives

L
( π

2ω
, 0
)

= L
(π

ω
,
π

2ω

)

= L
(

3π

2ω
,
π

ω

)

= L
(

2π

ω
,
3π

2ω

)

= · · · = 1√
2
| lnχ|, (24)

where χ =
4~2β2

0

m2ω2 . Thus, at time t, we have

√
2L(t, 0) =M | lnχ|+

∣

∣ln [(χ− 1) sin2 (ωt) + 1]
∣

∣

t

t0
, (25)

where M = mod
(

2tω
π

)

and t0 =
Mπ
2ω

. Therefore, the first term in Eq. (25) gives the periodic

increase in
√
2L by

√
2L0 = | lnχ| = 2

∣

∣ln 2~β0

mω

∣

∣ = 2| ln (l2∗β0)|. The factor of l∗β
1/2
0 ∼ l∗

dx

is quite interesting; it demonstrates the increase in L by a factor ∝ ln
(

dx
l∗

)

for a wider

PDF with dx > l∗ while by a factor ∝ ln
(

l∗
dx

)

for a narrow PDF with dx < l∗, the smaller

between dx and l∗ serving a length unit. This is a purely quantum effect resulting from

energy quantisation - energy setting the characteristic length scale lx. Here, the logarithmic

dependence of L0 on l2∗β0 reflects that the change in the information is associated with the

change in the PDF width (or entropy increase).

Secondly, the movement of the wave packets/PDF, the second term in Eq. (22), gives

L =
2
√
β0~k0

mω
√

|χ− 1|
sinh−1 (

√

|χ− 1 sin (ωt)), (26)

recovering Eq. (23) in the limit of χ → 1. Eq. (26) also shows a periodic increase in L,
similarly to Eq. (23), the amount of the increase ∝ 2

√
β0~k0
mω

= l2∗k0
√
β0. The difference now

is that L is determined by a geometric mean of l∗k0 and l∗
√
β0 (the initial width of the

PDF) due to the PDF broadening.

B. QDHO

When γ 6= 0, the exact ground state wave function at t = 0 is

ψ(x′, 0) =

[

mΩ

π~

]
1

4

e−
mΩ

2~
(1+iγ/2Ω)x′2

. (27)

For simplicity, we now consider an arbitrary width 1/2β0 but k0 = 0:

ψ(x′, 0) =

[

2β0
π

]
1

4

e−β0(1+iγ/2Ω)x′2

. (28)
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Note that Eq. (28) with β0 = mΩ
2~

in Eq. (28) recovers Eq. (27). Using Eq. (28) and Eqs.

(17)-(18), we find

ψ(x, t) =

[

2β0
π

]
1

4 eγt/4

[(

2πi~
mΩ

)

sin (Ωt)
]

1

2

√

π

Q
e−Gx2

, (29)

where

Q = β0

(

1 + i
γ

2Ω

)

− im

2~

[

Ωcot (Ωt) +
γ

2

]

,

G =
(mΩ)2

4~2Q sin2 (Ωt)2
− im

2~

[

Ωcot (Ωt)− γ

2

]

. (30)

From Eqs. (29)-(30), we then find P (x, t) = |ψ(x, t)|2 as follows:

P (x, t) =

√

β

π
e−βx2

, (31)

where

β =

(

mΩ

2~

)2
2β0e

γt

β2
0 sin

2 (Ωt) +
(

m
2~

)2 [
Ωcos (Ωt) + γ

2
sin (Ωt)

]2 , (32)

where γ = γ(1− 2β0~

Ωm
). It is of interest to look at the case where ψ(x′, 0) is the ground state

satisfying β0 =
Ωm
2~

, γ = 0. Thus, Eq. (32) is reduced to

β =
mΩ

~
eγt, (33)

leading to
√
2E = γ,

√
2L = γt. (34)

Eq. (34) means that the damping γ is the very source of the information change in QDHO,

the information length linearly increasing with time.

When β0 6= Ωm
2~

, we can show that

√
2L =

∣

∣

∣

∣

γt−
[

S| lnλ|+
∣

∣ln [(λ− 1) sin2 (Ωt) + 1]
∣

∣

t

t0

]∣

∣

∣

∣

, (35)

where λ = γ
2Ω

+
(

2~β0

mΩ

)2
, S = mod

(

2tΩ
π

)

and t0 = Sπ
2Ω
. While the second term in Eq. (35)

gives the periodic increase in L as in Eq. (24), the first term dominates for large t, leading

to L ∝ γt/
√
2. That is, damping is the main source for L.
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V. CONCLUSION

In summary, we demonstrated that L proves to be valuable in measuring the information

change as a quantum system continuously evolves in time. In particular, we elucidated

consequences of quantum effects (uncertainty relation, energy quantisation) and the dual

role of the width of PDF in quantum systems (PDF width can either increase or decrease

L). An interesting geodesic was obtained for Gaussian wave packets under a constant force

as the constant force compensates the effect of PDF spreading via quantum effects. We

also demonstrated the utility of L in quantifying the periodic information change due to the

oscillation in phase space in QSHO and exponential damping in QDHO. The exploration

of the relation between τ(t) = E−1/2 and life time of quantum states (e.g., see [24] and

references therein) and extension of this work are left for future papers.

Appendix A: Statistical distance

In Hilbert space, Wootters [13] defined the statistical distance between ψ1 = ψ(x, 0) and

ψ2 = ψ(x, t) by using the Fisher-Rao metric (Fisher information metric) as

l(ψ1, ψ2) =
1

2

∫ t

0

dz1

√

∫

dx
1

p(x, z1)

[

∂p(x, z1)

∂z1

]2

, (A1)

where z1 is a parameterisation of a curve between ψ1 and ψ2. The shortest path connecting ψ1

and ψ2 was shown to be the geodesic with the distance l = cos−1 (| 〈ψ1|ψ2〉 |), depending only
on the angle between ψ1 and ψ2; the number of distinguishability of probability distributions

between ψ1 and ψ2 is proportional to the angle between ψ1 and ψ2. Our L in Eq. (1) is

different from Eq. (A1) since t1 in Eq. (1) is a real clock time and a path between between

ψ(x, 0) and ψ(x, t) is determined by the solution ψ(t). That is, for a given solution ψ(t),

there is a unique path that is connecting ψ1 and ψ2, which is not in general a shortest path;

ψ(t) follows a geodesic only in the case when E in Eq. (1) is constant.
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