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Abstract 20 

Background  21 

Recurrent Clostridium difficile infection (rCDI) places a huge economic and practical burden on 22 

healthcare facilities.  Furthermore, rCDI may impact quality of life, leaving ƉĂƚŝĞŶƚƐ ŝŶ Ă ͚rCDI ĐǇĐůĞ͕͛ 23 

and dependant on antibiotic therapy.   24 

Aims  25 

This article discusses the importance of microbiological factors in the development of rCDI.   26 

Sources  27 

Literature was drawn from a search of PubMed from 2000 onwards with the search term “recurrent 28 

Clostridium difficile infection”; and further references quoted within these articles.   29 

Content  30 

Meta-analysis and systematic reviews have shown that CDI and rCDI risk factors are similar.  31 

Development of  rCDI is attendant upon many factors including immune status/function, 32 

comorbidities and concomitant treatments. Studies suggest that poor bacterial diversity is correlated 33 

with clinical rCDI. Narrow spectrum gut microflora-sparing  antimicrobials (eg surotomycin, cadazolid, 34 

ridinilazole) are in development for CDI treatment; while microbiota therapeutics (faecal microbiota 35 

transplantation, non-toxigenic C. difficile, stool substitutes) are increasingly being explored.   36 

Recurrent CDI can only occur when  viable C. difficile spores are present, either within the gut lumen 37 

post-infection, or re-acquired from the environment. C. difficile spore germination can be influenced 38 

by gut environmental factors resulting from dysbiosis; and spore outgrowth may be affected  stage 39 

by some antimicrobials, (eg fidaxomicin, ramoplanin, oritavancin). 40 

 41 

Implications 42 

Recurrent CDI is a significant challenge for healthcare professionals, requiring  a multi-faceted 43 

approach:optimised infection control to minimise re-infection; C. difficile-targeted antibiotics, to 44 

minimise dysbiosis; gut microflora restoration to promote colonisation resistance. These elements 45 

should be informed by our understanding of the microbiological factors involved: both C. difficile 46 

itself and the gut microbiome.  47 

 48 



Introduction 49 

Clostridium difficile infection (CDI) continues to be the leading infectious cause of antibiotic-50 

associated diarrhoea, and a significant burden on healthcare systems worldwide.1, 2 Disease 51 

recurrence following initial symptom resolution frequently arises, with recurrent C. difficile infection 52 

(rCDI) occurring in 20-30% of CDI patients.3 In hospitalised patients, rCDI is responsible for increased 53 

mortality and decreased quality of life,4 and a first recurrence greatly increases risk of subsequent 54 

recurrences, which doubles after >2 recurrent episodes.5  This can result in patients trapped in a 55 

͚rCDI ĐǇĐůĞ͕͛ ǁŚŝĐŚ ŝƐ ƉƌŽďůĞŵĂƚŝĐ ƚŽ ƌĞƐŽůǀĞ (see Figure 1) and further increases the burden on 56 

healthcare facilities.  A recent study suggested median costs associated with length of stay increased 57 

from $20,693 to $45,148  for primary CDI vs rCD I patients respectively  (P<0.0001), with associated 58 

pharmacological treatment costs of $60 and $140 respectively.6   59 

Recurrent CDI is currently defined as the reappearance of symptomatic CDI within 8 weeks after the 60 

onset of a previous episode, and following previous resolution of symptoms7, although the validity of 61 

this definition has been questioned. 8 62 

Meta-analyses and systematic reviews indicate that the risk factors for CDI and rCDI are similar. 63 

Advanced age, additional antibiotic therapy during follow up, and PPI therapy were the most 64 

frequent independent risk factors for rCDI.9-11  Risk of rCDI is also greater in patients with chronic 65 

renal insufficiency and those previously receiving fluoroquinolones.9  66 

Factors including immune status/function, comorbidities and concomitant treatments are likely to 67 

influence rCDI development. However, this article will discuss the microbiological factors affecting 68 

rCDI, outlined in Figure 1, focussing on the intestinal microbiota and C. difficile spore germination. 69 

 70 

The intestinal microbiota and recurrence of CDI 71 

Evidence for gut microbiota link CDI and recurrence 72 

The link between gut microbiota disruption and CDI is well-established.  Highly significant risk factors 73 

for CDI include age >65yrs and prior antimicrobial use.12 Increasing age has been associated with an 74 

altered gut microbiota profile,13,14 while antibiotic-mediated disruption of intestinal microbiota and 75 

ůŽƐƐ ŽĨ ͞ĐŽůŽŶŝƐĂƚŝŽŶ ƌĞƐŝƐƚĂŶĐĞ͟ ŚĂƐ ůŽŶŐ ďĞĞŶ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ CDI. Increasing availability of 76 

sequencing technologies has enabled more accurate exploration of antibiotic-mediated microbiota 77 



alterations associated with CDI.  No single microbiota component has yet been linked to C. difficile 78 

susceptibility; many different dysbiotic populations exist, all of which may predispose to CDI.   79 

Work in rodents and in vitro gut models indicated that clindamycin exposure resulted in decreased 80 

obligate anaerobic populations and a microbiota dominated by Enterobacteriaceae;15-17  81 

cephalosporin exposure in Pseudomonadacae- and Lactobacillacaeae-dominated microbiota,15, 19, 20 82 

and tigecycline exposure in decreased in Bacteroidetes and increased Proteobacteria populations.21, 83 

22  These changes have been linked with CDI susceptibility to varying degrees and can persist longer 84 

term; with microbiota populations taking up to a year to recover post-ciprofloxacin or clindamycin 85 

treatment.23   86 

There is considerable inter-individual variability of human microbiota profiles and discrepancies 87 

between different clinical studies are evident.14, 24  Defining microbiota changes associated with CDI 88 

susceptibility is difficult, due to the range of antibiotic exposures and patient co-morbidities. In 89 

general, CDI patients are reported to have decreased Bacteroides, Prevotella, Lachnospiraceae and 90 

Bifidobacteria spp, and increased Lactobacilli, Ruminococci, Enterococci and Enterobacteriaceae 91 

populations 24-26  92 

Studies suggest that decreased bacterial diversity is a common trait of all diarrhoeal samples, not 93 

only those of CDI patients.24, 25, 27  However, loss of bacterial diversity has been correlated with rCDI 94 

clinically.27, 28  Chang et al. demonstrated ĚĞĐƌĞĂƐĞĚ ƐƉĞĐŝĞƐ ͚ƌŝĐŚŶĞƐƐ in  faecal microbiomes of rCDI 95 

patients versus healthy controls and patients with a single CDI episode.28    96 

Antimicrobials and CDI recurrence 97 

While C. difficile was first identified as a pathogen in clindamycin-associated colitis,29,30 most other 98 

antibiotics have been linked to CDI at some point, though the highest risk is associated with 99 

clindamycin, cephalosporins, penicillins and fluoroquinolones. 31,32 100 

The major paradox of CDI treatment is that while antibiotic therapy is a major risk factor for CDI, it is 101 

also the first-line therapeutic option.33  Thus, while CDI treatment may successfully inhibit vegetative 102 

C. difficile populations, further disruption of the microbiota subsequent  also occurs, increasing the 103 

risk of CDI and contributing to the rCDI cycle (Figure 1). Current guidelines recommend different 104 

strategies for the treatment of initial CDI versus rCDI and can be found in more detail in Debast et 105 

al.7 However, a discussion of this topic is beyond the scope of this article. 106 

Oral metronidazole and vancomycin were the primary CDI treatment options until recently. Both 107 

agents have been linked to further gut microbiota disruption.  Vancomycin extended the disruption 108 



primarily caused by clindamycin in both hamster s33 (Bacteroidales , Clostridiales) and in vitro gut 109 

models (Bacteroides fragilis group spp, bifidobacteria,  clostridia).  Gut concentrations of 110 

metronidazole are low to undetectable (<0.25-9.5 mg/L), 34  and this was reflected in minor 111 

microbiota disruption and poor efficacy against simulated CDI an in vitro gut model.35  The high 112 

recurrence rates associated with both these agents has led to development of narrower spectrum 113 

antibiotics, with potent anti-C. difficile activity, but largely sparing of the gut microbiota. 114 

Fidaxomicin was introduced to the European market in 2012, and shows greater activity against 115 

clinical C. difficile isolates than vancomycin or metronidazole.36 Fidaxomicin has a narrower 116 

spectrum of activity than vancomycin or metronidazole and is more sparing of the gut microbiota 117 

during treatment 37, 38,39 and in vitro. 18, 35 A meta-analysis of two large concurrent double-blind 118 

randomised non-inferiority trials 39 showed that fidaxomicin was non-inferior to vancomycin for 119 

initial resolution of symptoms. 40 Statistically fewer patients experienced a rCDI episode following 120 

fidaxomicin vs vancomycin.  41 Whole-genome sequencing (WGS) demonstrated a 2.5-fold lower 121 

cumulative risk of relapse (with the infecting C. difficile strain) fidaxomicin, and a 3-fold lower 122 

cumulative risk of reinfection (with a different strain) up to 28 days post-therapy . 41 After a first 123 

recurrence, fidaxomicin is associated with a lower risk of subsequent recurrence, 39, 43 however there 124 

are currently no data regarding vancomycin vs fidaxomicin use in patients with multiple recurrences.   125 

Other novel non-absorbed, narrow spectrum antimicrobials are also in development for CDI 126 

treatment.  Surotomycin (cyclic lipopeptide) shows potent antibacterial activity against C. difficile 127 

and other Gram positive bacteria, but limited effects on Gram negative organisms in phase I clinical 128 

trials and an in vitro gut model,.44 45  However, this did not correlate with improved outcomes in 129 

phase III studies and the primary clinical endpoint of non-inferiority to vancomycin was not met.46-48 130 

Cadazolid, (oxazolidinone antibiotic incorporating a fluoroquinolone side-chain) with potent anti- C. 131 

difficile activity,16, 49 demonstrated  similar time to resolution of diarrhoea but  lower recurrence rate 132 

than with vancomycin (18.2 to 25.0% versus 50%) in a phase II study of 84 patients.50  In vitro gut 133 

model studies suggest it is sparing of the microbiota (excepting bifidobacteria ),16,51, but clinical data 134 

are lacking. 135 

Ridinilazole shows good anti-C. difficile activity,52 and efficacy in hamster and in vitro gut models. 52, 136 

and was sparing of ŚĞĂůƚŚǇ ǀŽůƵŶƚĞĞƌƐ͛ gut microbiota in Phase I studies.54 Phase II clinical data 137 

demonstrated ridinilazole superiority over vancomycin with sustained clinical response in 24 of 36 138 

patients (67%)  versus 14 (42%) of 33 respectively. 55 This was attributed to a lower rate of rCDI with 139 

ridinilazole (14%) compared with the vancomycin-treated group (35%).   140 



Microbiota therapeutics 141 

Tthere has been an increasing trend towards the use of microbiota therapeutics to restore the host 142 

microflora.  Initially, this focussed on faecal microbiota transplantation (FMT), although recently, 143 

targeted microbiota therapies have emerged. 144 

Faecal Microbiota Transplantation (FMT) 145 

FMT involves the transfer of faecal material from donor to recipient with the aim of restoring a 146 

healthy gut microflora and re-establishing colonisation resistance to C. difficile. Donors are screened 147 

for enteric bacterial pathogens, viruses and parasites.56 Donor faeces are diluted in water, saline, (or 148 

milk / yoghurt), coarse-filtered and administered ŝŶƚŽ ƚŚĞ ƌĞĐŝƉŝĞŶƚ͛Ɛ ŐƵƚ ǀŝĂ Ă ŶĂƐŽŐĂƐƚƌŝĐ͕ 149 

nasoduodenal or nasojejunal tube, rectal enema or colonoscopically.  A randomised, open-label trial. 150 

compared FMT, vancomycin and bowel lavage to vancomycin and bowel lavage; and vancomycin 151 

alone. 57 An overall cure rate of 94% was reported, with a primary cure rate of 81% (13/16 subjects) 152 

for FMT vs 23% (3/13) and 31% (4/13) cure rates for vancomycin and bowel lavage and vancomycin 153 

alone respectively (10 week follow-up).   A systematic review of 25 studies reported similar overall 154 

success rates, with complete symptomatic resolution in 91% of patients (mean follow-up of 12.6 155 

months), including 289 with refractory CDI treated by FMT.58  Cure rates were unaffected by the 156 

route of administration59 or use of fresh or frozen faeces.60 157 

Studies indicate a diverse, balanced flora is important in restoration of colonisation resistance: 16S 158 

rRNA gene amplicon pyrosequencing, showed reduced bacterial diversity and compositional changes 159 

in microbiota samples from pre-FMT rCDI patients vs post FMT rCDI patients and healthy volunteers 160 

for up to a year following successful FMT.61 No bacterial groups were invariably associated with 161 

either rCDI or successful FMT outcome, however, microbiota composition continued to change for at 162 

least 16 weeks post-FMT, indicating microbiota recovery may take considerably longer than 163 

symptomatic resolution. Similarly, Jalanka et al. performed microbiota profiling by phylogenetic 164 

microarray analysis on samples from 3 universal donors and 14 rCDI recipients pre- and post-FMT 165 

over 1 year, commenting on the similarity between post-FMT recipient flora, and universal ĚŽŶŽƌ͛Ɛ 166 

floras, which persisted for the duration of the study.62 167 

 168 

Despite impressive success rates, concerns exist about the use of FMT.  Most adverse effects are 169 

mild to moderate (eg, diarrhoea, flatulence, boating, abdominal discomfort) but a small number of 170 

serious adverse events have been reported (bacteraemia, perforations and death.63 The long-term 171 

effects of FMT are unknown, particularly the theoretical risk of transmitting other biological agents 172 



to the recipient, despite rigorous screening procedures.  National guidelines  (e.g.  UK NICE.56) reflect 173 

this, while acknowledging the role of FMT for patients with rCDI that has failed to respond to other 174 

treatments  175 

Biological agents 176 

The undefined nature and possible long-term effects of FMT mean that the use of a defined 177 

microbiological agent or mixture for the treatment of CDI is an attractive approach.   178 

Animal model studies have demonstrated that Bifidobacterium bifidum, 64 Lachnospiracea 19 and 179 

non-toxigenic C. difficile (NTCD) can all mitigate the pathogenic effects of toxigenic C. difficile.  A 180 

ďĂĐƚĞƌŝĂů ͚ĐŽĐŬƚĂŝů͛ ŵĂĚĞ ƵƉ ŽĨ Ɛŝǆ ƐƉĞĐŝĞƐ ;“ƚĂƉŚǇůŽĐŽĐĐƵƐ͕ EŶƚĞƌŽĐŽĐĐƵƐ͕ LĂĐƚŽďĂĐŝůůƵƐ͕ AŶĂĞƌŽƐƚŝƉĞƐ͕ 181 

Bacteroidetes and Enterorhabdus) also resolved rCDI and restored colonisation resistance in mice.65 182 

The use of NTCD spores was evaluated in a Phase II, randomised, double-blind, placebo-controlled 183 

trial of 168 patients.  CDI recurrence was 11% vs 30% in the NTCD vs placebo groups respectively, 184 

with successful NTCD colonisation associated with lower recurrence rates (2% vs 31% for placebo).66  185 

However, despite relatively few adverse events being reported, the possibility of PaLoc 186 

(pathogenicity locus, containing genes for C. difficile toxin production) transfer is a major concern 187 

and has been demonstrated in the laboratory 67  and further work is clearly. 188 

Petroff et al. formulated a stool substitute using 33 representative bacterial species from healthy 189 

donor faeces. These were administered to 2 patients who had failed to respond to conventional 190 

antimicrobial treatments for CDI and in both cases, symptoms resolved.68  A Phase Ib trial of SER-109 191 

(a spore mixture from healthy, screened donors) prevented CDI recurrence in 86.7% of patients 192 

(26/30), noting increased gut microbiota diversity.69  Interim Phase II results, however, showed that 193 

SER-109 failed to achieve the primary efficacy endpoint of reduced CDI occurrence after 8 weeks. 70 194 

Microbiota therapeutics is a promising area of CDI treatment, however, it is clear that the gut 195 

microflora is a highly complex entity, with myriad compositions, interactions and factors involved in 196 

colonisation resistance. Studies so far indicate that treatments promoting increased gut flora 197 

bacterial diversity rather than the use of a single species may be more successful.   198 

Spore viability and CDI recurrence 199 

Microbiota disruption will not lead to CDI/ rCDI unless viable C. difficile spores are present  (Figure 1).  200 

Therefore, factors affecting the presence and viability of spores in the gut are important 201 

considerations in recurrent disease. 202 



Reinfection vs Relapse  203 

CDI can recur within two contexts; recrudescence of C. difficile spores persisting in the gut (relapse), 204 

or reinfection with spores from the environment.  Relapse is likely to be affected by the amount or 205 

viability of C. difficile spores in the gut lumen; while reinfection is likely to be affected by C. difficile 206 

spore viability or environmental contamination.  Furthermore identification of reinfection within the 207 

nosocomial environment has infection control implications. 208 

Distinguishing between relapse and reinfection is challenging, particularly as PCR ribotyping may lack 209 

the power to discriminate between genotypically similar isolates. The picture is further complicated 210 

by patients harbouring multiple C. difficile genotypes.71 Some studies using more discriminatory 211 

techniques suggest reinfection accounted for ~50% of recurrent infections, 72, ,73, 74, 77  212 

Varying rates for recurrence due to relapse have been reported in the literature, ranging from ~52-213 

88% of rCDI episodes. 72, 73  Risk of relapse is greatest during the first 14 days post-treatment; 74 while 214 

greater time periods between initial and recurrent episodes tend to be associated with reinfection. 215 

75, 76  216 

 217 

Effect of C. difficile strain type 218 

C. difficile strains exhibit variable growth dynamics, sporulation and germination rates, 78-80 factors 219 

that may affect rCDI.  Several studies have shown that certain strains, particularly PCR ribotype (RT) 220 

027/ NAP1/BI (hereafter referred to as ribotype 027) carry a higher risk of recurrent disease.71, 80-82 221 

Marsh et al reported initial infection with RT027 as a significant risk factor for relapse (P = 0.008),75  222 

indicating an association of this ribotype with both recurrence and relapse due to spore 223 

recrudescence. This could be due to increased sporulation in this ribotype, 83 increasing the load of 224 

residual spores in the gut lumen post-treatment and increased ͚ƐŚĞĚĚŝŶŐ͛ ŽĨ ƐƉŽƌĞƐ ƚŽ ƚŚĞ 225 

environment. 226 

 Other PCR ribotypes have also been linked with increased CDI rates, such as RTs106 84, RT176 85 and 227 

RT001.86 However, it is also imperative to consider this against the underlying population 228 

demographic as regional differences in prescribing and initial infection characteristics may influence 229 

rCDI.  230 

Persistence of C. difficile spores in the host gut 231 



In recrudescent disease, spores must remain in the host gut and proliferate in response to agreeable 232 

conditions. C. difficile vegetative cells can adhere to Caco-2, HeLa and HT-29 cells and extracellular 233 

proteins in vitro,87, 88 and two potential proteins responsible for this interaction have been 234 

identified.89  However, interaction with human colonic epithelia does not trigger germination.89  C. 235 

difficile spores were present in complex, mixed species biofilms within an in vitro gut model,90 236 

suggesting that intestinal biofilms may act as a reservoir.  Recent work demonstrated the 237 

persistence of two different morphotypes of C. difficile spores produced from one culture91.  It is 238 

possible that biofilm-associated and planktonic spores may have different properties, potentially 239 

altering their respective ability to attach to host cells. Although these experiments are in vitro, they 240 

suggest a potential role for biofilm-associated spores in recurrent disease.  241 

 242 

Factors affecting spore viability  243 

 C. difficile spore viability and germination in the gastrointestinal environment is pivotal in 244 

transmission and recurrence (Figure 1). Germination begins when a germinant molecule interacts 245 

with the germinant receptor (GR). C. difficile spores do not share homologs of the GerA, GerB and 246 

GerK germinant receptors commonly recognised in Bacillus spp and other Clostridia,92  and are 247 

therefore receptive to a different spectrum of germinants.   Germination is completed by release of 248 

a vegetative cell from the ruptured spore coat/exosporium.  249 

One receptor involved is CspC, a bile acid binding protein.  Bile salts are the main germination factor 250 

identified for C. difficile, although the picture is complicated.  Germination rates vary for different 251 

bile salts; primary bile acids taurocholate and glycocholate increase germination,93 while the primary 252 

bile salt chenodeoxycholate inhibits  germination.94   Furthermore, the secondary bile acid 253 

deoxycholate is reported to stimulate germination, but inhibit vegetative cell growth.  Stool extracts 254 

from antibiotic-treated mice have higher concentrations of primary bile acids, whereas stools from 255 

untreated mice have higher secondary bile acid concentrations.95 Bile acid metabolism has been 256 

implicated as a factor in colonisation resistance. 96,97  However, while Buffie et al associated a 257 

specific bile acid 7 alpha-dehydroxylating intestinal bacterium, Clostridium scindens, with 258 

colonisation resistance, 96, Allegretti et al. suggested that several organisms may be performing this 259 

metabolic function.97 Varying bile acid composition, and primary bile salt metabolism by gut 260 

microbiota along the gastrointestinal tract may have a regulatory role in both spore germination and 261 

maintenance of colonisation resistance.  262 

Treatment agents and spores  263 



Spore germination can be affected by treatment agents, at least in vitro.  Fidaxomicin , vancomycin98, 264 

99 and oritavancin100 exposure inhibit C. difficile spore outgrowth, although early germination events 265 

are still evident.   Thus, vegetative outgrowth remains supressed only while supra-MIC antibiotic 266 

levels are maintained in the colon. Interestingly. detectable fidaxomicin activity persisted in both an 267 

in vitro gut model, 16,35 and in patient stool samples.43 Detectable fidaxomicin activity at supra-MIC 268 

levels (>4mg/L) persists on C. difficile spores following washing, preventing spore recovery.99  269 

Persistent fidaxomicin activity prevented vegetative outgrowth and toxin production in batch culture 270 

and  similar observations were also made for ramoplanin98 and oritavancin.100  It is likely that 271 

fidaxomicin adheres to the exosporium of C. difficile (as for ramoplanin101), potentially due to 272 

electrostatic charges resulting from cross-linkages on the spore surfaces. The presence of the 273 

exosporium can increase hydrophobicity of C. difficile spores, affecting adherence to cells.102 Thus, if 274 

antibiotic activity persists on spores in vivo (yet to be determined), this may result in reduced risk of 275 

spore recrudescence in situ, potentially affecting the viability of spores shed into the environment, 276 

with implications for transmission, and recurrence due to reinfection. 277 

Some antibiotics including fidaxomicin,103 cadazolid,49,104 tigecyline105, 106 and 278 

piperacillin/tazobactam105 have been shown to inhibit spore formation in vitro at sub-inhibitory 279 

levels. There is conflicting evidence, due to the different strains and methodologies used, regarding 280 

the effects of vancomycin and metronidazole on spores.49,103,105.   281 

Conclusion 282 

Whilst our understanding of the risk factors for rCDI has increased, it remains a continuing challenge.  283 

Recurrent CDI is multifactorial, but two microbiological factors - the intestinal microbiota and C. 284 

difficile spore germination - are key.  The microbiota has become a major focus for breaking the rCDI 285 

cycle, with novel narrow spectrum atimicrobials, FMT and next generation precision microbiota 286 

therapies showing great treatment potential.  However, further research is needed into the long 287 

term implications of microbiota manipulation.  The effects of treatment agents on spore production 288 

and germination; retention within the host and environmental disessmination are comparatively 289 

poorly understood, but crucial aspects of recurrent disease.   290 
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