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Non-Consistent M esh M ovement and
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Gabriele Luigi Murd, Benjamin Lee Hinchliffé and Ning Qiri
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Joél Brezillon

Airbus Operations SAS, 316 route de Bayonne, 31060 Toulousx©O8¢dFrance

Thispaper presents an investigation of the influence of a non-consistent approach in terms of
mesh movement and mesh sensitivity calculation in a discrete adjoint-based optimization.
Some mesh movement methods are more robust or of higher quality, while the others can be
more efficient for calculating mesh sensitivity. It is found that a non-consistent approach
gives compar able results when compared to a consistent approach. Therefore an appropriate
combination of non-consistent approaches can be achieved for efficient adjoint optimisation.
This paper investigates and compares various consistent and non-consistent combinations by
using linear elasticity, Delaunay graph mapping and radial basis function mesh movement
methods. An investigation, using a lift-constrained drag minimization, to assess which step of
the chain introduces a deviation, if any, and to which degree this affects the final result is

presented.
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{D} = Vector of the shape design variables

[E] = Delaunay volume ratio coefficient ratio matrix
I = Cost function

[K] = Linearelasticitystiffnessmatrix

L = Lagrangian operator

{s} = Surface mesh

{R} = Flow discretized residual vector

{T} = Mesh movement residual vector

{w} = State variables vector

{X} = Volume mesh

{Ag} = Flow-adjoint vector

{A¢} = Mesh-adjoint vector

{Ac}pemy = Mesh-adjoint vector w.r.t. the Delaunay graph mett
{Ac}ie = Mesh-adjoint vector w.r.t. the linear elasticity

I ntroduction

I N aerodynamic shape optimization, the discrete adjoint methibé isseful tool to optimie the entire lifting
surface with very large number of design variables2]1 An adjoint-based aerodynamic shape optimization
involves the differentiation of the entire chaire. flow, mesh and shape derivativBy. doing so, and assuming
the shape has been paramettjzhree types of sensitivity are needed, namely flow, grid anceseysitivityIn

this work, the flow adjoint is calculated using the discrete formulatidrere the discrete adjoint equation is
derived after the discretisation of the governing equations [ITHi$ paper focues on using non-consistent
methods foboththe mesh movement and grid sensitivity parts of the optimisation chain.

There are two types of grid sensitivity based on the distinction betwekime and surface mesfihe
volumetric mesh sensitivity is the sensitivity of the volume mesh{X&, w.r.t. (with respect to) the surface
mesh {§}. On the other handhé surfacemeshsensitivity is the sensitivity of the parametrised surface mesh
w.r.t. the parametric DVs (Design VariableSThe mesh sensitivity is represented by a large matrix of

dimensions that scale with thg,, X Ns,, (number of volume mesh points times number of surface mestgpoi
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and is related to the mesh movemerhe surface sensitivity defined above is represented by a matrix of
dimensionNsy X Ny, (WhereNpy, is the number oDVs). The analytical availability of this derivative depends
on the choice of the shape parameterization which is generally easily diffdeentiab

The computation of the gradient of the surface mesh w.r.t. the géoiD¥ts, i.e.[0S/dD], can be obtained
with ease however the gradient of the volume mesh w.r.t. the surface mesfgX &S], shows a complex
dependencyvhich is dictated by the mesh movement to be differentidiedris et al. [3] proposed to use finite
differences foldX/dS], whereas Hicken and Zingg [4] used the more sophisticated comiffiererces in
conjunction with the mesh-adjoint approach by Nielsen and Park [5].

While working with the discrete approach the volumetric mesh term tdmneliminated.This means that,
when large grids are considered, the computation of the volumetric ternpvas oy Mura et al. [6]is in
generalexpensive both in terms of CPU tirmad memory requirement3.hese issues still persist (although not
at the same time) even when the etsgpply finite differences and its more accurate counterpart, i.e. complex
differences, are used.

There are several methods available in the literature to compute the grid sen§ititéydifferences, complex
differences, analytical and adjoint methods. This classification can al$arther split between methods that
apply either to explicit or implicit mesh movements [6]. Explicit methods efiaatl agshosewhere the volume
meshupdate is available without invertinbe mesh deformation matrixhich maps the link between surface
and volume mesh nodes movemesuch as for the DGM (Delaunay Graph Mapping) [7]. Implicit mettards
defined aghosewhere thesamevolume meshupdate requires the inversion of the megformation matrix,
such as for the LE (Linear Elasticity) [83BF (Radial Basis Functionfd] and spring analogylD]. The mesh-
adjoint method [bcan be appliedo any implicit and iterative mesh movement, whereas for any explicit non-
iterative strategy, the linearized grid sensitivity is available explicitly by defimiBoth techniques provide the
sensitivity at a costearly independerftom theNy, (the slope of the line of cost vershig, is very shallow).
However, Mura et al. [6] noted that even if the direct dependenay tiheN,,, is eliminated, any explicit non-
iterative mesh update strategy, such as the DGM for instance, provides teengitd/ity at a cost which is far
less expensive in terms of memory and CPU time over the meshtagjproach.

This paper presents an investigation of the influence of a non-consipmoiach in terms of mesh movement

and mesh sensitivity calculation in a discrete adjoint-based optimizationTlbizpis interesting because, should
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any large difference be highlighted, this would mean that one canoase the non-consistent approach without
incurring in a large deviation w.r.t. the fully consistent approachth®rother hand, in absence of appreciable
differences, one would be allowed to choose based on efficiency @tmebsyrounds.

Some applications in the literature have been reported in Tab.1. Theréemntapproaches that have been
investigated as standalone cases, but a quantitative comparison of whashalp@edifferent combinations of

mesh movement and mesh sensitivity are considered has not been puaished

Table 1 Mesh movement and mesh sensitivity approaches used in theliterature.

Approach used to

Authors M esh movement calculate the mesh Consistency
sensitivity
Nemec and Zingfl1] ) L )
Algebraic method Finite differences Consistent
Martins et al[12]
Morris et al. [3] RBF Finite differences Consistent
Zhu and Qin [13]
. . . . Non-
Hinchliffe and Qin [L4] RBF Mesh-adjoint on LE consistent
Bobrowski et al.[15]
Jakobsson and Amoignon [16] RBF Direct approach Consistent
Truong et al. [17]
Nielsen and Park [5] LE Mesh-adjoint on LE Consistent
Nambu et al[18]
Hicken and Zingg [4] LE Complex differences Consistent
Mavriplis [19] ; ; Mesh-adjoint on LSA
Linear sEggg analogy . Consistent
Maute et al. 20| (LSA) Direct approach
Burgreen and Baysal [21] ) ) )
Algebraic method Analytical Consistent

Le Moigne and Qin [2]

| Sensitivity Chain in Adjoint Approach

The DLR TAU-Code [22] is a fully parallelised code solving the unsteady N&tikes equations. Space
discretisation is performed using the finite volume method. The resulisigns of discretised equations is
solved using the preconditioned LU-SGS (Symmetric Gauss Seidel) ipbar and a 3W-type geometric

multigrid is used to speed up the solution. Its discrete flow-adjoistoreis used along with the one-equation
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SA turbulence model2B]. The flow solutions presented in this work are obtained using a sstaiyRANS
time averaging solution. The SA is used in its fully linearised versienno frozen turbulent viscosijtin order

to maintain consistency between the primal and the dual solutions.

Two Lagrangian multipliers are constructed to obtain the augmented objectot®on, £, namely one for the

non-linear flow residual constraifi®} and the other for the linear mesh movement residual consf{Bjnt,

L(D,W,X,Ap, Ag) = 1(D,W,X) +{As} {R(D,W,X)} + {A} {T(X, D)}, V{Ar} {4} (1.1)

where{A4;} and{A;} are the flow and mesh-adjoint vector respectively. Differentiating thenenigd cost

function w.r.t the DVs and considering only pure geometric changes taelds

dl al JOR\ [dW al OR dTyrdX aT

o} = low *+ 4 5w [a | + x4 5 + 4 [ + 07 5 -2

For a pure aerodynamic shape optimization, where only the solid wgldeted, the DVs influence only the
flow-field solution and objective function through the grid variations.aAsonsequencg!/dD} = {0} and
[0R/0D] = [0]. Since Eg. (1.1) is valid for all the DVs, the Lagrangian is identical to thenatigbjective
function,£ = I. There are two expensive terms in Eq. (1.2). The first onesisehsitivity of the flow variables,
{w3}, w.r.t. theDVs, {D}, whereas the second one is the sensitivity of the volume nuelds, w.r.t. th®Vs.

The latter becomsincreasingly expensivaslarge unstructured meshes are considered. After solving the flow-
adjoint and if necessary also the mesh-adjoint linear system afi@ug} the objective function gradient can be

written as:

()= oy [ (L3)
From Eg. (1.3),t is clear thatthe differentiation of the mesh movement residual is necessary in theteliscr
adjoint approach. However, this can happen in a consistent or nasteohsnanner w.r.t. the chosen mesh
movement. Furthermore, it is useful to differentiate (1.1) w.r.t. the volume mesh which yields:
CIRCE
where both the objective function and the residual contains the pressure andcthes \part. To better

understand the physical meaning of these terms, each partial derivatiaysednseparately. The first RHS
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(Right Hand Side) term expresses the variation of the target function due @itlimm of the surface (or line in
2D) of integration at constant pressure and skin friction coefficljt The second RHS side term expresses
the variation of the target function due to the variation of the pressdrskan friction coefficient, both induced
by a variation of the geometr24].

Therefore, substituting Eq. (1.4) back in Eq. (1.2) yields to:

(oo} = (s @)
where is it important to note that within the scope investigated ipapisr, the only element that is changing is
the second RHS as it depends on the mesh movement employed.

Mathematically, a consistent approach is prefebrechuse the same method is used which saves implementation
time and secondly because consistency in the chain is maintaioggvet non-consistent approaches may be
practically more usefubecause different types of mesh sensitivity could be used basetamacy, robustness

or efficiency grounds. This paper explores the magnitude and effecy eframs which are introduced by using

a non-consistent approach.

Before the non-consistent approach can be used, some research questiotasbe addressed. It is important to
find whether non-consistent approastiead to different optima as compared with the consistent apm®ach
This work investigates whether these deviations (if present) are due temiftgid sensitivities or different

mesh movements. To address these points, it is important to analyze eadhhseghain as follows.

e Different mesh movementsE, DGM and RBF
o Different mesh movement linearizatiofi8X/dS];; and[0X/0S]pem
e Product betweefidl/dX} and[0X/dS] and the distributionof each factorover the computational

domain

For each one of these points the mesh{Xg, is involved and should not be considered asa standalone factor,

but an integrated part of the optimization chain.
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Il Methodsfor Mesh Movements and Mesh Sensitivities

At each iteration of an aerodynamic optimization loop there is first agehin the parametrized surface mesh
followed by a change in the volume mesh.

LE [8], RBF [9] and DGM[7] are some of the options available to deform the niBis last one is an algebraic
explicit and non-iterative method, whereas the first two are implicitigmdtive methods. One of the most
important feature is that both DGM and LE are capable of providingréaukegt{dl /dS} which expresses the
sensitivity of the objective function w.r.t. all the surface mesh. On the lotimel, the RBF (at least in most of its
applications) can onlprovides the gradient w.r.t. the RBF interpolation control points [15].RBié could in
theory provide the gradiefill/dS} (see Eq. (1.5) fofD} = {S}), but the cosbf inverting its constitutive matrix
would be prohibitiveas explained earlier.

The DGM creates a ont-one explicit map between surface and volume emskhich can be written as a

linear system:

{X} = [E]{B} (2.1)

where matri{E] contains all the volume ratio coefficients computed as shown by Liu ét]anfi{B} is the
vector containing the Delaunay boundary vertices. This generally cemmiigoints from different boundarjes
i.e.{B} = {Bff,BSW,Bsb} where{B,,, } represents the Delaunay vertices that coincide with the solid wall mesh
nodes, thu$B,, } = {S}, {B,,} are the supporting box points used to improve the quality of theibmfamap
and{B;,} represents the Delaunay vertices that coincide with the far-field surface puesh Differentiating

Eq. (2.1) w.r.t. the design variablé®} yields[6]:

dX as
[anl = ¥ |55 22)
where by implication:
[E] = [aa—)s( (2.3)

Note that the farfield and the supporting box points are not beingneedo therefor¢d B, /0D] = [0] and
[0Bg,/0D] = [0] . Furthermore[dBy, /0D] = [0S/0D] because all the surface mesh points are used as

Delaunay verticesin order to improve the quality of the Delaunay triangulation a @uipg box around the
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wing can be constructed extracting some suitable volume mesh pointsvastsh Mura et al. [25]. There are
two requirements that must be considered in this process. The fingeragnt is to place the supporting box at
a distance that does not interfere with the surface deformation. The secom@ment is to consider all the
volume mesh nodes whetlee gradient{d//dX} has significant influence. Using the supporting box means the
metric terms are not differentiated outside the region within the solid mélsapporting box. Furthermore, the
Delaunay boundaries with the addition of the supportimx’s points are now represented byB} =
{Bff,BSW,Bsb}, where{B,, } is the Delaunay vertices that coincide with the supporting box nodes. EiQwev
from the point of view of the differentiation it is clear thaB,, /0D] = [0]. When the supporting box is used

the DGMis referred to as mDGM otherwise the DGM is referred to as oDGM.

The expenses in terms of memory and CPU time associated with thatatiorpof the Jacobig@X/dS] have
prompted researeins to study ways of reducing it. The study published by Nielsen addréon 6], aimed at
establishing the ideal reduction in the volume mesh nodes differentiation. Tindyded that the influence of
the mesh sensitivity gradually decays away fromwia#t and thatacairate results are obtained if the points
within the wall and half of the distance from wall to the far-field srduded. In this paper, the same
methodology is repeated for the mDGM in order to understand theseitaking a reduced volume mesh
differentiation.

The LE method creates an implicit map between the surface and theevolash, which can be written in

matrix-vector form as:
[K]{x} = {$} (2.4)
where[K] is the mesh deformation matriXote that, unlike Eq. (2.1), the matrix is on the left hand side of Eq

(2.4) and therefore the equation is implieit.t. {X}.

Eq. (2.4) is then cast in FEM form and discretised using a Galer&thoah. The resulting linear system of
equations is then solved using a restarted ILU (Incomplete Lower Upgegnualitioned GMRES (Generalised
Minimal RESidual) strategy with a drop in the residual of 14 ordersaginitude £7]. Differentiating Eq. 2.4)

w.r.t. the geometric design variabléB} yields[6]:

(K] [Z—)D( = [g—; (2.5)
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From Eq. (2.5), it follows thdioX/aS] = [K]~!. As proven by Mura et al. [6the iterative inversion of the
elastic matri{K] is costly both in terms of memory and in CPU timkis expense is comparable with the cost
of a single steady-state flow solution, thus it make sense to addressilarlgirthe RBF mesh movement
method creates an implicit map between the surface and the volume ouesh) which can be written in a
compact matrix-vector form as:

[M]{X} = {S} (2.6)
where [M] is a matrix containing the interpolating RBF coefficients. The extent of dheme metric
differentiation stored in this matrix is governed by the RBF interpolatinggpoimsen a priori. The linearization

of Eq. (2.6) w.r.t. the DVs reads as:

ox aS
[M] [5] = [% (2.7)
Rendall and AllenZ8] noted that fola direct mesh movement, the cost of RBF scales Mjthx Ny, . This was
an observation made by the authors on a structured mesh. It goeast wéihimg that, for unstructured mesh this
issue would be more severe, making their approach unfeasible. Basleid observation, they developed an
alternative method that iteratively selects, based on the minimization of arfuertton, fewer interpolation
points at the wall, i.el;,. Therefore, sincd/;, < Ng,, their method results in a consistent saving both in

memory and computational time. Based on this observation, Eqbg&@jnes:

M [aix] = [ais] (2.8)

Having said this, Eqg. (2.8) provides the sensitivity w.r.t. the R8ftrol points only [15, 29]. Therefore, Eq.
(2.8) is unable to provide the gradient of the objective function w.ch sarface mesh point (i.&d1/dS}),

which provides useful design information as shown by Hinchlifte@im [14].

Fig. 1 shows the resulting RBF, LE, oDGM and mDGM-based deformstiasdor the same arbitrary surface
mesh update. While using the oDGM, it can be clearly seen that the defeslaet mesh nodes closely follow
the Delaunay computational domain decomposition (constructed using allithevall and the far-field points).
The mDGM follows the same upwards direction as the oDGM, but tlerdation is truncateat where the

supporting box points are located. Regarding LE and RBF, it is interestigg thow the deformation is global
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compared to the local DGM-deformed mesh. This can be explained by ththdadhe o/mDGM are by
definition based on an anisotropic operdfce., it follows the shape of the original Delaunay triangulation as
shown in Ref. [625]), whereas both LE and RBE{ least for the implementation used in this waile based on
an isotropic operatotiowever, it is recognised that both LE and RBF can be made anisoifafgemed
necessary.

Having analyzed the mesh movements and their differentiated versions)exbestep is to study the
differentiation of the mesh movement constraint in more details. From B}, tfie differentiation of the mesh

deformation residual is required. This reads as:

Original mesh

W/ )

Figure 1 Comparison between different mesh movements. Thewing isthe ONERA M6.
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[ [aT dxX oT

2.9
oxap T ap (2.9)

Considering the residual associated with Eq. (2.1§Tk= {X} — [E]{B}, the following relations hold true:

2.1
as
= — 2.11
where[I] is the identity matrix. Hence, considering Eq. (1.3), it follows:
dl T as
- =_ — 2.12
lap) ., = ~esan) 81|55 (2.12)

where{A; peu } is the mesh-adjoint vector associated with DGM. Mura ef6hlhave proven that for explicit

non-iterative mesh movements the following relation holds:

{5_)1(} = {AG,DGM}T (= {2_}1{ + AT g—§}> (2.13)

The same derivation can also be followed for the residual associateldByite. {T} = [K]{X} — {S}:

or =—|K 2.14
5x) =K (2.1
[au i [ (2.15)
Therefore:
dl T [0S
) -t 2

where{A; ; ¢} is the mesh-adjoint vector associated with and it is obtained by solving the following linear

system of equations:

I OR
{ﬁ +AF— < A(T;,LEK} = {0} (2.17)

If each surface mesh point is used as a DV{Dé¢.= {S}, Egs. (2.12 and (2.16) reduce to respectively:

dl T
{E}D(;M = —{A¢ peu} [E] (2.18)
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dl
{E}LE = —{Ag.5} (2.19)

The verification of the gradients expressed in Egs. (2.12) ahf)(2an be found in Mura et al. [6] and Dwight

and Brezillion BQ] respectively.

Il Analysis of the gradient calculation chain

There are two important quantities that need to be addressed. The dirst tve gradienfdl/dX} and the
second is the JacobiddX/dS] which is available explicitly or implicitly if either DGM or LE is used
respectively The former is the one which describes the variation of the objective functidnaxchange in the
volume meshwhereas the latter describes the variation of volume mesh w.r.t. the surfsitenoaes. Since
these two quantities are multiplied together, {idd/dX}[0X/0S], it is necessary to chedkat no cancelling
effect is taking placeTo do so, theidistribution over the computation domainfisther studiedTo compare
their distributions over the entire volume mesh, a line drawn perpendictriamythe wall to the far-fields
selected and a series of point in its neighborhood are considered. Thesepothen used to evaluate the.r.
(normal decay rate)The ONERA M6 described in Section V ised to study ther.d.r. sampled values.
Referring to Fig. 2 and its 3D representation on the lower left, a seriegnté plong the normal to the upper
surface were selected and the values interpolated. A seroiRldge x-axis (describing the distance from the
wall) was used in order to highlight the rate of change of quantities that havevtieas distributed over
different orders of magnitude. Fig. 2 clearly shows that, regardfake different mesh movements used, all the
Jacobian$dX/0S],r mpeu Start to visibly decay further from the wall, whe¢td /dX} has almost decayed. In
this scenario, no information about the objective function gradient isa®w&//dX} decays before any
significant decay ofdX/dS], for all mesh movements: is the authors’ opinion that this last scenario is always
the case because it is preferable to distribute the deformations as evpaBsile over the entire mesh in order
to reduce the risk of mesh element cross over. In fact, having a sneslésr iite of the JacobigdX/dS] is an

indication of the capability to uniformly spread the deformations dweary the wall.
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Sur face mesh nodes

Sampled points (solid line)

1
n
Supporting box \
\
1
n

Sampled points (dashed line)

i i i i i i
10° 10 10 1073 103 10! 10°
lo.g(znarmal /Zma;z')

Figure 2 Comparison between different n.d.r.(s) over the computational domain.

IV Optimization Framework

TheONERA M6 wingat freestream Mach number of 0.833 and constant lift coefficient af38.231] is
considered. The Reynolds number is 11.72. Mased on the MAC (Mean Aerodynamic Chord). The hybrid
unstructured quad-dominant mesh consistg.9fMil. nodes and it was generated using the unstructured quad-
dominant software SOLAR3P]. The flow solution is solved by the DLR TAU-Code [22]ngia one-equation

SA (Spalart-Allmaras) [23] turbulence mod&he adjoint version of the solver and turbulence model is hand-

differentiatedand the frozen turbulent viscosity is not used.

The path toward the minimum, which is here used to investigate the efféiffieoént non-consistent strategies,
could be contaminated either by errors in the flow or flow-adjointtispluOn this matter, Nadarajah and
Jameson [33] established that the accuracy of the gradients obtained dwvadjaint system depends on the
flow solution level of convergence only. Furthermore, in general asdsnige flow solution is converged to an
acceptable level, the level of convergence of the flow-adjoint is generalgideorto be satisfactory when

stopped at one or two order of magnitude lower than the respectivesfistion. By monitoring the
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aerodynamic coefficients and the change in the derivatives, the foll@emgergence values were considered

satisfactoryRy,,, = 107% andRygjoine = 107°.

A lift-constrained drag reduction optimization is considered by addregsnguestion of consistent versus non-
consistent mesh movement and mesh sensitivity approaches. At each itbeafiamework requires one flow
solution, two flow-adjoint solutions (lift and dradyvo mesh-adjoint solution (if used) and one search direction.
These steps are repeated until convergence has been reached. The choice eshthmormement and
subsequently of its linearization which addresses the question of coogistaighlighted in Fig. 3.

The parameterization chosen for this study is the FFD (Free-Form Defamriatits original formulation34).

The FFD offers the advantage of not requiring an inverse geomittrig bn the original profile. FFD consists
of creating a box-like lattice around the object which is then mapped usimgaa combination of Bernstein
Polynomial, BP; ; ,, and the parametric control points vectd}. Mathematically, this is expressed as a

trivariate volume tensor product:

n

m P
(SQwvw} =) > > Dy BPW)- BE (1) BPw) (4.2)
i=0 j =0 k=0

where the physical coordinatés v, z) need to be mapped into local normalized coordinatgs w) € [0,1] x
[0,1] x [0,1] andn, m,p are the curve degree in each direction which also correspond to themafrcontrol
lattice subdivisions. The differentiation of Eq. (4.1) w.r.t. the contaitp, i.e.{D}, is simply the product of the

BPs alonghex, y and z-axis:

[65‘ (u,v, w)]

n m P
| = ZZBPi(u)-BF}(v)-BPk(w) 4.2)

i=0 j=0 k=0

Wheren, m, p representing the degree of the BPs which take respectively the valdg&f6lThere are a total
of 10 DVs which control only the upper surface and were chosen ér todnaintain a fixed planform. The
search direction updates are computed by the second order quasi-NeBE®BSL{Low-memory Broyden-

Fletcher-Goldfarb-Shanno) optimizeith line searci{35].
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Mesh generation

DV updates

Parameterization
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Flow-adjoint !
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1

DGM

Computation of
{d CD /dD}corrected

Optimizer

Figure 3 Workflow for the consistent vs. non-consistent framework.

The fixed-lift, i.e.C;, = Cj 14rgec » IS cONtrolled by the flow solverlo be more specific the angle of attack is
adjusted by the flow solver in order to respect the following inequaktyC, (1 — 10~*) < Cirarger < C (1 +
10~%). In this application, the fixed-lift is considered as an explicit constrthist means that the gradient needs
to be corrected in order to take into account the different arigietack [36:

dcp

Icor'rected = CD - ;gL (CL - CL,target) (43)

da

which means that the gradients needs to be corrected in order to takecotmt the different anglef-attack

[36]:
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dl dc ——\dC
I b i o 0
7)) corrected dD dﬂ aD
where one wants to note tr{aitCL’nge[ /dD} = {0} since the target lift does not depend on the DVs, in fact it is

always adjusted solely by the flow solver and not by the optimiaathermorederivatives(dC ;,/da) are

computed analyticallysing the flow-adjoint solution as follows:

<dCD,L> _ (6CD,L) Ry {6R} (4.5)

da Ja da
This effectively requires two flow adjoint solutions: one for thagdand the other for the lift coefficient. The
advantages is that the derivatives computed in Eq. (4.5) are accuratehsineeet based on the flow-adjoint

solution.This correction prevents the optimizer to reduce the drag by sieglycing the lift.

V Test Cases

To investigate the effect of the extent of the grid differentiation (i.e. ubasgupporting box) and consistent vs.
non-consistent approaef a series of test cases have been devised which involve several combindtion
oDGM, mDGM, RBF and LE for the mesh movement and grid sensitiagegies in the optimization chain.

In order to simplify the nomenclature of the strategies being investigatedolliveing shorten version is

proposed. Consider theX,,qy [a_x

as] case which describes a consistent approach where the mDGM is used
mDGM

X

both in the mesh movement, i2X ;. ,, and in the differentiated mesh movement step[% On

strategy

the other hand, for instance th&, [Z—;{] case represents a non-consistent approach where the LE is used
mDGM

as a mesh movement in conjunction with the differentiated version of the mDGM.

V.A Metric Term Differentiation Extent

The goal of this section is to investigate the effect of supportingdisiance from the wing surface. The
supporting boxgare roughly30, 50, 100 and 150% of MAC. The fifth case does not use the supporting box
which means the calculation @i/ /dX} is performed over the entire volume domain. As can beiselig. 4,

the introduction of the supporting box introduces a negligible differentiee final value of the optima for the
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cases with supporting box of 50% MAC and above. However, it stadiesviate significantly for the case where
the supporting box was placed at 30% MAC. Tikibecause, such a low supporting box height is cutting the
information from the gradiedtdl/dX}. This shows that the gradiefit/ /dX} needs to be captured accurately

and care needs to be taken when using the supporting box approach.

V.B Consistent Approaches

This section tries to establish two reference cases, using consist apgroelic will then be compareagainst
the non-consistent approaches. The optimizations being performed will D&Mnor LE to perform an
optimization using a consistent approach. The red and blue lines in Fgprésents the optimizations for
mDGM and LE respectively. All optimizations will be started from the sanitial design to guarantee a fair
comparison between each methodology. The optimization history shoxesy similar progression for both
consistent methods and give a similar drag reductions at the final opidmizaration.

Interestingly, when the DV gradients (see Fig. 6) are analyzed, thegptdwave the same starting values and
follow different search. This is not reflected in deviations in the initial @\ies depicted in Fig. 7, although
there is a deviation in the search paths. Towards the end of theézapithm the difference of this value reduces.
In this case, the differences are solely due to the different mathematioaldtions of both mesh updates and
mesh sensitivities.

This study has compared two consistent approaches and the followdigs stim to establish the relative effect
of the different mesh movement and grid sensitivity methods by sasalfa series of different non-consistent

approaches.

V.C The Effect of Non-consistent M esh Sensitivities

The goal of this section is to numerically investigate what happens avharticulammesh movement is used in
conjunction with a differentiated mesh movemdrdsed on a different mesh update strate@his is
representative of situations where, for instance, the grid sensitivity eoupidate l{ased on the chosen mesh
movemenkis either too memory or computationally expensive.

In order to investigate this case, a specific mesh movement is caondarsed in each optimization study first
with its differentiated version and then with different mesh sensitivity strateffie cases compared in this

section are:AX,,pey [0X/0Smpen  and AX,,pey [0X/0S],; for mDGM mesh movementAX,zr[0X/
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0S)mpem @NdAX - [0X /0S],; for RBF mesh movement akX, ;[0X/0S],; andAX,;[0X/0S),.pecu fOr LE
mesh movement. SymbalsX and[0X/dS] designate the mesh movement and grid sensitivity, respectively.
Referring to Fig. 5, the optimizations are started from the same initiabptimized geometry and at iteration
No. 2, a slight difference is registered in terms of computed drag coefffigciéch is maintained up to the end of
the optimization.

Fig. 7 shows the DV updatesid as can be seen all tte@ses have the same DV starting values. Furthermore, a
close look of the DV paths reveals that only for some DVs tiege noticeable deviation. The deviations
introduced are initiated by the grid sensitivity strategies employed. Asgeasie presented in Section V.A, the
deviations at iteration No, 1 do not lead to large differences in the optozause are not big enough for the
optimiser to predict a different DV updates.

These small differences in the gradients (see Fig. 6) computed at iteratidndda be visualized by using
gradient{dl /dS} and not{d!//dD} because they differ by a Jacobian factor,[26/0D] which is the same for
both methodsThe gradients are sampled along a spanwise cut depicted in Fig. 8 (note thedléhon the z-
axis (right) is true to the profile coordinates only). The resulting 2D v@et@ shown in the same figure. The
trend is equally described by the two methods, but large deviations are eeatdhe trailing edge and in the
maximum values of some points especially at the shock area.

In Section Ill, it was established that both differentiated mesh movementsmaDGM and LEare not cutting

the physical quantitydl /dX}. This last quantityis the only part of the chain that carries physical information
and is the same regardless of the mesh movement chssgearly shown in Eq. (1.4). Furthermdi@,/dX} is
basedon the flow-adjoint solutioland its accuracy dependa the flow solutio as Nadarajah and James@83][
have proven. Of course, the flow solutiobviously influenced by the mesh density and quality, hese
factors cannot justify the small differences in the gradieatsighlighted in Fig. 8 because they are used by both
the mDGM and LE-based chain with no changes. Now that vegigd X} has been excluded as a cause of the
small differences, the attention is moved to the Jacdbi¥pjos].

One of the main difference between LE and mDGM is thatLE elastic matrix K] needs to be inverted
iteratively (i.e. [K]~* = [0X/aS]), whereas the mDGM provides the Jacodi@k/aS](= [E]) analytically,
thus without the need to use an iterative method. Therefore, the vedress ia theDGM-based Jacobian could

be taken as an example to match, but thisoisceptuallywrong because the two methods are mathematically
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different and therefore, in theory, are not expected to yield the sesuks.However, it is anticipated that the
differences between the two methods are not large.

The second step is to actually stuthg magnitude of the difference betwd&]—' and[E] matricesover the
computational domairAs can be seen from Fig. the n.d.r. computed over the neighboring points (introduced
in Section IIlI) of these two Jacobians show the same totoge to the wall wheréhe values ofgradient
{d1/dX} are not zeroHowever, just before vectédl/dX} reaches zero, the two Jacobian distributions start to
show a differentrend Since the region where the two Jacobians are equal covers megtoof (near the wall)
wherethe valueof gradient{dl /dX} are not zerobut differs in a smallegion (away from the wallwhere the
values of gradienfd//dX} tend to zerojt is possible to explain why they are largely equal, but stitkent

minor differences

V.D The Effect of Non-consistent M esh M ovement

The goal of this section is to investigate numerically what happens avparticulargrid sensitivity is used in
conjunction with different mesh movements. This is representativituafisns where another mesh movement,
different from the one used in the mesh adjoint is deemed either olrst or less computationally intensive.
In order to investigate this case, a specific mesh sensitivity strategysenchad used in each optimization
study first with its mesh movement then with different meshaterdtrategiesThe cases compared in this
section areAX,,pey [0X/08]mpem » DXz [0X /08 mpey andAX gpr[0X/0S),.peu for the grid sensitivity based
on the mDGM an@X,,pcy [0X/0S], 5, AX £ [0X/0S],r andAX gz [0X/0S],r for the grid sensitivity based on
the LE.

In Fig. 5 the test cases start from the same initial non-optimized geometay,itaration No. 2, there is a yer
small difference in terms of computed drag coefficient. This is maintainealtbp end of the simulatiom Fig.

7, all the DVs follow a similar path with only minor deviations.

The small differences in drag at iteration No. 2, are due to the differeshit m@vements used which introduces

deviations in the near-wall mesh orthogonality even if the first seirfaesh update is the same.
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Figure4 Convergence history comparison for different mesh size differentiations.
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Figure5 Convergence history comparison for the consistent and non-consistent cases.
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Figure 6 DV’s gradients (corrected for the change in the AoA) history comparison for the consistent and non-consistent cases.
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Figure 7 DV’s updates history comparison for the consistent and non-consistent cases.
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Figure 8 Selected point-to-point gradients comparison computed based on the flow solution at iteration No. 1.

VI Memory and CPU time Comparison

Mesh deformation and mesh sensitivity are compared in terms of memdrCPU time requirements assessed
on a single Intel Xeon 2.67GHz processor with 70.8Gb of menTdry.cost of the first iteration is analyzed
separately from the others because this is where the mesh predpigpdesperformed. This refers to the
computation of matriceE], and[K] which is performed only once and not repeated afterwards because the
mesh connectivity is not changed.

Referring to Tab. 2 the following conclusions can be drawn. It ideat that whenever either tAX 5 Or

AX,; approach is used there is an increase in both CPU time and meneorthewonsistemtX,,pcy [0X/
dS]..ocu approach. However, these advantages are slightly offset by thedmwprocessing CPU time offered

by bothLE and RBF. This makes ti&X z5-[0X/0S],.pcm @ppro&h, at iteration No. 1, 19.88 more CPU time
intensive than th&X,, ¢y [0X/0S1,.0cu approach becauss the two pre-processing steps and the additional
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In terms of memory, the cost is comparable only forAKg ., and theAXzr approach, whereas the&;
approach requires memory and CPU time which are two orderagritade bigger. The same trend, although
less severe, is also registered while computing the gradieatomputation of gradied®X/adS],,pcu requires
only 1.2Gb of memory and 358s of CPU time compared to t&d Hhd 1,726s required by fd&x /dS], ;. Note
that, although Egs. (2.4) and (2.17) share the same Jad#&jiathe RHS and LHS are essentially different
vectors. In fagtthe memory needed to comp{td /dX} is greater than the one needed to compute just vector
{X} in EqQ. (2.4). This explains the different memory values reportéadn?.

What is interesting is that neither tf#X/9S],,pcu NOr[0X/0S],r require different memorgsone varies the
objective function, i.eCp ;. On the other hand, tj6X/dS],; term shows a CPU time which gives an uneven
split of time between each objective functiarhe [0X/dS],,pcy Shows a total CPU time of58s which is
equally distributedi.e. 179s eachp compute thgradient in Eq. (2.18) for both thif and the drag coefficient.
On the other hand tHéX/dS],; approach requires a total CPU time of 1,726s which is split bet@geamhich
took 685s, and;, which took 1,041s. One explanation for this is that the meisgpyoportional to the size of
the system, i.eNy,,, X Ngp,, Whereas the CPU time is proportional to how long it takes to solve gz Bgstem
which cannot be considered constant as one changes the objective function.

After the first iteration, the advantage of thX,,;y [0X/0S],.0cu Strategiesover the other approaches
becomes evident as the data in Tab. 3 clearly shimmsontrast, for each iteration after the first, there is an
increase in CPU time for thaX;;[0X/0dS],; approach of almost 8 times compared to the consistent
AX,peum [0X/0S)mpeu @pproach. There is also a large computational cost for the non-consisemteae the
AX;;[0X/0S),,pey IS used. This gives a CPU time equal to 4.3 times greater thaXthgy, [0X/0S8 e - If
theAX,,pey [0X/0S] .z is used the CPU time registered is 3.35 timesater tharthe AX,,pey [0X/0S ] mpeum
approach.

It is possible to estimate the linear cumulative computational time due to bdalifféhences in mesh movement
and sensitivity. In order to do so, the CPU time to build matfiEgsand[K] is not considered after iteration
No. 1 and the remaining CPU time is projected linearly (usingléite reported in Tab. 3) because it does not

vary much between the iterations. This is shown in Fig. 9.
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Table2 CPU time and memory requirements comparison at iteration No. 1.

Memory (Gb) CPU time (s)
Strat
o Mesh Gradient ; Mesh Gradient
. Pre-processing . Total
movement computation movement computation

A’YmDGM [ax/as]mDGM 1'ZmDGM 598mDGM 358mDGM 1v006
0.232p6um 50mpem

AX,pew [0X/0S) .5 15, 598,.peu + 1215 1,726, 2,495

AX,;[0X/0S] .z 15,5 121, 1,726, 3,654
14, 1,807,

AX,;[0X/0S]mpem 1.2,.p6m 598,.p6m + 1215 358,061 2,884

A1YRBF [ax/as]mDGM l'ZmDGM 55RBF + 598mDGM 358mDGM 1206
0.321 55 195 kg5

AXppr [0X/0S),p 15, 55kpr + 121, 1,726, 2,097

For a simulation of 15 iterations the final CPU time is almost 13hrs lgmmnsive than thAX;;[0X/3S]¢

approach. It is interesting to see how the inconsi&&¥p;;[0X/0S],.0cu @pproach does not lag behind as
much as the others, in fact, after the first iteration, the increase at each itesatibabout 35.53% over
AX,.peu [0X/0S],.061 - This isedimated over a period of 15 iteration to give a CPU time of roughly on

0.62hr greater thaime AX,,peu [0X/0S],pen CONSistent approach

Table3 CPU time and memory requirements comparison per iteration(after iteration No. 1).

Memory (Gb) CPU time (s)
Strategy Mesh Mesh
Gradient computation Gradient computation  Total
movement movement
AXmDGM [aX/as]mDGM 1-ZmDGM 358mDGM 408
0.232,.06m 15, 50mpem
AX,peu [0X/0S] ¢ 1,726, 1,776
AX,;[0X/0S] 15,; 1,726, 3,533
14, 1.2,00m 1,807,
AX,;[0X/0S]mpeu 358,061 2,165
A)(RBF [ax/as]mDGM 1'2mDGM 358mDGM 553
0.321p3r 15, 195z5F
AXppr[0X/0S],5 1,726, 1,921
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This analysis confirms that in the case, where a non-consistent apaacisidered more robust either in its
mesh movement or differentiated mesh movement update, it can stietenithout impacting the final result.
For example, for a large mesh movement (e.g. wing bending/twistiegRBF method may be chosen for its

robustness, however the Delaunay method will still provide a faster gradmeptitation.

w-a  AX,.peum [0X/0S]mpon = AX;p [0X/0S]mpcum *—*  AXgpr [0X/0S|mpan
w-a AXpp [0X/0S|rE = AX,pcym [0X/0Stg = AXppp [0X/0S]p
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Figure9 Cumulative CPU times comparison for different approaches.

In order to further understand the impact of the saving offeyethe mDGM method, the cost of each step is
compared against the overall CPU time of a full (single) optimization iteratiosimiify the analysis, only the
second iteration (representative of the others iterations except the first) is cahgttier choice is justified by
the fact that the first one does not require to move the baseline r8ast®.the comparison needs to consider
the relative time between the steps, the total cost (computed as the sum ofwoseldton, two flow-adjoint

solutions, one mesh movement and two grid sensitivities) is consiaegedeference value.

For the case under analysis, a single flow-adjoint takes roughly 8@ @iow solution, however this value is
likely to be comparable and in some cases higher than the flow solBtitin LE-based mesh movement and
sensitivity steps take separately roughly 30% of the flow solutiothlbutost w.r.t. the overall cumulative time

(as depicted in FidLO) is as low as 9%. These values are in line with the data reported by Nielsen aff].Park
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Thus, both LE-based mesh movement and grid sensitivity stegseaptogether roughly 27% of the total CPU
time. Fig.11 shows that the saving offered by the mDGM-based fully consistent ishsigmificant both in the
mesh movement and sensitivity steps. The 18% of the total LE-basetifi#®kpent in computing the two grid
sensitivities is greatly reduced down to just 1%, a saving of 17% the.overall cost. On the other hand, the

CPU time used for the mesh movement is reduced to an insignificaenpage, i.e. 0.5%, of the total CPU

time.
= o e |m— Flow solution BN Mesh movemnent saving
ow S0 Lf@l ) esit T?IOEE‘TT'IF'?'H B Flow — adjoint solutions B Mesh sensitivities
B Flow — adjoint solutions — WEE Mesh sensitivities | B Mesh movermnent B st sensitivity swing
|[Pully consistent LE — based chain Fully consistent mDGM — based chain|

‘

Figure 10 - Cumulative CPU time breakdown for the fully Figure1l - Cumulative CPU time breakdown for the fully
congistent L E-based chain. consistent DGM -based chain.
VIII  Concluding Remarks

The paper addresses the question as to what happens when a non-consisa@prapch, either in the mesh
movement or in the differentiated mesh movement, is used in ttreteisadjoint optimization framework. The
different optimization results found in this paper cannot be distingdiglithin the current RANS accuracy level
and can be considered essentially representative of the sameuminim

When calculating the gradients using the adjoint chain it is impdhanthe grid sensitivityi.e. [0X/dS]) does

not significantly decay beforgll /dX} has decayed. This was demonstrated by using an artificial cut-off by
placing the supporting box at different distances from the aerodgranmface. It was found that a supporting
box of 30% MAC did not perform well during optimization duethe cut-off of{dl/dX} values. This is
essential forthe accuracy of the objective function gradients within the optimizationgasespeciallywhen

non-consistent approaches are used.
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In particular, small changes in the gradients (caused by non-consigteisegsitivities) were not enough to
trigger different DV updates (computed by the optimiser). Also sofahges in the first (deformed) grid
updates (caused by non-consistent grid movements) were not etwotrigiger a difference in the objective
functions (computed by the flow solver).

Based on the framework and numerical results presented in this papeqgnsistent approaches can be used
whenever deemed necessavithout incurring in a large deviatiom the minimum found This allows non-
consistent approaches to be used in mesh movement and mesh sewsitivitations in the adjoint based

aerodynamic shape optimization.
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