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Abstract

Infectious disease outbreaks in plants threaten ecosystems, agricultural crops
and food trade. Currently, several fungal diseases are affecting forests world-
wide, posing a major risk to tree species, habitats and consequently ecosystem
decay. Prediction and control of disease spread are difficult, mainly due to the
complexity of the interaction between individual components involved. In this
work, we introduce a lattice-based epidemic model coupled with a stochastic
process that mimics, in a very simplified way, the interaction between the hosts
and pathogen. We studied the disease spread by measuring the propagation
velocity of the pathogen on the susceptible hosts. Our quantitative results in-
dicate the occurrence of a critical transition between two stable phases: local
confinement and an extended epiphytotic outbreak that depends on the den-
sity of the susceptible individuals. Quantitative predictions of epiphytotics are
performed using the framework early-warning indicators for impending regime
shifts, widely applied on dynamical systems. These signals forecast successfully
the outcome of the critical shift between the two stable phases before the sys-
tem enters the epiphytotic regime. Our study demonstrates that early-warning
indicators could be useful for the prediction of forest disease epidemics through
mathematical and computational models suited to more specific pathogen-host-
environmental interactions. Our results may also be useful to identify a suitable
planting density to slow down disease spread and in the future, design highly
resilient forests.

Keywords:

Plant–pathogen interactions, Lattice model, Tree disease, Early-warning
signals, Disease triangle, Plant pathology

1. Introduction1

Invasive non-indigenous pathogens and vectors such as fungi, bacteria and2

insects pose a serious threat to trees and forest health worldwide. The re-3
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cent and well-publicised outbreak of the ash dieback fungus (Hymenoscyphus4

pseudoalbidus) and emerald ash borer (Agrilus planipennis) risks the survival5

of the ash tree (Fraxinus excelsior) in the UK, one of the most abundant trees6

in small woodlands and high forests across the country (Maskell et al., 2013;7

Forest Research, 2016). At the same time, this fungus, threatens the ash tree8

extinction across the European continent (Mitchell et al., 2014; Thomas, 2016;9

Gross et al., 2013). The larch tree disease, caused by the fungus Phytophthora10

ramorum (P. ramorum), continues to spread through conifer forests in both11

Scotland and Wales, changing the landscape and forcing the Forestry Commis-12

sion to fell thousands of hectares of trees to slow down the spread of the disease13

(Forestry Commission, 2018a).14

Historically, these events cause catastrophic ecological, economic and social15

impact, and motivate a detailed understanding of the mechanisms that underlie16

the epidemics, from which strategies to manage and prevent future occurrences17

can be developed systematically (Harwood et al., 2010). The propagation of18

these infectious agents to the susceptible trees depends on a plethora of biologi-19

cal, geographical, climatic and anthropological factors. In the literature, several20

spatial models have been developed for forests diseases, that consider specific21

factors aiding the dispersal of invasive pests, such as vectors (insects, humans)22

or economical activities like the international plant trade and timber industry23

(Macnadbay et al., 2004; Alfinito et al., 2016; Harwood et al., 2010). However,24

these models, specifically designed to account for large geographical areas of25

natural forests, are very complex and require a large amount of input data to26

predict the disease spread.27

The forests in the United Kingdom and several parts of Europe have been28

reshaped continually since the mid-Holocene due to anthropogenic factors (Ka-29

plan et al., 2009). During the last centuries, the timber industry has left a30

2
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Figure 1: Woodland patches located in the Mabie Forest near Dumfries and Galloway, UK.
(a) Monocultures of coniferous forests outlined according to the interpreted forest type (IFT)
accounted in the National Forest Inventory Scotland 2016 (white dotted lines): I, young trees;
II and V conifer trees; III and VII, felled area; IV, bare area and VI, grassland. Trees were
planted at intervals of 2-3 m. (b) Coniferous forests with patches of trees infected with P.

ramorum (red outline). The IFTs showed are I, felled trees; II, conifer trees, III, young
trees and IV, broadleaved trees. Maps are showed in latitude/longitude coordinates and were
obtained with QGIS 2.18 ’Las Palmas’, using c©2018 Google Satellite datasets. To account
for the interpreted forest types we used the National Forest Inventories from Scotland (2016)
(Forestry Commission, 2018b). Image analysis was done with ImageJ (Schneider et al., 2012).

characteristic homogeneous pattern in the woodland patches: forests managed31

for timber are usually planted in lines or curved lines. These patterns allow32

an efficient management and an even access to sunlight and nutrients; with all33

trees in the plantations being even-aged monocultures of conifer or broadleaved34

forests (Forestry Commission, 2017), see figure 1(left). However, the homo-35

geneity in the trees diminishes the resilience of the forests to several threats,36

including forest diseases (Rist and Moen, 2013). Examples of this can be ob-37

served in the current outbreak of P. ramorum spreading in the Mabie Forest38

in Scotland, see figure 1(right), which consists mainly of coniferous forests with39

trees planted at the same time between 2-3 m of each other.40

Mathematical modelling provides a powerful approach to understand, pre-41

dict and counter-act disease propagation (Bate et al., 2016; Macpherson et al.,42

2017) with the advantage of fine-tuning the model to take into account specific43

attributes found in the forests. In this work we have developed an individual-44

based model in which trees are represented explicitly alongside their susceptibil-45

3
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ity to disease and infectious status, to account for disease spread in terms of the46

tree density, a basic forest measurement calculated in the field. Our model is47

similar in nature to the forest fires and percolation lattice models widely inves-48

tigated in the literature in which transmission occurs upon direct contact (Bak49

et al., 1990; Beer and Enting, 1990; Grassberger, 1993) and there is only spatial50

stochasticity. However, to consider the effect of a simultaneous presence of both51

spatial and temporal stochasticity we introduced a probability of transmission52

for the trees to catch the disease, which is not considered in the former models.53

Early-warning indicators for abrupt changes in the behaviour of complex sys-54

tems, group a set of statistical properties measured on parameters that change55

in unique ways before the occurrence of a catastrophic shift, (also known in the56

literature as tipping point or critical transition), which occurs when a system57

switches abruptly between alternate equilibria (Scheffer et al., 2009; Scheffer,58

2009). These indicators are generic and suitable for application across many59

system types, even when the underlying system dynamics are poorly under-60

stood (Carpenter and Brock; Scheffer et al., 2009; Morales et al., 2015).61

In ecosystems, early-warning methods have been used to predict the oc-62

currence of desertification processes (Corrado et al., 2014), animal extinction63

in deteriorating environments (Drake and Griffen, 2010), behaviour of aquatic64

ecosystems (Gsell et al., 2016), and have been applied on climate models for the65

simulation of dieback on the Amazon rainforest (Boulton et al., 2013). Most66

recently, their applicability as an effective model to monitor tree mortality has67

been highlighted in Rogers et al. through satellite data. Therefore, their use-68

fulness to predict changes on degradation processes for biological systems has69

increased in the literature during the last decade (Carpenter and Brock; Scheffer70

et al., 2009; Dakos et al., 2012; Litzow and Hunsicker, 2016; Ratajczak et al.).71

The main purpose behind these indicators is their effectiveness to identify prop-72
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erties in an ecological system that would change significantly as it approaches73

a tipping point between different stable states. However, this idea has been ap-74

plied only to a handful of ecological problems due to the unavailability of data75

sets, (Gsell et al., 2016; Litzow and Hunsicker, 2016; Ratajczak et al.).76

Following this premise, our interest lies in analysing the dynamics of disease77

outbreaks under the scope of classical early-warning techniques using the tree78

density as a state variable. This suggests applying the universality class and79

scaling exponents—which have been widely studied in the literature (Bunde and80

Havlin, 1996; Stauffer and Aharony, 2003)—to the prediction and detection of81

the transition from the progression of the disease to an epiphytotic outbreak.82

The structure of the paper is as follows. In §2, we propose a simplified model83

of a forest, in terms of susceptible, infected or removed individuals (SIR model)84

which exhibits a phase transition above a percolation threshold (Grassberger,85

1993; Clar et al., 1996; Bunde and Havlin, 1996). In §3, we show the results of86

the simulations in which, we quantify the propagation velocity of the infection.87

Then, we obtain the phase diagram of the contained-to-outbreak phases of the88

system and study the behaviour of relevant parameters. Finally, in §4 we discuss89

the meaning and implications of our findings.90

2. Materials and Methods91

We model a forest as a regular square lattice of dimensions L ⇥ L where92

L = 500, see Fig. 2(a-b). The forest landscape is flat and there is only one type93

of vegetation, with the initial occupation of trees following a Bernoulli trial94

according to a binomial distribution with mean ρL2, in which each trial has two95

possible outcomes a tree or an empty space. Forest patches with monocultures96

of trees with the same age that fullfill these characteristics can be found in97

several regions in Scotland, UK, see figure 2(c), in which the trees planted every98

5
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2-3 m are infected with P. ramorum.99

Following this, in our model, each site can exist in one of four states: sus-100

ceptible (S), infected (I), removed (R) and empty (;). Susceptible individuals101

correspond to a single or several trees distributed randomly which can become102

infected. An infected site, represents a patch of vegetation that has acquired a103

terminal disease, a removed site corresponds to the space left by the infected site104

after the vegetation dies, and empty sites correspond to regions in the landscape105

where no susceptible vegetation can grow, see figure 2(a-b). The location of the106

forest patches is constant in time, such that vegetation sites (either S, I or R)107

are randomly distributed with a density ρ.108

Once a site in the S category acquires an infection, its status is changed to109

I and a numerical label η is attached to it. η increases with time at a constant110

pace, ranging from −T to 0. Whereupon at η = 0, the tree at the site dies and111

is removed, i.e., its status is changed to R. Henceforth, T corresponds to the112

infectious period, that is, the time in which an infected tree can transmit the113

infection.114

After a tree is infected, it has a probability β of transmitting the disease to115

a neighbouring susceptible site during the infectious period. In epidemiological116

terms, the probability β is denoted as the transmissibility of the pathogen,117

and it is defined as the probability per unit time that an S site acquires the118

infection from a neighbouring I site. Therefore, for a healthy tree with n infected119

neighbours, the probability of remaining unaffected at each time step is given120

by 1 − (1 − β)n. For simplicity, the neighbourhood is defined by the first four121

nearest neighbours in the lattice, i.e., a von Neumann neighbourhood.122

We consider the limit in which the disease spreads in a much smaller time-123

scale than the growth of the susceptible species. Moreover, after a patch of124

forest has died, there exists the possibility of invasion from another species of125

6
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Figure 2: Typical final configurations of disease spread obtained for a system with L = 500,
β = 0.5 and tree densities ⇢ = 0.60 (a) and 0.62 (b). Near the critical transition, slight
changes in tree densities result in different spatial patterns of disease spread. Inset: Detail of
the sites statuses with trees represented following the colour bar showed on the right: empty
(;), susceptible (S), removed (R) and infected (I). The simulations were stopped after the
disease dies out (a) or when it reached the edge of the system (b). (c) Patterns of disease
spread (P. ramorum) on coniferous trees in the Mabie Forest near Dumfries, Scotland, UK.
The total forest patch area is ⇠ 250 ha and the infected region ⇠ 2.5 ha. c©2018 Google
Satellite datasets. Image analysis was done with ImageJ (Schneider et al., 2012).

plant, a phenomenon which has been observed in grass-woodland transitions126

(Abades et al.). As a consequence, it is unlikely that the woodland site regains127

susceptibility, and thus, we neglect any regenerative process in the simulations.128

The parameters β and T regulate the evolution of the disease and both are129

relevant in the model; sampling from a suitable distribution for each parameter130

would allow to model levels of disease tolerance to the pathogen for each tree,131

since it has been identified that some plants exhibit little damage despite a high132

level presence of the pathogen (Gross et al., 2013).133

For simplicity, in our simulations, we consider uniform values for β and T .134

This implies that we are free to set the time-scale by fixing a value for either135

variable. The time evolution of the landscape is carried out in discrete unitary136

time intervals. Therefore, by setting T = 10, a unitary time interval corresponds137

to 0.1T . This leaves the average vegetation density, ρ, and the transmissibility138

of the pathogen, β, as the two free parameters.139

3. Results140

At the beginning of the simulation, the disease is introduced as a clump of141

infected trees at the centre of the domain of size 5⇥ 5 grid cells, with all trees142

7
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infected inside this small area. This was found to be sufficient in order to avoid143

extinction of the disease at initial stages. Under these conditions the transient144

time, i.e., the time lapse that contains remnants of the initial conditions, was145

found to be ⇠ 200 time steps. Since we are interested in the steady regime, we146

discarded this transient from our final calculations. The simulations run until147

the infected sites disappear or, in order to avoid boundary effects, when infected148

sites reach any of the four sides. We carried out simulations over 104 ensemble149

realisations, i.e. repetitions with different initial conditions with the same tree150

density ρ.151

As a first step, we quantify the effect of ρ and β in the simulations. At low152

ρ, the infection quickly dies out, since the distribution of hosts is sparse. On the153

other side, for higher densities, the epidemic spreads out, infecting most of the154

trees. Nonetheless, for certain densities, the system shows a critical transition155

between a self-limited outbreak and a large-scale epiphytotic outbreak.156

In Fig. 2(a-b), we show the final configuration (t ⇠ 600 time-steps) of the157

landscape for densities below and above the critical transition. Near the criti-158

cal transition, the pathogen spreads through the domain generating branching159

structures, and patches of surviving trees may remain unaffected. To highlight160

this result, the Fig. 3 shows the spatio-temporal behaviour of the total number161

of infected hosts, at every time step, found along the direction N(Ly) as a func-162

tion of their position along the Lx direction, following the same parameters as163

in Fig. 2. For the first case, ρ = 0.58 the disease dies out after approximately164

600 time steps, but the fractal-like behaviour of disease spread can be observed165

as ramifications of infected trees even at a density ρ = 0.6. For higher densities166

ρ = 0.8, this filamentary-like behaviour is lost and we observe a filled pattern167

of infected trees. We find that a transition in the severity of the disease occurs168

in the density interval [0.56, 0.64].169
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Figure 3: Spatio-temporal behaviour of the number of infected trees N(Ly) along the height
of the channel as a function of their location along width of the domain for the following tree
densities ⇢: (a) 0.58, (b) 0.60 and (c) 0.80. The colour bar shows the number of infected trees
per line along Ly . The first two cases (a-b) correspond to values in the critical region ⇢ ⇡ ⇢c
and although the disease is spreading through the domain is not annihilating all susceptible
hosts, since there are green sites interspersed with diseased trees. For ⇢ = 0.8 the number of
infected individuals increases.

Near the critical transition, see figures 2(b) and 3(a-b), the disease does not170

annihilate all the trees, but rather spreads through the lattice as active clusters171

of diseased trees, interspersed with healthy individuals.172

3.1. The Phase Diagram173

The spreading of the disease has the effect of separating two domains, healthy174

susceptible trees, S, and dead trees, R by a transient interface of infected indi-175

viduals, I. In this model, the number of affected sites is on average, proportional176

to the landscape area where the infection has been present. By construction,177

this constant of proportionality is 1/ρ, and thus, the proportion of affected178

woodland is179

A =
N

ρ
, (1)

where N is the sum of the I and R sites.180

To quantify the observed dynamics in this system we calculated the spread181

9
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dynamics of the disease through the lattice via the effective1 velocity v of the182

pathogen. On this basis of Eq. 1, a characteristic length-scale, R = N1/2,183

measures of the radial extent of the disease. Thus, the rate of propagation of184

the disease in the domain is measured through the velocity v, defined as the185

change in R, i.e.,186

v(t) = N1/2(t)−N1/2(t− 1). (2)

Therefore, Eq. 2 measures the spreading velocity in terms of the area of infected187

trees in the domain. The time series of v is shown in Fig. 4(a-c); we will show188

that the stochasticity observed in these time series gives valuable information189

about the underlying dynamics when analysed in the framework of early warning190

indicators for critical transitions.191

From the time series for the velocity, we obtain the time average of the192

velocity v. Figure 4(d) shows several probability distribution functions, F (v),193

obtained from all realisations, for densities ρ = 0.58 (1), 0.59 (2), 0.595 (3), 0.6194

(4) and 0.62 (5). For ρ < ρc, the distribution shows a maximum for v ⇠ 0.01,195

see curve for ρ = 0.58. As the tree density increases, and approaches the critical196

value, ρ = 0.595 and ρ = 0.6, F (v) shows clearly that the system can be found in197

either two states, one for v ⇡ 0, which corresponds to local disease confinement198

and another for v 6= 0, or epiphytotic outbreak. Figure 4(e) shows a zoom-in199

around the local maxima for ρ = 0.595 and 0.6. As the density increases, e.g.,200

ρ = 0.62, the probability distribution function shows a single maximum for201

1We use the term “effective” to emphasize that strictly the velocity cannot be defined
in this way close to the critical density since the spanning cluster of diseased trees becomes
fractal. It can be rigorously shown that the velocity with which the disease front propagates
is given in 2D as v ⇠ ⇠1−df/d` ⇠ (p− pc)0.16, with ⇠ denoting the correlation length, df and
d` the fractal and graph dimensions respectively, (Bunde and Havlin, 1996). However, Eq.
2 provides a convenient measure of the rate of spread of the infection, through the epidemic
extent or area, which is usually monitored through observational data, (Cowger et al., 2005;
Mundt et al., 2013).
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Figure 4: (a-c) Time series for the propagation velocity v(t) for the following values of tree
densities: (a) ⇢ = 0.58, (b) ⇢ = 0.60 and (c) ⇢ = 0.62. Three samples are showed for each
density. The velocity increases as ⇢ is increased. (d) Probability distribution function F (v)
for the time averaged velocity v obtained from 104 simulations, for densities ⇢: (1) 0.58, (2)
0.59, (3) 0.595, (4) 0.6 and (5) 0.62. (e) Inset showing the For all cases L = 500 and β = 0.5.

v ⇡ 0.23.202

After taking the ensemble averages we obtain the mean propagation velocity203

hvi as a function of the tree density ρ and various values of the transmission204

probability β. We identify from these results a critical density that separates205

the non-spreading to spreading phase of the disease. The existence of a critical206

density at ρc implies the existence of a spatially connected or spanning cluster207

of trees for disease spread. From these results, we conclude that this critical208

density ρc, is similar in nature to the critical percolation threshold observed in209

percolation theory (Stauffer and Aharony, 2003; Gandolfi, 2013; Saberi, 2015),210

since our computational model only involves a slight modification of the former.211

In Fig. 5, we observe that the sole effect of the transmission probability212

β = [0.1, 1] is a displacement of the critical point towards lower values of ρ.213

For low disease transmissibility, the density of trees has to be high to have214

a spanning cluster through the domain. As β increases, there is a chance of215

infecting more trees per infectious period (T) and consequently this cluster216

occurs at lower densities. Therefore, T, acting conjointly with β define the217

limiting value ρc. As β is increased, the critical transition should tend to the218

percolation threshold reported in the literature, ρc ! 0.592746 (Stauffer and219
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Figure 5: (a) Propagation velocity hvi for the spread of a pathogen inside a grid with di-
mensions L = 500 as a function of tree density ⇢ and disease transmissibility β, following a
Von Neumann neighbourhood. A shift between two stable states: infection confinement and
an extended epiphytotic outbreak, occurs for ⇢ ⇡ ⇢c. A shaded region is showed for ⇢ ⇠ ⇢c,
associated with the black dotted line highlighting the results for β = 0.5. (b) Phase space
diagram for the pathogen dispersal on the grid, indicating region of disease containment and
epiphytotics.

Aharony, 2003). However, since we are working on a finite-size domain, we220

expect that the critical transition is broadened relative to the result above for221

infinite-sized domains; in Fig. 5(a) we highlight this as a shaded region that222

divides density values according to a region where the critical shift occurs in223

our simulations (the black dotted line highlights the result for β = 0.5).224

3.2. Catastrophic shifts in forest disease225

A fundamental emergent property observed in systems near criticality is226

their capacity to extend over scales comparable to the size of the whole system227

at long times. Near the critical threshold, short-range interactions lead to the228

emergence of long-range correlations and the behaviour of the system changes229

abruptly between two alternative stable states, in this case, local containment230

and epiphytotics. The occurrence of this shift depends only on the local struc-231

ture, in our case the density of susceptible hosts. Near the critical transition232

this system exhibits scale invariance, self-similarity and fractal properties. From233

the non-stationarity of the time series showed in Fig. 4(a-c) we can analyse the234

underlying dynamics through metric-based indicators proposed in the literature235

for the identification of early-warning signals: variance, skewness, kurtosis and236
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Figure 6: Ensemble behaviour for the metric-based indicators measured for the propagation
velocity v of disease spread in the domain (L = 500, β = 0.5). Temporal variance (a), kurtosis
(b), skewness (c) and autocorrelation function at lag ⌧ = 1, as a function of the tree density
⇢. Three regimes are shown, with the shaded area corresponding to ⇢ ⇡ ⇢c.

autocorrelation function at lag 1 (Carpenter and Brock; Dakos et al., 2012;237

Morales et al., 2015).238

Our goal is to predict the occurrence of a transition between disease contain-239

ment and epiphytotics using the theory of catastrophic shifts, which in principle240

could be useful for the prediction of densities at which disease will spread in241

forests.242

We quantify the stochastic variability of v(t) from time series obtained for an243

ensemble of systems evolving for fixed β = 0.5 on a domain of size L = 500. Our244

interest was to study the variability in the spreading velocity as the density of245

trees crosses the critical region. From the probability distribution functions for246

hvi, we obtained the ensemble behaviour of the following statistical measures:247

variance (a), kurtosis (b), skewness (c) and autocorrelation function at lag 1248

(d), see Fig. 6.249

The variance, in Fig. 6(a), shows a rise around the critical point, the increase250
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of this quantity is maximal, and its behaviour is different before the transition251

occurs, for ρ < ρc and after it has happened, ρ > ρc. The square-root of the252

variance, the standard deviation, is maximal at the critical transition, which253

for this finite-size system is ρmax = 0.61. Therefore, this quantity is useful as254

an indicator for the prediction of a shift between the disease confinement and255

epidemics.256

The skewness, defined as the third moment of the distribution, quantifies257

the asymmetry of fluctuations in the time series. It is a useful measure for258

the prediction of the catastrophic shift since its value changes before and after259

the transition, depending on whether the system settles down to an alternative260

state in which the disease propagation is larger or smaller than in the current261

state, (Guttal and Jayaprakash; Dakos et al., 2012; Kéfi et al., 2014). Our262

results clearly show both an increase and further decrease in the skewness, see263

Fig. 6(b). For ρ < ρc the skewness is positive and rises up as we approach the264

critical region. For ρ ⇠ ρc, it decreases abruptly and changes sign, becoming265

negative, i. e., the probability distribution is left-skewed. For higher density of266

trees, we drive the system away from the critical region, the skewness changes267

again, and becomes less negative until it settles near zero (⇡ −0.5). Notably,268

the rise in skewness observed at ρ ⇠ 0.57, associated with an increase in the269

nonlinearities of the time series, predicts the outcome of the tipping point.270

Moreover, this parameter identifies the tree densities for which the system is271

found in either disease confinement (Skewness ⇡ 1) and epiphytotics (Skewness272

⇠ 0).273

Strong perturbations can drive the state of a system to reach extreme val-274

ues close to a transition. Therefore, the probability distribution function of the275

propagation velocity may show a rise in the kurtosis before the transition is276

reached. Figure 6(c) shows the plot of this quantity obtained in our simula-277
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tions. The distribution shows two peaks: a local maximum that corresponds to278

kurtosis values of 7.4 for ρ ⇡ 0.57, and a global maximum with kurtosis of 18.3279

for ρ ⇡ 0.64. This indicates that, as the system approaches and exits the crit-280

ical region, the distribution becomes more strongly peaked, than the reference281

normal distribution, which has a kurtosis of 3 (blue continuous line), and thus,282

is leptokurtic. This is consistent with an increased presence of rare values in283

the propagation velocity. Interestingly, for values closer to the critical point, i.284

e., ρ = 0.59, the kurtosis is 2.4, which is equivalent to a flattened or platykurtic285

distribution. We conclude that the kurtosis is a good indicator to detect the286

outcome of the transition.287

The temporal autocorrelation function (ACF) measures the spectral prop-288

erties and changes in the correlation structure, “memory”, of the time series289

(Dakos et al., 2012). In a general way, the τ th order ACF is defined accordingly290

as,291

ACF (τ) =

Pn
t=τ+1

(vt − v)(vt−τ − v)
Pn

t=1
(vt − v)2

. (3)

Following equation 3, we measured the temporal autocorrelation function at292

lag 1 (τ = 1) in our simulations. Several dynamical systems have shown a293

slow recovery from small perturbations as they approach the critical transition,294

phenomenon termed in the literature as “critical slowing down”. These systems295

show an increase in the short-term memory of time series which can be detected296

through an increase of the autocorrelation function at lag 1.297

Figure 6(d) show the values for the temporal autocorrelation function at lag298

1 measured for the time series of the velocity as a function of the tree density ρ.299

For ρ < ρc, this quantity increases linearly as we increase the tree density and300

reaches a maximum threshold inside the critical region for ρ ≥ 0.6. This is an301

indication that the system has become increasingly similar between consecutive302
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observations. Since, for ρ < ρc there is a fast increase on the ACF, this is useful303

for the prediction of the outcome of the critical shift in the system.304

4. Discussion305

The most important question during risk assessment for a forest disease is306

how pathogens will spread on the landscape, both to predict the occurrence of307

an epiphytotic outbreak and to assist in designing interventions to counter the308

onset and progression of the disease. In a real-life scenario, the dispersal of these309

diseases is complex, mainly due to the multiple geographical and environmental310

factors affecting the disease spread.311

Lattice-based epidemic models have been used previously in the literature to312

study temporal and spatial fluctuations on the prevalence of epidemic diseases in313

terms of the minimum tree density for an epidemic to occur (Rhodes and Ander-314

son, 1996, 1997). The sessility of trees makes lattice modelling of plant diseases315

more attainable through computational simulations. Works on disease propa-316

gation using this framework coupled with historical, geographical and weather317

information have been used to predict the spread of pathogens through forests318

on a large scale (Xu et al.; Meentemeyer et al., 2010; Potter et al., 2011; Cobb319

et al., 2012). These models certainly capture some of the features of previous320

epiphytotics, and coupling them to the framework of early-warning indicators321

for detecting critical transitions could be useful for designing strategies against322

disease spread.323

The following characteristics need to be fulfilled for an epidemic to occur:324

(i) a critical number of susceptible hosts, (ii) an aggressive phenotype of the325

pathogen with a high transmissibility rate and (iii) suitable environmental con-326

ditions for the pathogen survival. In this paper, we chose to study the effect of327

the two first factors using a generic stochastic model of epidemic spread on a328
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lattice with a von Neumann neighbourhood. Our model does not incorporate329

a sophisticated computational description of the system; however it is useful,330

as a first approximation, for the application of the framework of early warning331

signals, used widely on complex systems, to reach a new understanding in plant332

disease epidemics. This could aide in the identification of an optimal planting333

tree density for the future design of forests, for example, the re-design of the334

coniferous forests in Scotland, to diminish the impact of disease spread.335

Simulations for different tree densities and pathogen transmission indicate a336

system that shows two stable states: disease confinement and an extended epi-337

phytotic outbreak. We chose to focus our investigations on densities that may338

result in the system be found in either state. All the indicators measured fore-339

cast the occurrence of the critical transition. We observe a rise in the variance,340

skewness and the autocorrelation function at lag 1 as the system approaches341

ρ ⇠ ρc. The skewness also shows a steep change from a positive to a negative342

value in this region, consistent with the system traversing the critical region and343

reaching a new stable state. Similarly, the kurtosis, changes from leptokurtic344

to platykurtic and leptokurtic again in the critical region and immediately af-345

terwards. Consequently, we conclude that all these measures are applicable to346

predict a transition to epiphytotics.347

Although our current scenario of applicability is a regular domain, far away348

from the heterogeneous and complex landscapes found in tropical forests, we349

hypothesize that their applicability to plant diseases could be fruitful in pre-350

dicting the outcome of major disease outbreaks (Liang et al., 2017). In real351

datasets, one of the first challenges would be to define a set of parameters and352

coarse-grain the system description to an appropriate scale (spatial resolution of353

the ecological data) to apply these indicators to predict a range of future states354

of disease propagation.355
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Currently, remote sensing technologies, such as satellites and aerial photog-356

raphy are used widely to obtain forest measurements on changes of vegetation357

index, droughts, fire damage and extent of disease propagation. This informa-358

tion is periodically updated, which implies the availability of spatial datasets359

taken at time intervals which could be useful to detect the approach to a tipping360

point before it is crossed.361

In a recent publication (Rogers et al.), several indicators such as the vari-362

ance, standard deviation, kurtosis and skewness were measured on vegetation363

indexes (NDVI) time series to detect threshold changes in which the loss of re-364

silience led to state shifts. Their results suggest that that early warning signals365

of tree mortality are evident up to 24 years and therefore provide a foundation366

for their potential application on long-term remote sensing data to effectively367

monitor vegetation patterns and forecast changes in environmental conditions.368

Moreover, a study on the quantification of forest fragmentation through aerial369

images and numerical simulations using a lattice model have suggested that the370

present state of the tropical forests is close to a critical point of percolation371

(Taubert et al., 2018). Taken together these two studies indicate that the ap-372

plication of the early warning indicators through a lattice model could serve to373

model and quantify the fragmentation of forests.374

Particularly, the UK has an advantageous position on GIS forest datasets375

such as the National Forestry Inventory (NFI) (Forest Research, 2016), Light376

Detection And Ranging (LiDAR) (Forest Research, 2004) and the National Tree377

Map R© (NTM)(Bluesky International Ltd, 2017), which give accurate informa-378

tion about the woodland patches, 3D forest structure and location and canopy379

extent of individual trees over 3 m in height, respectively. Moreover, the cur-380

rently running SAPPHIRE project (Forest Research, 2018), a collaboration be-381

tween Forest Research and Rezatec will provide precision maps of tree species382
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and pinpoint trees that exhibit features of stress and disease. Combining all383

these together, the applicability of early-warning indicators on a complex adap-384

tive system, such as forests, could prove fruitful for devising their stability and385

resilience to external conditions (such as disease propagation) before a regime386

shift occurs.387
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Kéfi, S., Livina, V., Seekell, D.A., van Nes, E.H., Scheffer, M., 2012. Methods451

for detecting early warnings of critical transitions in time series illustrated us-452

ing simulated ecological data. PLOS ONE 7, 1–20. URL: https://doi.org/453

10.1371/journal.pone.0041010, doi:10.1371/journal.pone.0041010.454

21

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00877.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00877.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00877.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00877.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00877.x
http://dx.doi.org/10.1111/j.1365-2745.2012.01960.x
http://dx.doi.org/10.1111/j.1365-2745.2012.01960.x
http://dx.doi.org/10.1111/j.1365-2745.2012.01960.x
https://link.aps.org/doi/10.1103/PhysRevE.90.062705
http://dx.doi.org/10.1103/PhysRevE.90.062705
http://dx.doi.org/10.1103/PhysRevE.90.062705
http://dx.doi.org/10.1103/PhysRevE.90.062705
https://apsjournals.apsnet.org/doi/10.1094/PHYTO-95-0972
https://apsjournals.apsnet.org/doi/10.1094/PHYTO-95-0972
https://apsjournals.apsnet.org/doi/10.1094/PHYTO-95-0972
http://dx.doi.org/https://doi.org/10.1094/PHYTO-95-0972
http://dx.doi.org/https://doi.org/10.1094/PHYTO-95-0972
http://dx.doi.org/https://doi.org/10.1094/PHYTO-95-0972
https://doi.org/10.1371/journal.pone.0041010
https://doi.org/10.1371/journal.pone.0041010
https://doi.org/10.1371/journal.pone.0041010
http://dx.doi.org/10.1371/journal.pone.0041010


 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Drake, J.M., Griffen, B.D., 2010. Early warning signals of extinction in dete-455

riorating environments. Nature 467, 456–459. URL: https://www.nature.456

com/articles/nature09389, doi:https://doi.org/10.1038/nature09389.457

Forest Research, 2004. Light Detection and Ranging (lidar). URL: https:458

//www.forestry.gov.uk/fr/lidar.459

Forest Research, 2016. National Forestry Inventory. URL: https://www.460

forestry.gov.uk/inventory.461

Forest Research, 2018. Space Applications for Precision Plant Health Informa-462

tion, Response and Evaluation (sapphire). URL: https://www.forestry.463

gov.uk/fr/sapphire.464

Forestry Commission, 2017. What shaped our forests? URL: https://www.465

forestry.gov.uk/forestry/infd-5rjhs5.466

Forestry Commission, 2018a. Phytophthora ramorum. URL: https://www.467

forestry.gov.uk/pramorum.468

Forestry Commission, 2018b. Phytophthora ramorum. URL: https://www.469

forestry.gov.uk/datadownload.470

Gandolfi, A., 2013. Percolation Methods for SEIR Epidemics on Graphs.471

Springer. pp. 31–58. URL: https://app.dimensions.ai/details/472

publication/pub.1047486272, doi:10.1007/978-1-4614-9224-5_2. ex-473

ported from https://app.dimensions.ai on 2018/11/06.474

Grassberger, P., 1993. On a self-organized critical forest-fire model. Journal of475

Physics A: Mathematical and General 26, 2081. URL: http://iopscience.476

iop.org/article/10.1088/0305-4470/26/9/007.477

Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V., Sieber, T.N., 2013.478

Hymenoscyphus pseudoalbidus, the causal agent of european ash dieback.479

22

https://www.nature.com/articles/nature09389
https://www.nature.com/articles/nature09389
https://www.nature.com/articles/nature09389
http://dx.doi.org/https://doi.org/10.1038/nature09389
https://www.forestry.gov.uk/fr/lidar
https://www.forestry.gov.uk/fr/lidar
https://www.forestry.gov.uk/fr/lidar
https://www.forestry.gov.uk/inventory
https://www.forestry.gov.uk/inventory
https://www.forestry.gov.uk/inventory
https://www.forestry.gov.uk/fr/sapphire
https://www.forestry.gov.uk/fr/sapphire
https://www.forestry.gov.uk/fr/sapphire
https://www.forestry.gov.uk/forestry/infd-5rjhs5
https://www.forestry.gov.uk/forestry/infd-5rjhs5
https://www.forestry.gov.uk/forestry/infd-5rjhs5
https://www.forestry.gov.uk/pramorum
https://www.forestry.gov.uk/pramorum
https://www.forestry.gov.uk/pramorum
https://www.forestry.gov.uk/datadownload
https://www.forestry.gov.uk/datadownload
https://www.forestry.gov.uk/datadownload
https://app.dimensions.ai/details/publication/pub.1047486272
https://app.dimensions.ai/details/publication/pub.1047486272
https://app.dimensions.ai/details/publication/pub.1047486272
http://dx.doi.org/10.1007/978-1-4614-9224-5_2
http://iopscience.iop.org/article/10.1088/0305-4470/26/9/007
http://iopscience.iop.org/article/10.1088/0305-4470/26/9/007
http://iopscience.iop.org/article/10.1088/0305-4470/26/9/007


 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Molecular Plant Pathology 15, 5–21. URL: https://onlinelibrary.480

wiley.com/doi/abs/10.1111/mpp.12073, doi:10.1111/mpp.12073,481

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/mpp.12073.482
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