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This paper presents an investigation of the influence of a non-consistent approach in terms of 

mesh movement and mesh sensitivity calculation in a discrete adjoint-based optimization. 

Some mesh movement methods are more robust or of higher quality, while the others can be 

more efficient for calculating mesh sensitivity. It is found that a non-consistent approach 

gives comparable results when compared to a consistent approach. Therefore an appropriate 

combination of non-consistent approaches can be achieved for efficient adjoint optimisation. 

This paper investigates and compares various consistent and non-consistent combinations by 

using linear elasticity, Delaunay graph mapping and radial basis function mesh movement 

methods. An investigation, using a lift-constrained drag minimization, to assess which step of 

the chain introduces a deviation, if any, and to which degree this affects the final result is 

presented. 

Nomenclature 

ሼ࡮ሽ = Vector of the Delaunay vertices ܮ,ܦܥ = Drag and lift coefficient 
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ሼࡰሽ = Vector of the shape design variables 

 Cost function = ܫ Delaunay volume ratio coefficient ratio matrix = [ࡱ]

 ሽ = Flow-adjoint vectorܨࢫሽ = Volume mesh ሼࢄሽ = State variables vector ሼࢃሽ = Mesh movement residual vector ሼࢀሽ = Flow discretized residual vector ሼࡾሽ = Surface mesh ሼࡿLinear elasticity stiffness matrix ࣦ = Lagrangian operator ሼ = [ࡷ]

ܯܩܦሽܩࢫMesh-adjoint vector ሼ = {ܩࢫ}  = Mesh-adjoint vector w.r.t. the Delaunay graph method ሼܩࢫሽܧܮ  = Mesh-adjoint vector w.r.t. the linear elasticity 

Introduction 

N aerodynamic shape optimization, the discrete adjoint method is the useful tool to optimize the entire lifting 

surface with very large number of design variables [1, 2]. An adjoint-based aerodynamic shape optimization 

involves the differentiation of the entire chain, i.e. flow, mesh and shape derivatives. By doing so, and assuming 

the shape has been parametrized, three types of sensitivity are needed, namely flow, grid and shape sensitivity. In 

this work, the flow adjoint is calculated using the discrete formulation where the discrete adjoint equation is 

derived after the discretisation of the governing equations [1, 2]. This paper focuses on using non-consistent 

methods for both the mesh movement and grid sensitivity parts of the optimisation chain. 

There are two types of grid sensitivity based on the distinction between volume and surface mesh. The 

volumetric mesh sensitivity is the sensitivity of the volume mesh, i.e. {ࢄ}, w.r.t. (with respect to) the surface 

mesh, {ࡿ}. On the other hand, the surface mesh sensitivity is the sensitivity of the parametrised surface mesh 

w.r.t. the parametric DVs (Design Variables). The mesh sensitivity is represented by a large matrix of 

dimensions that scale with the ܸܰܯ × ܯܰܵ  (number of volume mesh points times number of surface mesh points) 

I 
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and is related to the mesh movement. The surface sensitivity defined above is represented by a matrix of 

dimension ܰ ܯܵ × ܸܦܰ  (where ܰ ܸܦ  is the number of DVs). The analytical availability of this derivative depends 

on the choice of the shape parameterization which is generally easily differentiable. 

The computation of the gradient of the surface mesh w.r.t. the geometric DVs, i.e. [߲ࡰ߲/ࡿ], can be obtained 

with ease, however the gradient of the volume mesh w.r.t. the surface mesh, i.e. [߲ࡿ߲/ࢄ], shows a complex 

dependency which is dictated by the mesh movement to be differentiated. Morris et al. [3] proposed to use finite 

differences for [߲ࡿ߲/ࢄ], whereas Hicken and Zingg [4] used the more sophisticated complex differences in 

conjunction with the mesh-adjoint approach by Nielsen and Park [5]. 

While working with the discrete approach the volumetric mesh term cannot be eliminated. This means that, 

when large grids are considered, the computation of the volumetric term, as proven by Mura et al. [6], is in 

general expensive both in terms of CPU time and memory requirements. These issues still persist (although not 

at the same time) even when the easy-to-apply finite differences and its more accurate counterpart, i.e. complex 

differences, are used. 

There are several methods available in the literature to compute the grid sensitivity: finite differences, complex 

differences, analytical and adjoint methods. This classification can also be further split between methods that 

apply either to explicit or implicit mesh movements [6]. Explicit methods are defined as those where the volume 

mesh update is available without inverting the mesh deformation matrix which maps the link between surface 

and volume mesh nodes movement, such as for the DGM (Delaunay Graph Mapping) [7]. Implicit methods are 

defined as those where the same volume mesh update requires the inversion of the mesh deformation matrix, 

such as for the LE (Linear Elasticity) [8], RBF (Radial Basis Functions) [9] and spring analogy [10]. The mesh-

adjoint method [5] can be applied to any implicit and iterative mesh movement, whereas for any explicit non-

iterative strategy, the linearized grid sensitivity is available explicitly by definition. Both techniques provide the 

sensitivity at a cost nearly independent from the ܰ ܸܦ  (the slope of the line of cost versus ܸܰܦ  is very shallow). 

However, Mura et al. [6] noted that even if the direct dependency from the ܰ ܸܦ  is eliminated, any explicit non-

iterative mesh update strategy, such as the DGM for instance, provides the grid sensitivity at a cost which is far 

less expensive in terms of memory and CPU time over the mesh-adjoint approach. 

This paper presents an investigation of the influence of a non-consistent approach in terms of mesh movement 

and mesh sensitivity calculation in a discrete adjoint-based optimization loop. This is interesting because, should 
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any large difference be highlighted, this would mean that one cannot choose the non-consistent approach without 

incurring in a large deviation w.r.t. the fully consistent approach. On the other hand, in absence of appreciable 

differences, one would be allowed to choose based on efficiency or robustness grounds. 

Some applications in the literature have been reported in Tab.1. There are different approaches that have been 

investigated as standalone cases, but a quantitative comparison of what happens when different combinations of 

mesh movement and mesh sensitivity are considered has not been published yet. 

Table 1 Mesh movement and mesh sensitivity approaches used in the literature. 

Authors Mesh movement 
Approach used to 
calculate the mesh 

sensitivity 
Consistency 

Nemec and Zingg [11] 

Martins et al. [12] 
Algebraic method Finite differences Consistent 

Morris et al. [3] RBF Finite differences Consistent 

Zhu and Qin [13] 

Hinchliffe and Qin [14] RBF Mesh-adjoint on LE 
Non-

consistent 
Bobrowski et al.[15] 

Jakobsson and Amoignon [16] RBF Direct approach Consistent 

Truong et al. [17] 

Nielsen and Park [5] 

Nambu et al. [18] 

LE Mesh-adjoint on LE Consistent 

Hicken and Zingg [4] LE Complex differences Consistent 

Mavriplis [19] 

Maute et al. [20] 

Linear spring analogy 
(LSA) 

Mesh-adjoint on LSA 

Direct approach 
Consistent 

Burgreen and Baysal [21] 

Le Moigne and Qin [2] 
Algebraic method Analytical Consistent 

I Sensitivity Chain in Adjoint Approach 

The DLR TAU-Code [22] is a fully parallelised code solving the unsteady Navier-Stokes equations. Space 

discretisation is performed using the finite volume method. The resulting system of discretised equations is 

solved using the preconditioned LU-SGS (Symmetric Gauss Seidel) linear solver and a 3W-type geometric 

multigrid is used to speed up the solution. Its discrete flow-adjoint version is used along with the one-equation 



5 
American Institute of Aeronautics and Astronautics 

 

SA turbulence model [23]. The flow solutions presented in this work are obtained using a steady-state RANS 

time averaging solution. The SA is used in its fully linearised version, i.e. no frozen turbulent viscosity, in order 

to maintain consistency between the primal and the dual solutions. 

Two Lagrangian multipliers are constructed to obtain the augmented objective function, ࣦ , namely one for the 

non-linear flow residual constraint, ሼࡾሽ and the other for the linear mesh movement residual constraint, ሼࢀሽ: 
ࣦሺܨࢫ,ࢄ,ࢃ,ࡰ ሻܩࢫ, = ሻࢄ,ࢃ,ࡰሺܫ + ሼܨࢫሽܶሼࡾሺࢄ,ࢃ,ࡰሻሽ + ሼܩࢫሽܶሼࢀሺࡰ,ࢄሻሽ, ,ሽܨࢫሼ׊  (1.1) {ܩࢫ}

where ሼܨࢫሽ and ሼܩࢫሽ are the flow and mesh-adjoint vector respectively. Differentiating the augmented cost 

function w.r.t the DVs and considering only pure geometric changes yields to: 

൜ ൠࡰ݀ܫ݀ = ൜ ࢃ߲ܫ߲ + ܨܶࢫ ൠࢃ߲ࡾ߲ ൤݀ࡰ݀ࢃ൨ + ൜߲ࢄ߲ܫ + ܨܶࢫ ࢄ߲ࡾ߲ + ܩܶࢫ ൠࢄ݀ࢀ݀ ൤݀ࡰ݀ࢄ൨ + ሼܩࢫሽܶ ൤߲ࡰ߲ࢀ൨ (1.2) 

For a pure aerodynamic shape optimization, where only the solid wall is updated, the DVs influence only the 

flow-field solution and objective function through the grid variations. As a consequence ሼ߲ࡰ߲/ܫሽ = {૙} and ሾ߲ࡰ߲/ࡾሿ = [૙]. Since Eq. (1.1) is valid for all the DVs, the Lagrangian is identical to the original objective 

function, ࣦ =  .ሽ, whereas the second one is the sensitivity of the volume mesh nodes, w.r.t. the DVsࡰሽ, w.r.t. the DVs, ሼࢃThere are two expensive terms in Eq. (1.2). The first one is the sensitivity of the flow variables, ሼ .ܫ

The latter becomes increasingly expensive as large unstructured meshes are considered. After solving the flow-

adjoint and if necessary also the mesh-adjoint linear system of equations, the objective function gradient can be 

written as: 

൜ ൠࡰ݀ܫ݀ = ሼܩࢫሽܶ ൤߲ࡰ߲ࢀ൨ (1.3) 

From Eq. (1.3), it is clear that the differentiation of the mesh movement residual is necessary in the discrete 

adjoint approach. However, this can happen in a consistent or non-consistent manner w.r.t. the chosen mesh 

movement.  Furthermore, it is useful to differentiate Eq. (1.1) w.r.t. the volume mesh which yields: 

൜݀ࢄ݀ܫൠ = ൜߲ࢄ߲ܫ + ܨܶࢫ  ൠ (1.4)ࢄ߲ࡾ߲

where both the objective function and the residual contains the pressure and the viscous part. To better 

understand the physical meaning of these terms, each partial derivative is analyzed separately. The first RHS 
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(Right Hand Side) term expresses the variation of the target function due to the variation of the surface (or line in 

2D) of integration at constant pressure and skin friction coefficient [24]. The second RHS side term expresses 

the variation of the target function due to the variation of the pressure and skin friction coefficient, both induced 

by a variation of the geometry [24]. 

Therefore, substituting Eq. (1.4) back in Eq. (1.2) yields to: 

൜ ൠࡰ݀ܫ݀ = ൜݀ࢄ݀ܫൠ ൤߲ࡿ߲ࢄ൨ ൤߲ࡰ߲ࡿ൨ (1.5) 

where is it important to note that within the scope investigated in this paper, the only element that is changing is 

the second RHS as it depends on the mesh movement employed. 

Mathematically, a consistent approach is preferred because the same method is used which saves implementation 

time and secondly because consistency in the chain is maintained. However non-consistent approaches may be 

practically more useful because different types of mesh sensitivity could be used based on accuracy, robustness 

or efficiency grounds. This paper explores the magnitude and effect of any errors which are introduced by using 

a non-consistent approach. 

Before the non-consistent approach can be used, some research questions need to be addressed. It is important to 

find whether non-consistent approaches lead to different optima as compared with the consistent approaches. 

This work investigates whether these deviations (if present) are due to different grid sensitivities or different 

mesh movements. To address these points, it is important to analyze each step of the chain as follows. 

 Different mesh movements: LE, DGM and RBF 

 Different mesh movement linearizations: [߲ࡿ߲/ࢄ]ܧܮ  and [߲ࡿ߲/ࢄ]ܯܩܦ  

 Product between ሼ݀ࢄ݀/ܫሽ  and ሾ߲ࡿ߲/ࢄሿ  and the distribution of each factor over the computational 

domain 

For each one of these points the mesh, i.e. {ࢄ}, is involved and should not be considered asa standalone factor, 

but an integrated part of the optimization chain. 
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II Methods for Mesh Movements and Mesh Sensitivities 

At each iteration of an aerodynamic optimization loop there is first a change in the parametrized surface mesh 

followed by a change in the volume mesh. 

LE [8], RBF [9] and DGM [7] are some of the options available to deform the mesh. The last one is an algebraic 

explicit and non-iterative method, whereas the first two are implicit and iterative methods. One of the most 

important feature is that both DGM and LE are capable of providing the gradient ሼ݀ࡿ݀/ܫሽ which expresses the 

sensitivity of the objective function w.r.t. all the surface mesh. On the other hand, the RBF (at least in most of its 

applications) can only provides the gradient w.r.t. the RBF interpolation control points [15]. The RBF could in 

theory provide the gradient ሼ݀ࡿ݀/ܫሽ (see Eq. (1.5) for ሼࡰሽ =  but the cost of inverting its constitutive matrix ,({ࡿ}

would be prohibitive, as explained earlier. 

The DGM creates a one-to-one explicit map between surface and volume meshes, which can be written as a 

linear system: ሼࢄሽ =  ሽ (2.1)࡮ሼ[ࡱ]

where matrix [ࡱ] contains all the volume ratio coefficients computed as shown by Liu et al. [7] and ሼ࡮ሽ is the 

vector containing the Delaunay boundary vertices. This generally comprises of points from different boundaries, 

i.e. ሼ࡮ሽ = ൛݂݂࡮ ݓݏ࡮, ܾݏ࡮, ൟ where ሼݓݏ࡮ ሽ represents the Delaunay vertices that coincide with the solid wall mesh 

nodes, thus ሼݓݏ࡮ ሽ ؠ ܾݏ࡮ሼ ,{ࡿ} ሽ are the supporting box points used to improve the quality of the Delaunay map, 

and ൛݂݂࡮ ൟ represents the Delaunay vertices that coincide with the far-field surface mesh nodes. Differentiating 

Eq. (2.1) w.r.t. the design variables, {ࡰ} yields [6]: 

൤݀ࡰ݀ࢄ൨ = [ࡱ] ൤߲ࡰ߲ࡿ൨ (2.2) 

where by implication: 

[ࡱ] ؠ ൤߲ࡿ߲ࢄ൨ (2.3) 

Note that the farfield and the supporting box points are not being deformed, therefore [߲ࡰ߲/݂݂࡮] = [૙] and 

[ࡰ߲/ܾݏ࡮߲] = [૙] . Furthermore,[߲ࡰ߲/ݓݏ࡮] = [ࡰ߲/ࡿ߲]  because all the surface mesh points are used as 

Delaunay vertices. In order to improve the quality of the Delaunay triangulation a supporting box around the 
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wing can be constructed extracting some suitable volume mesh points as shown by Mura et al. [25]. There are 

two requirements that must be considered in this process. The first requirement is to place the supporting box at 

a distance that does not interfere with the surface deformation. The second requirement is to consider all the 

volume mesh nodes where the gradient {݀ࢄ݀/ܫ} has significant influence. Using the supporting box means the 

metric terms are not differentiated outside the region within the solid wall and supporting box. Furthermore, the 

Delaunay boundaries with the addition of the supporting box’s points are now represented by {࡮} =൛݂݂࡮ ݓݏ࡮, ܾݏ࡮, ൟ, where ሼܾݏ࡮ ሽ is the Delaunay vertices that coincide with the supporting box nodes. However, 

from the point of view of the differentiation it is clear that [߲ࡰ߲/ܾݏ࡮] = [૙]. When the supporting box is used 

the DGM is referred to as mDGM otherwise the DGM is referred to as oDGM. 

The expenses in terms of memory and CPU time associated with the computation of the Jacobian [߲ࡿ߲/ࢄ] have 

prompted researchers to study ways of reducing it. The study published by Nielsen and Anderson [26], aimed at 

establishing the ideal reduction in the volume mesh nodes differentiation. They concluded that the influence of 

the mesh sensitivity gradually decays away from the wall and that accurate results are obtained if the points 

within the wall and half of the distance from wall to the far-field are included. In this paper, the same 

methodology is repeated for the mDGM in order to understand the effects of using a reduced volume mesh 

differentiation. 

The LE method creates an implicit map between the surface and the volume mesh, which can be written in 

matrix-vector form as: 

ሽࢄሼ[ࡷ] = ሼࡿሽ (2.4) 

where [ࡷ] is the mesh deformation matrix. Note that, unlike Eq. (2.1), the matrix is on the left hand side of Eq. 

(2.4) and therefore the equation is implicit w.r.t. {ࢄ}.  

Eq. (2.4) is then cast in FEM form and discretised using a Galerkin method. The resulting linear system of 

equations is then solved using a restarted ILU (Incomplete Lower Upper) preconditioned GMRES (Generalised 

Minimal RESidual) strategy with a drop in the residual of 14 orders of magnitude [27]. Differentiating Eq. (2.4) 

w.r.t. the geometric design variables, {ࡰ} yields [6]: 

[ࡷ] ൤݀ࡰ݀ࢄ൨ = ൤߲ࡰ߲ࡿ൨ (2.5) 
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From Eq. (2.5), it follows that ሾ߲ࡿ߲/ࢄሿ = ሾࡷሿെ1. As proven by Mura et al. [6], the iterative inversion of the 

elastic matrix [ࡷ] is costly both in terms of memory and in CPU time. This expense is comparable with the cost 

of a single steady-state flow solution, thus it make sense to address it. Similarly, the RBF mesh movement 

method creates an implicit map between the surface and the volume mesh nodes, which can be written in a 

compact matrix-vector form as: 

ሽࢄሼ[ࡹ] = ሼࡿሽ (2.6) 

where [ࡹ]  is a matrix containing the interpolating RBF coefficients. The extent of the volume metric 

differentiation stored in this matrix is governed by the RBF interpolating points chosen a priori. The linearization 

of Eq. (2.6) w.r.t. the DVs reads as: 

ሾࡹሿ ൤߲ࡰ߲ࢄ൨ = ൤߲ࡰ߲ࡿ൨ (2.7) 

Rendall and Allen [28] noted that for a direct mesh movement, the cost of RBF scales with ܵܰܯ × ܯܸܰ . This was 

an observation made by the authors on a structured mesh. It goes without saying that, for unstructured mesh this 

issue would be more severe, making their approach unfeasible. Based on this observation, they developed an 

alternative method that iteratively selects, based on the minimization of an error function, fewer interpolation 

points at the wall, i.e. ܰܲܫ . Therefore, since ܰܲܫ ا ܯܰܵ , their method results in a consistent saving both in 

memory and computational time. Based on this observation, Eq. (2.7) becomes: 

ሾࡹሿ ൤ ൨ܲܫࡰ߲ࢄ߲ = ൤  ൨ܲܫࡰ߲ࡿ߲
 

(2.8) 

Having said this, Eq. (2.8) provides the sensitivity w.r.t. the RBF control points only [15, 29]. Therefore, Eq. 

(2.8) is unable to provide the gradient of the objective function w.r.t. each surface mesh point (i.e. {݀ࡿ݀/ܫ}), 

which provides useful design information as shown by Hinchliffe and Qin [14]. 

Fig. 1 shows the resulting RBF, LE, oDGM and mDGM-based deformed meshes for the same arbitrary surface 

mesh update. While using the oDGM, it can be clearly seen that the deformed volume mesh nodes closely follow 

the Delaunay computational domain decomposition (constructed using all the solid wall and the far-field points). 

The mDGM follows the same upwards direction as the oDGM, but the deformation is truncated at where the 

supporting box points are located. Regarding LE and RBF, it is interesting to see how the deformation is global 
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compared to the local DGM-deformed mesh. This can be explained by the fact that the o/mDGM are by 

definition based on an anisotropic operator (i.e., it follows the shape of the original Delaunay triangulation as 

shown in Ref. [6, 25]), whereas both LE and RBF, at least for the implementation used in this work, are based on 

an isotropic operator. However, it is recognised that both LE and RBF can be made anisotropic if deemed 

necessary. 

Having analyzed the mesh movements and their differentiated versions, the next step is to study the 

differentiation of the mesh movement constraint in more details. From Eq. (1.3), the differentiation of the mesh 

deformation residual is required. This reads as: 

 

Figure 1 Comparison between different mesh movements. The wing is the ONERA M6. 

 

mDGMoDGM

LE RBF

Original mesh Deformed mesh
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൤݀ࡰ݀ࢀ൨ = ൤߲ࢄ߲ࢀ ࡰ݀ࢄ݀ +
 ൨ (2.9)ࡰ߲ࢀ߲

Considering the residual associated with Eq. (2.1), i.e. ሼࢀሽ = ሼࢄሽ െ ሾࡱሿ{࡮}, the following relations hold true: 

൤߲ࢄ߲ࢀ൨ܯܩܦ =  (2.10) [ࡵ]

൤߲ࡰ߲ࢀ൨ܯܩܦ = െ൤ࡱ  ൨ (2.11)ࡰ߲ࡿ߲

where [ࡵ] is the identity matrix. Hence, considering Eq. (1.3), it follows: 

൜ ܯܩܦൠࡰ݀ܫ݀ = െ൛ܩࢫ ܯܩܦ, ൟܶሾࡱሿ ൤߲ࡰ߲ࡿ൨ (2.12) 

where {ܯܩܦ,ܩࢫ } is the mesh-adjoint vector associated with DGM. Mura et al. [6] have proven that for explicit 

non-iterative mesh movements the following relation holds: 

൜݀ࢄ݀ܫൠ = ൛ܩࢫ ܯܩܦ, ൟܶ ൬= ൜߲ࢄ߲ܫ + ܨܶࢫ  ൠ൰ (2.13)ࢄ߲ࡾ߲

The same derivation can also be followed for the residual associated with LE, i.e. ሼࢀሽ = ሽࢄሼ[ࡷ] െ  :{ࡿ}

൤߲ࢄ߲ࢀ൨ܧܮ = െሾࡷሿ (2.14) 

൤߲ࡰ߲ࢀ൨ܧܮ = ൤߲ࡰ߲ࡿ൨ (2.15) 

Therefore: 

൜ ܧܮൠࡰ݀ܫ݀ = െ൛ܩࢫ ൟܶܧܮ, ൤߲ࡰ߲ࡿ൨ (2.16) 

where {ܧܮ,ܩࢫ} is the mesh-adjoint vector associated with LE and it is obtained by solving the following linear 

system of equations: 

൜߲ࢄ߲ܫ + ܨܶࢫ ࢄ߲ࡾ߲ + ܩࢫ ܶܧܮ, ൠࡷ = {૙} (2.17) 

If each surface mesh point is used as a DV, i.e. ሼࡰሽ =  :Eqs. (2.12) and (2.16) reduce to respectively ,{ࡿ}

൜݀ࡿ݀ܫൠܯܩܦ = െ൛ܩࢫ ܯܩܦ, ൟܶሾࡱሿ (2.18) 
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 ൜݀ࡿ݀ܫൠܧܮ = െ൛ܩࢫ ൟܶܧܮ,  (2.19) 

The verification of the gradients expressed in Eqs. (2.12) and (2.16) can be found in Mura et al. [6] and Dwight 

and Brezillion [30] respectively. 

III Analysis of the gradient calculation chain 

There are two important quantities that need to be addressed. The first one is the gradient {݀ࢄ݀/ܫ} and the 

second is the Jacobian [߲ࡿ߲/ࢄ]  which is available explicitly or implicitly if either DGM or LE is used 

respectively. The former is the one which describes the variation of the objective function w.r.t. a change in the 

volume mesh, whereas the latter describes the variation of volume mesh w.r.t. the surface mesh nodes. Since 

these two quantities are multiplied together, i.e. ሼ݀ࢄ݀/ܫሽሾ߲ࡿ߲/ࢄሿ, it is necessary to check that no cancelling 

effect is taking place. To do so, their distribution over the computation domain is further studied. To compare 

their distributions over the entire volume mesh, a line drawn perpendicularly from the wall to the far-field is 

selected and a series of point in its neighborhood are considered. These points are then used to evaluate the n.d.r. 

(normal decay rate). The ONERA M6 described in Section V is used to study the n.d.r. sampled values. 

Referring to Fig. 2 and its 3D representation on the lower left, a series of points along the normal to the upper 

surface were selected and the values interpolated. A semi-log on the x-axis (describing the distance from the 

wall) was used in order to highlight the rate of change of quantities that have their values distributed over 

different orders of magnitude. Fig. 2 clearly shows that, regardless of the different mesh movements used, all the 

Jacobians ሾ߲ࡿ߲/ࢄሿܯܩܦ݉,ܧܮ  start to visibly decay further from the wall, where {݀ࢄ݀/ܫ} has almost decayed. In 

this scenario, no information about the objective function gradient is lost as {݀ࢄ݀/ܫ}  decays before any 

significant decay of ሾ߲ࡿ߲/ࢄሿ, for all mesh movements. It is the authors’ opinion that this last scenario is always 

the case because it is preferable to distribute the deformations as evenly as possible over the entire mesh in order 

to reduce the risk of mesh element cross over. In fact, having a smaller decay rate of the Jacobian ሾ߲ࡿ߲/ࢄሿ is an 

indication of the capability to uniformly spread the deformations away from the wall. 
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Figure 2 Comparison between different n.d.r.(s) over the computational domain. 

IV Optimization Framework 

TheONERA M6 wing at freestream Mach number of 0.833 and constant lift coefficient of 0.2733 [31] is 

considered. The Reynolds number is 11.72 Mil . based on the MAC (Mean Aerodynamic Chord). The hybrid 

unstructured quad-dominant mesh consists of 2.5 Mil. nodes and it was generated using the unstructured quad-

dominant software SOLAR [32]. The flow solution is solved by the DLR TAU-Code [22] using a one-equation 

SA (Spalart-Allmaras) [23] turbulence model. The adjoint version of the solver and turbulence model is hand-

differentiated and the frozen turbulent viscosity is not used. 

The path toward the minimum, which is here used to investigate the effect of different non-consistent strategies, 

could be contaminated either by errors in the flow or flow-adjoint solution. On this matter, Nadarajah and 

Jameson [33] established that the accuracy of the gradients obtained solving the adjoint system depends on the 

flow solution level of convergence only. Furthermore, in general as long as the flow solution is converged to an 

acceptable level, the level of convergence of the flow-adjoint is generally consider to be satisfactory when 

stopped at one or two order of magnitude lower than the respective flow solution. By monitoring the 
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aerodynamic coefficients and the change in the derivatives, the following convergence values were considered 

satisfactory: ܴ݂݈ݓ݋ = 10െ8 and ܴ ݐ݊݅݋݆݀ܽ = 10െ6. 

A lift-constrained drag reduction optimization is considered by addressing the question of consistent versus non-

consistent mesh movement and mesh sensitivity approaches. At each iteration the framework requires one flow 

solution, two flow-adjoint solutions (lift and drag), two mesh-adjoint solution (if used) and one search direction. 

These steps are repeated until convergence has been reached. The choice of the mesh movement and 

subsequently of its linearization which addresses the question of consistency is highlighted in Fig. 3. 

The parameterization chosen for this study is the FFD (Free-Form Deformation) in its original formulation [34]. 

The FFD offers the advantage of not requiring an inverse geometric fitting on the original profile. FFD consists 

of creating a box-like lattice around the object which is then mapped using a linear combination of Bernstein 

Polynomial, ݅ܲܤ ,݆ ,݇ , and the parametric control points vector, {ࡰ} . Mathematically, this is expressed as a 

trivariate volume tensor product: 

ሼࡿሺݑ, ሻሽݓ,ݒ = ෍෍෍݅ܦ ,݆ ,݇ ή ݅ܲܤ ሺݑሻ ή ݆ܲܤ ሺݒሻ ή ݇ܲܤ (ݓ)

݌
݇=0

݉
݆=0

݊
݅=0

 (4.1) 

where the physical coordinates (ݔ, ,ݕ ,ݑneed to be mapped into local normalized coordinates ሺ (ݖ ሻݓ,ݒ א ሾ0,1ሿ ×ሾ0,1ሿ × [0,1] and ݊  are the curve degree in each direction which also correspond to the number of control ݌,݉,

lattice subdivisions. The differentiation of Eq. (4.1) w.r.t. the control points, i.e. {ࡰ}, is simply the product of the 

BPs along the x, y and z-axis: 

ቈ߲ࡿሺݑ, ࡰሻ߲ݓ,ݒ ቉ = ෍෍෍݅ܲܤ (ݑ) ή ݆ܲܤ (ݒ)  ή ݇ܲܤ (ݓ)

݌
݇=0

݉
݆=0

݊
݅=0

 (4.2) 

Where ݊ ,݉,  representing the degree of the BPs which take respectively the value of 10, 6, 6. There are a total ݌

of 10 DVs which control only the upper surface and were chosen in order to maintain a fixed planform. The 

search direction updates are computed by the second order quasi-Newton L-BFGS (Low-memory Broyden-

Fletcher-Goldfarb-Shanno) optimizer with line search [35]. 
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Figure 3  Workflow for the consistent vs. non-consistent framework. 

The fixed-lift, i.e. ܮܥ = ݐ݁݃ݎܽݐ,ܮܥ , is controlled by the flow solver. To be more specific the angle of attack is 

adjusted by the flow solver in order to respect the following inequality, i.e. 1)ܮܥെ 10െ4) < ݐ݁݃ݎܽݐ,ܮܥ < 1)ܮܥ +

10െ4). In this application, the fixed-lift is considered as an explicit constraint, this means that the gradient needs 

to be corrected in order to take into account the different angle-of-attack [36]: 

ܫܿ ݀݁ݐܿ݁ݎݎ݋ = ܦܥ െ ቌ݀ߙ݀ܮܥ݀ߙ݀ܦܥ ቍ ܮܥ) െ ݐ݁݃ݎܽݐ,ܮܥ ) (4.3) 

which means that the gradients needs to be corrected in order to take into account the different angle-of-attack 

[36]: 
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൜ ݀݁ݐܿ݁ݎݎ݋ൠܿࡰ݀ܫ݀ = ൜݀ࡰ݀ܦܥ ൠ െ ቌ݀ߙ݀ܮܥ݀ߙ݀ܦܥ ቍ ൜݀ࡰ݀ܮܥൠ (4.4) 

where one wants to note that ൛݀ݐ݁݃ݎܽݐ,ܮܥ ൟࡰ݀/ = {૙} since the target lift does not depend on the DVs, in fact it is 

always adjusted solely by the flow solver and not by the optimizer. Furthermore, derivatives (݀ߙ݀/(ܮ,ܦ)ܥ) are 

computed analytically using the flow-adjoint solution as follows: 

൬݀ߙ݀ܮ,ܦܥ ൰ = ൬߲ߙ߲ܮ,ܦܥ ൰+ ሼܨࢫሽܶ ൜߲ߙ߲ࡾൠ (4.5) 

This effectively requires two flow adjoint solutions: one for the drag and the other for the lift coefficient. The 

advantages is that the derivatives computed in Eq. (4.5) are accurate since they are based on the flow-adjoint 

solution. This correction prevents the optimizer to reduce the drag by simply reducing the lift. 

V Test Cases 

To investigate the effect of the extent of the grid differentiation (i.e. using the supporting box) and consistent vs. 

non-consistent approaches, a series of test cases have been devised which involve several combinations of 

oDGM, mDGM, RBF and LE for the mesh movement and grid sensitivity strategies in the optimization chain. 

In order to simplify the nomenclature of the strategies being investigated, the following shorten version is 

proposed. Consider the οܯܩܦ݉ࢄ ቂ߲ࡿ߲ࢄቃ݉ܯܩܦ  case which describes a consistent approach where the mDGM is used 

both in the mesh movement, i.e. οݕ݃݁ݐܽݎݐݏࢄ  and in the differentiated mesh movement step, i.e. ቂ߲ࡿ߲ࢄቃݕ݃݁ݐܽݎݐݏ . On 

the other hand, for instance the οܧܮࢄ ቂ߲ࡿ߲ࢄቃ݉ܯܩܦ  case represents a non-consistent approach where the LE is used 

as a mesh movement in conjunction with the differentiated version of the mDGM. 

V.A Metric Term Differentiation Extent 

The goal of this section is to investigate the effect of supporting box distance from the wing surface. The 

supporting boxes are roughly 30, 50, 100 and 150 % of MAC. The fifth case does not use the supporting box 

which means the calculation of {݀ࢄ݀/ܫ} is performed over the entire volume domain. As can be seen in Fig. 4, 

the introduction of the supporting box introduces a negligible difference in the final value of the optima for the 
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cases with supporting box of 50% MAC and above. However, it starts to deviate significantly for the case where 

the supporting box was placed at 30% MAC. This is because, such a low supporting box height is cutting the 

information from the gradient {݀ࢄ݀/ܫ}. This shows that the gradient {݀ࢄ݀/ܫ} needs to be captured accurately 

and care needs to be taken when using the supporting box approach. 

V.B Consistent Approaches 

This section tries to establish two reference cases, using consist approaches which will then be compared against 

the non-consistent approaches. The optimizations being performed will use mDGM or LE to perform an 

optimization using a consistent approach. The red and blue lines in Fig. 5 represents the optimizations for 

mDGM and LE respectively. All optimizations will be started from the same initial design to guarantee a fair 

comparison between each methodology. The optimization history shows a very similar progression for both 

consistent methods and give a similar drag reductions at the final optimization iteration. 

Interestingly, when the DV gradients (see Fig. 6) are analyzed, they do not have the same starting values and 

follow different search. This is not reflected in deviations in the initial DV values depicted in Fig. 7, although 

there is a deviation in the search paths. Towards the end of the optimization the difference of this value reduces. 

In this case, the differences are solely due to the different mathematical formulations of both mesh updates and 

mesh sensitivities.  

This study has compared two consistent approaches and the following studies aim to establish the relative effect 

of the different mesh movement and grid sensitivity methods by analysis of a series of different non-consistent 

approaches. 

V.C The Effect of Non-consistent Mesh Sensitivities 

The goal of this section is to numerically investigate what happens when a particular mesh movement is used in 

conjunction with a differentiated mesh movement based on a different mesh update strategy. This is 

representative of situations where, for instance, the grid sensitivity routine update (based on the chosen mesh 

movement) is either too memory or computationally expensive. 

In order to investigate this case, a specific mesh movement is chosen and used in each optimization study first 

with its differentiated version and then with different mesh sensitivity strategies. The cases compared in this 

section are: οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  and οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿܧܮ  for mDGM mesh movement, οܨܤܴࢄ ሾ߲ࢄ/
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ܯܩܦሿ݉ࡿ߲ and οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿܧܮ  for RBF mesh movement and οܧܮࢄሾ߲ࡿ߲/ࢄሿܧܮ  and οܧܮࢄሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  for LE 

mesh movement. Symbols οࢄ and [߲ࡿ߲/ࢄ] designate the mesh movement and grid sensitivity, respectively. 

Referring to Fig. 5, the optimizations are started from the same initial non-optimized geometry and at iteration 

No. 2, a slight difference is registered in terms of computed drag coefficient which is maintained up to the end of 

the optimization. 

Fig. 7 shows the DV updates and as can be seen all the cases have the same DV starting values. Furthermore, a 

close look of the DV paths reveals that only for some DVs there is a noticeable deviation. The deviations 

introduced are initiated by the grid sensitivity strategies employed. As per the case presented in Section V.A, the 

deviations at iteration No, 1 do not lead to large differences in the optima because are not big enough for the 

optimiser to predict a different DV updates. 

These small differences in the gradients (see Fig. 6) computed at iteration No. 1 can be visualized by using 

gradient {݀ࡿ݀/ܫ} and not {݀ࡰ݀/ܫ} because they differ by a Jacobian factor, i.e. [߲ࡰ߲/ࡿ] which is the same for 

both methods. The gradients are sampled along a spanwise cut depicted in Fig. 8 (note that the scale on the z-

axis (right) is true to the profile coordinates only). The resulting 2D vectors are shown in the same figure. The 

trend is equally described by the two methods, but large deviations are registered at the trailing edge and in the 

maximum values of some points especially at the shock area. 

In Section III, it was established that both differentiated mesh movements, i.e. mDGM and LE, are not cutting 

the physical quantity ሼ݀ࢄ݀/ܫሽ. This last quantity is the only part of the chain that carries physical information 

and is the same regardless of the mesh movement chosen as clearly shown in Eq. (1.4). Furthermore, ሼ݀ࢄ݀/ܫሽ is 

based on the flow-adjoint solution and its accuracy depends on the flow solution as Nadarajah and Jameson [33] 

have proven. Of course, the flow solution is obviously influenced by the mesh density and quality, but these 

factors cannot justify the small differences in the gradients as highlighted in Fig. 8 because they are used by both 

the mDGM and LE-based chain with no changes. Now that vector ሼ݀ࢄ݀/ܫሽ has been excluded as a cause of the 

small differences, the attention is moved to the Jacobian [߲ࡿ߲/ࢄ]. 

One of the main difference between LE and mDGM is that the LE elastic matrix ሾࡷሿ needs to be inverted 

iteratively (i.e. ሾࡷሿെ1 = =)[ࡿࣔ/ࢄ߲] whereas the mDGM provides the Jacobian ,([ࡿࣔ/ࢄ߲]   ,analytically ([ࡱ]

thus without the need to use an iterative method. Therefore, the values stored in the DGM-based Jacobian could 

be taken as an example to match, but this is conceptually wrong because the two methods are mathematically 



19 
American Institute of Aeronautics and Astronautics 

 

different and therefore, in theory, are not expected to yield the same results. However, it is anticipated that the 

differences between the two methods are not large. 

The second step is to actually study the magnitude of the difference between ሾࡷሿെ1 and [ࡱ] matrices over the 

computational domain. As can be seen from Fig. 2, the n.d.r. computed over the neighboring points (introduced 

in Section III) of these two Jacobians show the same trend close to the wall where the values of gradient ሼ݀ࢄ݀/ܫሽ are not zero. However, just before vector ሼ݀ࢄ݀/ܫሽ reaches zero, the two Jacobian distributions start to 

show a different trend. Since the region where the two Jacobians are equal covers most of region (near the wall) 

where the values of gradient ሼ݀ࢄ݀/ܫሽ  are not zero, but differs in a small region (away from the wall) where the 

values of gradient ሼ݀ࢄ݀/ܫሽ tend to zero, it is possible to explain why they are largely equal, but still present 

minor differences. 

V.D The Effect of Non-consistent Mesh Movement 

The goal of this section is to investigate numerically what happens when a particular grid sensitivity is used in 

conjunction with different mesh movements. This is representative of situations where another mesh movement, 

different from the one used in the mesh adjoint is deemed either more robust or less computationally intensive. 

In order to investigate this case, a specific mesh sensitivity strategy is chosen and used in each optimization 

study first with its mesh movement then with different mesh update strategies. The cases compared in this 

section are: οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ , οܧܮࢄሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  and οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  for the grid sensitivity based 

on the mDGM and οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿܧܮ , οܧܮࢄሾ߲ࡿ߲/ࢄሿܧܮ  and οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿܧܮ  for the grid sensitivity based on 

the LE. 

In Fig. 5 the test cases start from the same initial non-optimized geometry, but at iteration No. 2, there is a very 

small difference in terms of computed drag coefficient. This is maintained up to the end of the simulation. In Fig. 

7, all the DVs follow a similar path with only minor deviations. 

The small differences in drag at iteration No. 2, are due to the different mesh movements used which introduces 

deviations in the near-wall mesh orthogonality even if the first surface mesh update is the same. 
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Figure 4  Convergence history comparison for different mesh size differentiations. 

 

 
Figure 5  Convergence history comparison for the consistent and non-consistent cases. 
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Figure 6  DV’s gradients (corrected for the change in the AoA) history comparison for the consistent and non-consistent cases. 

 

 
Figure 7  DV’s updates history comparison for the consistent and non-consistent cases. 
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Figure 8  Selected point-to-point gradients comparison computed based on the flow solution at iteration No. 1.  

VI Memory and CPU time Comparison 

Mesh deformation and mesh sensitivity are compared in terms of memory and CPU time requirements assessed 

on a single Intel Xeon 2.67GHz processor with 70.8Gb of memory. The cost of the first iteration is analyzed 

separately from the others because this is where the mesh pre-processing is performed. This refers to the 

computation of matrices [ࡱ], and [ࡷ] which is performed only once and not repeated afterwards because the 

mesh connectivity is not changed. 

Referring to Tab. 2 the following conclusions can be drawn. It is evident that whenever either the οܨܤܴࢄ  or οܧܮࢄ  approach is used there is an increase in both CPU time and memory over the consistent οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  approach. However, these advantages are slightly offset by the lower pre-processing CPU time offered 

by both LE and RBF. This makes the οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  approach, at iteration No. 1, 19.88% more CPU time 

intensive than the οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  approach because of the two pre-processing steps and the additional οܨܤܴࢄ  CPU time. 
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In terms of memory, the cost is comparable only for the οܯܩܦ݉ࢄ  and the οܨܤܴࢄ  approach, whereas the οܧܮࢄ  

approach requires memory and CPU time which are two orders of magnitude bigger. The same trend, although 

less severe, is also registered while computing the gradient. The computation of gradient ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  requires 

only 1.2Gb of memory and 358s of CPU time compared to the 15Gb and 1,726s required by theሾ߲ࡿ߲/ࢄሿܧܮ . Note 

that, although Eqs. (2.4) and (2.17) share the same Jacobian [ࡷ], the RHS and LHS are essentially different 

vectors. In fact, the memory needed to compute {݀ࢄ݀/ܫ} is greater than the one needed to compute just vector 

  .in Eq. (2.4). This explains the different memory values reported in Tab 2 {ࢄ}

What is interesting is that neither the ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  nor ሾ߲ࡿ߲/ࢄሿܧܮ  require different memory as one varies the 

objective function, i.e. ܮ,ܦܥ. On the other hand, the ሾ߲ࡿ߲/ࢄሿܧܮ  term shows a CPU time which gives an uneven 

split of time between each objective function. The ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  shows a total CPU time of 358s which is 

equally distributed (i.e. 179s each) to compute the gradient in Eq. (2.18) for both the lift and the drag coefficient. 

On the other hand the ሾ߲ࡿ߲/ࢄሿܧܮ  approach requires a total CPU time of 1,726s which is split between ܦܥ, which 

took 685s, and ܮܥ, which took 1,041s. One explanation for this is that the memory is proportional to the size of 

the system, i.e. ܸܰ ܯ × ܯܰܵ , whereas the CPU time is proportional to how long it takes to solve the linear system 

which cannot be considered constant as one changes the objective function. 

After the first iteration, the advantage of the οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  strategies over the other approaches 

becomes evident as the data in Tab. 3 clearly shows. In contrast, for each iteration after the first, there is an 

increase in CPU time for the οܧܮࢄሾ߲ࡿ߲/ࢄሿܧܮ  approach of almost 8 times compared to the consistent οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  approach. There is also a large computational cost for the non-consistent case where the οܧܮࢄሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  is used. This gives a CPU time equal to 4.3 times greater than the οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ . If 

theοܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿܧܮ  is used the CPU time registered is 3.35 times greater than the οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  

approach. 

It is possible to estimate the linear cumulative computational time due to both the differences in mesh movement 

and sensitivity. In order to do so, the CPU time to build matrices [ࡱ], and [ࡷ] is not considered after iteration 

No. 1 and the remaining CPU time is projected linearly (using the data reported in Tab. 3) because it does not 

vary much between the iterations. This is shown in Fig. 9. 
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Table 2  CPU time and memory requirements comparison at iteration No. 1. 

Strategy 

Memory (Gb) CPU time (s) 

Mesh  

movement 

Gradient 
computation Pre-processing  Mesh 

movement 
Gradient 

computation Total 

οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  
ܯܩܦ0.232݉  

ܯܩܦ1.2݉ ܯܩܦ598݉   
ܯܩܦ50݉  

ܯܩܦ358݉  1,006 

οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿܧܮ ܧܮ15  ܯܩܦ598݉  + ܧܮ121  ܧܮሿࡿ߲/ࢄሾ߲ܧܮࢄο 2,495 ܧܮ1,726 
ܧܮ14  

ܧܮ15 ܧܮ121   
 ܧܮ1,807

 3,654 ܧܮ1,726

οܧܮࢄሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ ܯܩܦ1.2݉  ܯܩܦ598݉  + ܧܮ121 ܯܩܦ358݉   2,884 οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  

ܨܤ0.321ܴ  

ܯܩܦ1.2݉ ܨܤ55ܴ  + ܯܩܦ598݉  

ܨܤ195ܴ  

ܯܩܦ358݉  1,206 

οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿܧܮ ܧܮ15  ܨܤ55ܴ  + ܧܮ121  2,097 ܧܮ1,726 

For a simulation of 15 iterations the final CPU time is almost 13hrs less expensive than the οܧܮࢄሾ߲ࡿ߲/ࢄሿܧܮ  

approach. It is interesting to see how the inconsistent οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  approach does not lag behind as 

much as the others, in fact, after the first iteration, the increase at each iteration is of about 35.53% over οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ . This is estimated over a period of 15 iteration to give a CPU time of roughly only 

0.62hr greater than the οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  consistent approach. 

Table 3  CPU time and memory requirements comparison per iteration(after iteration No. 1). 

Strategy 

Memory (Gb) CPU time (s) 

Mesh  

movement 
Gradient computation 

Mesh  

movement 
Gradient computation Total 

οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  

ܯܩܦ0.232݉  

ܯܩܦ1.2݉  

ܧܮ15 ܯܩܦ50݉   

ܯܩܦ358݉  408 

οܯܩܦ݉ࢄ ሾ߲ࡿ߲/ࢄሿܧܮ ܧܮሿࡿ߲/ࢄሾ߲ܧܮࢄο 1,776 ܧܮ1,726   

ܧܮ14  

ܧܮ15  

ܯܩܦ1.2݉  ܧܮ1,807 

 3,533 ܧܮ1,726

οܧܮࢄሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ ܯܩܦ358݉   2,165 οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿ݉ܯܩܦ  

ܨܤ0.321ܴ  

ܯܩܦ1.2݉  

ܧܮ15 ܨܤ195ܴ   

ܯܩܦ358݉  553 

οܨܤܴࢄ ሾ߲ࡿ߲/ࢄሿܧܮ  1,921 ܧܮ1,726 
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This analysis confirms that in the case, where a non-consistent approach is considered more robust either in its 

mesh movement or differentiated mesh movement update, it can still be used without impacting the final result. 

For example, for a large mesh movement (e.g. wing bending/twisting) the RBF method may be chosen for its 

robustness, however the Delaunay method will still provide a faster gradient computation. 

 
Figure 9  Cumulative CPU times comparison for different approaches. 

In order to further understand the impact of the saving offered by the mDGM method, the cost of each step is 

compared against the overall CPU time of a full (single) optimization iteration. To simplify the analysis, only the 

second iteration (representative of the others iterations except the first) is considered (this choice is justified by 

the fact that the first one does not require to move the baseline mesh). Since the comparison needs to consider 

the relative time between the steps, the total cost (computed as the sum of one flow solution, two flow-adjoint 

solutions, one mesh movement and two grid sensitivities) is considered as a reference value. 

For the case under analysis, a single flow-adjoint takes roughly 80% of the flow solution, however this value is 

likely to be comparable and in some cases higher than the flow solution. Both LE-based mesh movement and 

sensitivity steps take separately roughly 30% of the flow solution but the cost w.r.t. the overall cumulative time 

(as depicted in Fig. 10) is as low as 9%. These values are in line with the data reported by Nielsen and Park [5]. 
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Thus, both LE-based mesh movement and grid sensitivity steps represent together roughly 27% of the total CPU 

time. Fig. 11 shows that the saving offered by the mDGM-based fully consistent chain is significant both in the 

mesh movement and sensitivity steps. The 18% of the total LE-based CPU time spent in computing the two grid 

sensitivities is greatly reduced down to just 1%, a saving of 17% w.r.t. the overall cost. On the other hand, the 

CPU time used for the mesh movement is reduced to an insignificant percentage, i.e. 0.5%, of the total CPU 

time. 

  

  
Figure 10 -  Cumulative CPU time breakdown for the fully 

consistent LE-based chain. 
Figure 11  -  Cumulative CPU time breakdown for the fully 

consistent DGM-based chain. 

VIII Concluding Remarks 

The paper addresses the question as to what happens when a non-consistent grid approach, either in the mesh 

movement or in the differentiated mesh movement, is used in the discrete adjoint optimization framework. The 

different optimization results found in this paper cannot be distinguished within the current RANS accuracy level 

and can be considered essentially representative of the same minimum. 

When calculating the gradients using the adjoint chain it is important that the grid sensitivity (i.e. [߲ࡿ߲/ࢄ]) does 

not significantly decay before {݀ࢄ݀/ܫ} has decayed. This was demonstrated by using an artificial cut-off by 

placing the supporting box at different distances from the aerodynamic surface. It was found that a supporting 

box of 30% MAC did not perform well during optimization due to the cut-off of {݀ࢄ݀/ܫ} values. This is 

essential for the accuracy of the objective function gradients within the optimization process, especially when 

non-consistent approaches are used. 
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In particular, small changes in the gradients (caused by non-consistent grid sensitivities) were not enough to 

trigger different DV updates (computed by the optimiser). Also small changes in the first (deformed) grid 

updates (caused by non-consistent grid movements) were not enough to trigger a difference in the objective 

functions (computed by the flow solver). 

Based on the framework and numerical results presented in this paper, non-consistent approaches can be used 

whenever deemed necessary without incurring in a large deviation in the minimum found. This allows non-

consistent approaches to be used in mesh movement and mesh sensitivity calculations in the adjoint based 

aerodynamic shape optimization. 
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