

This is a repository copy of *The Mosasaur Fossil Record Through the Lens of Fossil Completeness*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/130080/

Version: Accepted Version

Article:

Driscoll, DA, Dunhill, AM orcid.org/0000-0002-8680-9163, Stubbs, TL et al. (1 more author) (2018) The Mosasaur Fossil Record Through the Lens of Fossil Completeness. Palaeontology, 62 (1). pp. 51-75. ISSN 0031-0239

https://doi.org/10.1111/pala.12381

© 2018 The Palaeontological Association This is the peer reviewed version of the following article: Driscoll, DA, Dunhill, AM, Stubbs, TL et al. (2018) The Mosasaur Fossil Record Through the Lens of Fossil Completeness. Palaeontology. ISSN 0031-0239, which has been published in final form at https://doi.org/10.1111/pala.12381. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

THE MOSASAUR FOSSIL RECORD THROUGH THE LENS OF FOSSIL COMPLETENESS

Journal:	Palaeontology
Manuscript ID	PALA-01-18-4136-OA.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Driscoll, Daniel; Univeristy of Bristol, Earth Sciences Dunhill, Alex; University of Leeds, School of Earth and Environment Stubbs, Thomas; University of Bristol, Earth Sciences Benton, Michael; University of Bristol, School of Earth Sciences
Key words:	marine reptiles, fossil record quality, sea level, palaeodiversity, mosasaur, fossil completeness

SCHOLARONE[™] Manuscripts

1		
2 3 4	1	THE MOSASAUR FOSSIL RECORD THROUGH THE LENS OF FOSSIL
5 6	2	COMPLETENESS
7 8	3	<i>by</i> DANIEL A. DRISCOLL ¹ , ALEXANDER M. DUNHILL ² , THOMAS L. STUBBS ¹ and
9 10 11	4	MICHAEL J. BENTON ¹
12 13	5	¹ School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road,
14 15	6	Bristol BS8 1RJ, U.K. dan.driscoll@bristol.ac.uk, tom.stubbs@bristol.ac.uk,
16 17	7	² School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, U.K.
21 22 23 24 25 26 27 28 29 30 31 32 33		
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48		
48 49 50 51 52 53 54 55 56 57 58 59 60		Palaeontology

Driscoll 2

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
54	
35	
36	
37	
38	
20	
39	
40	
41	
42	
13	
-TJ //	
44	
45	
46	
47	
10	
40 40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1

9	Abstract. The quality of the fossil record affects our understanding of macroevolutionary
10	patterns. Palaeodiversity is filtered through geological and human processes, and efforts to
11	correct for these biases are part of a debate concerning the role of sampling proxies and
12	standardisation in models of biodiversity. Here, we analyse the fossil record of mosasaurs in
13	terms of fossil completeness as a measure of fossil quality, using three novel metrics of fossil
14	completeness with a compilation of 4,083 specimens. All metrics correlate with each other. A
15	new qualitative measure of character completeness (QCM), correlates with the phylogenetic
16	character completeness metric. Mean completeness by species decreases with specimen count,
17	and average completeness by substage varies significantly. Mean specimen completeness is
18	higher for species-named fossils than those identified to genus and family. The effect of
19	tooth-only specimens is analysed. Importantly, we find that completeness of species does not
20	correlate with completeness of specimens. Completeness varies by palaeogeography, North
21	American specimens showing higher completeness than those from Eurasia and Gondwana.
22	These metrics can be used to identify exceptional preservation, with specimen completeness
23	varying significantly by both formation and lithology. The Belgian Ciply Formation displays
24	the highest completeness, and clay lithologies show higher completeness values than others.
25	Neither species diversity nor sea level correlates significantly with fossil completeness. A
26	GLS analysis using multiple variables agrees with this result. However, GLS shows that two
27	variables have significant predictive value for modelling averaged diversity, namely sea level
28	and mosasaur- and plesiosaur-bearing formations, the latter of which is redundant with
29	diversity. Mosasaur completeness is not driven by sea level, nor does completeness limit the
30	mosasaur diversity signal.
31	
32	Key words: marine reptiles, mosasaur, fossil record quality, fossil completeness, sea level,

palaeodiversity.

33

Page 3 of 114

Palaeontology

34	MOSASAURIDAE was a relatively short-lived, but diverse and abundant clade of marine
35	squamates that radiated in Late Cretaceous epicontinental seas and died out at the K/Pg
36	boundary (Debraga & Carroll 1993). The rise of mosasaurids (called 'mosasaurs' throughout
37	the paper) followed dramatic changes in the marine reptile fauna (Stubbs & Benton 2016),
38	including decreases in disparity of plesiosaurs in the Late Jurassic (Benson & Druckenmiller
39	2014) as well as the extinction of cryptoclidid plesiosaurs, ichthyosaurs (Bardet 1994, Fisher
40	et al. 2012) and thalattosuchian crocodiles (Young et al. 2010) in the Early to mid-
41	Cretaceous. Mosasauroids (aigialosaurids and dolichosaurids) arose in the Cenomanian as
42	relatively small swimming reptiles, followed by true mosasaurs in the Turonian (Bardet et al.
43	2008). As in other groups of marine reptiles (Massare 1994), the Mosasauridae showed
44	increasing adaptations to the marine environment through time (Motani 2009). The average
45	body size of mosasaurs increased through the Late Cretaceous, from 1-2 m in early semi-
46	terrestrial forms, to a gigantic 14-17 m in later forms (Polcyn et al. 2014; Stubbs & Benton
47	2016). They became increasingly efficient swimmers and filled niches vacated by some of the
48	aforementioned pelagic marine predators after their extinction (Motani 2005; Lindgren et al.
49	2007, 2009, 2011, 2013; Houssaye et al. 2013). Mosasaurs thrived in many marine
50	environments (Kiernan 2002), from rocky shores to pelagic shelves, including fresh water
51	environments (Holmes et al. 1999), and by the latest Cretaceous, they were the apex predators
52	in many complex ocean ecosystems (Sørensen et al. 2013). Accordingly, mosasaur fossils
53	have a widespread stratigraphic and global geographic distribution in a variety of
54	lithologically distinct Upper Cretaceous marine formations (Russell 1967).
55	Marine reptiles have figured in several studies that have contributed to the debate about
56	how to address biases in the fossil record (e.g. Benson et al. 2010; Benson & Butler 2011;
57	Cleary et al. 2015; Tutin and Butler 2017). Does the fossil record provide a reasonable picture
58	of mosasaur evolution (Polcyn et al. 2014), or is the record substantially biased by the

Driscoll 4

59	idiosyncrasies of preservation and collection (Benson et al. 2010; Benson & Butler 2011)?
60	Benson et al. (2010) identified serious megabiases affecting all Cretaceous marine reptiles,
61	including mosasaurs, and argued that their palaeodiversity signal was dependent on
62	geological sampling biases, meaning that the raw data said little about their true diversity.
63	Part of this result depended on residual diversity estimates using a method that has since been
64	severely criticised (Dunhill et al. 2014, 2018; Brocklehurst 2015; Sakamoto et al. 2017). Re-
65	analysis led Benson and Butler (2011) to identify that shallow marine tetrapods at least,
66	including most mosasaurs, showed close correlation between diversity and sea level and
67	continental area. Benson and Butler (2011) interpreted this as a 'common cause' effect (Peters
68	2005), analogous to a species-area effect; the fossil record and palaeodiversity of marine
69	reptiles fluctuated simultaneously as sea level rose and fell. These alternate viewpoints leave
70	an open question: is the mosasaur fossil record a fair representation of their true biological
71	signal or not?
72	One approach to understanding inadequacies of the fossil record is to consider the
73	specimens themselves - are they equally complete through all times and places, or do they
74	show variation (Benton et al. 2004; Smith 2007)? For example, Mannion & Upchurch (2010)
75	suggested that measures of fossil completeness could be used alongside other sampling
76	proxies to investigate the quality of the fossil record. Fossil completeness studies attempt to
77	quantify the quality of fossil specimens by assigning numerical metrics that reflect the
78	percentage of skeletal or phylogenetic character elements present in individual fossils or
79	whole groups of fossils.
80	Many recent analyses have used measures of fossil completeness. In taphonomic
81	studies, completeness can reflect post-mortem conditions and transport (Beardmore 2012a, b).
82	Aquatic vs. terrestrial deposits may preserve differently (Verriere et al. 2016) and, more
83	broadly, completeness may be related to lithology (Cleary et al. 2015). Completeness may be

Page 5 of 114

Palaeontology

84	related to body size; large fossils may be collected more often (Brown et al. 2013), or small
85	associated fossils may be preserved better at times (Brocklehurst et al. 2012). Completeness
86	may be affected by sea level (Mannion & Upchurch 2010; Cleary et al. 2015; Tutin & Butler
87	2017). Completeness can be used to measure collecting and naming biases through historical
88	time (Benton 2008a, b; Mannion & Upchurch 2010; Walther & Fröbisch 2013; Tutin &
89	Butler 2017) or as a direct metric to assess confidence in fossil record data in a single basin
90	through a key event (Benton et al. 2004). Finally, the fossil record of diversity may be
91	unbiased, or biased by completeness, either inversely (Brocklehurst & Fröbisch 2014; Smith
92	2007) or directly (Dean et al. 2016).
93	In this study, we explore a database of over 4000 mosasaur specimens and apply novel
94	methods of coding fossil completeness, to test whether fossil completeness is biasing the
95	measured richness of these organisms. We find that specimen completeness varies
96	enormously geographically, but is not correlated with species diversity or sea level. We find
97	that completeness does not limit the diversity signal in the mosasaur record.
98	
99	MATERIALS AND METHODS
100	Data
101	Specimens. A mosasaur specimen database (Driscoll et al. 2018, Data A, Data B) includes all
102	scored specimens of Mosasauridae from collection visits and literature descriptions,
103	comprising 4083 mosasaur specimens. Mosasaur material is housed in at least 112 institutions
104	(Driscoll et al. 2018, Appendix Table S1), and 448 specimens were seen first-hand in these
105	collections (Driscoll et al. 2018, Appendix Table S2), including many referred, cited and
106	holotype specimens. Examination confirmed their description in the literature, even if some of
107	the elements showed abrasion or minor disintegration. In a few cases, elements originally
108	described with the specimen were not found on visiting the museums, and this was noted in

109	assessing skeletal completeness. Most specimens were identifiable, and scorings of the
110	holotype in the literature and observed first hand were identical, providing confidence that
111	measurements taken from the literature can be accurate. Catalogue descriptions as well as
112	photos from museum online collections databases (AMNH, GPIT, MCZ, SDMNH, TMP,
113	UAVPL, UCMP, USNM, UVER and YPM) were also used, and files containing museum
114	databases were obtained from LACM, FMNH, ALNHM and TMP.
115	Additional specimen data was obtained from publications and monographs, including
116	original descriptions of holotypes (Driscoll et al. 2018, Appendix Table S3), as well as
117	secondary descriptions of non-type materials (e.g. Lydekker 1888; Camp 1942; Russell 1967;
118	Schultze et al. 1985; Kuypers et al. 1998; Bardet 2012; and others listed in Driscoll et al.
119	2018, Appendix Table S7). No publicly inaccessible or undocumented material was used in
120	the study. In total, over 4300 specimens were identified for study, but some were excluded
121	because of poor morphological data or lack of illustration.
122	In this study, we used different subsets of the specimen lists. In many cases, we
123	considered all 4083 specimens. In other cases, we considered just those specimens that could
124	be assigned to named species, and excluded those that were assigned to genus alone (e.g.
125	Mosasaurus sp.) or to an even more general taxon (e.g. Mosasauridae indet.). 1044 specimens
126	were attributed to Mosasauridae indeterminate (i.e. family level), 731 specimens were
127	identified to generic level, and 2304 to species level. In the specimen list (Driscoll et al. 2018,
128	Data B), the specimens 1–843 and 1878–4073 are assigned to a named genus or named genus
129	and species, and specimens 843-1887 are termed simply 'Mosasauridae indet.' Specimens
130	2416–2544, for example are 'Mosasaurus sp.' More than 1400 of the 4083 specimens consist
131	only of isolated teeth, and these were included and excluded in different analyses.
132	

Palaeontology

3	133	Stratigraphic ranges. The stratigraphic positions of many historical mosasaur specimens are
4 5	134	unknown. In some formations in which mosasaurs commonly occur, the stratigraphy and age
6 7 8	135	have been revised (e.g. Everhart 2001; Jagt 2005), and the revised date was used for
9 10	136	allocation to time bins. Mosasaurs generally occur in marine rocks, and often in close
11 12	137	association with zone fossils such as belemnites, ammonites or foraminifera, so enabling
13 14	138	correlation with short-term time zones that can be tied to radioisotopic ages in the standard
15 16	139	marine time scale. We compiled a list of 135 mosasaur-bearing formations from the specimen
17 18	140	search and cross-checked the age and stratigraphy of formations with the stratigraphic
19 20 21	141	literature (Driscoll et al. 2018, H). Many formation ages were already accurately represented
22 23	142	in the primary literature.
24 25	143	The specimens were datable to different degrees of precision. 1726 mosasaur specimens
26 27	144	were datable to substage, and 2357 specimens were dated at best to two or more substages.
28 29	145	Because of the large amount of data, there were no substage time bins that did not contain
30 31	146	precisely assignable specimens.
32 33 24	147	
35 36	148	Species list. A list of valid species was assembled based on the primary scientific literature
37 38	149	(listed in Appendix in this manuscript), paying special attention to apomorphy-based
39 40	150	descriptions. Only species with clear taxonomic assignment and little disagreement on
41 42	151	taxonomy were used in this study. Our species list includes 74 valid species, and it agrees
43 44	152	broadly with a recent, independent compilation (Polcyn et al. 2014).
45 46	153	
47 48 49	154	Specimen completeness metrics
50 51	155	Background. One of the most exact methods for scoring skeletal completeness in vertebrates
52 53	156	is to count the number of elements present compared to the total number of bones in the
54 55 56 57 58 50	157	skeleton. This has been done in some taphonomic studies, including Archaeopteryx (Kemp

Driscoll 8

2	
3	
4	
5	
6 7	
/ Q	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
42	
43	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

158 and Unwin 1997), a Triassic prolacertiform (Casey et al. 2007), and a Miocene salamander 159 (McNamara et al. 2012). However, this method is time-consuming and impractical when 160 many specimens are compared. 161 Other quantitative methods have been developed for dealing with larger sample sizes. 162 Mannion & Upchurch (2010) presented two approaches to measure fossil completeness in 163 sauropods, a Skeletal Completeness Metric (SCM) that records the proportional completeness 164 of skeletons against a roster of elements that ought to be present, and a Character 165 Completeness Metric (CCM) that reports the number of phylogenetically informative 166 characters that are reported for each taxon. They suggested that SCM might be a more useful 167 metric in taphonomic studies comparing preservation in different geographic zones or facies, 168 etc., and CCM would be a better tool for comparing diversity patterns through time. 169 Both SCM and CCM were subdivided into three individual measures: the best specimen 170 of a taxon, termed SCM1 or CCM1, the type specimen SCM_{ts} or CCM_{ts} and a composite 171 specimen that includes all preserved elements of the taxon from any number of specimens, 172 termed SCM2 and CCM2. These scores can be averaged over all taxa in a time bin, or all taxa 173 in a geological formation or geographic region, or for all representatives of a species or genus, 174 whether they occur in a single time bin or not. 175 Another method, designed by Beardmore (2012a, b) for scoring fossil preservation in 176 marine crocodylomorphs, compared disarticulation and completeness, which are related to 177 environmental and preservational factors that were present at the time of death and burial. The 178 unmodified Beardmore index divides the skeleton into anatomical regions, giving each region 179 equal weight. This method can be quantitative, scoring every element present, but also allows

- 180 estimation of proportions of regions present; so this might be called a semi-quantitative
- 181 scoring system.

60

Palaeontology

2 3	182	Cleary et al. (2015) used SCM1 and SCM2 (modified for the laterally crushed nature of
4 5	183	ichthyosaur fossils), but they also implemented a modified Beardmore skeletal completeness
6 7	184	metric (BSCM) in an investigation of fossil completeness in ichthyosaurs. These authors also
o 9 10	185	divided BCSM into best (BCSM1) and composite (BSCM2) specimen per species, and
10 11 12	186	averaged these values over all species assigned to stage level time bins.
13 14	187	Qualitative approaches can also be used to score fossil quality. For example, Benton et al.
15 16	188	(2004) and Benton (2008b) measured dinosaur specimen completeness using the ratio of
17 18	189	incomplete material (isolated elements or collections of bones) to complete material, such as
19 20 21	190	skulls or complete skeletons. This approach has been used successfully in several studies
21 22 23	191	(Fountaine et al. 2005; Smith 2007). Metrics such as SCM and CCM are more accurate than
24 25	192	qualitative scores (Brocklehurst et al. 2012), but qualitative metrics can be useful for
26 27	193	comparisons of diverse taxa or large sample sizes.
28 29	194	
30 31	195	Completeness metrics. We used three completeness metrics. The Taphonomic Completeness
32 33	196	Metric (TCM) is based on Beardmore (2012a, b) and is a non-weighted method (Fig. 1). The
34 35 36	197	mosasaur skeleton is divided into nine anatomical regions, namely the skull, limbs (two
37 38	198	forelimbs and two hindlimbs), vertebral column (cervical, dorsal, caudal), and ribs, and each
39 40	199	region is given an arbitrary maximum score of 4, giving a total possible TCM of 36.
41 42	200	The Qualitative Completeness Metric (QCM) is based on Benton's (Benton et al. 2004;
43 44	201	Benton 2008a, b) qualitative description of dinosaur completeness and is weighted so that
45 46	202	skulls and jaws are afforded a higher weight than post-cranial elements, which is in
47 48 49	203	proportion to the distributions of characters used in phylogenetic analysis (e.g. Bell, 1993).
50 51	204	QCM is presented here (Table 1) as an estimate of character completeness when it is not
52 53	205	possible to examine every character present on individual elements. This is in accordance
54 55 56 57 58 59	206	with some previous studies (albeit using CCM) where each anatomical element present was

similarly assumed to contain all its characters (e.g. Brocklehurst et al. 2012). In contrast,

Driscoll 10

other analyses (e.g. Dean et al. 2016) used only the number of characters that could be observed. In general terms, QCM is like CCM. Regions with higher numbers of phylogenetic characters are given greater weight in both. The phylogenetic character list was derived from the character matrix of Bell (Bell 1997; Bell & Polcyn 2005). This cladistic data matrix was selected because it has more mosasaur characters than other matrices (e.g. LeBlanc et al. 2012). A table of anatomical elements and the number of their associated characters was compiled by anatomical region for a test subset of 26 specimens of representative species (Driscoll et al. 2018, Data D). For each of these specimens, the total score over all anatomical regions was compared to the QCM fossil completeness metric (Driscoll *et al.* 2018, Data E). This comparison tests the pre-weighted character total per specimen against an estimate of character completeness provided by the QCM. Although not necessary for the analysis, a weighted value of the character scores (assuming a maximum value of 9) for each specimen is listed also, for comparison to OCM. The final scoring method, Informal Completeness Metric (ICM), allows the inclusion of specimens that are associated only with general descriptions such as "skull", or "axial elements," or "appendicular skeleton". The total possible ICM score is set arbitrarily at 5, with any mention of a skull scoring three points and any mention of axial and appendicular parts scoring one point each (Driscoll et al. 2018, Appendix Table S4). Of the 4083 mosasaur specimens, 375 could be scored for only one or two of the three metrics (TCM, OCM and ICM). We compared all three methods as measures of fossil completeness. The equivalence of TCM values using all specimens vs. those exactly datable to single substages was also tested. Completeness scores were assigned to all holotype specimens (TCMh, QCMh and ICMh) and the best specimens (TCMb, QCMb and ICMb) of

Palaeontology

Driscoll 11

each species. In addition, a composite score (TCMc, QCMc and ICMc) for each species was calculated (Driscoll et al. 2018, Data C, D, and E). Mosasaur fossil completeness *Time Series.* Mean completeness scores were compiled and divided into time bins equivalent to Upper Cretaceous stratigraphic substages (Gradstein et al. 2012). For both species- and genus-level specimens, sampled in-bin taxa were compiled at the substage level and diversity was calculated. The terms "richness" and "diversity" are considered equivalent in this paper. Mean sea level for each Upper Cretaceous substage was calculated from Miller et al. (2005). We assessed mean completeness for all specimens (TCMall, QCMall, ICMall) and for those specimens identified to species level (TCMsp, QCMsp, ICMsp), so excluding material only identifiable to higher taxonomic levels. Since there were so many specimens consisting of teeth alone, we compared completeness values across the above two time series, both with and without specimens consisting of teeth alone. The mean completeness of all specimens for each species (TCMtot) was averaged over the time bins where those species occur (TCMav, QCMav, ICMav). This time series was compared to those derived from all specimens (TCMall, QCMall, ICMall), and to specimens named to species level (TCMsp, OCMsp, ICMsp). This compared the utility of using average completeness values assigned to whole species (in many cases from various time bins) to those derived from sampled-in-bin specimens. For clarity, a description of all the completeness metrics described in this study is listed (Table 2). No best, holotype or composite specimen scores were used for any time series analysis. Mosasaur species and generic diversities are calculated based on specimen occurrences only, in substage-level time bins, so we do not use first-to-last ranges or include any Lazarus taxa, in this part of the analysis. In addition, we included five mosasaur species that were only

257	assignable imprecisely to a range of two or three time bins, so we present also an "averaged"
258	species diversity curve that includes these taxa counted as fractions. For example,
259	Plotosaurus bennisoni is dated to the uppermost Lower Maastrichtian and/or lowermost
260	Upper Maastrichtian, so its diversity is counted as 0.5 in both substages. We present the exact
261	species and genus diversity curves as well as the "averaged" species diversity curve, together
262	with comparisons among all curves and with sea level and completeness. TCMsp, QCMsp
263	and ICMsp were compared with species and generic diversity, but not to "averaged" diversity
264	so as not to make spurious comparisons between time bins that do not contain equivalent
265	specimens.
266	
267	Predicting diversity and completeness. To more fully understand the relationship between
268	diversity and completeness, we used a multiple regression technique to compare the
269	relationships between explanatory variables. A substage-level sampling proxy for explaining
270	diversity and completeness was created and tested using mosasaur- and plesiosaur-bearing
271	formations (MPBFs). These formations (Driscoll et al. 2018, Data I) were drawn from our
272	mosasaur database and Upper Cretaceous plesiosaur data from unpublished research. We used
273	GLS to check the relationship between mean TCM, diversity, sea level, formations and age by
274	modelling TCM and diversity as a function of the other variables (i.e. TCMsp ~ species
275	diversity + sea level + MPBFs + age; and "averaged" diversity ~ TCMav + sea level +
276	MPBFs + age). We provide the raw data used for this analysis (Driscoll et al. 2018, Appendix
277	Tables S5A, S6B).
278	
279	Determinants of fossil completeness. Mean completeness scores were compared across
280	several classes of taxonomic, biological, palaeogeographical, and lithological variables. TCM
281	(instead of QCM) was used as a measure of preservation as affected by taphonomy. For most

58 59

60

Palaeontology

2 3	282	of these categorical variables, the data were much richer for specimens labelled as species, so
4 5	283	TCMsp was the completeness metric used. Mean TCM was compared between specimens
6 7	284	allocated to a maximum taxonomic resolution of family, genus or species. Tests both included
8 9 10	285	and excluded specimens consisting of only teeth.
10 11 12	286	Mean TCMsp was assessed across different lithologies by assigning mosasaur-bearing
13 14	287	formations to the categories chalk, sandstone, limestone, or clay, based on the predominant
15 16	288	rock type of each formation. The specific lithology of individual specimens was not used.
17 18	289	Mean TCMsp values of a few well-known and prolific mosasaur-bearing formations were
19 20 21	290	calculated and compared. Differences in mean TCMsp between palaeogeographical regions
21 22 23	291	(i.e. Eurasia, Gondwana, North America) were also analysed.
23 24 25	292	Finally, estimated body size for sample species was compared to the species mean
26 27	293	completeness using mosasaur length estimates taken from Polcyn et al. (2014). For this
28 29	294	analysis, mosasaurs were divided into three informal size groups: small (1-4 m), medium
30 31	295	(4.5–7.5 m) and large (8 m or longer) because we did not have good quality individual
32 33	296	measurements for each taxon, and for those with large sample sizes, we would have to
34 35 26	297	consider a range of body sizes.
30 37 38	298	
39 40	299	Sampling. A few representative sampling metrics were compiled to test the relationship
41 42	300	between palaeontological sampling effort and fossil completeness. The number of specimens
43 44	301	per species was used as one measure of sampling because it could be related to collector effort
45 46	302	or availability of samples. The number of Google Scholar "hits" was tested as a measure of
47 48	303	scientific interest (we recorded these on 1 st December, 2017). The number of years since first
49 50	304	discovery (i.e. naming of a species) was used to test scientific effort over historical time.
52 53	305	Sampling or study effort could be related to absolute body length (Polcyn et al. 2014; Driscoll
55 55	306	et al. 2018, Data A), and this was also compared with other variables.
55 56 57		

Driscoll 14

307	Sampling and/or completeness might be related to rock outcrop area. For North American
308	formations, this information is available at Macrostrat.org. The maps for representative North
309	American mosasaur-bearing formations were double-checked against actual specimen
310	locations. The average TCMsp by formation was compared to the rock area of these
311	formations and their mosasaur species diversity. The number of formations (n) necessary to
312	be confident about our results using the lowest p value (0.35) and highest r_s (0.6) was
313	calculated using the method of Bonett and Wright (2000). Their work showed that a value of
314	n = 4 is the smallest sample size that is adequate at this level of confidence; we have a value
315	of $n = 5$ for our data.
316	
317	Statistical tests
318	Differences in specimen completeness among categorical data (i.e. taxonomic rank, body size,
319	lithology, palaeogeography etc.) were assessed using Wilcoxon tests and Kruskal-Wallis tests.
320	Relationships between numerical data and paired time series were assessed using Spearman
321	rank correlation tests. The correlation between completeness values across specimens was
322	double-checked using the Kendall Tau-b test, which corrects for ties in the ranks across the
323	thousands of specimens included. Time series were detrended using generalised differencing
324	prior to correlation tests (using the gen.diff function of Graeme Lloyd;
325	http://www.graemetlloyd.com/methgd.html), and these were corrected for false discovery rate
326	(FDR) using the method of Benjamini and Hochberg (1995). Time series of completeness
327	metrics were correlated with mosasaur diversity, sea level, and the various sampling proxies,
328	with the aim of determining whether specimen completeness has any bearing on mosasaur
329	diversity, and whether specimen completeness is driven by external factors such as sea level
330	or sampling intensity. All statistical analyses were performed in R (v.3.3.0).

Palaeontology

 Page 15 of 114

1

59

60

Palaeontology

2	221	Concredized least squares (CLS) is a multiple regression method for estimating the
3 4 5 6 7 8	331	Generalised least squares (GLS) is a multiple regression method for estimating the
	332	unknown parameters in a linear regression model, and it can be used when there is a certain
	333	degree of correlation between the residuals in a regression model. GLS has an advantage over
9 10	334	pairwise tests of correlation as it allows multiple explanatory variables to be examined
11 12 13 14 15 16	335	simultaneously and allows the addition or removal of additional variables to be assessed
	336	quantitatively. Variables tested included diversity, sea level, TCM, age and formations.
	337	GLS models were fitted in R using the package nlme (Pinheiro et al. 2017). As there
17 18	338	was evidence for heterogeneity in the spread of the residuals in some of the explanatory
19 20 21	339	variables, we applied a number of variance structures to the data and tested for the best fitting
21 22 23	340	model using the Akaike Information Criterion (AIC). The best fitting model for predicting
24 25	341	diversity contains a power of the covariate variance structure applied to the age data and the
26 27	342	best fitting model for predicting TCM contains a fixed variance structure applied to the age
28 29 30 31 32 33 34 35 36 37 38 39 40	343	data. Models were also fitted with an auto-regressive model of order 1 (AR-1) correlation
	344	structure, which models the residual at time s as a function of the residual of time s-1 (Zuur et
	345	al. 2009). The models with the AR-1 structure were worse fits than the models without. This
	346	is because of the common increasing trend of diversity, formations and sea level through
	347	time. We therefore present both sets of models, with and without the autocorrelation structure
	348	applied to the age parameter. Model fitting was achieved by comparing the full models with
41 42	349	models that drop each explanatory variable in turn and perform a likelihood ratio test. This
43 44	350	informs whether the dropped term has a significant influence on the fit of the model (Zuur et
45 46 47	351	al. 2009).
48 49	352	
49 50 51	353	Institutional abbreviations. ALNHM, Alabama Natural History Museum, Tuscaloosa,
52 53	354	Alabama, USA; AMNH, American Museum of Natural History, New York, USA; FMNH,
54 55 56 57 58	355	Field Museum of Natural History, Chicago, Illinois, USA; GPIT, University of Tübingen,
50		

2 3	356	Tübingen, Germany; LACM, Los Angeles County Museum of Natural History, Los Angeles,
4 5	357	California, USA; MCZ, Museum of Comparative Zoology, Harvard University, Cambridge,
6 7	358	Massachusetts, USA; SDMNH, San Diego Museum of Natural History, San Diego,
8 9 10	359	California, USA; TMP, Royal Tyrell Museum of Palaeontology, Drumheller, Alberta,
11 12	360	Canada; UAVPL, University of Alberta Vertebrate Paleontology Lab, Edmonton, Alberta,
13 14	361	Canada; UCMP, University of California Museum of Paleontology, Berkeley, California,
15 16	362	USA; USNM, Smithsonian Institution National Museum of Natural History, Washington DC,
17 18	363	USA; UVER, University of Vermont Zadock Thompson Natural History Collection,
19 20 21	364	Burlington, Vermont, USA; YPM, Yale Peabody Museum, New Haven, Connecticut, USA.
21 22 23	365	
24 25	366	RESULTS
26 27	367	Completeness scores
28 29	368	The mean completeness scores for all specimens per species show a broad range of values for
30 31	369	different taxa: averages per taxon range as follows: TCM (1-21 out of 36), QCM (1-7 out of
32 33	370	9) and ICM (1–5 out of 5). Summaries are given of the overall mean TCM, QCM and ICM
34 35 36	371	scores for all mosasaur species (Driscoll et al. 2018, Data A), for all mosasaur specimens
37 38	372	(Driscoll et al. 2018, Data B) and by holotype, best specimen and species composite scores
39 40	373	(Driscoll et al. 2018, Data F, G and H, respectively). An overview of the completeness of the
41 42	374	various species and exemplary specimens is reviewed below and summarised (Table 3).
43 44	375	When the total character scores from the mosasaur phylogenetic matrix are compared to
45 46	376	QCM there is a very highly significant positive correlation (Spearman: $r_s = 0.925$, $p \ll 0.001$)
47 48 40	377	derived from our 26 representative specimens, which remains significant after FDR correction
49 50 51	378	for multiple comparisons.
52 53	379	Statistical comparison of the completeness scores (TCM, QCM, ICM) across all
54 55 56 57	380	specimens shows highly significant positive correlations that were also significant after FDR
58		

Palaeontology

Driscoll 17

3	381	correction: TCM vs. ICM (Spearman: $r_s = 0.74$, p << 0.001), QCM vs. ICM (Spearman: $r_s =$
4 5	382	0.72, p << 0.001) and TCM vs. QCM (Spearman: r_s = 0.49, p << 0.001). The correlations
0 7 8	383	were also very highly significant using the Kendall tau-b test, with all p values < 0.001. The
9 10	384	metrics are so closely correlated with each other that all can be regarded as equivalent metrics
11 12	385	for recording fossil completeness data.
13 14	386	A comparison of the completeness data (TCM) for all 4083 specimens versus the 1726
15 16	387	specimens datable to substage shows significant discrimination, as indicated by the Kruskal -
17 18	388	Wallis test ($\chi^2 = 81.174$, df = 35, <i>p</i> << 0.001). These sets are not equivalent. At first, this
19 20 21	389	seems surprising, since the medians for these values are both 1; the mean TCM for single
22 23	390	substage specimens is 2.18, and for all specimens is 2.28. But this result is influenced by the
24 25	391	fact that the distribution of precisely datable specimens is skewed according to the level of
26 27	392	taxonomic assignment. Only 154/1034 (15%) of taxa assigned to Mosasauridae could be
28 29	393	dated precisely to substage, whereas for those identified to genus, this rises to 146/731 (20%),
30 31	394	and to 62% for specimens identified to species. However, when one compares the two sets of
32 33 34	395	data using only specimens named to species, there is no significant difference when using the
34 35 36	396	TCM of all specimens and those datable to precise substages (Kruskal-Wallis: $\chi^2 = 41.94$, df =
37 38	397	32, $p = 0.124$). This shows that TCMsp, which necessarily leaves out many un-sampled
39 40	398	and/or un-datable specimens, can be trusted as a fair representation of the mean TCM for the
41 42	399	set of all specimens identified to species level. Note that comparisons like this, where some
43 44	400	data sets compared are subsets of each other, might be inadvisable; but in this case, the null
45 46	401	hypothesis was that the partial set of datable specimens should be equivalent to the set of all
47 48 40	402	specimens. We confirm this here in the comparison of substage-dated specimens with the
49 50 51	403	sample of all specimens.
52 53	404	
54		

Mosasaur fossil completeness

406	Time series. Mean completeness of all mosasaur specimens varies through time, and there are
407	close similarities in the overall patterns through time for all three completeness metrics (Fig.
408	2). The same is true for mosasaur specimens named to species through time (Fig. 3).
409	The time series of completeness metrics by substage all correlate significantly with each
410	other, both for all specimens and for those named as species. These correlations remain
411	significant after FDR correction. There is no bias in the overall pattern of mosasaur
412	completeness according to whether specimens have been assigned to named species or not.
413	Further, many of the rises and falls in the respective time series (Figs 2, 3) show statistically
414	significant differences between substages, both for named species and for all specimens.
415	All patterns for the different metrics appear broadly similar, whether isolated teeth are
416	included or not, but the values without such teeth are inevitably always higher (over 1400 of
417	the 4083 specimens comprise isolated teeth only). The differences between time bins continue
418	to be significant (Figs 2, 3) regardless of whether the data include or exclude specimens
419	consisting of only a single tooth. The metric that is least changed by the removal of tooth-only
420	specimens is QCM.
421	A difference between the 'with teeth' and 'without teeth' time series occurs in the late
422	Santonian for QCM, where the value excluding teeth is considerably higher (Fig. 2B). In the
423	early Campanian, a disproportionate number of tooth-only specimens (most likely from
424	Prognathodon lutugini) shift the ICM curve lower (Fig. 2C). The results are comparable also
425	for taxa named to species (Fig. 3), although the data set is smaller.
426	There is an overall slightly declining trend in fossil completeness through time, with
427	completeness scores in the mid Cretaceous somewhat higher than those in the Maastrichtian.
428	However, the trend is modest, and perhaps dominated by the downturn from the early to late
429	Maastrichtian. For the whole data set, all three metrics show (Fig. 2) a high point in the
430	middle Coniacian, but this is based on a single specimen, and so the value is hardly

Palaeontology

Driscoll 19

2 3	431	meaningful. Further, there are no named mosasaur species datable exactly to the early
4 5 6	432	Coniacian (Fig. 3). For all specimens, the lowest average completeness is in the early
6 7 8	433	Santonian. The earliest true mosasaurs, found in the Turonian, have average completeness.
9 10	434	Later, completeness peaks in the late Santonian and drops to its lowest points in the early
11 12	435	Campanian and late Maastrichtian.
13 14	436	For all three metrics, mean completeness (Table 4) for named species (TCMsp, QCMsp,
15 16	437	ICMsp) through time is correlated with overall completeness (TCMall, QCMall, ICMall) and
17 18	438	remains significant after FDR correction. Note that TCMsp and ICMsp are significantly
19 20 21	439	correlated with TCMav and ICMav after FDR correction, but other completeness metrics,
21 22 23	440	whether based on named specimens or all specimens, do not show significant correlations
24 25	441	with average species completeness (TCMav, QCMav, ICMav) analysed in specific time bins,
26 27	442	after FDR correction. For example, QCMsp does not correlate with QCMav. This indicates
28 29	443	that caution is required in interpreting time series that assume completeness values derived
30 31	444	from whole species-based values, such as averaged species completeness (TCMav, QCMav,
32 33 24	445	ICMav) are equivalent to specimen-based completeness averaged in single time bins.
35 36	446	Both the sampled in-bin and "averaged" species diversity curves correlate significantly
37 38	447	with the generic diversity curves even after FDR correction (Table 4, Fig. 4A). Generic
39 40	448	diversity rises and falls, then upturns sharply from the mid Santonian onwards, and gently
41 42	449	rises through the Campanian to Maastrichtian, with only a slight increase through that span of
43 44	450	nearly 20 Myr. The species curves roughly follow the same pattern early on. The two curves
45 46 47	451	show a dramatic drop in diversity after the Turonian, corresponding to a low number of
47 48 49 50 51	452	assignable specimens; and in the early Coniacian none can be named to species level (e.g.
	453	Tylosaurus indet.). Mosasaurid species diversity rises during the middle Coniacian, dropping
52 53	454	in the early Santonian, but then generally rises the to the K/Pg boundary, with a slight drop in
54 55		
56 57		
эх 59 60		Palaeontology
50		57

Palaeontology

Page 20 of 114

Driscoll 20

455	the early Maastrichtian. Note that species diversity is at its highest during the late
456	Maastrichtian, with no hint of a pre-mass extinction diversity drop.
457	For comparison, sea level (Fig. 4B) fluctuates in the Turonian through early Santonian,
458	concurrently with the variability in mosasaur diversity. The lowest sea level occurs in the
459	early Santonian, but it rises until the early Campanian, when it reaches its highest level. A
460	drop in sea level occurs in the early Maastrichtian, at the same time as a small drop in species
461	diversity. Species diversity is high during some times of relatively high sea level, but none of
462	the three diversity time series curves correlates in a statistically significant way with mean sea
463	level (Table 4) in this comparison. In like manner, none of the measures of completeness
464	shows any statistically significant correlations with sea level (Table 4).
465	
466	Predicting diversity and completeness. GLS model fitting shows that a combination of all
467	variables (e.g. sea level, mosasaur and plesiosaur bearing formations (MPBFs), TCM, and
468	age) best predict averaged diversity (Driscoll et al. 2018, Appendix Table S6A). While sea
469	level and MPBFs appear positively related to averaged diversity (i.e. higher sea level or more
470	MPBFs sampled equals higher diversity), age is negatively related to diversity, i.e. mosasaur
471	diversity increases through time (Driscoll et al. 2018, Appendix Table S6B). However, once
472	we account for autocorrelation, we find that the best fitting model contains only sea level and
473	MPBFs, both of which are positively related to averaged diversity (Tables 5, 6). The best
474	fitting model for predicting TCMsp consists of all variables (e.g. species diversity, sea level,
475	MPBFs and age) (Driscoll et al. 2018, Appendix Table S6A). However, none of these
476	variables appears to be significantly associated with TCMsp (Driscoll et al. 2018, Appendix
477	Table S6B). When we account for autocorrelation, the best fitting model still for TCMsp
478	contains all variables, but none is significant (Tables 5, 6).
479	

1	
2	
۲ ۲	
⊿	
ر م	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40 // 1	
41	
42 42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
59 58	
50	
22	
υU	

480	Determinants	of fossil	completeness
-----	--------------	-----------	--------------

481	Taxonomic rank. As might be predicted, mean TCM increases as one narrows taxonomy from
482	family to genus to species (Fig. 5A, B), and these differences are statistically highly
483	significant. Interestingly though, when all specimens including teeth were used in the
484	analysis, it was difficult to discriminate a significant difference in completeness between
485	genera and species (Fig. 5A), even though there was discrimination among all three
486	taxonomic categories when tested together. But, when the tests were repeated excluding
487	tooth-only specimens, there was clear discrimination (Fig. 5B). Among all 4083 specimens,
488	1044 were attributable to family only (Mosasauridae indet.), 731 to genera, and 2304 to
489	species.
490	
491	Lithology. There are highly significant differences in TCMsp among specimens preserved in
492	different lithologies, with fossils preserved in clays displaying higher completeness than those
493	preserved in carbonate or coarse siliciclastic deposits (Fig. 6). These differences are much
494	smaller when specimens consisting only of teeth are left out of the analysis.
495	
496	Palaeogeographic region. The mean TCM of specimens identified as species varies
497	significantly by palaeocontinental region, with specimens from North America showing
498	higher completeness than those from Eurasia and Gondwana (Fig. 7). When tooth-only
499	specimens are excluded, there are no statistical differences.
500	
501	Formation. Fossil completeness as measured by TCMsp varies significantly between different
502	geological formations. The Pierre Shale Formation in the western interior of the USA and the
503	Craie de Ciply in Belgium have the most complete fossils (Fig. 8). The Maastrichtian

formations of the New Jersey Greensand and Maastricht Chalk yield the least complete

Driscoll 22

specimens.

Body size. There are no significant differences in total mean species completeness (TCMtot) between different body size classes derived from the estimated average body length of the individual species concerned (Fig. 9). Sampling, Average species completeness correlates significantly and inversely with the number of years elapsed since description, and inversely also with the number of specimens per species (Table 7). The average completeness per species compared to the completeness of the best specimen in a species correlates strongly for all three metrics. The best specimen influences the average for a whole species. The total number of specimens per species shows statistically significant positive variation with the number of years since description. The number of Google Scholar "hits" for a species correlates strongly with the number of specimens, as well as years elapsed since description. There is a trend for Google Scholar "hits" to increase with estimated mosasaur body length, which is not quite statistically significant using Spearman's *rho* ($r_s = 0.26$, p = 0.052). Results for North America rock outcrop area (Table 7) show no correlations between regional diversity, formational outcrop area, or mean TCM by formation. Overview of mosasaur fossil completeness. The mean completeness (TCMtot) by species using individual specimens ranged from 1.0 for those species known only from teeth, jaws or individual bones to a high of 13.67 for *Hainosaurus bernardi* (Driscoll *et al.* 2018, Data A). The scores by specimen type (Table 3; Driscoll *et al.* 2018, Data F–H) show that the average holotype completeness is 8.1 for TCMh, which is approximately equivalent to 25% of the

Palaeontology

Palaeontology

Driscoll 23

skeleton in the average mosasaur holotype. The highest scoring holotype is 32 for UPI R163, *Eonatator sternbergii*. The lowest score for TCMh is 1.0 for several holotypes. The most complete specimen is not always a holotype. *Platecarpus tympaniticus* (YPM 58129) from the Kansas Chalk, with a TCMc of 36, is the most complete specimen in the database. However, at least five other specimens scored over 30. Several species have perfect composite scores, including some with soft tissue preservation (e.g. Platecarpus tympaniticus and *Tylosaurus proriger*). The highest mean OCMtot was 5.6 for individual specimens of *Tethysaurus nopscai*. The mean holotype completeness (QCMh) is 4.5; thus 50% of the phylogenetic characters occur in the average type specimen. The highest QCMh is 8 (equivalent to a skull and most of the skeleton) for several holotypes: Eonatator sternbergii, Clidastes propython, Mosasaurus missouriensis, Plotosaurus bennisoni and Latoplatecarpus willistoni. The lowest QCMh for a type specimen is 1.0 (but this a lectotype) for Goronyosaurus nigeriensis. Of note, the composite score (QCMc) of G. nigeriensis is 8; multiple specimens make up for most of the elements missing in most individual fossils. The best specimens of both *Tylosaurus proriger* and *Platecarpus tympaniticus* both have QCMb scores of 9. The mean QCMc for all species is 6.2. This indicates the composite character completeness of the average mosasaur species is approximately equivalent to the score for a skull of that species. Multiple species have a perfect QCMc. It should be noted, that at the time of this compilation, there were three species with a QCMc only equal to 2.0, the lowest composite score, equivalent to a jaw element, namely Carinodens belgicus, Carinodens minalmimar and Igdamanosaurus aegyptiacus. The average TCMc for composite specimens is 15.7 (about 44 % of the skeleton). The mean composite score for ICMc is 4.5/6, equivalent to some skull, axial and limb elements available to describe the average mosasaur species.

Driscoll 24

55	
55	DISCUSSION
55	Describing the mosasaur fossil record. In this study, we have addressed one of the richest
55	vertebrate fossil records. Mosasaurs have attracted study for over two centuries, with the first
55	find, Mosasaurus hoffmanni, being described by Cuvier in 1808 (Russell 1967). Later
55	collectors noted their huge abundance: it is said that O. C. Marsh collected over 2,000 Kansas
56	mosasaur specimens (Everhart 2000), and Ikejiri et al. (2013) counted 1,563 Alabama
56	mosasaur specimens. An estimate of "literally thousands" of specimens of Platecarpus from
56	Kansas has been suggested (Konishi & Caldwell 2007). Our analysis of mosasaur diversity
56	through time complements previous studies (Polcyn et al. 2014; Ross 2009).
56	It has been argued (Mannion & Upchurch 2010) that skeletal completeness metrics can
56	evaluate confidence in palaeontological data: as knowledge of the anatomy of a taxon
56	becomes more complete, with increased numbers of specimens, or more complete skeletons,
56	confidence in taxonomic assignments improves. In an ideal world, palaeontologists would
56	wait for relatively complete specimens before applying new taxonomic names, but in fact new
56	genera and species are often based on poor material. For example, in the case of echinoids
57	(Smith 2007), incomplete fossils were named more frequently than complete specimens, and
57	in the case of dinosaurs (Benton 2008a), the naming of species in the 19 th century was
57	prodigious but quite inaccurate, and holotypes were on average much more incomplete before
57	1960 than after that date (Benton 2008b). Brocklehurst & Fröbisch (2014) found, on the other
57	hand, that pelycosaurs named before 1900 were on average much more complete than those
57	named after that date.
57	Early in mosasaur palaeontology, many species were named based on inadequate
57	material, as can be seen by a perusal of invalid names listed by Russell (1967). Perhaps in the
57	19 th century, names applied to scrappy material might by chance have been correct, as

Palaeontology

Palaeontology

Driscoll 25

palaeontologists were naming the first ever mosasaur finds from newly identified geological formations, but today, it is likely that new names applied to scrappy material risk being synonyms of already named taxa. *Using completeness scores in mosasaurs.* This is a specimen-, rather than taxon-based study. Occurrence-based records that depend on presumed ranges of species were not used to place specimens in time bins in the completeness calculations. This paper shows the utility of this method, which might not have had enough power for statistical testing; the greatest risk was with TCM, since the average completeness values are quite low. However, the analysis was possible because of the large number of specimens in the database. All three completeness metrics (TCM, QCM, TCM) correlated with each other, both specimen by specimen and through the time series. A similar result was found with ichthyosaur completeness, where SCM correlated with BSCM (Cleary et al 2015), a metric similar to those used in this study. Our results suggest that even qualitative measures, such as OCM and ICM, can be useful for comparing specimens and, because they correlate with TCM (a quantitative metric) and with each other, any one of these metrics could be used to score mosasaur fossils. TCM is based on true specimen in-bin averages, and thus it is likely driven by taphonomy (Mannion & Upchurch 2010; Beardmore et al. 2012 a, b). TCM is similar to SCM, but it is not weighted volumetrically, but equally by anatomical region. Weighting by size may introduce an assumption that larger elements or regions are preserved more readily than smaller ones. Disallowing such weighting then allows TCM to be used to test taphonomic or preservational hypotheses. QCM was developed as a proxy for phylogenetic completeness, and is somewhat equivalent to CCM. QCM estimates phylogenetic completeness without having to score

Driscoll 26

604 characters on every element of a fossil specimen, because QCM is pre-weighted by character
605 density. In terms of the time involved in scoring, QCM can be assessed quickly from a
606 photograph or a fair description, whereas methods such as CCM require careful coding of all
607 skeletal elements. ICM, although less quantitative than the other metrics, was easily scored
608 and could discriminate mosasaur completeness in line with TCM and QCM values, even
609 when specimens could not be examined directly, or photos or more specific descriptions were
610 not available. This confirms its usefulness.

It is important to note that there were some differences in our results when compared to other studies using the SCM and CCM metrics. In most other fossil completeness studies (e.g. Mannion & Upchurch 2010; Brocklehurst et al. 2012; Brocklehurst & Fröbisch 2014; Cleary et. al. 2015; Dean et al. 2016; Tutin & Butler 2017), best and composite completeness values for a species are calculated and then these values are generally assigned to time bins of the species temporal range (usually based on first and last appearances). These completeness values are then averaged in the various time bins. If there were only a single specimen representing a species that is only assignable imprecisely to several time bins, there would be no other alternative but to use this method. If the best specimen of a species or the composite specimen cannot be assigned to an individual time bin, the result is the same as if the mean completeness for a species did not vary over time bins. The large size of our data set allowed for analysis using only exactly assignable in-bin specimens and avoided the need for proxies of specimen completeness such SCM or CCM.

In our study, we chose not to include composite (TCMc, QCMc, ICMc), best (TCMb,

625 QCMb, ICMb), or holotype (TCMh, QCMh, ICMh) completeness metrics in the time series

626 analyses, to avoid calculating estimates of completeness from un-sampled specimens. In some

627 studies that used stage-level time bins (e.g. Cleary et al. 2015; Dean et al. 2016), best

628 specimen or composite specimen values were used, which involves some risk of

Palaeontology

Driscoll 27

amalgamating disparate data across time bins. We provide data for holotype completeness (TCMh, QCMh, ICMh), equivalent to SCMts, as well as best and composite specimen scores average scores, lowest scores, etc. (Table 3), only for comparative purposes. Completeness and the mosasaur fossil record. Most mosasaur species are very complete (Driscoll *et al.* 2018, Data F–H), especially if one considers composite completeness by species. On average, over 65% of the phylogenetic information is available for the average mosasaur species. This is better than for anomodonts (Walther & Fröbisch 2013), otherwise assumed to be rather complete, although anomodont skulls yield 82% of phylogenetic characters on average, whereas postcranial characters account for only 4–9% of possible totals. Our data show that through the history of mosasaur collecting there has not generally been a bias in selecting well-preserved fossils. This is demonstrated by the fact that museums curate thousands of incomplete specimens, indicated by the wide range of TCM and QCM values (Driscoll et al. 2018, Data B). It should be noted that most of the QCM values are low because there was not an over-representation of, say, skull material that would show bias in collecting. QCM does not correlate with diversity (see below), and this is also an argument that the best specimens do not bias the mosasaur record. Because we included over 4,000 specimens of all completeness values, half of which have TCM and QCM scores of 1 or 2, we were not sure at first whether the inclusion of such low-scoring singleton specimens would distort our conclusions. On the other hand, we reasoned that the inclusion of low-scoring elements should contain valuable information concerning taphonomic drivers of preservation. Especially worrisome was the fact that so many teeth were included as individual specimens. These concerns were tested in several ways. Kendall tau-b correlation analysis comparing completeness values over all specimens showed that, even though there were many

Driscoll 28

3	
л Л	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
19	
20	
21	
ר∠ בר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
13	
44 15	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1 2

654 incomplete specimens, ties in the ranks did not affect analyses. All metrics are equally useful 655 for scoring. In any case, we analysed time series with and without teeth, and comparisons 656 remained statistically significant. It makes taphonomic sense that the inclusion of teeth in the 657 analysis of lithological variables increased the discrimination between rock types. The same 658 type of result occurred with the analysis of formational data, which again must vary by rock 659 type. Interestingly, leaving out tooth-only specimens obliterated the statistical differences 660 between palaeogeographic regions. European collections certainly do contain more teeth 661 (Driscoll et al. 2018, Data B) and perhaps European scientists have always identified more 662 specimens with teeth alone.

663 It is reassuring that completeness scores are inversely proportional to category-level 664 discrimination, being best for specimens identified to species level, then poorer for those 665 identified to genus level, and worst for those assigned only to family. As noted before, the 666 difference between species and genus completeness is greatly enhanced when specimens 667 consisting of only teeth are excluded from the analysis. A few taxa have a very low 668 completeness score (e.g. *Tylosaurus ivoensis*), but all species with a species epithet have at 669 least some material that is separable by apomorphic characters (Bell 1995), the minimum 670 requirement for naming new taxa (Parham *et al.* 2012). It is perhaps true, that a species can be 671 identified by its teeth (Lindgren & Siverson 2002; Bardet et al. 2015), but in marine reptiles 672 the teeth are often homodont and lack variability, being in many cases convergently adapted 673 to diet (Massare 1987), and so may be of limited use taxonomically. When designing future 674 specimen-based studies, analyses with and without teeth would be recommended. 675 A key discovery was that completeness of species as measured by TCMav does not

A key discovery was that completeness of species as measured by TCMav does not
necessarily correlate with completeness of specimens. Most studies on the completeness of
the fossils have assigned various completeness scores to each species, but have treated these
scores as a measure of preservation quality. The fact that the species-level scores for

Page 29 of 114

60

Palaeontology

Driscoll 29

1		
2 3 4	679	mosasaurs do not necessarily represent the quality of the preservation of the individual fossil
5	680	specimens has important implications for how the results of these studies should be
7	681	interpreted. The use of any whole species proxies for completeness that are derived from data
9 10	682	outside of the time bin where the data is averaged will not necessarily be equivalent to
11 12	683	analyses compiled from specimens in their home time bins. Results from species- and
13 14	684	specimen-based studies will likely be more disparate with larger samples and shorter time
15 16	685	bins. In addition, there could be links to correlations between completeness, the number of
17 18	686	specimens and year since description: the completeness scores assigned to whole species will
19 20 21	687	be a result of the accumulation of specimens assigned to that species, which we have shown
21 22 23	688	are influenced by the history of discovery (= number of years since description).
24 25	689	
26 27	690	Mosasaur completeness through time. Hundreds of specimens of mosasaurs are datable to
28 29	691	substage, and the analysis shows that this subset of is a good representation of overall
30 31	692	mosasaur species completeness. There are significant differences in completeness over time;
32 33	693	but values in mean completeness from substage to substage are not unexpected, as the
34 35 36	694	conditions for fossil preservation must vary in complex ways from fossil to fossil, formation
37 38	695	to formation and taphonomic microenvironment to microenvironment. Because there are so
39 40	696	many specimens in these time bins, from a wide geographic range, it is difficult to recognise
41 42	697	any individual collections or formations that are driving these curves. The differences
43 44	698	between time bins represent true in-bin mean values. We show here that using the average
45 46	699	completeness of a species group (TCMav, QCMav, and ICMav) to calculate overall time bin
47 48 49	700	completeness (TCMtot, QCMtot and ICMtot) is not generally warranted, at least for QCM in
50 51	701	this dataset. Surprisingly, when TCMav was used to estimate species completeness by
52 53	702	substage, it did correlate significantly with the mean TCMsp of the individual specimens in
54 55		
56 57		
58 59		

Palaeontology

Driscoll 30

the time bin. This may indicate that multiple specimens of a single species tend to fossilise in similar ways. It might have been predicted that mosasaur completeness would depend on sea level, as is the case for ichthyosaurs (Cleary et al. 2015) and plesiosaurs (Tutin & Butler 2017). However, we found no relationship between mosasaur skeletal completeness and average sea level in any of the time series analyses. There were some negative correlations (Table 4), but the correlation coefficients were extremely low, and not even near significant. Similarly, in GLS analysis, even though the best fitting model for predicting TCMsp included sea level, its predictive value was no better than the null model. In cases where specimen quality depends on sea level, it might be predicted that the relationship would be positive, in that deep-water settings should provide better conditions for preservation than shallow waters, because the deep oceans are less subject to high-energy deposition, except through the medium of turbidity currents, and there are fewer scavengers than on the marine shelf. However, for ichthyosaurs (Cleary et al. 2015) and plesiosaurs, (Tutin & Butler 2017), completeness is inversely proportional to sea level, significantly so for the former, but not the latter. This inverse statistically insignificant relationship may also occur in marine crocodiles (Driscoll, unpublished), but the reasons for this relationship are not clear. As mentioned by Tutin & Butler (2017), the marine reptile fossil record is not particularly well sampled in the Jurassic and earliest Cretaceous, which might bias results. It is not clear whether this idea is confirmed by the absence of such a trend in the more intensively sampled and time-limited sample of mosasaurs, or whether different marine reptile groups show different preservation conditions. We suggest here that the mosasaur fossil record is not much affected by lack of sampling (the exception being the early and mid Coniacian) and there is no correlation to changing sea level. For terrestrial tetrapods, a negative relationship between completeness and sea level

Palaeontology

Driscoll 31

was found for sauropod dinosaurs (Mannion & Upchurch 2010), which was explained by differences in sauropodomorph ecology; but there was no correlation for Mesozoic birds (Brocklehurst et al. 2012) or pterosaurs (Dean et al. 2016). Explaining mosasaur macroevolution. In our first analysis, correlation results show no direct relationship between species or genus diversity and sea level, but our GLS results do show a significant contribution by sea level in the best fitting model explaining diversity. This compares with Polcyn *et al.* (2014), who argued that sea level at least partially drove mosasaur diversity, as mosasaur richness in their analysis trended in the same direction as sea level. The initial expansion of the clade might well have been triggered by the onset of major continental flooding in the early Late Cretaceous (Caldwell 2002). We suggest that any model of mosasaur macroevolution using environmental drivers will have to take more than sea level into account. The increase of mosasaur species richness combined with the quality of their fossil record makes a strong case for a model of marine reptile evolution in which mosasaur species steadily filled specific niches or expanded steadily into different biogeographic regions, once variability in global marine environmental drivers became stable in the Santonian. The almost level generic diversity curve in the latest Cretaceous shows that mosasaurs had become long-term and stable residents of the Cretaceous seas right up to the late Maastrichtian. Neither species nor generic diversity through time correlated with skeletal completeness in mosasaurs for any of our metrics. In GLS modelling, the best-fitting auto-correlation model of completeness (TCMsp), species diversity was a predictive variable, but it was not statistically significant. This lack of correlation, confirming what Cleary et al. (2015) found also for ichthyosaurs, suggests that the quality of fossils does not drive our models of marine

reptile diversity and it would be hard to construct a case that apparent changes in diversity are

Driscoll 32

simply artefacts of the quality of fossils or the quality of nomenclature based on those fossils. Sampling and redundancy. In most previous fossil completeness studies, sampling proxies have been used in multiple regression analysis of fossil completeness to help understand what is driving measured values of diversity and completeness. Variables such as collections, fossiliferous marine formations, dinosaur-bearing formations, marine tetrapod-bearing formations, pterosaur-bearing formations and other proxies have all been used. Much of this data is relatively accessible from the Paleobiology Database and/or the primary literature, but most of it is tallied at stage level. In our study, using substage-dated specimens, it was not possible to include the above proxies in our multiple regression analyses. Such a comparison will be interesting once a narrower time range analysis is possible. Instead, we developed an

765 (MPBFs). Almost all plesiosaur-bearing formations also contained mosasaurs, so the data766 overlapped.

Upper Cretaceous substage-level proxy from mosasaur- and plesiosaur-bearing formations

In all our best fitting GLS models, with and without auto-correlation, MPBFs correlated highly significantly with diversity. In the past, counts of fossiliferous formation were used as a proxy for sampling that combined geological and human biases (Benson *et al.* 2010). If MPBFs is considered as a proxy for geological megabiases, then our results could indicate that none of our diversity data is reliable enough to compare with any other time series, including sea level or completeness. However, the shape of the diversity curve, lack of evidence for lithological or regional correlates with specimen completeness, and the thousands of sampled fossils argue against jumping to this conclusion. Further, the data on fossil occurrence (collections, specimen counts, localities, formations) were collected at the same time as the data on diversity, and so there is a risk of tallying rock and fossil data that

Palaeontology

2 3	777	describe the same history of discovery, so pointing to redundancy (Benton et al. 2011; Benton
4 5	778	2015). The redundancy hypothesis for highly correlated rock and fossil data was confirmed in
6 7	779	the case of the fossil records of the UK and the world by using statistical methods that
o 9 10	780	identify not only correlation but also directionality of causation (Dunhill et al. 2014, 2018).
11 12	781	Therefore, we cannot use the MPBF count as a sampling proxy because it is not an
13 14	782	independent yardstick that represents either geological or human sampling. Our other
15 16	783	variables, including fossil completeness, diversity and sea-level, are independent of one
17 18	784	another. We have shown that fossil preservation, as measured by specimen completeness
19 20	785	metrics, does not bias the fossil record of mosasaurs.
21 22 22	786	
23 24 25	787	Explaining mosasaur completeness. We have compared completeness in the best-known
26 27	788	mosasaur-bearing formations. Factors that might explain the differences include lithology,
28 29	789	rock exposure and collecting biases. Comparing completeness among different outcrops and
30 31	790	formations can be used as an aid in understanding Lagerstätten effects.
32 33	791	Our results for mosasaurs show many agreements with the study of the ichthyosaur fossil
34 35	792	record by Cleary et al. (2015). In both studies, skeletons were more complete in fine-grained
36 37 29	793	than coarse-grained sediments (Fig. 5), and this was expected because fossil completeness is
39 40	794	partially dependent on taphonomy (Beardmore et al. 2012a, b) and post-depositional
41 42	795	geological factors. This is supported by the fact that when low-completeness specimens
43 44	796	consisting of only teeth are left out of calculations of mean completeness, the differences
45 46	797	between lithologies are less evident. We expect, for example, that since sandstones are
47 48	798	deposited in high-energy environments, which toss and abrade bone, specimens in sandstones
49 50	799	would have smaller mean completeness values than those in lower-energy mudstones. Fine-
52 53	800	grained sediments should preserve more detail. In fact, the New Jersey Greensands have the
54 55	801	lowest completeness of the formations considered, and the Pierre Shale has a high average
56 57 58		

mean completeness value. A further contributor to the high quality of specimens in fine-

The Pierre Shale covers thousands of square miles of the North American western

Niobrara or Greensand, but considering its greater mean completeness, the sheer size of the

Pierre outcrop $(311,000 \text{ km}^2)$ in comparison to that of the Niobrara and Greensand $(21,000 \text{ km}^2)$

km² each) and its relative inaccessibility in remote regions of the North American western

interior, suggests that complete specimens may yet be found. The Pierre Shale fossils have a

higher mean completeness score than those from the Niobrara Chalk, but the latter formation

impressions are found (Lindgren et al. 2010). If average completeness could be considered

The Niobrara Chalk has experienced a great deal of collector effort (thousands of

specimens; over 150 years of effort by hundreds of people), and is still yielding fresh finds,

but no new species, barring those re-described, such as *Tylosaurus kansasensis*. Exposure

(desert badlands) and accessibility are high. Most of the Niobrara species have probably been

collected. Depending on average lithology and depositional environment, there may be a limit

to the skeletal quality within any geological formation, and no amount of additional collecting

significantly different with and without tooth-only specimens supports the idea that in highly

collected formations there may be a limit to average preservation values. Once enough rock is

exposed and collected, lithofacies biodiversity reaches a peak (e.g. Smith & Benson 2013),

and the known biodiversity then is limited by the ecology of the ancient environment and the

can improve that. The fact that the mean TCM values between different formations are

is often considered a Lagerstätte (Bottjer 2002), and indeed some mosasaur soft tissue

one measure of a Lagerstätte, the Pierre should also be considered as such.

interior, and produces some almost complete articulated fossils with soft tissue (personal

observation; Carpenter 2006, 2008). The Pierre has yielded fewer specimens than the

grained sediments such as the Pierre Shale are their anoxic environments, with little

scavenging (Kauffman & Sageman 1988).

Driscoll 34

Palaeontology
Page 35 of 114

60

Palaeontology

1		
2 3	827	preservation potential of the rocks, assuming collector effort and accessibility is high. Bones
4 5 6	828	from the same family likely have similar preservation potential (Smith & McGowan 2011), so
7 8	829	it is doubtful that there are missing taxa based on preservation alone.
9 10	830	Further to this theme, it might have been predicted that skeletal completeness and
11 12	831	diversity would be related in some way to outcrop or exposure area; perhaps, for example,
13 14	832	when the overall area of a geological formation is high, more skeletons of all kinds of
15 16	833	completeness might be found, and so the mean completeness score might then rise, and thus
17 18	834	perhaps biodiversity. In our preliminary analysis, the results show no significant correlation
19 20 21	835	between completeness and diversity or outcrop area for North American formations (Table 8).
21 22 23	836	This supports the idea that each formation is associated with an upper limit on preservation
24 25	837	potential if there has been adequate exposure and collector effort.
26 27	838	The Craie de Ciply chalk from the Mons Basin in Belgium has the highest average
28 29	839	skeletal completeness score. This Ciply chalk has produced many holotypes (Dollo 1904),
30 31	840	and the blocks from that formation at the IRSNB contain highly articulated and well-
32 33	841	preserved specimens, and very few single elements or partial fossils. This is striking when
35 36	842	compared, for example, to the chalk at Maastricht, which has yielded many hundreds of
37 38	843	disarticulated specimens, but the explanation, presumably to do with mode of deposition and
39 40	844	rate of burial of the carcasses, is not clear. In this case, with all the almost complete skeletons
41 42	845	available, perhaps less spectacular specimens were not deemed worthy of collection, or
43 44	846	perhaps they do not exist. Neither lithology, outcrop area, nor the amount of collecting
45 46	847	explains the completeness of these Belgian fossils, limited in area to quarries in a relatively
47 48 49	848	small region.
50 51	849	The average completeness of mosasaur specimens has tended to decrease through
52 53	850	research time, which was initially unexpected: specimens described and named many years
54 55 56 57 58 59	851	ago tend to be more complete than those named more recently. The holotypes of species

852	currently regarded as valid are typically rather complete specimens, and subsequently
853	identified materials of many of these species may on average be less complete, and now more
854	easily identifiable. Such specimens are not typically considered publishable material; and
855	studies that use only published material to describe historical trends in fossil quality may not
856	show the same result. The average-quality material found in many museums outnumbers
857	more complete material. The inverse completeness trend may reflect that the holotypes of taxa
858	named in former centuries were substantially complete and have been preferentially retained,
859	whereas less complete materials were disposed of, or perhaps not collected at all in the early
860	days of palaeontology when collectors were perhaps less assiduous in recording everything.
861	Today, on the other hand, perhaps holotypes are of similar completeness, but museums retain
862	enormous collections of less complete, referred specimens. Again, completeness does not
863	continuously rise for a species as more specimens are collected, but we have not explored
864	historical differences in completeness for specific formations.
865	Known fossil completeness of mosasaurs is best in North America and somewhat higher
866	in Gondwana. Surprisingly, the well-known very complete European specimens do not
867	significantly drive fossil completeness in Eurasia, nor does the relative number of specimens.
868	When the tooth-alone specimens are left out of the analysis, there are no significant
869	differences in completeness between the continents. North American collections in this
870	analysis are relatively devoid of tooth specimens. We were not able to make a significant
871	comparison of completeness in northern vs. southern hemispheres, as there are too few of the
872	latter. For ichthyosaurs, Cleary et al. (2015) showed the well-studied northern hemisphere
873	produced fossils of significantly higher quality than the southern hemisphere. The differences
874	above are all likely sampling artefacts.
875	Larger mosasaurs do not show higher skeletal completeness than either small or medium-
876	sized ones. One might hypothesise that larger specimens would be more complete, as in some

Palaeontology

Driscoll 37

2 3	877	dinosaurs (Brown et al. 2013). The situation here is different from that seen in other, smaller
4 5	878	taxa such as birds or pterosaurs (Brocklehurst et al. 2012; Dean et al. 2016), where
6 7	879	Lagerstätten may selectively preserve smaller specimens better than large specimens found in
o 9 10	880	other deposits. This could be explained by the greater weight of their bones, the higher energy
11 12	881	required by sedimentary flows to disarticulate a skeleton, the fact that larger specimens are
13 14	882	easier to find, or they are preferentially collected. It is interesting to note that the number of
15 16	883	Google Scholar hits per species showed a trend (although, not quite significant) with
17 18	884	estimated body length, perhaps indicating preferential study of larger mosasaurs. For
19 20 21	885	ichthyosaurs, Cleary et al. (2015) rather surprisingly found that medium-sized specimens
22	886	were significantly more complete than small or large taxa: the incompleteness of small
24 25	887	specimens was expected, but it was a surprise that larger specimens were also relatively
26 27	888	incomplete.
28 29	889	
30 31	890	CONCLUSIONS
32 33 34	891	Palaeobiology has been built on the idea that, in spite of limitations of the fossil record,
35 36	892	biological information including patterns of diversity and macroevolution might be
37 38	893	demonstrated with the proper analytical techniques. The mosasaur fossil record has been
39 40	894	explored in terms of skeletal completeness, a study enabled and strengthened by the great
41 42	895	abundance and quality of specimens. New completeness metrics, introduced here, adequately
43 44 45	896	describe the preservation of the mosasaur fossil record. QCM, a novel and quick method for
43 46 47	897	estimating fossil completeness correlates with true phylogenetic character completeness and
48 49	898	can be used as a proxy for it.
50 51	899	Mosasaur fossils are found in all stratigraphic substages throughout their evolution, and
52 53	900	neither skeletal nor phylogenetic completeness explains their diversity: fossil completeness
54 55	901	does not bias the fossil record of mosasaurs and cannot be used as a proxy for diversity. A
50 57 58		
59 60		Palaeontology
~~~		

902	huge amount of both incomplete and well-preserved mosasaur material is identifiable, which
903	is not the case for some other Mesozoic tetrapod groups. The mosasaur fossil specimen record
904	contains thousands of teeth, which do not affect the general utility of the methods, but
905	improve the resolution of completeness values in taphonomically related comparisons.
906	Outcrop area, where data is available, does not explain mosasaur diversity. However,
907	lithology has a role: skeletal completeness is higher in fine-grained than in coarse-grained
908	sediments. There is no evidence to suggest that sea level drives mosasaur fossil completeness
909	or mosasaur diversity. We do not detect any geological megabiases driving the fossil record
910	of mosasaurs. Mosasaur species richness, based on specimens assignable to a single substage,
911	rises steadily and smoothly from the late Coniacian to late Maastrichtian and correlates with
912	the generic richness curve. Although ambiguous in this study, sea level may play a role in
913	further models of mosasaur diversity. Low sampling in the mid Cretaceous makes the analysis
914	of completeness difficult through this time range. Even considering this, mosasaurs appear
915	unique among marine tetrapods in terms of the reliability of their fossil record.
916	
917	Acknowledgements. None of this work would have been possible without the input and
918	contributions of many generous and knowledgeable people. Thank you, Susan Beardmore for
919	sending pictures of marine crocodile specimens, which taught the first author how to use the
920	completeness metric; and this in turn inspired ideas on how to apply it to mosasaurs. We
921	thank Scott Hartman for giving permission to use the mosasaur skeleton drawing and
922	silhouette in Figure 1. Mosasaur silhouettes in Figures 2 to 4 are used courtesy of
923	Phylopic.org. For discussions on mosasaur specimens, we thank M. Polcyn and T. Ikejiri. We
924	are grateful to the following institutions and personnel who allowed access to their collections
925	and provided hospitality and mosasaur knowledge: D. Burnham and D. Miao at University of
926	Kansas; S. Chapman at British Natural History Museum; P. Viegas at University of Bristol,

## Palaeontology

2 3	927	for introduction to The Royal Museum of Natural History, Brussels and to its personnel, A.
4 5	928	Folie, including the invitation by P. Godefroit; D. Winkler at the Schuler Museum, Southern
6 7 0	929	Methodist University; K. Morton at the Perot Museum, Dallas; J. C. Sagebiel and staff at the
o 9 10	930	University of Texas at Austin Vertebrate Paleontology Lab; and J. Sertich and L. Ivy at the
10 11 12	931	Denver Museum of Nature and Science. Thanks go out to the museum specimen database
13 14	932	information and communications from D. Ehret, L. Ellington at the Alabama Natural History
15 16	933	Museum; W. Simpson at the Field Museum of Natural History; T. Konishi, J. Gardner, B.
17 18	934	Strilisky, and G. Housebo at the Royal Tyrell Museum; and M. Walsh at the Los Angeles
19 20	935	County Natural History Museum. We thank Christopher Dean for useful comments and
21 22 22	936	criticisms of the initial manuscript of this paper, and Neil Brocklehurst and Jörg Fröbisch, as
23 24 25	937	reviewers, and Roger Benson and Sally Thomas for editorial improvements.
25 26 27	938	
28 29	939	DATA ARCHIVING STATEMENT
30 31	940	Data for this study are available in the Dryad Digital Repository: https://doi.org/XXX
32 33	941	
34 35	942	REFERENCES
36 37	943	BARDET, N. 1994. Extinction events among Mesozoic marine reptiles. <i>Historical Biology</i> , <b>7</b> ,
38 39	944	313–324
40 41 42	945	2012. The mosasaur collections of the Muséum National d'Histoire Naturelle of Paris
42 43	946	Bulletin de la Société Géologique de France 183 35 53
44 45	047	LIQUESAVE A DACE I C and SUBERDIOLA X D 2008 The Companying
40 47 49	947	, HOUSSAYE, A., KAGE, JC. and SUPERBIOLA, X. P. 2008. The Cenomanian-
40 49 50	948	Turonian (Late Cretaceous) radiation of marine squamates (Reptilia), the role of the
50 51	949	Mediterranean Tethys. <i>Bulletin de la Société Géologique de France</i> , <b>79</b> , 605–622.
52 53	950	, VINCENT, P., SUPERBIOLA, X. P., AMAGHZAZ, M., JOURANI, E. and
54 55 56	951	MESLOUH, S. 2015. Mosasaurids (Squamata) from the Maastrichtian phosphates of
50 57 59		
50 59 60		Palaeontology
50		

2 3	952	Morocco, biodiversity, palaeobiogeography and palaeoecology based on tooth
4 5	953	morphoguilds. Gondwana Research, 27, 1068–1078.
6 7 8	954	BEARDMORE, S. R., ORR, P. J., MANZOCCHI, T. and FURRER, H. 2012a. Float or sink,
9 10	955	modelLing the taphonomic pathway of marine crocodiles (Mesoeucrocodylia,
11 12	956	Thalattsuchia) during the death-burial interval. Palaeobiodiversity and
13 14	957	Palaeoenvironments, 92, 83–98.
15 16	958	,,, and JOHNSON, C. 2012b. Death, decay and disarticulation, modeling
17 18	959	the skeletal taphonomy of marine reptiles demonstrated using Serpianosaurus (Reptilia;
19 20 21	960	Sauropterygia). Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338, 1-13.
22 23	961	BELL, G. L. 1993. A phylogenetic revision of Mosasauroidea (Squamata). PhD thesis, The
24 25	962	University of Texas at Austin.
26 27	963	1997. A phylogenetic revision of North American and Adriatic Mosasauroidea. 293–332.
28 29	964	In CALLAWAY, J. M. and NICHOLLS, E. L. (eds) Ancient marine reptiles. Academic
30 31 32	965	Press, San Diego, 501 pp.
32 33 34	966	and POLCYN, M. J. 2005. Dallasaurus turneri, a new primitive mosasauroid from the
35 36	967	Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata).
37 38	968	Netherlands Journal of Geosciences, 84, 177–194.
39 40	969	BENJAMINI, Y. and HOCHBERG, Y. 1995. Controlling the false discovery rate, a practical
41 42	970	and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
43 44 45	971	<i>B</i> ( <i>Methodological</i> ), <b>1</b> , 289–300.
46 47	972	BENSON, R. B. J. and BUTLER, R. J. 2011. Uncovering the diversification history of marine
48 49	973	tetrapods, ecology influences the effect of geological sampling biases. Geological Society
50 51	974	of London, Special Publications, <b>358</b> , 191–208.
52 53		
54 55 56		
50 57 58		
59 60		Palaeontology

1		
2 3	975	, LINDGREN, J. and SMITH, A. S. 2010. Mesozoic marine tetrapod diversity, mass
4 5	976	extinctions and temporal heterogeneity in geological megabiases affects vertebrates.
6 7 0	977	Proceedings of the Royal Society B, 277, 828–834.
9 10	978	and DRUCKENMILLER, P. S. 2014. Faunal turnover of marine tetrapods during the
11 12	979	Jurassic-Cretaceous transition. Biological Reviews, 89, 1-23.
13 14	980	BENTON, M. J. 2008a. How to find a dinosaur, and the role of synonymy in biodiversity
15 16	981	studies. Paleobiology, 34, 516–533.
17 18	982	2008b. Fossil quality and naming dinosaurs. <i>Biology Letters</i> , 4, 729–732.
19 20 21	983	2015. Palaeodiversity and formation counts, redundancy or bias? Palaeontology, 58,
21 22 23	984	1003–1029
24 25	985	, DUNHILL, A. M. and LLOYD, G. T. 2011. Assessing the quality of the fossil record,
26 27	986	insight from vertebrates. Geological Society of London, Special Publications, 358, 63-94.
28 29	987	, TVERDOKHLEBOV, V. P. and SURKOV, M. V. 2004. Ecosystem remodeling among
30 31	988	vertebrates at the Permian-Triassic boundary in Russia. Nature, 432, 97-100.
32 33	989	BONETT, D. G. and WRIGHT, T. A. 2000. Sample size requirements for estimating Pearson,
34 35 36	990	Kendall and Spearman correlations. Psychometrika, 65, 23-28.
37 38	991	BOTTJER, D. J. 2002. Smoky Hill Chalk, Spectacular Cretaceous Marine Fauna. 352–364. In
39 40	992	BOTTJER, D. J., ETTER, W., HAGGERDORN, J. W. and TANG, C. M. (eds)
41 42	993	Exceptional fossil preservation, a unique view on the evolution of marine life. Columbia
43 44	994	University Press, New York, 403 pp.
45 46	995	BROCKLEHURST, N. P. 2015. A simulation-based examination of residual diversity
47 48 40	996	estimates as a method for correcting for sampling bias. Palaeontologica Electronica, 18,
50 51	997	1–15.
52 53		
54 55		
55 56		
57 58		
59 60		Palaeontology

2 3	998	and FRÖBISCH, J. 2014. Current and historical perspectives on the completeness of the
4 5	999	fossil record of pelycosaurian-grade synapsids. Palaeogeography, Palaeoclimatology,
6 7 8	1000	<i>Palaeoecology</i> , <b>399</b> , 114–126.
9 10	1001	, UPCHURCH, P, MANNION, P. D and O'CONNOR, J. 2012. The completeness of the
11 12	1002	fossil record of Mesozoic birds, implications for early avian evolution. PLoS ONE, 7,
13 14	1003	e39056.
15 16	1004	BROWN, C. M., EVANS, D. C., CAMPIONE, N. E, O'BRIEN, L. J. and EBERTH, D. A.
17 18 10	1005	2013. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian,
20 21	1006	Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeography,
22 23	1007	Palaeoclimatology, Palaeoecology, <b>372</b> , 108–122.
24 25	1008	CALDWELL, M. 2002. From fins to limbs to fins, limb evolution in fossil marine reptiles.
26 27	1009	American Journal of Medical Genetics, 112, 236–249.
28 29	1010	CAMP, C. L. 1942. California mosasaurs. Memoirs of the University of California, 13, 1-68.
30 31 32	1011	CARPENTER, K. 2006. Comparative vertebrate taphonomy of the Pembina and Sharon
33 34	1012	Springs members (middle Campanian) of the Pierre Shale, Western Interior. Paludicola,
35 36	1013	5, 125–149.
37 38	1014	2008. Vertebrate biostratigraphy of the Smoky Hill Chalk (Niobrara Formation) and the
39 40	1015	Sharon Springs Member (Pierre Shale). 421-437. In HARRIES, P. J. (ed.) Approaches in
41 42	1016	high-resolution stratigraphic paleontology. Kluwer Academic Publishers, Amsterdam,
43 44 45	1017	474 pp.
45 46 47	1018	CASEY, M. M., FRASER, N. C. and KOWALEWSKI, M. 2007. Quantitative taphonomy of
48 49	1019	a Triassic reptile Tanytrachelos ahynis from the Cow Branch Formation, Dan River
50 51 52 53	1020	Basin, Solite Quarry, Virginia. Palaios, 22, 598–611.
54 55 56		
57 58		
59 60		Palaeontology

1		
2 3 4 5 6 7 8	1021	CLEARY, T. J., MOON, B. C., DUNHILL, A. M. and BENTON, M. J. 2015. The fossil
	1022	record of ichthyosaurs, completeness metrics and sampling biases. Palaeontology, 58,
	1023	521–536.
9 10	1024	DEAN, C. D., MANNION, P. D. and BUTLER, R. J. 2016. Preservational bias controls the
11 12	1025	fossil record of pterosaurs. Palaeontology, 59, 225-247.
13 14	1026	DeBRAGA, M. and CARROLL, R. L. 1993. The origin of mosasaurs as a model of
15 16	1027	macroevolutionary patterns and processes. Evolutionary Biology, 27, 245-322.
17 18	1028	DOLLO, L. 1904. Les mosasauriens de la Belgique. Bulletin de la Société Belge de Géologie
19 20 21	1029	de Paléontologie et d'Hydrogéologie, Mémoires, 18, 207–216.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1030	DRISCOLL, D. A., DUNHILL, A. M., STUBBS, T. L., and BENTON, M. J. 2018. Data from
	1031	'The mosasaur fossil record through the lens of fossil completeness'. Dryad Digital
	1032	Repository. https, //doi.org/XXX
	1033	DUNHILL, A.M., HANNISADL, B. and BENTON, M. J. 2014. Disentangling geological
	1034	megabias and common-cause from redundancy in the British fossil record. Nature
	1035	Communications, 5, 4818.
	1036	, BROCKLEHURST, N. and BENTON, M. J. 2018. Testing the accuracy of
	1037	formation-based sampling proxies to correct the fossil record. Palaeontology, 61, 119-
	1038	132.
41 42	1039	EVERHART, M. J. 2000. Mosasaurs, last of the great marine reptiles. Prehistoric Times, 44,
43 44	1040	29–31.
45 46 47	1041	2001. Revisions to the biostratigraphy of the Mosasauridae (Squamata) in the Smoky
47 48 49 50 51	1042	Hill Chalk Member of the Niobrara Chalk (Late Cretaceous) of Kansas. Transactions of
	1043	the Kansas Academy of Science, 104, 59–78.
52 53	1044	FISCHER, V., MAISCH, M. W., NAISH, D., KOSMA, R., LISTON, J., JOGER, U.,
54 55	1045	KRÜGER, F. J., PÉREZ, J., TAINSH, J. and APPLEBY, R. M. 2012. New
56 57		
59 60		Palaeontology

1		
2 3	1046	ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate
4 5 6 7 8	1047	extensive ichthyosaur survival across the Jurassic-Cretaceous boundary. PloS One, 7,
	1048	e29234.
9 10	1049	FOUNTAINE, T. M. R., BENTON, M. J., DYKE, G. J. and NUDDS, R. L 2005. The
11 12	1050	quality of the fossil record of Mesozoic birds. Proceedings of the Royal Society of
13 14	1051	London B, <b>272</b> , 289–294.
15 16	1052	GRADSTEIN, F. M., OGG, J. G. and SCHMITZ, M. (eds) 2012. The geologic time scale
17 18 19	1053	2012, Elsevier, Amsterdam, 1176 pp.
19 20 21	1054	HOLMES, R., CALDWELL, M. W. and CUMBAA, S. L. 1999. A new specimen of
21 22 23	1055	Plioplatecarpus (Mosasauridae) from the lower Maastrichthian of Alberta, comments on
24 25	1056	allometry, functional morphology, and paleoecology. Canadian Journal of Earth
26 27 28 29	1057	<i>Sciences</i> , <b>36</b> , 363–369.
	1058	HOUSSAYE, A., LINDGREN, J., PELLEGRINI, R., LEE, A. H., GERMAIN, D. and
30 31	1059	POLCYN, M. J. 2013. Microanatomical and histological features in the long bones of
32 33 34 35 36 37 38 39 40	1060	mosasaurine mosasaurs (Reptilia, Squamata)-implications for aquatic adaptation and
	1061	growth rates. PloS One, 8, e76741.
	1062	IKEJIRI, T., EBERSOLE, J. A., BLEWITT, H. L. and EBERSOLE, S. M. 2013. An
	1063	overview of Late Cretaceous vertebrates from Alabama. Bulletin of the Alabama Museum
41 42	1064	of Natural History, <b>31</b> , 46–71.
43 44	1065	JAGT, J. W. M. 2005. Stratigraphic ranges of mosasaurs in Belgium and the Netherlands
45 46 47	1066	(Late Cretaceous) and cephalopod-based correlations with North America. Netherlands
48 49	1067	Journal of Geosciences, 84, 288–301.
50 51	1068	KAUFFMAN, E. G. and SAGEMAN, B. B. 1988. Biological sensing of benthic
52 53	1069	environments in dark shales and related oxygen-restricted facies. 121-138. In
54 55		
56 57		
58		

Palaeontology

1070	GINSBERG, R. N. and BEAUDOIN, B. (eds) Cretaceous resources, events and rhythms.
1071	Kluwer, Dordrecht, 352 pp.
1072	KEMP, R. A. and UNWIN, D. M. 1997. The skeletal taphonomy of Archaeopteryx, a
1073	quantitative approach. Lethaia, <b>30</b> , 229–238.
1074	KIERNAN, C. R. 2002. Stratigraphic distribution and habitat segregation of mosasaurs in the
1075	Upper Cretaceous of western and central Alabama, with an historical review of Alabama
1076	mosasaur discoveries. Journal of Vertebrate Paleontology, 22, 91-103.
1077	KINISHI, T. and CALDWELL, M. W. 2007. New specimens of Platecarpus planifrons
1078	(Cope, 1874) (Squamata, Mosasauridae) and a revised taxonomy of the genus. Journal of
1079	Vertebrate Paleontology, 27, 59–72.
1080	KUYPERS, M. M. M., JAGT, J. W. M., PEETERS, H. H. G., DE GRAAF, D. T.,
1081	DORTANGE, R. W., DECKERS, M. J. M., EYSERMANS, D. and ARPOT, L. 1998.
1082	Laat-kretaceische mosasauriërs uit Luik-Limburg, nieuwe vondsten leiden tot nieuwe
1083	inzichten. Publicaties van het Natuurhistorisch Genootschap in Limburg, 41, 4–47.
1084	LEBLANC, A. R., CALDWELL, M. W. and BARDET, N. 2012. A new mosasaurine from
1085	the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for
1086	mosasaurine systematics. Journal of Vertebrate Paleontology, 32, 82-104.
1087	LINDGREN, J. and SIVERSON, M. 2002. Tylosaurus ivoensis, a giant mosasaur from the
1088	early Campanian of Sweden. Transactions of the Royal Society of Edinburgh, 93, 73-93.
1089	, ALWMARK, C., CALDWELL, M. W. and FIORILLO, A. R. 2009. Skin of the
1090	Cretaceous mosasaur Plotosaurus, implications for aquatic adaptations in giant marine
1091	reptiles. Biology Letters, 5, 528–531.
1092	, CALDWELL, M. W., KONISHI, T. and CHIAPPE, L. M. 2010. Convergent evolution
1093	in aquatic tetrapods, insights from an exceptional fossil mosasaur. PLoS One, 5, e11998
	Palaeontology
	1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1084 1085 1086 1087 1088 1089 1090 1091 1091

1094	, JAGT, J. W. M. and CALDWELL, M. W. 2007. A fishy mosasaur, the axial skeleton of
1095	Plotosaurus (Reptilia, Squamata) reassessed. Lethaia, 40, 153-160.
1096	, KADDUMI, H. F. and POLCYN, M. J. 2013. Soft tissue preservation in a fossil marine
1097	lizard with a bilobed tail fin. Nature Communications, 4, 2423.
1098	, POLCYN, M. J. and YUNG, B. A. 2011. Landlubbers to leviathans, evolution of
1099	swimming in mosasaurine mosasaurs. Paleobiology, 37, 445-469.
1100	LYDEKKER, R. 1888. Catalogue of the fossil Reptilia and Amphibia in the British Museum
1101	(Natural History), Part 2. British Museum (Natural History), London, 307 pp.
1102	MANNION, P. D. and UPCHURCH, P. 2010. Completeness metrics and the quality of the
1103	sauropodomorph fossil record through geological and historical time. Paleobiology, 36,
1104	283–302.
1105	MASSARE, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles.
1106	Journal of Vertebrate Paleontology, 7, 121–137.
1107	1994. Swimming capabilities of Mesozoic marine reptiles, a review. 133–149. In
1108	MADDOCK, L., BONE, Q. and RAYNER, J. M. V. (eds) Mechanics and physiology of
1109	animal swimming. Cambridge University Press, Cambridge, 251 pp.
1110	McNAMARA, M. E., ORR, P. J., ALCALÁ, L., ANADÓN, P. and PEÑALVER, E. 2012.
1111	What controls the taphonomy of exceptionally preserved taxa- environment or biology?
1112	A case study using frogs from the Miocene Libros konservat-lagerstätte (Teruel, Spain).
1113	Palaios, 27, 63–77.
1114	MILLER, K.G., KOMINZ, M. A., BROWNING, J. V., WRIGHT, J. D., MOUNTAIN, G. S.,
1115	KATZ, M. E., SUGARMAN, P. J., CRAMER, B. S., CHRISTIE-BLICK, B., and
1116	PEKAR, S. F. 2005. The Phanerozoic record of global sea-level change. Science, 310,
1117	1293–1298.
	Palaeontology
	1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

1		
2 3	1118	MOTANI, R. 2005. Evolution of fish-shaped reptiles (Reptilia, Ichthyopterygia) in their
4 5	1119	physical environments and constraints. Annual Review of Earth and Planetary Sciences,
6 7 8	1120	<b>33</b> , 395–420.
9 10	1121	2009. The evolution of marine reptiles. Evolution, Education and Outreach, 2, 224–235.
11 12	1158	PARHAM, J. F., DONOGHUE, P. C. J., BELL, C. J., CALWAY, T. D., HEAD, J. J.,
13 14	1159	HOLROYD, P. A., INOUE, J. G., IRMIS, R. B., JOYCE, W. G., KSEPKA, D. T.,
15 16	1160	PATANE , J. S. L., SMITH, N. D., TARVER, J. E., TUINEN, M. VAN, YANG, Z.,
17 18	1161	ANGIELCZYK, K. D., GREENWOOD, J., HIPSLEY, C. A., JACOBS, L.,
19 20 21	1162	MAKOVICKY, P. J., MÜLLER, J., SMITH, K. T., THEODOR, J. M., WARNOCK, R.
21 22 23	1163	C. M. and BENTON, M. J. 2012. Best practices for justifying fossil calibrations.
24 25	1164	Systematic Biology, 61, 346–359.
26 27	1165	PETERS, S.E. 2005. Geologic constraints on the macroevolutionary history of marine
28 29	1166	animals. Proceedings of the National Academy of Science, USA, 102, 12326–12331.
30 31	1167	PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D., and R Core Team. 2017. nlme,
32 33	1168	Linear and Nonlinear Mixed Effects Models. R package version 3.1–131, https.
34 35 36	1169	//CRAN.R-project.org/package=nlme.
37 38	1170	POLCYN, M. J., JACOBS, L. L., ARAÚJO, R., SCHULP, A. S. and MATEUS, O. 2014.
39 40	1171	Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology,
41 42	1172	Palaeoecology, <b>400</b> , 17–27.
43 44	1173	ROSS, M. R. 2009. Charting the Late Cretaceous seas, mosasaur richness and morphological
45 46 47	1174	diversification. Journal of Vertebrate Paleontology, 29, 409-416.
47 48 49	1175	RUSSELL, D. A. 1967. Systematics and morphology of American mosasaurs (Reptilia,
50 51 52 53 54 55	1176	Sauria). Bulletin of the Peabody Museum of Natural History, 23, 1–237.
56 57 58		
59 60		Palaeontology

2 3	1177	SAKAMOTO, M., VENDITTI, C. and BENTON, M. J 2017. 'Residual diversity estimates'
4 5	1178	do not correct for sampling bias in palaeodiversity data. Methods in Ecology and
6 7 9	1179	<i>Evolution</i> , <b>8</b> , 453–459.
9 10	1180	SCHULTZE, HP., HUNT, L., CHORN, J. and NEUNER, A. M. 1985. Type and figured
11 12	1181	specimens of fossil vertebrates in the collection of the University of Kansas Museum of
13 14	1182	Natural History. Part II. Fossil amphibians and reptiles. The University of Kansas,
15 16	1183	Museum of Natural History, Miscellaneous Publication, 77, 1–66.
17 18	1184	SMITH, A. B. 2007. Intrinsic vs. extrinsic biases in the fossil record, contrasting the fossil
19 20 21	1185	record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic
21 22 23	1186	analysis, and molecular clocks. <i>Paleobiology</i> , <b>33</b> , 310–323.
24 25	1187	and BENSON, R. B. J. 2013. Marine diversity in the geological record and its
26 27	1188	relationship to surviving bedrock area, lithofacies diversity, and original marine shelf
28 29	1189	area. Geology, <b>41</b> , 171–174.
30 31	1190	and McGOWAN, A. J. 2011. The ties linking rock and fossil records and why they are
32 33	1191	important for palaeobiodiversity studies. Geological Society of London, Special
34 35 36	1192	<i>Publications</i> , <b>358</b> , 1–7.
37 38	1193	SØRENSEN, A. M., SURLYK, F. and LINDGREN, J. 2013. Food resources and habitat
39 40	1194	selection of a diverse vertebrate fauna from the upper lower Campanian of the
41 42	1195	Kristianstad Basin, southern Sweden. Cretaceous Research, 42, 85-92.
43 44	1196	STUBBS, T. L. and BENTON, M. J. 2016. Ecomorphological diversifications of Mesozoic
45 46	1197	marine reptiles, the roles of ecological opportunity and extinction. Paleobiology, 42,
47 48 40	1198	547–573.
49 50 51	1199	TUTIN, S. L. and BUTLER, R. J. 2017. The completeness of the fossil record of plesiosaurs,
52 53	1200	marine reptiles from the Mesozoic. Acta Palaeontologica Polonica, 62, 563-573.
54 55		
56 57		
58 59		
60		Palaeontology

1201	VERRIÈRE, A., BROCKLEHURST, N. and FRÖBISCH, J. 2016. Assessing the
1202	completeness of the fossil record, comparison of different methods applied to
1203	parareptilian tetrapods (Vertebrata, Sauropsida). Paleobiology, 42, 680-695.
1204	WALTHER, M. and FRÖBISCH, J. 2013. The quality of the fossil record of anomodonts
1205	(Synapsida, Therapsida). Comptes Rendus Palevol, 12, 495–504.
1206	YOUNG, M. T., BRUSATTE, S. L., RUTA, M. and DE ANDRADE, M. B. 2010. The
1207	evolution of Metriorhynchoidea (Mesoeucrocodylia, Thalattosuchia), an integrated
1208	approach using geometric morphometrics, analysis of disparity, and biomechanics.
1209	Zoological Journal of the Linnean Society, 158, 801–859.
1210	ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. and SMITH, G. M. 2009.
1211	Mixed effects models and extensions in ecology with R. Springer, New York, 574 pp.
1212	
	1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

Driscoll 50

# 

### Appendix

1214 Appendix. Species list for this study (Squamata, Mosasauridae) and the number of specimens

included in the analysis; and mean completeness scores (TCM, QCM or ICM). Abbreviations:
Camp = Campanian, Con = Coniacian, Maas = Maastrichthian, Sant = Santonian, Tur =

1210 Camp – Campanian, Con – Comacian, Maas – Maastrichtman, Sant – Santoman, Tur – 1217 Turonian. Completeness figures are rounded to two decimal places. The range is based on

1217 rutoinan. completeness figures are founded to two determal places. The range is based of 1218 individual specimens that are datable to specific substages, except those with a "?", whose

1219 range is near a boundary, or "??", whose range is imprecise.

11	1217
	1220
12	1220

Genus	Species	Numbe r	ТСМ	QCM	ТСМ	Range
Eonatator	sp.	1	2	1	1	Late Sant-Early Camp??
Eonatator	sternbergii	87	1.51	1.92	1.22	Early Camp
Eonatator	cf. sternbergii	1	2	3	3	Late Sant-Early Camp??
Halisaurus	arambourgi	33	5.64	2.76	3.25	Early-Late Maas
Halisaurus	platyspondylus	10	2.4	2	2	Early-Late Maas
Phosphorosaurus	ortliebi	1	2	3	3	Early Maas
Phosphorosaurus	ponpetelegans	1	10	7	4	Early Maas
Carinodens	belgicus	38	1.03	2	1.21	Late Maas
Carinodens	minalmamar	2	1.5	2	2	Late Maas
Clidastes	liodontus	21	8.47	5	3.67	Late Con-Early Camp
Clidastes	moorevillensis	4	6.67	4	3.67	Late Sant-Early Camp
Clidastes	propython	196	3.68	2.89	2.35	Early-Late Camp
Dallasaurus	turneri	3	7.33	3.33	3.33	Mid Tur
Globidens	alabamensis	16	1.47	2.44	1.53	Early-Late Camp
Globidens	dakotensis	1	8	6	4	Mid Camp
Globidens	phosphaticus	63	1.14	2.08	1.1	Early-Late Maas
Globidens	schurmanni	1	21	7	5	Late Camp
Igdamanosaurus	aegyptiacus	5	1	2	1	Early-Late Maas
Kourisodon	sp.	1	2	3	3	Late Camp
Kourisodon	puntledgensis	1	18	7	5	Late Sant
Moanasaurus	mangahouangae	5	6.6	5.2	3.6	Mid-Late Camp?
Mosasaurus	beaugei	110	1.03	2.02	1.04	Late Maas
Mosasaurus	conodon	123	3.53	2.49	1.81	Late Camp-Late Maas
Mosasaurus	hobetsuensis	1	13	3	3	Early Maas
Mosasaurus	hoffmanni	291	1.42	1.9	1.46	Early-Late Maas
Mosasaurus	missouriensis	11	9.9	5.4	4	Mid Camp-Late Camp
Mosasaurus	mokoroa	2	3.5	4.5	2.5	Mid Camp
Mosasaurus	prismaticus	1	2	3	3	Late Camp-Late Maas??
Plotosaurus	sp	1	1	2	1	Late Maas
Plotosaurus	bennisoni	50	4.59	2.19	1.86	Early Camp-Early Maas??
Plesiotylosaurus	crassidens	4	6.25	6	4	Early-Late Maas?
Prognathodon	anceps	6	1.17	2.17	1.67	Early Camp
Prognathodon	currii	8	2	2.63	1.38	Late Camp-Late Maas
Prognathodon	kianda	6	7	3.67	3.17	Late Maas
Prognathodon	giganteus	5	3	2.6	1.8	Early Maas
Prognathodon	lutugini	75	1.17	2.01	1.05	Early-Late Camp
0	0					5 1

Page 51 of 114

1

## Palaeontology

2		Prognathodon	magagauraidag	2	1.5	2.5	2	Lata Maas
3		Trognainouon Duo su ath o dou	mosusuuroides	10	0.50	2.3 E	4 09	Early Late Comm
4		Prognalhouon Drognathodon	overioni	12	0.30	J 1 02	4.08	Early-Late Camp
6		Prognalnoaon	rapax	13	1.91	1.92	2.27	Early-Late Maas
7		Prognathoaon	saturator	4	5.75	3.25	2	Late Maas
8		Prognathodon	sectorius	30	1.03	2.03	1.07	Late Camp-Late Maas
9		Prognathodon	solvayi	7	5.71	3.29	3	Late Camp-Early Maas
10		Prognathodon	waiparaensis	3	4	4	3	Late Maas
11		Eremiasaurus	heterodontus	2	19	7	4.5	Late Maas
12		Angolasaurus?	sp	5	1	1	1	Late Maas
15 14		Angolasaurus	bocagei	4	6.5	5.5	3.75	Late Tur
15		Ectenosaurus	sp.	2	2	5.5	3	Late Con-Late Sant??
16		Ectenosaurus	clidastoides	7	9.33	3.57	3.57	Late Con-Mid Sant
17		Goronyosaurus	nigeriensis	26	1.42	1.69	1.35	Late Maas
18		Latoplatecarpus	sp	1	N/A	N/A	5	Mid-Late Camp
19		Latoplatecarpus	nichollsae	15	6.25	5	4.33	Late Sant-Mid Camp
20		Latoplatecarpus	willistoni	5	8.2	6.4	5	Mid Camp
21		Platecarpus	ptychodon	8	2	2.63	2	Late Maas
22		Platecarpus	tvmpaniticus	224	5.12	3.64	2.87	Early Sant-Mid Camp
24		Plesioplatecarpus	planifrons	30	6 33	4 14	3 76	Mid Con-Mid Sant
25		Plionlatecarnus	houzeaui	7	9 57	4 71	4 1 4	Early Maas
26		Plionlatecarpus	marshi	, 114	1 39	1.62	1 23	Late Maas
27		Plionlatecarpus	denressus	8	1.35	1.62	1.63	Farly Maas
28		Plioplatocarpus	nachansis	1	1.75	6	1.05	Late Camp
29		Plioplatocarpus	primagnus	6	3.67	3 5		Mid Late Camp
30		<i>Solmagauma</i>	johnaoni	1	12	3.5 7	2.07	Early Sont
32		Selmasaurus	Johnsoni	1	15	2 (7	4	Lata Sant Farly Comm
33		Seimasaurus	russelli	5	3	5.67	3	Late Sant-Early Camp
34		Tethysaurus	nopcsai	5	9.5	5.6	4.25	
35		Pannoniasaurus	inexpectatus	118	1	1.19	1.36	Early-Late Sant??
36		Hainosaurus	bernardi	3	13.67	4.67	4.33	Early Maas
37		Taniwhasaurus	antarcticus	1	14	6	4	Late Camp
38		Taniwhasaurus	mikasaensis	4	2	2	2	Late Sant-Early Camp??
40		Taniwhasaurus	oweni	17	1.76	1.88	1.65	Mid-Late Camp
41		Tylosaurus	capensis	1	2	3	3	Late Con-Early Sant??
42		Tylosaurus	gaudryi	1	3	3	3	Late Sant
43		Tylosaurus	iembeensis	2	2.5	2.5	3	Late Tur
44		Tylosaurus	ivoensis	206	1	1.94	1.01	Early Camp
45		Tylosaurus	kansasensis	16	8.86	5.38	3.88	Late Con
40 47		Tylosaurus	nepaeolicus	39	3.97	3.8	3.58	Late Con-Early Sant
47		Tylosaurus	pembinensis	12	4.25	3.5	3.42	Mid Camp
49		Tylosaurus	proriger	163	4.98	3.40	2.75	Early Sant-Late Camp
50		Romeosaurus	fumanensis	4	7	3.25	3.5	Mid Tur
51		Romeosaurus	sorbinii	1	2	3	3	Mid Tur
52		Russellosaurus	coheni	1	4	5	3	Mid Tur
53		Yaguarasaurus	columbianus	4	5 75	5	3.5	Mid Tur
54 55	1221	- 45441 45441 45	Commonantas	•	0.10	5	5.0	
55	1 <i>44</i> 1							

TABLE 1. QCM method for scoring completeness. Presence or absence of a skull weights
the score greatly. The skull contains 61% of characters used in the phylogenetic analysis of
mosasaurs. A jaw fragment or tooth scores two points. Add total of parts present. There are
nine points possible.

	Skull	Skeleton
Fragments	2	1
Incomplete	3	2
Almost complete	5	
Complete	6	3

		Sub metric	Comment
			Taphonomic Completeness Metric - Total of scores from
	TCM		regions.
			Qualitative Completeness Metric-Regions are weighted
	QCM		phylogenetic character density.
			Informal Completeness Metric-Scored only using skull,
	ICM		axial and appendicular portions as regions.
		(TCM, QCM, ICM)tot	Total mean completeness of a species, disregarding time
			bins.
		(TCM, QCM, ICM)sp	Mean metric from specimens named to species assignab
			to single time bins.
		(TCM, QCM, ICM)all	Mean metric from all specimens assignable to single bin
			regardless of taxonomy.
		(TCM, QCM, ICM)av	The "tot" metric is calculated for each species, and this
			averaged over every species in a time bin.
		(TCM, QCM, ICM)h	The metric of the holotype specimen.
		(TCM, QCM, ICM)b	The metric of the best specimen.
		(TCM, QCM, ICM)c	The metric of the composite-calculated using the best
			specimen plus any extra elements found in other
			specimens.
1230			
1231			

		Metric	Species	Specimen	Valu
	Highest Mean TCM	TCMtot	H. bernardi		13.67
	Average Holotype TCM	TCMh	all		8.1
	Average Composite TCM	TCMc	all		15.7
	Highest Holotype TCM	TCMh	E. sternbergii	UPI R163	32
	Most Complete Specimen	TCM	P. tympaniticus	YPM 58129	36
	Highest Mean QCM	QCMtot	T. nopscai		5.6
	Average Holotype QCM	QCMh	all		8
			T. proriger,	YPM 58129,	0
	Highest Best Specimens	QCMb	P. tympaniticus	AMNH FR221	9
	Mean Composite Score	QCMc	all		6.2
	Highest Composite Score	QCMc	many		36
1233					
1721					
1234					
			Palaeontology		

#### Palaeontology

1235	<b>TABLE 4.</b> Mean completeness comparisons by substage. Mean substage sea level (Miller									
1236	2005), spe	cies dive	rsity (Spec	eies), gener	ic diversit	y (Genus),	and time-	averaged	species	
1237	diversity (	Averaged	l) curves w	vere compa	red. TCM	av, QCMa	v and ICM	lav repres	sent mean	
1238	substage <mark>c</mark>	ompleten	less using a	average con	mpletenes	s for all sp	ecimens p	er species	s (TCMtot	,
1239	QCMtot, ICMtot) in the substage. TCMall, QCMall and ICMall are averages of all specimens									
1240	assigned to substage, regardless of species status. TCMsp, QCMsp, and TCMsp are average									
1241	completen	ess value	s per subst	tage using	only speci	mens with	a designat	ed specie	es epithet.	
1242										
		Sea	TCMall	OCMall	ICM _a 11	TCMan	OCMan	ICMan	Conus	Spacios
		Level	ICIVIAII	QUMan	ICIVIAII	TCIVISP	QCMsp	iCivisp	Genus	species
	TCMall	-0.06								
	QCMall	-0.2								
	ICMall	-0.24								
	TCMsp	0.04	0.75**							
	QCMsp	-0.06		0.84**						
	ICMsp	-0.01			0.69**					
	Genus	0.04	-0.17	0.03	-0.04	0.15	0.24	0.37		
	Species	0.22	-0.43	-0.01	-0.13	0.05	0.24	0.26	0.8**	
	Averaged	0.13	-0.49	-0.04	-0.15				0.8**	0.98**
	TCMav		0.58			0.81**				
	QCMav			0.68*			0.53			
	ICMav				0.6			0.64*		
1243										
1244	* significa	nt at p<0	.05; ** sig	nificant af	ter false di	scovery ra	te correcti	on using	method of	f
1245	Benjamini	and Hoc	hberg (199	95).						

**TABLE 5.** Summary of GLS multiple regression analysis, showing the full and best models

1247	for predicting both diversity and TCM with autocorrelation structure for age parameter.							
	Model	Parameters	AIC	BIC	Log likelihood			
	Eull arranged diversity	тсм	66 102	66 720	26.001			

Full averaged diversity	sea level MPBFs	66.183	66.739	-26.091
Best averaged diversity	sea level MPBFs	60.251	61.435	-24.126
Full TCMsp	diversity sea level MPBFs	78.753	79.309	-32.376
Best TCMsp	diversity sea level MPBFs	78.753	79.309	-32.376

3 4 5

## 1249 TABLE 6. Summary of best-fitting GLS multiple regression models for predicting averaged

1250	diversity and TCM	sp with autocorrelation st	tructure for age parameter.
------	-------------------	----------------------------	-----------------------------

	Response	Parameters	Value	SE	t	р
	Averaged diversity	intercept	-5.79	1.531	-3.782	0.004
		sea level	0.246	0.05	5.039	0.001
		MPBFs	0.521	0.024	21.774	< 0.001
	TCMsp	intercept	7.01	4.312	1.625	0.14
		species diversity	-0.707	0.587	1.131	0.29
		sea level MPBFs	0.17 0.116	0.15 0.333	-1.205 0.347	0.26 0.74
1251						
1252						
1232						
			Palaeontolog	у		

Driscoll 58

**TABLE 7.** Correlation between species properties and completeness measures, showing
 Spearman correlation coefficients. Correlation tests were run over the following variables by species: average overall completeness by species (TCM, QCM and ICM); body length (Length) from Polcyn et al. (2014); Google Scholar "hits" (Google) for the species name; number of specimens analysed for that species (Specimens); and years since species first described (Years). Best of species (TCMb, QCMb, ICMb) and composite completeness (TCMc, QCMc, ICMc) were also compared to average species completeness values.

	Specimens	Google	Length	TCM	QCM	ICM
Years	0.47**	0.55**	0.25	-0.28*	-0.34*	-0.30
Specimens		0.49**	0.25	-0.41**	-0.49**	-0.50**
Google			0.26	-0.05	-0.14	-0.19
Length				-0.08	-0.12	-0.19
ТСМb				0.66**		
ТСМс				0.04		
QCMb					0.50**	
QCMc					0.07	
ICMb						0.37**
ICMc						0.05

- * significant at p<0.05; ** significant after false discovery rate correction using method of Benjamini and Hochberg (1995).

Page 59 of 114

### Palaeontology

**TABLE 8.** North American outcrop area vs. species diversity and mean species completeness

1266 per formation. There are no significant correlations (Area vs. Diversity,  $r_s = 0.60 p = 0.35$ ;

1267 Area vs. TCM, 
$$r_s = 0$$
,  $p = 1$ ; Diversity vs. TCM,  $r_s = 0.2$ ,  $p = 0.78$ )

Group	Area (km ² )	Diversity	ТСМ
Pierre (NA)	310728	11	8.51
Niobrara (KS)	21091	10	5.35
Mooreville (AL)	315788	12	3.35
Monmouth (NJ)	21506	6	1.93
Moreno (CA)	23358	2	4.95

Driscoll 60

2	
3 ⊿	
4	
5	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
30	
40	
41	
42	
43	
44	
45	
40 17	
48	
49	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

1

## 1270 Figure Captions

1271	FIG. 1. Beardmore scoring method for mosasaur taphonomic completeness metric (TCM).
1272	Each complete region of the skeleton (skull, ribs, forelimbs, hindlimbs and vertebrae (verts.)
1273	including cervicals, dorsals, or caudals) is each worth 4 points, for a maximum possible score
1274	of 36. Beardmore scoring can assess taphonomy. Scoring is as follows: 1. Count or
1275	approximate number of elements for each region. 2. In incomplete skeletons, score one for
1276	any girdle elements. 3. If vertebrae are undifferentiated, their score is the proportion present x
1277	12 (if only two undifferentiated vertebrae, score = 2). 4. Any portion of a skull + any portion
1278	of a jaw or tooth = 2. 5. Sum scores for each region. Skeletal image $\mathbb{C}$ Scott Hartman.
1279	
1280	FIG. 2. Mosasaur specimen completeness by substage, for specimens whose age is known.
1281	Mean completeness by substage was calculated, according to TCMall (A), QCMall (B), and
1282	ICMall (C), with 95% confidence intervals, except for the early-middle Coniacian because
1283	there are very few specimens. Completeness was plotted including and excluding specimens
1284	consisting of only teeth. Statistics are shown here for specimens including teeth: TCMall vs.
1285	QCMall (Spearman, $r_s = 0.71$ , $p < 0.01$ ), TCMall vs. ICMall (Spearman, $r_s = 0.77$ , $p < 0.01$ ),
1286	QCMall vs. ICMall, (Spearman, $r_s = 0.97$ , p << 0.001). When comparing differences between
1287	time bins, TCMall (Kruskal-Wallis, $\chi^2 = 597.73$ , df = 12, $p < 0.001$ ), QCMall (Kruskal-
1288	Wallis, $\chi^2 = 219.08$ , df = 12, <i>p</i> < 0.001), and ICMall (Kruskal-Wallis, $\chi^2 = 529.56$ , df = 12, <i>p</i>
1289	< 0.001). For specimens <i>not</i> including teeth alone: when comparing differences between time
1290	bins (TCMall, Kruskal-Wallis, $\chi^2 = 30.05$ , df = 12, $p = 0.003$ ; QCMall, Kruskal-Wallis, $\chi^2 =$
1291	537.22, df = 12, $p < 0.001$ ; ICMall, Kruskal-Wallis, $\chi 2 = 38.38$ , df = 12, $p = 0.001$ ).
1292	
1293	FIG. 3. Comparing mosasaur species completeness by substage. Mean and 95% confidence
1294	intervals are plotted, and curves are plotted with and without teeth. Statistics for all specimens

## Palaeontology

1		
2 3	1295	including teeth: TCMsp. vs. QCMsp (Spearman: $r_s = 0.85$ , p < 0.001), TCMsp. vs. ICMsp
4 5 6 7 8 9 10 11 12 13 14	1296	(Spearman: $r_s = 0.89$ , p << 0.001), QCMsp. vs. ICMsp (Spearman: $r_s = 0.96$ , p << 0.001). In
	1297	comparing completeness between time bins, TCMsp (Kruskal-Wallis, $\chi 2 = 598.7904$ , df = 11,
	1298	$p < 0.001$ ), QCMsp (Kruskal-Wallis, $\chi 2 = 332.5136$ , df = 11, $p < 0.001$ ), ICMsp (Kruskal
	1299	Wallis: $\chi 2 = 596.8376$ , df = 11, $p < 0.001$ ). Statistics for all specimens <i>not</i> including teeth
	1300	alone: TCMsp. – Kruskal-Wallis: $\chi 2 = 28.13$ , df = 11, $p = 0.003$ ), QCMsp (Kruskal-Wallis, $\chi 2$
15 16	1301	= 518.28, df = 11, $p < 0.001$ ); ICMsp (Kruskal-Wallis, $\chi 2 = 30.87$ , df = 11, $p = 0.001$ ).
17 18	1302	
19 20 21	1303	FIG. 4. Mosasaur diversity and sea level through time. A. Generic and species diversity lines
21 22 23	1304	include only specimens with an exact substage assignment; the "averaged species" curve
24 25 26 27 28 29 30 31 32 33 34	1305	includes both in-bin species records, Lazarus taxa plus species based on specimens that could
	1306	not be assigned to a stratigraphic substage with confidence, and so are averaged over all
	1307	possible bins (e.g. two possible time bins, each species rated 0.5 per bin; three possible time
	1308	bins, each species rated 0.33 per bin). B. Mean substage sea level from data available in
	1309	Miller et al. (2005), and showing 95% confidence intervals.
34 35 36	1310	
37 38	1311	FIG. 5. Completeness by taxonomic rank. The mean completeness (TCM) was calculated for
39 40	1312	specimens in each category: Mosasauridae indeterminate, specimens identified to genus or
41 42	1313	identified to species. There are highly significant differences in TCM when comparing all
43 44	1314	three different taxonomic ranks (Kruskal-Wallis, $\chi^2 = 95.62$ , df = 2, p < 0.001). A. Results for
45 46	1315	all specimens including those consisting of a single tooth. In this case, there was no
47 48 49	1316	significant difference between completeness between genus and species specimens, because
50 51	1317	the median for each group = 1 (Wilcoxon: W=731307, $p = 0.09$ ). B. Plot for specimens <i>not</i>
52 53	1318	consisting of only teeth (Kruskal-Wallis, $\chi^2 = 248.64$ , df = 38, p < 2.2e-16). There are highly
54 55 56 57 58 59	1319	significant differences between groups, including genus and species.

Driscoll 62

2	
5 4	
5	
6 7	
8	
9	
10	
12	
13 14	
15	
16	
17	
19	
20 21	
22	
23 24	
24 25	
26	
27 28	
29	
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40 41	
41 42	
43	
44 45	
46	
47 40	
40 49	
50	
51 52	
53	
54 55	
56	
57	
58 59	
60	

1320	
1321	FIG. 6. Completeness by lithology. All specimens identified to species were assigned to the
1322	main lithology of their formation of origin. There are highly significant differences in TCM
1323	between different lithologies (Kruskal-Wallis, $\chi^2 = 364.44$ , df = 3, p < 0.001). Differences
1324	remain when specimens consisting of only teeth are left out, but are barely significant
1325	(Kruskal-Wallis, $\chi^2 = 7.63$ , df = 3, p < 0.05; plot not shown).
1326	
1327	FIG. 7. Completeness by palaeogeographical region. Fossils named to species were divided
1328	by geographical origin. Because of a relative paucity of specimens, Africa, South America,
1329	Australia, New Zealand and Antarctic specimens were included in a "Gondwana" group.
1330	Mean TCM of species-named specimens showed highly significant differences between
1331	groups (Kruskal-Wallis, $\chi^2 = 701.46$ , df = 2, p < 0.001). When tooth-only specimens are left
1332	out of analysis, the differences are no longer significant (Kruskal-Wallis, $\chi^2 = 0.9303$ , df = 2,
1333	p = 0.63; plot not shown).
1334	
1335	FIG. 8. Completeness by well-known formations. There were over 100 formations to choose
1336	from. In this case, some of the best-known formations were compared. The mean TCM values
1337	for specimens named to species between formation groups showed highly significant
1338	differences (Kruskal-Wallis, $\chi^2$ = 595.89, df = 5, p < 0.001. Differences remain when tooth-
1339	only specimens are left out (Kruskal-Wallis, $\chi^2 = 32.05$ , df = 5, p < 0.001; plot not included).
1340	
1341	FIG. 9. Completeness by body size groups. There were no statistical differences between
1342	mean completeness (TCMtot) values of species among small, medium or large mosasaurs.



**Taphonomic Completeness Metric (TCM)** 

#### 0 2 3 Score: 1 4 Approx. 1/2 A few elements A few elements Skull Head is absent elements Complete skull remaining missing remaining Cervical 0 vertebrae 1 or 2 3 or 4 5 or 6 7 vertebrae vertebrae Humerus, radius, 1 of 4 subunits 2 of 4 subunits 3 of 4 subunits Forelimbs All bones absent ulna and most present absent present phalanges Extensive loss of Ribs No ribs Approx. 1/2 ribs Approx. 3/4 ribs Most ribs present ribs Dorsal At least 12 10-25% 0-2 vertebrae 25-50% 50-75% vertebrae present Femur, tibia, 1 of 4 subunits 2 of 4 subunits 3 of 4 subunits Hindlimbs All bones absent fibula and most present present present phalanges Caudal 0-4 vertebrae 10-25% 25-50% 50-75% >75% vertebrae

Beardmore scoring method for mosasaur taphonomic completeness metric (TCM). Each complete region of the skeleton (skull, ribs, forelimbs, hindlimbs and vertebrae (verts.) including cervicals, dorsals, or caudals) is each worth 4 points, for a maximum possible score of 36. Beardmore scoring can assess taphonomy. Scoring is as follows: 1. Count or approximate number of elements for each region. 2. In incomplete skeletons, score one for any girdle elements. 3. If vertebrae are undifferentiated, their score is the proportion present x 12 (if only two undifferentiated vertebrae, score = 2). 4. Any portion of a skull + any portion of a jaw or tooth = 2. 5. Sum scores for each region. Skeletal image © Scott Hartman.

160x142mm (300 x 300 DPI)







5 6



Α








# Supplementary Appendix for:

# The mosasaur fossil record: through the lens of fossil completeness

Dan A. Driscoll, Alexander M. Dunhill, Thomas Stubbs and Michael J. Benton

## Contents of the Supplementary Appendix

TABLE S1. Institutional abbreviations of museums with mosasaur specimens (pp. 2–5).

TABLE S2. Museum specimens examined (pp. 5-9).

TABLE S3. Mosasaur holotype references (pp. 10–14).

TABLE S4. Specimen completeness using a simple method (ICM) (p. 15).

TABLE S5A. GLS data used to model TCM (p. 16).

TABLE S5B. GLS data used to model diversity (p. 16).

TABLE S6A. Summary of GLS analysis models without autocorrelation (p. 17).

TABLE S6B. Summary of the best fit GLS models for predicting TCM and Diversity without autocorrelation (p. 17).

TABLE S7. Supplementary bibliography. References were used to find descriptions and figures of specimens, determine valid species; and determine geologic age and rock type of mosasaur-bearing stratigraphic units (pp. 18–31).

3	TABLE S1. I	nstitutional abbreviations of museums with mosasaur specimens.
5	ALNHM	Alabama Natural History Museum, Tuscaloosa, AL USA
6 7	AMNH	American Museum of Natural History, New York City, NY USA
7 8	ANSP	Academy of Natural Sciences at Drexel University Philadelphia PA USA
9		Auburn University Dent Paleontology Auburn AI USA
10		Dadlanda National Dark Interior, SD USA
11	DADL	Daulanus National Park, Interior, SD USA
12	BSP	Bayerische Staatssammnung für Palaontologie, Munich, Germany
13	BMB	Booth Museum of Natural History, Brighton, UK
14		Dept. of Geosciences, Universidad Nacional de Colombia, Santafe de Bogota,
16	BRV	
17	CCMGE	Chernyshev's Central Museum of Geological Exploration, Saint Petersburg, Russia
18	CAUK	Institut für Geowissenschaften der Christian-Albrechts-Universität, Kiel, Germany
19	CDM	Courtenay and District Museum, Courtenay, BC, Canada
20	CIT	California Institute of Technology (Now housed at LACM), Pasadena, CA USA
21	CM	Carnegie Museum, Pittsburgh, PA USA
22	CMN	Canadian Museum of Nature, Ontario, Canada
24	СМ	Canterbury Museum, Christchurch, NZ
25	CPUC	Departamento de Geología of the Universidad de Concepción, Concepción, Chile
26	CVAI	Colección Vertebrados Asociación Isurus.
27	DMNH	Perot Museum (formerly Dallas Museum of Natural History) Dallas TX USA
28 29	DMNS	Denver Museum of Nature and Science Denver CO USA
30	ENCI	ENCL Company Collection Masstricht Holland
31	LINCI	East Taxas State University (housed at UT Vertebrate Paleontology Lab)
32	FTSU	$Commerce TX US \Delta$
33	EISC	Fick Fossil Museum Ockley, KS USA
34	FFM	Freedly Coolegy Museum, Augustane College, Dock Island, H. USA
36	FUM	Fryxen Geology Museum, Augustana Conege, Rock Island, IL USA
37	FHSM	Sternberg Museum, Fort Hays, KS USA
38	FMNH	Field Museum of Natural History, Chicago, IL USA
39	GCB	Geo Centrum Brabant, Boxtel, Netherlands
40	GNS	GNS Paleontological Collection, Lower Hutt, New Zealand
41	GPIT	University of Tübingen, Tübingen, Germany
43	GSA(TC)	Geological Survey of Alabama, Tuscaloosa, AL USA
44	GZG	Geowissenschaftliches Zentrum der Universistät, Göttingen, Germany
45	HMG	Hobetsu Museum (Geology Collection), Mukawa City, Hokkaido Prefecture, Japan
46	HU	Hacetteppe University, Ankara, Turkey
47	HUJ	Hebrew University, Jerusalem, Israel
48	IAA	Instituto Antártico Argentino
50	IGNS	Institute of Geology and Natural Science, Lower Hutt, New Zealand
51	IGPUW	Institute of Geology and Autoral Defence, Lower Hutt, New Zealand
52	NG	Institute Columbiane de Geologie
53	INU	Institut für Dalägontologig der Phainische Eriodrich Wilhelme Universität. Denn
54	IDREWIT	Germany
55 56		Unititut Doval das Saianaas Naturallas de Delaigue, Druggela, Delaiure
57	IKS(C)INB	Institut Koyai des Sciences Naturelles de Belgique, Brussels, Belgium
58	KHM	Kaikoura Historical Museum, Kaikoura, New Zealand
59	KrMG	Kristianstad Museum of Geology Kristiamstad, Sweden
60	KUVP	Biodiversity Institute and Natural History Museum, University of Kansas,

	Manhattan, KS, USA
LACM	Los Angeles County Museum of Natural History, Los Angeles, CA USA
LO, LR	Dept. Of Geology, Lund University, Lund, Sweden
MAPS	Monmouth Amateur Paleontological Society, Long Branch, NJ USA
MCM	Mikasa City Museum, Hokkaido, Japan
	Museo de Ciencias Naturales de Álava/Arabako Natur Zientzien Museoa, Alava,
MCNA	Spain
MCZ	Museum of Comparative Zoology, Harvard University, Cambridge, MA USA
MKD	Muzeum Nadwiślanśkie, Kazimierz, Dolny, Poland
MDM	Morden and District Museum, Manitoba, Canada
MEL	Museum Emmanuel Liais, Cherbourg, France
MGGC	Museo Geologico Giovanni Cappelini, Bologna, Italy
MGSN	Museum of Geological Survey of Nigeria
MGUAN	Geological Museum, Universidade Agostinho Neto, Luanda, Angola
MGUH	Geological Museum University of Copenhagen, Denmark
MiaMM	Miami Museum, Manitoba, Canada
MHNH	Museum National d'Histoire Naturelle, Paris, France
MML	Museo Municipal de Lamarque, Río Negro Province, Argentina
MMMN	Manitoba Museum of Man and Nature, Manitoba, Canada
MN	Museu Nacional, Rio de Janeiro, Brazil
MOR	Museum of the Rockies, Bozeman, MT USA
MP	Museo Geologico Jose Royo y Gomez of Ingeominas, Santafe de Bogota, Colombia
MPPVS	Museum of Paleontology and Prehistory, S. Anna d'Alfaedo, Italy
MTM	Magyar Természettudományi Múzeum, Budapest, Hungary
MU	University of Missouri, Colombia, MO USA
MUVP	Mansoura University Vertebrate Paleontology Center, Mansoura University, Egypt
NHMM	Natuurhistorisch Museum Maastricht, Maastricht, The Netherlands
NHMUK	The Natural History Museum, London, England, UK
NHMV	Natural History Museum of Verona, Italy
NJGS	New Jersey Geological Survey Trenton NJ USA
NJSM	New Jersey State Museum, Trenton, NJ USA
NMMNH	New Mexico Museum of Natural History, Albuquerque, NM USA
NMNZ	National Museum of New Zealand, Te Papa, Wellington, New Zealand
NZGS	New Zealand Geological Survey, Lower Hutt, New Zealand
PA	Paleo-Angola Project, Southern Methodist University, Dallas, TX USA
OIGM	Oviedas Geological Museum, Asturias, Spain
OCP	Office Chérifien des Phosphates, Khouribja, Morocco
PMU	Museum of Evolution, Palaeontology Section, Uppsala University, Uppsala, Sweden
RE	Ruhr Museum, Essen, Germany
RGM	Rutgers Geology Museum Rutgers University NJ, USA
RMDC	Rocky Mountain Dinosaur Center, Woodland Park, CO USA
RMH	Roemer Museum, Hildesheim, Germany
	Red Mountain Museum (housed at McWane Science Center), Birmingham, AL
KMM	
KMPZ	Swedish Museum of Natural History, Dept. of Palaeozoology, Stockholm, Sweden
SAM	South African Museum, Cape Town, South Africa

2		
3	SDMNH	San Diego Museum of Natural History, San Diego, CA USA
4		South Dakota School of Mines and Technology Geology Museum Rapid City SD
5	SDSM(T)	USA
6 7	52511(1)	Southern Environmental Museum Birmingham Southern College Birmingham AI
/ Q	SEM	USΔ
9	SCU	Coologia Survey of Sweden Steeltholm Sweden
10	500	
11	SGM	Servicio Geologico Mexicano, Chihuahua, Mexico
12	SGMA	Servicos de Geologia e Minas de Angola,
13		Saudi Geological Society, Paleontological Collection, Jiddah, Kingdom of Saudi
14	SGS	Arabia
15	SMBU	Strecker Museum, Baylor University at Waco, TX USA
16	SMU	Schuler Museum, Southern Methodist University, Dallas, TX USA
1/	TLAM	Timber Lake Museum Area Museum Timber Lake SD USA
10 10		University of Teyas Arlington Collection TX USA
20		Taylars Mussum Haarlam The Netherlands
21	I M	Teylers Museum, Haarlem, The Neurenlands
22		Texas Memorial Museum (at Vertebrate Paleontology Lab), University of Texas,
23		Austin, 1X USA
24	TMP	Royal Tyrell Museum of Palaeontology, Drumheller, Alberta, Canada
25	TSJC	Trinidad State Junior College, Trinidad, CO USA
26	TSMHN	Teylers Strichtina Museum, Haarlem, Netherlands
2/	UAVPL	University of Alberta Vertebrate Paleontology Lab, Edmonton, Alberta, Canada
20 29	UCBL	University Claude Bernard-Lyon, Villeurbanne, France
30	UCMP	University of California Museum of Paleontology Berkeley CA USA
31	UD	University of Damascus Geology Dent Damascus Jordan
32		University of New Orleans, LA USA
33		University of Deitiers, Eronee
34	UP	
35	UPI	University of Uppsala, Uppsala, Sweden
30	UPS	U. Paul-Sabatier, Toulouse, France
38		Smithsonian Institution National Museum of Natural History, Washington DC,
39	USNM	USA
40		Université des Sciences Tecniques du Languedoc, Vertebrate Paleontology
41	USTL	Laboratory, Montpellier, France
42	UT	Unversité de Tunis, Tunisia
43		University of Vermont Zadock Thompson Natural History Collection,
44	UVER	Burlington, VT USA
45	WC	Williams College Williamstown, MA USA
47	WDC	Wyoming Dinosaur Center Thermopolis WY USA
48	VPM	Vale Peabody Museum New Haven CT USA
49		Zaalagiaal Institute Academy of Sajanaaa, St. Datarshurg, Dussia
50	<b>Z</b> 11N	Looiogical institute, Academy of Sciences, St. Petersoung, Russia
51		
52		
53		
54		

Museu	Numbe		Labelled	Museu	Numbe		Labelled
m	r	Labelled Genus	Species	m	r	Labelled Genus	Species
AMNH	192	Clidastes	liodontus	DMNS	49925	Clidastes	propython
AMNH	221	Tylosaurus	proriger	DMNS	1582	Mosasaurus	sp
BMNH	R263	Mosasauridae	indet	DMNS	2851	Mosasaurus	sp
	R291a,						
BMNH	b	Mosasauridae	indet	DMNS	28261	Mosasaurus	sp
BMNH	R876	Mosasauridae	indet	DMNS	43405	Mosasaurus	sp
BMNH	R1231	Mosasauridae	indet	DMNS	48169	Mosasaurus	sp
BMNH	R1232	Mosasauridae	indet	DMNS	48172	Mosasaurus	sp
BMNH	R1233	Mosasauridae	indet	DMNS	60861	Mosasaurus	sp
BMNH	R1253	Mosasauridae	indet	DMNS	45872	Platecarpus	sp
BMNH	R1620	Mosasauridae	indet	DMNS	48522	Platecarpus	sp
BMNH	R2573	Mosasauridae	indet	DMNS	1578	Platecarpus	coryphaeus
BMNH	5642	Mosasauridae	indet	DMNS	1579	Platecarpus	coryphaeus
BMNH	R9805	Mosasauridae	indet	DMNS	1581	Platecarpus	coryphaeus
BMNH	R9806	Mosasauridae	indet	DMNS	48616	Platecarpus	ictericus
BMNH	R9816	Mosasauridae	indet	DMNS	40988	Platecarpus	tympaniticus
BMNH	R10122	Mosasauridae	indet	DMNS	18352	Prognathodon	overtoni
BMNH	11591	Mosasauridae	indet	DMNS	2435	Tylosaurus	proriger
BMNH	11593	Mosasauridae	indet	DMNS	21813	Tylosaurus	proriger
BMNH	11599	Mosasauridae	indet	ETSU	L555	Mosasuaridae?	indet
BMNH	R11895	Mosasauridae	indet	ETSU	4299	Mosasauridae	indet
BMNH	R11896	Mosasauridae	indet	ETSU	4272	Mosasauridae	indet
BMNH	R11897	Mosasauridae	indet	ETSU	L751	Mosasauridae	indet
BMNH	R11901	Mosasauridae	indet	ETSU	?	Globidens	fraasi
BMNH	R11902	Mosasauridae	indet	ETSU	L569	Clidastes	sp
BMNH	R11903	Mosasauridae	indet	ETSU	4314	Clidastes	sp
BMNH	R11904	Mosasauridae	indet	ETSU	4349	Clidastes	sp
BMNH	R11905	Mosasauridae	indet	ETSU	4353	Clidastes	sp
BMNH	R11908	Mosasauridae	indet	ETSU	4354	Clidastes	sp
BMNH	R11910	Mosasauridae	indet	ETSU	4369	Clidastes	sp
BMNH	R11915	Mosasauridae	indet	ETSU	4370	Clidastes	propython
BMNH	R11917	Mosasauridae	indet	ETSU	4278	Clidastes	propython
BMNH	R11918	Mosasauridae	indet	EISU	4281	Clidastes	propython
BMNH	R11919	Mosasauridae	indet	EISU	4290	Clidastes	propython
BMNH	R11920	Mosasauridae	indet	EISU	4293	Clidastes	propython
BMNH	R11921	Mosasauridae	indet	EISU	4295	Clidastes	propython
DMNH	R11925	Mosasauridae	indet	EISU	4307	Clidastes	propython
	R11920	Mosasauridae	indet	EISU	L394	Cildastes	propyinon
	R11927	Mosasauridae	indet	EISU	4329	Mosasaurus	sp
	R11929	Mosasauridaa	indet	EISU	4330	Diatoogumus	sp
	D11022	Mosasauridae	indet	EISU	4200	Platocarpus	sp
	26557	Mosasauridae	indet	EISU	4300	Platocarpus	sp
BMNH	37000	Mosasauridae	indet	EISU	4311	Platecarpus	sp
BMNH	30/23	Mosasauridae	indet	FTSU	4312	Platecarpus	sp
RMNH	39425	Mosasauridae	indet	FTSU	4347	Platecarpus	sp
BMNH	41383	Mosasauridae	indet	ETSU	L551	Platecarnus	sn
BMNH	42963	Mosasauridae	indet	ETSU	4327	Platecarnus	ictericus
RMNH	42903	Mosasauridae	indet	ETSU	4310	Tylosaurus	sn
RMNH	42900	Mosasauridae	indet	ETSU	4336	Tylosaurus	sp
RMNH	<u>43102</u>	Mosasauridae	indet	ETSU	4337	Tylosaurus	sn
RMNH	43195	Mosasauridae	indet	FTSU	4340	Tylosaurus	sp
RMNH	43200	Mosasauridae	indet	FTSU	4340	Tylosaurus	sp
RMNU	47054	Mosasauridae	indet	FTSU	4341	Tylosaurus	sp
	T1224	Intosasautiuat	muut		1 7274	1 110344143	1 30

## **TABLE S2.** Museum specimens examined

## Palaeontology

	4	,	•
1	1	_	
	r		۰
	L		,

DWNH	18012	Mosasauridaa	indet	FTSU	4350	Tulosaumus	sn
BMNH	40942	Mosasauridae	indet	FTSU	4350	Tylosaurus	sp
DMINII	49910 D11028	Angolasaurus	sp	ETSU	4350	Tylosaurus	sp
RMNH	R11920	cf Clidastas	sp	FTSU	4366	Tylosaurus	sp
RMNH	R473	Clidastes	sp	FTSU	4377	Tylosaurus	sp
RMNH	R3903	Clidastes	sp	FTSU	4390	Tylosaurus	sp
RMNH	R3904	Clidastes	sp	FTSU	1 583	Tylosaurus	sp
RMNH	R3905	Clidastes	sp	FTSU	L 567_2	Tylosaurus	sp
BMNH	R5641	Clidastes	sp	ETSU	42.74	Tylosaurus	nroriger
BMNH	R2946	Clidastes	numilis	ETSU	4282	Tylosaurus	nroriger
BMNH	R4537	Clidastes	tortor	ETSU	4283	Tylosaurus	proriger
BMNH	R4547	Clidastes	tortor	ETSU	4291	Tylosaurus	proriger
BMNH	R8697	Globidens	sp	ETSU	4324	Tylosaurus	proriger
BMNH	547	Globidens	fraasi	ETSU	4345	Tylosaurus	proriger
BMNH	R5658	Goronvosaurus	nigeriensis	ETSU	4346	Tylosaurus	proriger
BMNH	R5673	Goronvosaurus	nigeriensis	ETSU	4356	Tvlosaurus	proriger
BMNH	R5674	Goronvosaurus	nigeriensis	ETSU	4357	Tvlosaurus	proriger
BMNH	R5675	Goronvosaurus	nigeriensis	ETSU	4364	Tvlosaurus	proriger
BMNH	R5676	Goronvosaurus	nigeriensis	ETSU	4375	Tvlosaurus	proriger
BMNH	R5677	Goronyosaurus	nigeriensis	ETSU	4389	Tylosaurus	proriger
BMNH	R5678	Goronyosaurus	nigeriensis	ETSU	4395	Tylosaurus	proriger
BMNH	R5679	Goronyosaurus	nigeriensis	ETSU		Tylosaurus	proriger
BMNH	R5680	Goronyosaurus	nigeriensis	ETSU	4268	Tylosaurus	proriger
BMNH	R5681	Goronyosaurus	nigeriensis	ETSU	4275	Tylosaurus	proriger
BMNH	R5682	Goronyosaurus	nigeriensis	ETSU	4276	Tylosaurus	proriger
BMNH	R5683	Goronyosaurus	nigeriensis	ETSU	4279	Tylosaurus	proriger
BMNH	R5684	Goronyosaurus	nigeriensis	ETSU	4282	Tylosaurus	proriger
BMNH	R5688	Goronyosaurus	nigeriensis	KUVP	14263	Platecarpus	sp
BMNH	R8638	Goronyosaurus	nigeriensis	KUVP	14267	Platecarpus	sp
BMNH	R8640	Goronyosaurus	nigeriensis	KUVP	14273	Platecarpus	sp
BMNH	R8641	Goronyosaurus	nigeriensis	KUVP	14274	Platecarpus	sp
BMNH	R11912	Goronyosaurus	nigeriensis	KUVP	14276	Platecarpus	sp
BMNH	R11947	Goronyosaurus	nigeriensis	KUVP	14279	Platecarpus	sp
BMNH	R11958	Goronyosaurus	nigeriensis	KUVP	14281	Platecarpus	sp
BMNH	48939	Hainosaurus	sp	KUVP	14282	Platecarpus	sp
BMNH	49935	Hainosaurus	sp	KUVP	14283	Platecarpus	sp
BMNH	R1227	Leiodon	anceps	KUVP	14286	Platecarpus	sp
BMNH	R1228	Leiodon	anceps	KUVP	14287	Platecarpus	sp
BMNH	48943	Leiodon	anceps	KUVP	14342	Platecarpus	sp
BMNH	42937	cf Liodon	sp	KUVP	14343	Platecarpus	sp
BMNH	R2742	Liodon	sp	KUVP	14345	Platecarpus	sp
<b>D</b> 1 () (1)	D.010	<b>T</b> . 1	haumuriens			DI	
BMNH	R812	Liodon	is	KUVP	50112	Platecarpus	sp
	D012	T · 1	haumuriens		<b>550</b> 10	DI .	
BMNH	R813	Liodon	1S	KUVP	55219	Platecarpus	sp
DMNIII	D014	1:	haumuriens		(2297	D1	
BMNH	K814	Liodon	15 1	KUVP	63287	Platecarpus	sp
DMNII	D 9 1 5	Lindow	haumuriens		(2200	Distancements	<b>GP</b>
BMINH	K815	Liodon	15 Is assume to a constant	KUVP	03388	Platecarpus	sp
DMNII	D016	Lindow	haumuriens		66220	Distancements	
DIVINH	K010	LIOUON	tS hauraui are	NUVP	00329	Fiaiecarpus	sp
RMNU	D 817	Liodon	is	KIIVD	60/51	Platacampus	sn
Π/Π	1.01/	LIUUUN	is haumuriona	NUVP	07431	1 iuiecurpus	sp
RMNH	R818	Liodon	is	KIIVP	69456	Platecarnus	sn
	1010	LIUUUII	haumurions	IXU V I	07430	1 iuiccurpus	sp
BMNH	R819	Liodon	is	KIIVP	84858	Platecarnus	sn
BMNH	R5473	Lleiodon	mosasuroid	KUVP	85583	Platecarnus	sn
	10115	LICIOUOII	mosusmon	110 11	00000	1 inicearpus	34

## Palaeontology

_	
·/	

	1	1	T		1		1
DMNII	5(12	M	es	LUND	05504	D1	
BMNH	564 <i>3</i>	Mosasaurus?	sp		85584	Platecarpus	sp
BMNH	R264	Mosasaurus	sp		85585	Platecarpus	sp
BMNH	R820	Mosasaurus	sp		85586	Platecarpus	sp
BMNH	R1231	Mosasaurus	sp		1007	Platecarpus	coryphaeus
BMNH	R5884	Mosasaurus	sp		4862	Platecarpus	coryphaeus
BMNH	R588/	Mosasaurus	sp		14285	Platecarpus	coryphaeus
BMNH	R63/6	Mosasaurus	sp		14340	Platecarpus	coryphaeus
BMNH	R1010/	Mosasaurus	sp		14341	Platecarpus	coryphaeus
BMNH	R10110	Mosasaurus	sp		66332	Platecarpus	coryphaeus
BMNH	R10111	Mosasaurus	sp		66336	Platecarpus	coryphaeus
BMNH	R10112	Mosasaurus	sp		00337	Platecarpus	coryphaeus
BMNH	R10113	Mosasaurus	sp		89853	<i>Platecarpus</i>	corypnaeus
BMNH	R10114	Mosasaurus	sp		2/816	Platecarpus	ictericus
BMNH	R1011/	Mosasaurus	sp		50093	Platecarpus	ictericus
BMINH	R10118	Mosasaurus	sp		050	Plioplatecarpus	sp
BMNH	R10119	Mosasaurus	sp		950	<i>Prognathoaon</i>	overtoni
BMNH	R10120	Mosasaurus	sp		1015	Tylosaurus ?	sp
BMINH	K10121	Mosasaurus	sp		1015	Tylosaurus	sp
BMINH	42865	Mosasaurus	sp		115002	Tylosaurus	sp
BMINH	428/3	Mosasaurus	sp		86160	Tylosaurus	sp
BMNH	42907	Mosasaurus	sp		86643	Tylosaurus	sp
BMNH	42909	Mosasaurus	sp		1032	Tylosaurus Tylosaurus	ayspelor
BMNH	42947	Mosasaurus	sp		1025	Tylosaurus?	proriger
BMNH	42948	Mosasaurus	sp		1089	Tylosaurus?	proriger
BMNH	42952	Mosasaurus	sp		947	Tylosaurus	proriger
	42939	Mosasaurus	sp		1010	Tylosaurus	proriger
DIVINI	42900	Mosasaurus	sp		101/	Tylosaurus	proriger
	42902	Mosasaurus	sp		1020	Tylosaurus	proriger
DIVINI	42907	Mosasaurus	sp		1029	Tylosaurus	proriger
	42977 D1224	Mosasaurus	sp		1013	Tylosaurus	proriger
	R1224	Mosasaurus	camperi		1055	Tylosaurus	proriger
DMNH	42005	Mosasaurus	camperi	KUVI	1050	Tylosaurus	proriger
BMNH	42903	Mosasaurus	camperi	KUVI	1002	Tylosaurus	proriger
RMNH	42929	Mosasaurus	camperi	KUVI	69546	Mosasauridae	indet
BMNH	42930	Mosasaurus	camperi	KUVI	1/5106	Mosasauridae	indet
BMNH	42931	Mosasaurus	camperi	KUVI	152196	Mosasauridae	indet
BMNH	42932	Mosasaurus	camperi	KUVP	152204	Mosasauridae	indet
BMNH	42935	Mosasaurus	camperi	KUVP	152204	Mosasauridae	indet
RMNH	42936	Mosasaurus	camperi	KUVP	152200	Mosasauridae	indet
BMNH	42938	Mosasaurus	camperi	KUVP	1000	Clidastes	tortor
BMNH	42930	Mosasaurus	camperi	KUVP	1022	Clidastes	velor
BMNH	42942	Mosasaurus	camperi	KUVP	1022	Clidastes	westii
Divitiviti	42742	11054544145	camperi	KUVI	1020	Cildusies	missourriensi
BMNH	42943	Mosasaurus	camperi	KUVP	1034	Mosasaurus	s
BMNH	42944	Mosasaurus	camperi	KUVP	134401	Plionlatecarnus	sn
BMNH	42945	Mosasaurus	camperi	KUVP	152217	Plioplatecarpus	sp
BMNH	42946	Mosasaurus	camperi	KUVP	1048	Platecarnus	sp
BMNH	42948	Mosasaurus	camperi	KUVP	1159	Tylosaurus	nroriger
BMNH	42949	Mosasaurus	camperi	KUVP	1189	Tylosaurus	proriger
BMNH	42950	Mosasaurus	camperi	KUVP	1195	Tylosaurus	proriger
BMNH	42953	Mosasaurus	camperi	KUVP	1901	Tylosaurus	nroriger
BMNH	11590	Mosasaurus	dekavi	KUVP	5033	Tylosaurus	proriger
BMNH	42929	Mosasaurus	hoffmanni	KUVP	28705	Tylosaurus	nroriger
BMNH	R4004	Platecarnus	?	KUVP	66129	Tylosaurus	nroriger
	111007	1 1010001 pris	+ •	IRSN	00127	1 91050010	pronger
BMNH	R271	Platecarnus	sn	B		Mosasauridae	indet
	1	- inicearpus	1 24		1	mosusuumuu	maor

		1			-		
BMNH	R3041	Platecarpus	sp	IRSN B		Mosasauridae	indet
BMNH	39424	Platecarpus	sp	IRSN B		Mosasaurus	hoffmani
BMNH	R4003	Platecarpus	sp	IRSN B	3098	Mosasaurus	lemonnieri
BMNH	R2837	Platecarpus	coryphaeus	IRSN B	3100	Plioplatecarpus	houzeaui
BMNH	R2840	Platecarpus	coryphaeus	IRSN B	3107	Plioplatecarpus	houzeaui
BMNH	R2833	Platecarpus	ictericus	IRSN B	3109	Mosasaurus	lemonnieri
BMNH	R2838	Platecarpus	ictericus	IRSN B	3111	Plioplatecarpus	houzeaui
BMNH	R4001	Platecarpus	ictericus	IRSN B	3113	Mosasaurus	lemonnieri
BMNH	R4005	Platecarpus	ictericus	IRSN B	3117	Mosasaurus	lemonnieri
BMNH	R813	Plioplatecarpus	sp	IRSN B	3119	Mosasaurus	lemonnieri
BMNH	R5868	Plioplatecarpus	sp	IRSN B	3125	Mosasaurus	lemonnieri
BMNH	42074	Plioplatecarpus	sp	IKSN B	3127	Mosasaurus	lemonnieri
BMNH	42939	Prognathodon	sp	IRSN B	3152	Plioplatecarpus	houzeaui
BMNH	48940	Prognathodon	sp	IRSN B	3153	Mosasaurus	lemonnieri
BMNH	R822	Taniwhasaurus	oweni	IRSN B	3169	Mosasaurus	lemonnieri
BMNH	R823	Taniwhasaurus	oweni	IRSN B	3186	Mosasaurus	lemonnieri
BMNH	R824	Taniwhasaurus	oweni	IRSN B	3187	Mosasaurus	lemonnieri
BMNH	R825	Taniwhasaurus	oweni	IKSN B	3188	Plioplatecarpus	houzeaui
BMNH	R826	Taniwhasaurus	oweni	B	3193	Mosasaurus	lemonnieri
BMNH	R2767	cf. Tylosaurus	sp	IKSN B	3210	Mosasaurus	lemonnieri
BMNH	R5292	cf. Tylosaurus	sp	B	3211	Plioplatecarpus	houzeaui
BMNH	R10939	cf. Tylosaurus	sp	IRSN B	3672	Hainosaurus	bernardi
BMNH	R2947	Tylosaurus	sp	IRSN B	3857	Mosasaurus	lemonnieri
BMNH	R2948	Tylosaurus	sp	IKSN B IDSN	3858	Mosasaurus	lemonnieri
BMNH	R3625	Tylosaurus	sp	IKSN B IDSN	3859	Plioplatecarpus	houzeaui
BMNH	R3626	Tylosaurus	sp	B IDSN	3860	Mosasaurus	lemonnieri
BMNH	R4548	Tylosaurus	sp	B	3861	Mosasaurus	lemonnieri?
BMNH	35615	Tylosaurus	sp	IKSN B IDSN	3911	Mosasaurus	lemonnieri
BMNH	35616	Tylosaurus	sp	IKSN B	4670	Mosasaurus	lemonnieri
DIVINH	2201/	1 yiosaurus	sp	IKON	40/2	rrognainoaon	soivayi

### Palaeontology

	4			
1	r	ſ	۱	
1	Ļ			

				R			
BMNH	35618	Tylosaurus	sn	SMU		Mosasauridae	indet
BMNH	35619	Tylosaurus	sp	SMU		Mosasauridae	indet
BMNH	35620	Tylosaurus	sp	SMU		Mosasauridae	indet
BMNH	35621	Tylosaurus	sp	SMU	72053	Mosasauridae	indet
BMNH	35624	Tylosaurus	sp	SMU	72208	Mosasauridae	indet
BMNH	35625	Tylosaurus	sp	SMU	72184	Clidastes	sp
BMNH	35626	Tvlosaurus	sp	SMU	76499	Mosasaurus	conodon
BMNH	35727	Tylosaurus	sp	SMU	61799	Platecarpus	corvphaeus
			1			1	cf
BMNH	35634	Tylosaurus	sp	SMU	61767	Platecarpus	somenensis
BMNH	35635	Tylosaurus	sp	SMU	62046	Tylosaurus	sp
BMNH	35636	Tylosaurus	sp	SMU		Tylosaurus	naepaolicus
BMNH	40982	Tylosaurus	sp	SMU	76339	Tylosaurus	naepaolicus
BMNH	40983	Tylosaurus	sp	SMU	75374	Tylosaurus	proriger
BMNH	40984	Tylosaurus	sp	SMU	75586	Tylosaurus	proriger
					42035-		
BMNH	R3628	Tylosaurus	dyspelor	TMM	1	Mosasauridae	sp
					42514-		
BMNH	R2949	Tylosaurus	proriger	TMM	3	Mosasauridae	sp
					43414-		
DMNH	11872	Clidastes	sp	TMM	1	Mosasauridae	sp
					43415-		
DMNH	12834	Clidastes	sp	TMM	1	Mosasauridae	sp
					43415-		
DMNH	8769	Latoplatecarpus	nichollsae	TMM	2	Mosasauridae	sp
					43044-		
DMNH	8561	Platecarpus	sp	TMM	1	Clidastes	sp
DMNH	10408	Platecarpus	planifrons	TMM	3008-1	Clidastes	propython
					30962-		
DMNH	20114	Platecarpus	planifrons	TMM	8	Clidastes	propython
			napaeolicu			at 1.1	
DMNH	11409	Tylosaurus	S	TMM	41934	Globidens	alabamensis
		<b>T</b> 1			40001	<b>TT</b> 1.	platyspondyl
DMNH	1155	Tylosaurus	proriger	TMM	42921	Halisaurus	US
DMANUI	802981	<i>T</i> 1			40566-	TT 1.	
	00	Tylosaurus	proriger		1	Halisaurus	sternbergi
DMNH	8562	Tylosaurus	proriger		42352	Liodon	sectorius
DMINS	1/23	Mosasauridae	indet	ININI	313-1	Mosasaurus	maximus
DMNG	22(2	Managaridaa	in Jet	TMM	40/20-	D1	1:
DMINS	2303	Mosasauridae	Indet		1	Piotosaurus	Dennisoni
DMNG	2420	Managaridaa	in Jet	TMM	42199-	T. 1	
DMINS	2439	Mosasauridae	indet		1	Tylosaurus	sp
DMNG	2442	Magagauridaa	indat	тмм	51051-	Tuloggumug	n an a colioua
DMINS	2443	Mosasauridae	Indet		04	Tylosaurus	napaeoncus
DMNS	22040	Mosasauridaa	indet	тмм	45050-	Tulogaumus	nangooligus
DMINS	22949	Wiosasauriuae	maet	I IVIIVI	1	Tytosaurus	napaeoncus
DMNS	48871	Mosasauridae	indet	тмм	1	Tylogaurus	nrorigar
CUIUS	+00/1	wiosasaunuae	muet	I IVIIVI	40606	1 910500105	proriger
DMNS	2260	Clidastos	s <b>n</b>	тмм	40000-	Tulogaumus	nroriaar
DIMINO	2300	Cillusies	sp.	I IVIIVI	1	1 yiosuurus	proriger
DMNG	47387	Clidastes?	sn	тмм	43040-	Tylosaurus	nrorigor
DIMINO	4/30/	Cillusies!	sh	I IVIIVI	13047	1 yiosuurus	proriger
				тмм	4304/-	Tylosaurus	nrorigar
				I IVIIVI	1	1 yiosuurus	proriger

Author	Year	Species List	Title
Arambourg	1952	Mosasaurus beaugei, Platecarpus ptychodon	Arambourg, C. 1952. Les vertébrés fossiles des gisements de phosphates (Maroc – Algérie – Tunisie). Notes et Mémoires du Service Géologique du Maroc 92:1–372.
Bardet and Superbiola	2005	Halisaurus arambourgi	<ul> <li>Bardet, N., X. Pereda Suberbiola, M. Iarochene, B.</li> <li>Bouya and M. Amaghzaz 2005. A new species of <i>Halisaurus</i> from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the <i>Halisaurinae</i> (Squamata: Mosasauridae).</li> <li>Zoological Journal of the Linnean Society 143:447-472.</li> </ul>
Bardet et al	2005	Globidens phosphaticus	Bardet, N., X. P. Suberbiola, M. Iarochène, M. Amalik and B. Bouya 2005. Durophagous Mosasauridae (Squamata) from the Upper Cretaceous phosphates of Morocco, with description of a new species of <i>Globidens</i> . Netherlands Journal of Geosciences 84:167-175.
Bell and Polcyn	2005	Dallasaurus turneri	Bell, G. L. and M. J. Polcyn, 2005. <i>Dallasaurus turneri</i> , a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences 84:177-194.
Broom	1912	Tylosaurus capensis	Broom, R. 1912. On a species of <i>Tylosaurus</i> from the Upper Cretaceous beds of Pondoland. Annals of the South African Museum 7:332-3.
Camp	1942	Plotosaurus bennisoni, Plesiotylosaurus crassidens	Camp, C. L. 1942. California mosasaurs. University of California Memoirs 13:1-16.
Caldwell et al	2008	Taniwhasaurus mikasaensis	Caldwell, M. W., T. Konishi, I. Obata and K. Muramoto 2008. A new species of <i>Taniwhasaurus</i> (Mosasauridae, Tylosaurinae) from the Upper Santonian-Lower Campanian (Upper Cretaceous) of Hokkaido, Japan. Journal of Vertebrate Paleontology 28:339-348.
Christiansen and Bonde	2002	Prognathodon curii	Christiansen, P. and N. Bonde, 2002. A new species of gigantic mosasaur from the Late Cretaceous of Israel. Journal of Vertebrate Paleontology 22:629- 644.
Соре	1869a	Clidastes Propython, Plioplatecarpus depressus, Platecarpus tympaniticus	Cope, E. D. 1869. On the reptilian orders Pythonomorpha and Streptosauria. Boston Society of Natural History Proceedings 12:250-266.
Соре	1869b	Tylosaurus proriger	Cope, E. D. 1869. Remarks on <i>Holops brevispinus</i> , <i>Ornithotarsus immanis</i> and <i>Macrosaurus proriger</i> . Proceedings of the Academy of Natural Science Philadelphia 21: 123.
Соре	1869- 70	Prognathodon rapax	Cope, E. D. 1869-1870. Synopsis of the extinct Batrachia, Reptilia, and Aves of North America. Transactions of the American Philosophical Society (issued in parts): 1:1-105; 2 (1870):106-235; 3(1870): i-vii, 236-232.
Соре	1871	Prognathodon sectorius	Cope, E. D. 1871. Supplement to the "Synopsis of the extinct Batrachia and Reptilia of North America." Proceedings of the American Philosophical Society 12:41-32.

	TABLE S3.	Mosasaur	holotype	references.
--	-----------	----------	----------	-------------

Cone	1874	Tylosaurus napapolicus	Cope, E. D. 1874 Review of the Vertebrata of the
Cope	10/4	Tylosuurus napueolicus	Cretaceous period found west of the Mississippi River. Bulletin of the United States Geological and Geographical Survey of the Territories Volume 1, Bulletin Number 2-First Series :13-48
Cope	1881	Mosasaurus conodon	Cope, E. D. 1881. A new <i>Clidastes</i> from New Jersey. American Naturalist 15:586-587.
Crandell	1958	Plioplatecarpus primaevus	Crandell, D. R. 1958. Geology of the Pierre area, South Dakota. U. S. Geological Survey Professional Paper 307.
Cuthbertson et al	2007	Latoplatecarpus (Plioplatecarpus) nichollsae	Cuthbertson, R. S., J. C. Mallon, N. E. Campione and R. B. Holmes, 2007. A new species of mosasaur (Squamata: Mosasauridae) from the Pierre Shale (lower Campanian) of Manitoba. Canadian Journal of Earth Sciences 44:593-606.
Cuthbertson and Holmes	2015	Plioplatecarpus peckensis	Cuthbertson, R.S. and R. B. Holmes 2015. A new species of <i>Plioplatecarpus</i> (Mosasauridae, Plioplatecarpinae) from the Bearpaw Formation (Campanian, Upper Cretaceous) of Montana, USA. Journal of Vertebrate Paleontology <i>35</i> :e922980.
Dollo	1882	Plioplatecarpus marshi	Dollo, L. 1882. Note sur l'ostéologie des Mosasauridæ. Bulletin du Musée d'Histoire Naturelle de Belgique 1:55-80.
Dollo	1885	Hainosaurus bernardi	Dollo, L. 1885. Le hainosaure. Revue des Questions Scientifiques 18:285–289.
Dollo	1889	Plioplatecarpus houzeaui, Phosphorosaurus ortliebi, Prognathodon solvayi	Dollo, L. 1889. Note sur les vertébrés récemment offerts au Musée de Bruxelles par M. Alfred Lemonnier. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrogéologie 3:181-182
Dollo	1904	Prognathodon giganteus	Dollo, L. 1904. Les mosasauriens de la Belgique. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrogéologie, Mémoires,1 8:207-216.
Dollo	1913	Carinodens belgicus	Dollo, L. 1913. <i>Globidens Fraasi</i> , mosasaurien mylodonte nouveau du Maestrichtien (Cretac. supérieur) du Limbourg, et l'Ethologie de la Nutrition chez les mosasauriens. Archives de Biologie 28:09-626.
Dortangs, et. al.	2002	Prognathodon saturator	Dortangs, R. W., A. S. Schulp, E.W. Mulder, J. W. Jagt, H. H. Peeters and D. T. de Graaf 2002. A large new mosasaur from the Upper Cretaceous of The Netherlands. Netherlands Journal of Geosciences 81:1-8.
Everhart	2005	Tylosaurus kansasensis	Everhart, M. J. 2005. <i>Tylosaurus kansasensis</i> , a new species of tylosaurine (Squamata, Mosasauridae) from the Niobrara Chalk of western Kansas, USA. Netherlands Journal of Geosciences 84:231.
Fernandez and Martin	2009	Taniwhasaurus antarcticus	Fernandez, M. and J. E. Martin 2009. Description and phylogenetic relationships of <i>Taniwhasaurus</i> <i>antarcticus</i> (Mosasauridae, Tylosaurinae) from the upper Campanian (Cretaceous) of Antarctica. Cretaceous Research 30:717-726.
Gaudry	1892	Prognathodon mosasauroides, Prognathodon anceps	Gaudry, A. 1892. Les Pythonomorphes de France. Mémoires de la Société Géologique de France (Paléontologie) 10:13 and Pl. iv.

Gilmore	1912	Globidens alabamensis	Gilmore, C. W. 1912. A new mosasauroid reptile from the Cretaceous of Alabama. Proceedings of the United States National Museum 40:479-484
Goldfuss	1845	Mosasaurus missouriensis	Goldfuss, A. 1845. Der Schädelbau des Mosasaurus, durch Beschreibung einer neuen Art Gattung erläutert. Nova Acta Academiae Caesar Leopoldino-Carolinae Germanicae Natura Curiosorum 21:174–200
Konishi and Caldwell	2011	<i>Latoplatecarpus</i> <i>willistoni, (and L. nichollsae</i> -redescribed)	Konishi, T. and M. W. Caldwell, M. W. 2011. Two new plioplatecarpine (Squamata, Mosasauridae) genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of plioplatecarpines. Journal of Vertebrate Paleontology, 31:754-783.
Konishi <i>et.</i> <i>al.</i>	2015	Phosphorosaurus ponpetelegans	Konishi, T., M. W. Caldwell, T. Nishimura, K. Sakurai, and K. Tanoue 2015. A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. Journal of Systematic Palaeontology 14:809-839
Lindgren and Siverson	2002	Tylosaurus ivoensis	Lindgren, J. and M. Siverson 2002. <i>Tylosaurus</i> <i>ivoensis</i> : a giant mosasaur from the early Campanian of Sweden. Transactions of the Royal Society of Edinburgh 93:73-93.
Lingham- Soliar	1991	Igdamanosaurus aegypytiacus	Lingham-Soliar, T. 1991. Mosasaurs from the upper Cretaceous of Niger. Palaeontology 34:653-670.
Makádi, Caldwell and Ősi	2012	Pannoniasaurus inexpectadus	Makádi, L., M. W. Caldwell and A. Ősi 2012. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PloS one 7:e51781.
Mantell	1829	Mosasaurus Hoffmanni	Mantell, G. 1829. A tabular arrangement of the organic remains of the country of Sussex. Transactions Geological Society London Series 2:201-216.
Marsh	1869	Halisaurus platyspondylus	Marsh, O. C. 1869. Notice of some new mosasauroid reptiles from the greensand of New Jersey. American Journal of Science, 2nd series 18:392-397.
Martin	2007	Globidens schurmanni	Martin, J. E. 2007. A new species of the durophagous mosasaur, <i>Globidens</i> (Squamata: Mosasauridae) from the Late Cretaceous Pierre Shale Group of central South Dakota, USA. Special Papers-Geological Society of America 427:177- 198.
Merriam	1894	Clidastes liodontus, Ectenosaurus clidastoides	Merriam, J. C. 1894. Über die Pythonomorphen der Kansas Kreide. Palaeontographica 41:1-39.
Nicholls	1988	Tylosaurus pembinensis	Nicholls, E. L. 1988. The first record of the mosasaur <i>Hainosaurus</i> (Reptilia: Lacertilia) from North America. Canadian Journal of Earth Sciences 25:1564-1570.
Nicholls and Mecker.	2002	Kourisodon puntledgensis	Nicholls, E. L. and D. Meckert 2002. Marine reptiles from the Nanaimo Group (Upper Cretaceous) of Vancouver Island. Canadian Journal of Earth Sciences 39:1591-1603.
Palci et al	2013	Romeosaurus sorbinii, R. fumanensis	Palci, A., M. W. Caldwell and C. A. Papazzoni 2013. A new genus and subfamily of mosasaurs from the Upper Cretaceous of northern Italy. Journal of Vertebrate Paleontology 33:599-612.

D	1004	V	Péramo M E 1004 Positión sistemático do un
Paramo	1994	<i>Yaguarasaurus</i>	reptil marinocon base en los restos fósiles
		columbianus	encontrados en capas del Cretácico superior en
			Yaguará (Huila). Revista de la Academia
			Colombiana de Ciencias Exactas, Fisicas y
			Naturales 9:63-80.
Polcyn <i>et</i> .	2010	Globidens phosphaticus	Polcyn, M. J., L. L. Jacobs, A. S. Schulp and O.
al.			Mateus 2010. The North African Mosasaur
			Angola Historical Biology 22:175-185
Poloun and	2005	Pussellosaurus coheni	Polcyn M I and G L Bell 2005 Russellosaurus
Roll	2005	Russellosuulus coneni	<i>cohen</i> i n. gen., n. sp., a 92 million-year-old
DCII			mosasaur from Texas (USA), and the definition of
			the parafamily Russellosaurina. Netherlands Journal
			of Geosciences 84:321-333.
Polcyn	2008	Selmasaurus johnsoni	Polcyn, M. J. and M. J. Everhart, M. J. 2008.
andEverhart			Description and phylogenetic analysis of a new
			Plionlatecarninge) from the Nighrara Chalk of
			western Kansas Pn 13-38 <i>in</i> M I Everhart ed
			Fort Hays Studies, Special Issue number three.
			Proceedings of the Second Mosasaur Meeting.
			Sternberg Museum of Natural History, Hays,
			Kansas.
Russell	1975	Globidens dakotensis	Russell, D. A. 1975. A new species of <i>Globidens</i>
			from South Dakota. Fieldiana Geology 33:235-256.
Schulp	2008	Prognathodon kianda	Schulp, A. S., M. J. Polcyn, O. Mateus, L. L. Jacobs
Poleyn and	2000		and M. L. Morais 2008. A new species of
Mateus			Prognathodon (Squamata, Mosasauridae) from the
Wateus			Maastrichtian of Angola, and the affinities of the
			mosasaur genus <i>Liodon</i> . In M. J. Everhart, ed.
			Proceedings of the Second Mosasaur Meeting, Fort
Schulp	2009	Carinodans minalmamar	Schuln A S N Bardet and B Bouva 2009 A new
Bordat and	2007	Curinouens minumumumur	species of the durophagous mosasaur <i>Carinodens</i>
Daluet allu			(Squamata, Mosasauridae) and additional material
Бойуа			of Carinodens belgicus from the Maastrichtian
			phosphates of Morocco. Netherlands Journal of
~1			Geosciences 88:161-7.
Shannon	1975	Clidastes moorevillensis,	Shannon, S. W. 1975. Selected Alabama
		(Selmasaurus russelli)	of Alahama
Sakurai et	1999	Mosasaurus prismaticus	Sakurai, K., T. Chitoku and N. Shibuya 1999. A
al			new species of Mosasaurus (Reptilia,
a1.			Mosasauridae) from Hobetsu, Hokkaido, Japan.
			Bulletin of the Hobetsu Museum 15: 53e66 (in
~			Japanese, English abstract).
Suzuki	1985	Mosasaurus hobetsuensis	Suzuki, S. 1985. A new species of <i>Mosasaurus</i>
			(Keptilia, Squamata) from the Upper Cretaceous
			Monograph of the Association for Geological
			Collaboration in Japan 30: 45e66 (in Japanese.
			English summary).
Swinton	1930	Goronyosaurus	Swinton, W. E. 1930. On Fossil Reptilia from the
		nigeriensis	Sokoto Province. Bulletin of the Geological Survey
	10.01		Nigeria 13:1-56.
Telles-	1964	Angolasaurus bocagei,	Telles-Antunes, M. 1964. O Neocretacici eo
Antunes		Tylosaurus iembensis	renteis Junta Invest Port Illtramar Lisbon
	1	1	repress. summer myest. I one One unital, Lisboll.

	1				
Thevenin	1896	Tylosaurus gaudry	Thévenin, A. 1896. Mosasauriens de la Craie Grise		
			de Vaux-Eclusier pres Peronne (Somme). Bulletin		
			de la Societé Geologique de France, troisième		
	10-11		memoires serie 24:900–916.		
Welles and	1971	Prognathodon	Welles, S. P. and D. R. Gregg 19/1. Late		
Gregg		waiparaensis,	Cretaceous marine reptiles of New Zealand.		
		Mosasaurus mokoroa.	Records of the Canterbury Museum 9:1–111.		
		Taniwhasautrus oweni			
Wiffen	1980	Moanasaurus	Wiffen, J. 1980. Moanasaurus, a new genus of		
		mangahayangae	marine reptile (Family Mosasauridae) from the		
		manganonangae	Upper Cretaceous of North Island, New Zealand.		
			New Zealand Journal of Geology and Geophysics		
			23:507-528		
Williston	1897	Prognathodon overtoni	Williston, S. W. 1897. Brachysaurus, a new genus		
			of mosasaurs. Kansas University Quarterly 6:95-98.		
Williston	1898	Platecarpus	Williston, S. W. 1898. Mosasaurs. The University		
		( <i>Plesioplatecarpus</i> sensu	Geological Survey of Kansas 4:83-221, pls. 10-72.		
		Konishi) planifons			
Wright and	1988	Selmasaurus russelli	Wright, K. R. and S. W. Shannon 1988.		
Shannon			Selmasaurus russelli, a new plioplatecarpine		
			mosasaur (Squamata, Mosasauridae) from		
			Alabama. Journal of Vertebrate Paleontology		
			8:102-107.		
Wiman	1920	Eonatator (Clidastes)	Wiman, C. 1920. Some reptiles from the Niobrara		
		sternbergi	group in Kansas. Bulletin of the Geolological		
			Insitute of Uppsala 18:9-18.		
Yakovlev	1901	(Prognathodon)	Yakovlev, N. N. 1901. Remains of the Late		
		Dollosaurus lutugini	Cretaceous mosasaur from the south of Russia.		
		= = = = = = = = = = = = = = = = = = = =	Izvestiva Geologischeskogo Komiteta 20:407-522.		

**TABLE S4.** Explaining specimen completeness using a simple method (ICM). Some museum databases list parts as "skull," "axial elements," or "appendicular elements". A skull part is weighted higher than other elements. 1. A jaw fragment or tooth scores one point. 2. Add one point for "complete," as in a "complete skeleton" etc. 3. Sum total for score (6 total points possible).

	Skull	Axial Skeleton	Appendicular Skeleton
Score	3	1	1

____

### Palaeontology

**TABLE S5A.** Data used in GLS analysis. The mean completeness of specimens named to species (TCMsp) in each substage was modelled with Miller average sea level, mosasaur species diversity of specimens assignable to single time bins and mosasaur and plesiosaur bearing formations.

	Age			DIV by	
Substage	(Ma)	TCMsp	Sea-level (m)	species	MPBFs
Late Maas	67.95	1.47	33.07	20	31
Early Maas	71	5.22	21.59	16	34
Late Camp	74.2	5.8	31.57	17	35
Mid Camp	78.5	7.7	35.21	13	25
Early Camp	82.1	1.2	33.41	12	26
Late Sant	84.4	11.88	38.06	8	17
Mid Sant	85.4	7.2	22.75	2	10
Early Sant	85.95	4.25	10.14	3	14
Late Con	87.1	7.6	14.26	5	9
Mid Con	88.25	19	21.05	1	7
Early Con	89.2		27.54	0	5
Late Tur	90.6	5.4	11.44	3	11
Mid Tur	92.05	6.56	20.84	5	5

**TABLE S5B.** Data used for GLS analysis. Averaged mosasaur species diversity is modelled with Miller average sea level, mean completeness of mosasaur species averaged in substages (TCMall) and mosasaur- plus plesiosaur-bearing formations.

	Age	DIV	Sea-level		
Substage	(Ma)	averaged	(m)	TCMall	MPBFs
Late Maas	67.95	21.33	33.07	3.68	31
Early Maas	71	19	21.59	5.07	34
Late Camp	74.2	18.83	31.57	7.26	35
Mid Camp	78.5	15.5	35.21	7.97	25
Early Camp	82.1	14	33.41	3.57	26
Late Sant	84.4	10.83	38.06	11.88	17
Mid Sant	85.4	6.33	22.75	9.25	10
Early Sant	85.95	7.33	10.14	5.33	14
Late Con	87.1	5.5	14.26	6.51	9
Mid Con	88.25	1	21.05	19	7
Early Con	89.2	0	27.54		5
Late Tur	90.6	3	11.44	4.92	11
Mid Tur	92.05	5	20.84	6.07	5

**TABLE S6A.** Summary of GLS multiple regression analysis showing the full and best models for predicting both diversity and TCM. MPBFs means mosasaur and plesiosaur bearing formations.

Model	Parameters	AIC	BIC	Log likelihood
Full averaged	TCMav	55.563	55.184	-20.781
diversity	sea level			
	MBPFs			
	age			
Best averaged	TCMav	55.563	55.184	-20.781
diversity	sea level			
	MPBFs			
	age			
Full TCMsp	species diversity	76.621	76.296	-32.31
	sea level			
	MPBFs			
	age			
Best TCMsp	species diversity	76.621	76.296	-32.31
	sea level			
	MPBFs			
	age			

**TABLE S6B.** Summary of best fitting GLS multiple regression models for predicting diversity and TCM.

Response	Parameters	Value	SE	t	р
Averaged	intercept	36.725	3.057	12.013	< 0.001
diversity	TCMav	-0.22	0.068	-3.233	0.01
	sea level	0.138	0.014	9.576	< 0.001
	MPBFs	0.242	0.023	10.397	< 0.001
	age	-0.392	0.036	-10.924	< 0.001
TCMsp	intercept	48.049	45.459	1.057	0.36
_	species diversity	-0.973	0.694	-1.402	0.2
	sea level	0.273	0.18	1.518	0.17
	MPBFs	-0.092	0.369	-0.248	0.81
	age	-0.456	0.492	-0.928	0.38

**TABLE S7.** Supplementary bibliography. These references were used to find descriptions and figures of mosasaur specimens, determine valid species and determine geologic age and rock type of mosasaur-bearing stratigraphic units.

- Adkins, W. S. 1923. Geology and mineral resources of McLennnan Co. Texas University of Texas Bulletin 2340:76.
- Arambourg, C. 1952. Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie). Notes et Mémoires du Service Géologique du Maroc 92:1–372.
- Baird, D. and G. R. Case 1966. Rare marine reptiles from the Cretaceous of New Jersey. Journal of Paleontology 40:1211-1215.
- Bamburak, J.D., Nicolas, M.P.B. and Hatcher, J. 2013: Radiometric dating of Late Cretaceous bentonite beds in southwestern Manitoba; in Report of Activities 2013, Manitoba Mineral Resources, Manitoba Geological Survey, p. 129–136.
- Bardet, N. 1990. Première mention du genre *Hainosaurus* (Squamata, Mosasauridae) en France Comptes Rendus de l'Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 311:751-756.
- Bardet, N. 2012a. The mosasaur collections of the Museum National d'Histoire Naturelle of Paris. Bulletin de la Société Géologique de France 183:35-53.
- Bardet, N. 2012b. Maastrichtian marine reptiles of the Mediterranean Tethys: a palaeobiogeographical approach. Bulletin de la Société Géologique de France 183:573-596.
- Bardet, N. and C. Tunoğlu 2002. The first mosasaur (Squamata) from the Late Cretaceous of Turkey. Journal of Vertebrate Paleontology 22:712-715.
- Bardet, N. and X. Pereda Suberbiola 2001. The basal mosasaurid *Halisaurus sternbergii* from the Late Cretaceous of Kansas (North America): a review of the Uppsala type specimen. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science 332:395-402.
- Bardet, N. and X. Pereda Suberbiola 2002. Marine reptiles from the Late Cretaceous phosphates of Jordan: palaeobiogeographical implications. Geodiversitas 24:831-839.
- Bardet, N., J. C. Corral and X. P. Suberbiola 1997. Les mosasaures (Squamata) du Crétacé supérieur du Bassin basco-cantabrique. Geobios 30:19-26.
- Bardet, N., H. Cappetta, X. Pereda Suberbiola, M. Mouty, A. K. Al Maleh, A. M. Ahmad, O. Khrata and N. Gannoum 2000. The marine vertebrate faunas from the Late Cretaceous phosphates of Syria. Geological Magazine 137:269-290.
- Bardet, N., X. P. Suberbiola and N. E. Jalil 2003. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Comptes Rendus Palevol 2:607-616.
- Bardet, N., X. Pereda Suberbiola, M. Iarochene, F. Bouyahyaoui, B. Bouya and M. Amaghzaz 2004. *Mosasaurus beaugei* Arambourg, 1952 (Squamata, Mosasauridae) from the Late Cretaceous phosphates of Morocco. Geobios 37:315-324.
- Bardet, N., X. P. Suberbiola, M. Iarochène, M. Amalik and B. Bouya 2005. Durophagous Mosasauridae (Squamata) from the Upper Cretaceous phosphates of Morocco, with description of a new species of *Globidens*. Netherlands Journal of Geosciences 84:167-175.
- Bardet, N., X. Pereda Suberbiola, M. Iarochene, B. Bouya and M. Amaghzaz 2005. A new species of *Halisaurus* from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zoological Journal of the Linnean Society 143:447-472.
- Bardet, N., X. Pereda Suberbiola and J. C. Corral 2006. A Tylosaurine Mosasauridae (Squamata) from the Late Cretaceous of the Basque-Cantabrian Region. Estudios Geológicos 62:213-218.

Bardet, N., A. Houssaye, J. C. Rage and X. P. Suberbiola 2008. The Cenomanian-Turonian (Late Cretaceous) radiation of marine squamates (Reptilia): the role of the Mediterranean Tethys. Bulletin de la Société géologique de France 179:605-622.

- Bardet N., X. Pereda Suberbiola, J. Carmelo Corral, J. I. Baceta, J. Á. Torres, B. Botantz and G. Martin 2012. A skull fragment of the mosasaurid *Prognathodon* cf. *sectorius* from the Late Cretaceous of Navarre (Basque-Cantabrian Region). Bulletin de la Société Géologique de France 183:115-119.
- Bardet, N., J. F. Baeza Carratalá, V. Díez Díaz, Á. Carbonell, M. García Ávila and V. Giner 2013. Primer hallazgo de Mosasauridae (Squamata) en el Maastrichtiense (Cretacico final) de Alicante (Comunidad de Valencia, Levante Español). Estudios Geológicos 69:(online).
- Bell, G. L. 1993. A phylogenetic revision of Mosasauroidea (Squamata). Unpublished PhD Thesis, University of Texas, Austin.
- Bell, G. L. 1997. A phylogenetic revision of North American and Adriatic Mosasauroidea. Pp. 293-332 in Callaway, J.M. and Nicholls, E.L., eds. Ancient Marine Reptiles. Academic Press, San Diego, Cal.
- Bell, G. L., M. W. Caldwell, R. Holmes, J. Wiffen and J. Mckee 1999. Sea monsters of the South Pacific: on the Late Cretaceous mosasaurs of New Zealand. Journal of Vertebrate Paleontology 19:32A.
- Bell, G. and M. J. Polcyn, 2005a. An exceptionally conservative mosasaur from the Santonian of Kansas and its phylogenetic relevance within Mosasauridae. Journal of Vertebrate Paleontology 25:36A.
- Bell, G. L. and M. J. Polcyn, 2005b. *Dallasaurus turneri*, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences 84:177-194.
- Bell, G. L., K. R. Barnes and M. J. Polcyn 2012. Late Cretaceous mosasauroids (Reptilia, Squamata) of the Big Bend region in Texas, USA. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103:571-581.
- Bengston, P. and J. Lindgren 2005. First record of the mosasaur *Platecarpus* Cope, 1869 from South America and its systematic implications. Revista Brasileira de Paleontologia 8:5-12.
- Bilotte, M., L. Koess and E. J. Debroas 2005. Relationships between tectonics and sedimentation on the northeastern margin of the Subpyrenean trough during the late Santonian. Bulletin de la Société Géologique de France 176:443-455.
- Bottjer, D. J. 1986. Campanian-Maastrichtian chalks of southwestern Arkansas: petrology, paleoenvironments and comparison with other North American and European chalks. Cretaceous Research 7:161-196.
- Broom, R. 1912. On a species of *Tylosaurus* from the Upper Cretaceous beds of Pondoland. Annals of the South African Museum 7:332-3.
- Buchy, M. C., E. Frey, W. Stinnesbeck and J. G. López-Oliva 2007. Cranial anatomy of a Maastrichtian (Upper Cretaceous) mosasaur (Squamata, Mosasauridae) from north-east Mexico. Revista Mexicana de Ciencias Geológicas 24:89-103.
- Buffetaut, E. and N. Bardet 2012. The mosasaurid (Squamata) *Prognathodon* in the Maastrichtian (Late Cretaceous) of the Cotentin Peninsula (Normandy, northwestern France). Bulletin de la Societe Geologique de France, 183:111-115.
- Bullard, T. S. and M. Caldwell 2010. Redescription and rediagnosis of the tylosaurine mosasaur *Hainosaurus pembinensis* Nicholls, 1988, as *Tylosaurus pembinensis* (Nicholls, 1988). Journal of Vertebrate Paleontology 33:67-84.
- Burnham, D. A. 1991. A new mosasaur from the upper Demopolis Formation of Sumter County, Alabama. Unpublished M.Sc. dissertation, University of New Orleans, New Orleans, LA.

Caldwell, M. W. and G. L. Bell 1995. Halisaurus Sp. (Mosasauridae) from the upper
Cretaceous (?Santonian) of east-central Peru, and the taxonomic utility of mosasaur
cervical vertebrae. Journal of Vertebrate Paleontology 15:532-544.
Caldwell, M. W., L. A. Budney and D. O. Lamoureux 2003. Histology of tooth attachment
23:622 630
Caldwell M W R Holmes G I Bell and I Wiffen 2005 An unusual tylosaurine mosasaur
from New Zealand: a new skull of <i>Taniwhasaurus oweni</i> (Lower Haumurian: Upper
Cretaceous). Journal of Vertebrate Paleontology 25:393-401.
Caldwell, M. W. and Bell, G. L. 2005. Of German princes and North American rivers:
Harlan's lost mosasaur snout rediscovered. Netherlands Journal of Geosciences 84:207-
211.
Caldwell, M. W. and T. Konishi 2007. Taxonomic re-assignment of the first-known mosasaur
specimen from Japan, and a discussion of circum-pacific mosasaur paleobiogeography.
Journal of Vertebrate Paleontology 27:517-520.
Caldwell, M. W., I. Konishi, I. Obata and K. Muramoto 2008. A new species of Taniwhasquirus (Mosasquiridae, Tylosquiringe) from the Upper Sentenian Lewer
Campanian (Upper Cretaceous) of Hokkaido, Japan, Journal of Vertebrate Paleontology
28:339-348.
Camp, C. L. 1942. California mosasaurs. University of California Memoirs 13:1-16.
Christiansen, P. and N. Bonde, 2002. A new species of gigantic mosasaur from the Late
Cretaceous of Israel. Journal of Vertebrate Paleontology 22:629-644.
Cicimurri, D. J., G. L. Bell Jr and P. W. Stoffer 1999. Vertebrate paleontology of the Pierre
Shale and Fox Hills Formations (Late Campanian-Late Maastrichtian) of Badlands
Consoli C P and L D Stilwell 2009 Late Cretaceous marine rentiles (Elasmosauridae and
Mosasauridae) of the Chatham Islands New Zealand Cretaceous Research 30.991-999
Cope E D 1869a On the reptilian orders Pythonomorpha and Streptosauria Boston Society
of Natural History Proceedings 12:250-266.
Cope, E. D. 1869b. Remarks on Holops brevispinus, Ornithotarsus immanis and Macrosaurus
proriger. Proceedings of the Academy of Natural Science Philadelphia 21: 123.
Cope, E. D. 1869-1870. Synopsis of the extinct Batrachia, Reptilia, and Aves of North
America. Transactions of the American Philosophical Society (issued in parts): 1:1-105; 2
(1870):106-235; 3(1870): 1-V11, 236-232.
America "Proceedings of the American Philosophical Society 12:41-32
Cope E D 1874 Review of the Vertebrata of the Cretaceous period found west of the
Mississippi River Bulletin of the United States Geological and Geographical Survey of the
Territories Volume 1, Bulletin Number 2-First Series :13-48.
Cope, E. D. 1875. The Vertebrata of the Cretaceous formations of the West. United States
Geological Survey of the Territories. Government Printing Office, Washington D.C.
Cope, E. D. 1881. A new <i>Clidastes</i> from New Jersey. American Naturalist, 15:586-587.
Cornelissen, D., L. Verding, A. S. Schulp and J. W. Jagt 2012. The mosasaurs (Squamata,
Mosasauridae) of the Garcet Collection. Bulletin de la Société Géologique de France
185:0/-/1. Crandell D. R. 1958. Geology of the Dierre area. South Dakota, U.S. Geological Survey
Professional Paper 307
Cuthbertson R S and R B Holmes 2015 A new species of <i>Plioplatecarpus</i> (Mosasauridae
Plioplatecarpinae) from the Bearpaw Formation (Campanian, Upper Cretaceous) of
Montana, USA. Journal of Vertebrate Paleontology 35:e922980.

- Cuthbertson, R. S., J. C. Mallon, N. E. Campione and R. B. Holmes, 2007. A new species of mosasaur (Squamata: Mosasauridae) from the Pierre Shale (lower Campanian) of Manitoba. Canadian Journal of Earth Sciences 44:593-606.
- Diedrich, C. and E. W. A. Mulder 2004. A new record of *Clidastes* (Squamata, Mosasauridae) from the Upper Campanian of the Münster Basin (NW Germany). Netherlands Journal of Geosciences/Geologie en Mijnbouw 83:73-78.
- Diedrich, C. G. and U. Scheer 2015. Marine vertebrates from the Santonian coastal carbonates of northwestern Germany–a tool for the reconstruction of a Proto-North Sea Basin intertidal dinosaur-exchange bridge. Open Geosciences 7:342-361
- Dodson, P. 1971. Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur Provincial Park, Alberta (Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 10:21-74.
- Dollo, L. 1882. Note sur l'ostéologie des Mosasauridæ. Bulletin du Musée d'Histoire Naturelle de Belgique 1:55-80.
- Dollo, L. 1885. Le hainosaure. Revue des Questions Scientifiques 18:285–289.
- Dollo, L. 1889a. Note sur les vertébrés récemment offerts au Musée de Bruxelles par M. Alfred Lemonnier. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrologie 3:181-182.
- Dollo, L. 1889b. Nouvelle note sur les vertébrés fossiles récemment offerts au Musée de Bruxelles par M. Alfred Lemonnier. Bulletin de la Société Belge de Géologie, de Paléontologie et d'Hydrologie *3*:214-215.
- Dollo, L. 1904. Les mosasauriens de la Belgique. Bulletin de la Société Belge de Géologie de Paléontologie et d'Hydrogéologie, Mémoires,1 8:207-216.
- Donovan, A. D. 1993. The use of sequence stratigraphy to gain new insights into stratigraphic relationships in the Upper Cretaceous of the US Gulf Coast. Pp. 563-577 *in* H. W.
  Posamentier, C. P. Summerhayes, B. U. Haq and G. P. Allen, eds. Sequence Stratigraphy and Facies Associations. Blackwell Publishing Ltd., Oxford, UK.
- Dortangs, R. W., A. S. Schulp, E.W. Mulder, J. W. Jagt, H. H. Peeters and D. T. de Graaf 2002. A large new mosasaur from the Upper Cretaceous of The Netherlands. Netherlands Journal of Geosciences 81:1-8.
- Erlich, R. N., I. O. Macsotay, A. J. Nederbragt and M. A. Lorente 1999. Palaeoecology, palaeogeography and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology 153:03-238.
- Everhart, M. J. 2001. Revisions to the biostratigraphy of the Mosasauridae (Squamata) in the Smoky Hill Chalk Member of the Niobrara Chalk (Late Cretaceous) of Kansas. Transactions of the Kansas Academy of Science 104:59-78.
- Everhart, M.J. 2002. New data on cranial measurements and body length of the mosasaur, *Tylosaurus nepaeolicus* (Squamata; Mosasauridae), from the Niobrara Formation of western Kansas. Transactions of the Kansas Academy of Science 105:33-43.
- Everhart, M.J. 2004. Late Cretaceous interaction between predators and prey. Evidence of feeding by two species of shark on a mosasaur. PalArch, vertebrate palaeontology series 1:1-7.
- Everhart, M. J. 2005. *Tylosaurus kansasensis*, a new species of tylosaurine (Squamata, Mosasauridae) from the Niobrara Chalk of western Kansas, USA. Netherlands Journal of Geosciences 84:231.
- Everhart, M. J. 2016. Rare occurrence of mosasaur (Squamata: Mosasauroidea) remains in the Blue Hill Shale (Middle Turonian) of Mitchell County, Kansas.Transactions of the Kansas Academy of Science 119:375-380.
- Everhart, M. J. 2008. A bitten skull of *Tylosaurus kansasensis* (Squamata: Mosasauridae) and a review of mosasaur-on-mosasaur pathology in the fossil record. Transactions of the

3	
1	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
ו∠ רר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
54	
22	
50	
5/	
58	
59	
60	

Kansas Academy of Science 111:251-262.Fanti, F. and O. Catuneanu 2010. Fl	uvial
sequence stratigraphy: the Wapiti Formation, west-central Alberta, Canada. Jo	urnal of
Sedimentary Research 80:320-338.	

- Fanti, F., A. Cau and A. Negri 2014. A giant mosasaur (Reptilia, Squamata) with an unusually twisted dentition from the Argille Scagliose complex (Late Campanian) of Northern Italy. Cretaceous Research 49:91-104.
- Fernandez, M. and J. E. Martin 2009. Description and phylogenetic relationships of *Taniwhasaurus antarcticus* (Mosasauridae, Tylosaurinae) from the upper Campanian (Cretaceous) of Antarctica. Cretaceous Research 30:717-726.
- Fernández, M. S. and Z. Gasparini 2012. Campanian and Maastrichtian mosasaurs from Antarctic Peninsula and Patagonia, Argentina. Bulletin de la Société Géologique de France 183:93-102.
- Fernández, M.S. and M. Talevi 2015. An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: insights into the mosasaur middle ear. Comptes Rendus Palevol 14:483-493.
- Field, D.J., A. LeBlanc, A. Gau and A. D. Behlke 2015. Pelagic neonatal fossils support viviparity and precocial life history of Cretaceous mosasaurs. Palaeontology 58:401-407.
- Flores, A. L. 2013. Occurrence of a tylosaurine mosasaur (Mosasauridae; Russellosaurina) from the Turonian of Chihuahua State, Mexico. Boletín de la Sociedad Geológica Mexicana 65:99-107.
- Fox, J. E. 2004 A shallow marine fauna from the late Campanian DeGrey Member of the Pierre Shale along the Missouri River, central South Dakota. Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting Geological Society of America (May 3–5, 2004) (abstract).
- Frey, E., E. W. Mulder, W. Stinnesbeck, C. Salazar and L. A. H. Quinzio-Sinn 2016. A mosasaur, cf. *Plotosaurus*, from the upper Maastrichtian Quiriquina Formation in Central Chile. Cretaceous Research 61:17-25.
- Gallagher, W. B. 2005. Recent mosasaur discoveries from New Jersey and Delaware, USA: stratigraphy, taphonomy and implications for mosasaur extinction. Netherlands Journal of Geosciences 84:241.
- Gallagher, W. B., C. E. Campbell, J. W. Jagt and E. W. Mulder 2005. Mosasaur (Reptilia, Squamata) material from the Cretaceous-Tertiary boundary interval in Missouri. Journal of Vertebrate Paleontology 25:473-475.
- Gallagher, W. B., K. G. Miller, R. M. Sherrell, J. V. Browning, M. P. Field, R. K. Olsson, P. J. Sugarman, S. Tuorto and H. Wahyudi 2012. On the last mosasaurs: Late Maastrichtian mosasaurs and the Cretaceous-Paleogene boundary in New Jersey. Bulletin de la Société Géologique de France, 183:145-150.
- Garcia, G., Bardet, N., Houssaye, A., Pereda-Suberbiola, X. and Valentin, X., 2015. Mosasauroid (Squamata) discovery in the Late Cretaceous (Early Campanian) continental deposits of Villeveyrac–L'Olivet, southern France. Comptes Rendus Palevol 14:495-505.
- Gaudry, A. 1892. Les Pythonomorphes de France. Mémoires de la Société Géologique de France (Paléontologie) 10:13 and Pl. iv.
- Gilmore, C. W. 1912. A new mosasauroid reptile from the Cretaceous of Alabama. Proceedings of the United States National Museum, 40:479-484.
- Gilmore, C. W. 1921. An extinct sea lizard from western Kansas. *Scientific American* 124:173-180.
- Goodwin, M. B. and A. L. Deino 1989. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Canadian Journal of Earth Sciences 26:1384-1391.

Grigoriev, D. V. 2013. Redescription of *Prognathodon Lutugini* (Squamata, Mosasauridae). Proceedings of the Zoological Institute RAS 317:246-261.

Grigoriev, D.V., M. S. Arkhangelsky and S. M. Merkulov 2015. A Record of *Clidastes propython* Cope (Squamata, Mosasauridae) in the Upper Cretaceous of the Saratov Region, Russia. Paleontological Journal 49:512-520.

- Harrell Jr, T.L. and J. E. Martin 2015. A mosasaur from the Maastrichtian Fox Hills Formation of the northern Western Interior Seaway of the United States. Netherlands Journal of Geosciences 94:23-37.
- Hilton, R. P. and P. J. Antuzzi 1997. Chico Formation yields clues to Late Cretaceous paleoenvironments in California. California Geology 50:135-144.
- Holmes, R., M. W. Caldwell and S. L. Cumbaa, 1999. A new specimen of *Plioplatecarpus* (Mosasauridae) from the lower Maastrichtian of Alberta: comments on allometry, functional morphology, and paleoecology. Canadian Journal of Earth Sciences 36:363-369.
- Holmes, R. B. and H. D. Sues 2000. A partial skeleton of the basal mosasaur *Halisaurus platyspondylus* from the Severn Formation (Upper Cretaceous: Maastrichtian) of Maryland. Journal of Paleontology 74:309-316.

Hornung, J. J. and M. Reich 2015. Tylosaurine mosasaurs (Squamata) from the Late Cretaceous of northern Germany. Netherlands Journal of Geosciences, 94:55-71.

- Ikejiri, T. and S. G. Lucas 2015. Osteology and taxonomy of *Mosasaurus conodon* Cope 1881 from the Late Cretaceous of North America. Netherlands Journal of Geosciences, 94:39-54.
- Jacobs, L. L., O. Mateus, M. J. Polcyn, A. S. Schulp, M. T. Antunes, M. L. Morais and T. da Silva Tavares 2006. The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal-Paleontological Society of Korea, 22:91-110.
- Jacobs, L.L., M. J. Polcyn, D. A. Winkler, T. S. Myers, J. G. Kennedy, and J. B. Wagner 2013. Late Cretaceous strata and vertebrate fossils of North Texas. *in* Hunt, B.B. and Catlos, E.J., eds. Late Cretaceous to Quaternary Strata and Fossils of Texas: Field Excursions Celebrating 125 Years of GSA and Texas Geology. GSA South Central Section Meeting, Austin, Texas, April, 2013. Geological Society of America Field Guide 30:1-13.

Jagt, J. W. M. 2005. Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. Netherlands Journal of Geosciences 84:283-301.

- Jagt, J. W. M. and A. S. Schulp 2001. De Maastrichtse Mosasaurusvondst deel 2 GEA 59:1395-1400.
- Jagt, J. W. M., J. Lindgren, M. Machalski and A. Radwanski 2005. New records of the tylosaurine mosasaur *Hainosaurus* from the Campanian-Maastrichtian (Late Cretaceous) of central Poland. Netherlands Journal of Geosciences 84:303-306.
- Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137:171-188.
- Jiménez-Huidobro, P. and Caldwell, M.W., 2016. Reassessment and reassignment of the early Maastrichtian mosasaur *Hainosaurus bernardi* Dollo, 1885, to *Tylosaurus* Marsh, 1872. Journal of Vertebrate Paleontology 36:e1096275.
- Kass, M. S. 1999. *Prognathodon stadtmani*:(Mosasauridae) a new species from the Mancos Shale (lower Campanian) of western Colorado. Utah Geological Survey Miscellaneous Publication 99:275-294.
- Kear, B. P., J. A. Long and J. E. Martin 2005. A review of Australian mosasaur occurrences. Netherlands Journal of Geosciences 84:307-313.

Kear, B. P., T. H. Rich, M. A. Ali, Y. A. Al-Mufarrih, A. H. Matiri, A. Masary, and Y. Attia, 2008. Late Cretaceous (Campanian–Maastrichtian) marine reptiles from the Adaffa
Formation, NW Saudi Arabia. Geological Magazine 145:648-654.
Kennedy, W. J. and W. A. Cobban, 1993. Upper Campanian ammonites from the Ozan-
Annona Formation boundary in southwestern Arkansas, Bulletin of the Geological Society
of Denmark 40:115-148
Kennedy W I W A Cobban and N H Landman 1997 Maastrichtian ammonites from the
Severn Formation of Maryland American Museum Novitates 2210:1-20
Seveni Formation of Maryland. American Museum Novitates 5210.1-50.
Kennedy, W.J. and H. C. Klinger 2013. Cretaceous raunas from Zululand and Natal, South
Africa. Texasia cricki Spath, 1921 (Cephalopoda: Ammonoidea) an early Santonian
marker fossil from the Mzamba Formation of the Eastern Cape Province. Palaeontology
Africa 48:4-40.
Kennedy, W. J., C. Tunoğlu, I. Walaszczyk, and I. Kadri Ertekín, 2007. Ammonite and
inoceramid bivalve faunas from the Davutlar Formation of the Devrekani-Kastamonu area,
northern Turkey, and their biostratigraphical significance. Cretaceous Research 28:861-
894.
Kennedy, W. J., M. Bilotte and P. Melchior 2015 Turonian ammonite faunas from the
southern Corbières Aude France Acta Geologica Polonica 65:437-494
Keroher G 1970 Levicon of Geologic Names for the United States 1961-1967 Geological
Survey Pulletin 1250 United States Covernment Printing Office, Washington D. C.
Kiemen C. D. 2002. Strationantic distribution and habitat approaction of magazaning in the
Kiernan, C. R. 2002. Stratigraphic distribution and nabital segregation of mosasaurs in the
Upper Cretaceous of western and central Alabama, with an historical review of Alabama
mosasaur discoveries. Journal of Vertebrate Paleontology 22:91-103.
Kırkland, J. I., R. Hernández-Rivera, M. C. Aguillón Martínez, C. R. Delgado de Jesús, R.
Gómez-Núñez and I. Vallejo, I. 2000. The Late Cretaceous Difunta Group of the Parras
Basin, Coahuila, Mexico, and its vertebrate fauna. Universidad Autónoma del Estado de
Hidalgo, Avances en Investigación, 3:133-172.
Konishi, T. 2008. A new specimen of Selmasaurus sp., cf. S. russelli (Mosasauridae:
Plioplatecarpini) from Greene County, Western Alabama, USA. In M. J. Everhart, ed.,
Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue 3:95-105.
Konishi, T. and M. W. Caldwell 2009. New material of the mosasaur <i>Plioplatecarpus</i>
<i>nichollsae</i> Cuthbertson et al., 2007, clarifies problematic features of the holotype
specimen Journal of Vertebrate Paleontology 29.417-436
Konishi T and M W Caldwell M W 2007 New specimens of <i>Platecarnus planifrons</i>
(Cone 1874) (Squamata: Mosasquiridae) and a revised taxonomy of the genus Journal of
Vortebrata Palaantalagy 27:0, 72
Venteriate Latentiology 27.3-72.
Komsin, 1. and M. W. Caldweir, M. W. 2011. Two new phophatecarphic (Squamata,
Mosasauridae) genera from the Upper Cretaceous of North America, and a global
phylogenetic analysis of plioplatecarpines. Journal of Vertebrate Paleontology, 31(4), /54-
783.
Konishi, T., M. W. Caldwell and G. L. Bell Jr, 2010. Redescription of the holotype of
Platecarpus tympaniticus Cope, 1869 (Mosasauridae: Plioplatecarpinae), and its
implications for the alpha taxonomy of the genus. Journal of Vertebrate Paleontology
30:1410-1421.
Konishi, T., D. Brinkman, J. A. Massare and Caldwell, M. W. 2011. New exceptional
specimens of Prognathodon overtoni (Squamata, Mosasauridae) from the upper
Campanian of Alberta, Canada, and the systematics and ecology of the genus. Journal of
Vertebrate Paleontology 31:1026-1046.

- Konishi, T., M. Tanimoto, S. Utsunomiya, M. Sato and K. Watanabe 2012. A large mosasaurine (Squamata: Mosasauridae) from the latest Cretaceous of Osaka Prefecture (SW Japan). Paleontological Research 16:79-87.
- Konishi, T., M. G. Newbrey and M. W. Caldwell 2014. A small, exquisitely preserved specimen of *Mosasaurus missouriensis* (Squamata, Mosasauridae) from the upper Campanian of the Bearpaw Formation, western Canada, and the first stomach contents for the genus. Journal of Vertebrate Paleontology 34:802-819.
- Konishi, T., M. W. Caldwell, T. Nishimura, K. Sakurai, and K. Tanoue 2015. A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. Journal of Systematic Palaeontology 14:809-839.
- Kues, B. S. and S. G. Lucas 1985. Mosasaur remains from the Lewis Shale (Upper Cretaceous), southwestern Colorado. Journal of Paleontology 59:1395-1400.
- Kuypers, M. M. M., J. W. M. Jagt, H. H. G. Peeters, D. Th De Graaf, R. W. Dortangs, M. J. M. Deckers, D. Eysermans, M. J. Janssen, and L. Arpot. 1998. Laat-kretaceische mosasauriërs uit Luik-Limburg: nieuwe vondsten leiden tot nieuwe inzichten. Publicaties van het Natuurhistorisch Genootschap in Limburg 41:4-47.
- Larson, N. L. 2012. The Late Campanian (Upper Cretaceous) cephalopod fauna of the Coon Creek Formation at the type locality. The Journal of Paleontological Sciences 4:1-40.
- Leblanc, A. R., M. W. Caldwell and Bardet, N. 2012. A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics. Journal of Vertebrate Paleontology 32:82-104.
- LeBlanc, A. R., M. W. Caldwell and J. Lindgren 2013. Aquatic adaptation, cranial kinesis, and the skull of the mosasaurine mosasaur *Plotosaurus bennisoni*. Journal of Vertebrate Paleontology 33:349-362.
- Lee, M. S. and M. W. Caldwell 2000. *Adriosaurus* and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology 74:915-937.
- Lindgren, J. 2005a. Dental and vertebral morphology of the enigmatic mosasaur Dollosaurus (Reptilia, Mosasauridae) from the lower Campanian (Upper Cretaceous) of southern Sweden. Bulletin of the Geological Society of Denmark 52:17-25.
- Lindgren, J. 2005b. The first record of *Hainosaurus* (reptilia: mosasauridae) from Sweden. Journal of Paleontology 79:1157-1165.
- Lindgren, J. and J. W. M. Jagt 2005. Danish mosasaurs. Netherlands Journal of Geosciences, 84:315-320.
- Lindgren, J., and A. S. Schulp 2010. New material of *Prognathodon* (Squamata: Mosasauridae), and the mosasaur assemblage of the Maastrichtian of California, USA. Journal of Vertebrate Paleontology 30:1632-1636.
- Lindgren, J. and M. Siverson 2002. *Tylosaurus ivoensis*: a giant mosasaur from the early Campanian of Sweden. Transactions of the Royal Society of Edinburgh 93:73-93.
- Lindgren, J. and M. Siverson 2004. The first record of the mosasaur *Clidastes* from Europe and its palaeogeographical implications. Acta palaeontologica polonica 49:219-234.
- Lindgren, J. and M. Siverson, M. 2005. *Halisaurus sternbergi*, a small mosasaur with an intercontinental distribution. Journal of Paleontology 79:763-773.
- Lindgren, J., J. W. Jagt, J. W. and M. W. Caldwell 2007. A fishy mosasaur: the axial skeleton of *Plotosaurus* (Reptilia, Squamata) reassessed. Lethaia 40:153-160.
- Lindgren, J., M. W. Caldwell and J. W. Jagt 2008. New data on the postcranial anatomy of the California mosasaur *Plotosaurus bennisoni* (Camp, 1942) (Upper Cretaceous: Maastrichtian), and the taxonomic status of *P. tuckeri* (Camp, 1942). Journal of Vertebrate Paleontology 28:1043-1054.

Lindgren, J., C. Alwmark Cretaceous mosasaur <i>P</i>	, M. W. Caldwell and A. R. Fiorillo, A. R. 2009. Skin of the <i>Plotosaurus</i> : implications for aquatic adaptations in giant marine
reptiles. Biology letters	s 5:528-531.
Lindgren, J., M. Caldwell preservation in a <i>Plate</i>	T. Konishi, T.and L. Chiappe, 2010. Execeptional soft tissue <i>carpus</i> specimen from the Niobrara Chalk of Kansas, USA. P. 1
Third Mosasaur Meetin Lindgren, J., M. W. Caldy in aquatic tetrapods: in Lindgren, J., M. J. Polcyn	1g. vell, T. Konishi, T and L. M. Chiappe, 2010. Convergent evolut sights from an exceptional fossil mosasaur. PloS one, 5:e11998. and B. A. Young 2011. Landlubbers to leviathans: evolution of
swimming in mosasau	rine mosasaurs. Paleobiology 37:445-469.
Lindgren, J., H. F. Kaddu lizard with a bilobed ta	mi and M. J. Polcyn 2013. Soft tissue preservation in a fossil ma il fin. Nature Communications 4, article 2413.
Lingham-Soliar, T. 1988. state, Nigeria. Palaeon	The mosasaur <i>Goronyosaurus</i> from the Upper Cretaceous of So tology 31:747-762.
Lingham-Soliar, T. 1991. 34:653-670.	Mosasaurs from the upper Cretaceous of Niger. Palaeontology
Lingham-Soliar, T. 1994a Cretaceous) of Zaire. F	First record of mosasaurs from the Maastrichtian (Upper Paläontologische Zeitschrift 68:259-265.
Lingham-Soliar, T. 1994b from the Turonian of <i>A</i> <i>Platecarpus</i> . Paläontol	b. The mosasaur "Angolasaurus" bocagei (Reptilia: Mosasaurida Angola reinterpreted as the earliest member of the genus ogische Zeitschrift 68: 267-282
Lingham-Soliar, T. 1994c Upper Cretaceous of E Sciences de la Terre 6/	. The mosasaur <i>Plioplatecarpus</i> (Reptilia, Mosasauridae) from turope. Bulletin-Institut Royal des Sciences Naturelles de Belgiq
Lingham-Soliar, T. 1995a known, <i>Mosasaurus he</i> Upper Maastrichtian o of London. Series B: B	Anatomy and functional morphology of the largest marine rep offmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, f the Netherlands. Philosophical Transactions of the Royal Socie Biological Sciences 347:155-172.
Lingham-Soliar, T. 1995b Sarjeant, ed. Vertebrat Breach Amsterdam T	). The mosasaur <i>Leiodon</i> bares its teeth. Pp. 483-498. <i>In</i> W. A. S e fossils and the evolution of scientific concepts. Gorden and he Netherlands
Lingham-Soliar, T. 1998. Maastrichtian of the Iu	A new mosasaur <i>Pluridens walkeri</i> from the Upper Cretaceous, llemmeden Basin, southwest Niger. Journal of Vertebrate
Lingham-Soliar, T. and D from the Upper Cretac Belgique Sciences de	Nolf 1989. The mosasaur <i>Prognathodon</i> (Reptilia, Mosasauric eous of Belgium. Bulletin-Institut Royal des Sciences Naturelles la Terre 59.137-190
Liu, K., 2007. Sequence s (Santonian–Campanian 28:405-418.	tratigraphy and orbital cyclostratigraphy of the Mooreville Chal n), northeastern Gulf of Mexico area, USA. Cretaceous Research
Lucas, S. G., T. Ikejiri, H <i>Prognathodon</i> from the distribution of <i>Prognat</i> Guidebook, Geology o NM	Maisch, T. Joyce and G. L. Gianniny 2005. The mosasaur e Upper Cretaceous Lewis Shale near Durango, Colorado and th <i>thodon</i> in North America. Pp. 389-394 <i>in</i> 56th Field Conference f the Chama Basin. New Mexico Geological Society, Albuquero
Lydekker, R. 1888. Catal (Natural History): Part	ogue of the Fossil Reptilia and Amphibia in the British Museum II. Taylor and Francis, London, UK.
Macellari, C. E. and T. J. sedimentation in north	De Vries 1987. Late Cretaceous upwelling and anoxic western South America. Palaeogeography, Palaeoclimatology,

Madhumi, M. 2002. Paleopalynology of the Tar Heel Formation of Atlantic Coastal Plain of North Carolina, United States. (PhD Thesis), North Carolina State University, Raleigh, NC.

Makádi, L., M. W. Caldwell and A. Ősi 2012. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PloS One 7:e51781.

- Mancini, E. A., T. M. Puckett and B. H. Tew 1996. Integrated biostratigraphic and sequence stratigraphic framework for Upper Cretaceous strata of the eastern Gulf Coastal Plain, USA. Cretaceous Research 17:645-669.
- Mantell, G. 1829. A tabular arrangement of the organic remains of the country of Sussex. Transactions Geolological Society London Series 2:201-216.
- Marsh, O. C. 1869. Notice of some new mosasauroid reptiles from the greensand of New Jersey. American Journal of Science, 2nd series 18:392-397.
- Marsh, O. C. 1870. Remarks on *Hadrosaurus minor, Mosasaurus crassidens, Liodon lalicaudus, Baptosaurus*, and *Rhinoceros matutinus*. Academy of Natural Science of Philadelphia Proceedings 22:2-3.
- Marsh, O. C. 1871. Notice of some new fossil reptiles from the Cretaceous and Tertiary formations. American Journal of Science, 3rd series L:447-459.
- Marsh, O.C. 1872. On the structure of the skull and limbs in mosasauroid reptiles, with descriptions of new genera and species. American Journal of Science, 3rd series 3:448-464.
- Martin, J. E. 2007. A new species of the durophagous mosasaur, *Globidens* (Squamata: Mosasauridae) from the Late Cretaceous Pierre Shale Group of central South Dakota, USA. Special Papers-Geological Society of America *427*:177-198.
- Martin, J. E. and M. Fernández 2007. The synonymy of the Late Cretaceous mosasaur (Squamata) genus *Lakumasaurus* from Antarctica with *Taniwhasaurus* from New Zealand and its bearing upon faunal similarity within the Weddellian Province. Geological Journal 42:203-211.
- Martin, J. E., J. L. Bertog and D. C. Parris. (2007). Revised lithostratigraphy of the lower Pierre Shale Group (Campanian) of central South Dakota, including newly designated members. Geological Society of America Special Papers 427:9-21.
- Massare, J. A. 1994. Swimming capabilities of Mesozoic marine reptiles: a review. Pp. 133-149 *in* L. Maddock, Q. Bone and J. M. V. Rayner, eds. Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, UK.
- Mateus, O., M. J. Polcyn, L. L. Jacobs, R. Araújo, A. S. Schulp, J. Marinheiro and D. Vineyard 2012. Cretaceous amniotes from Angola: dinosaurs, pterosaurs, mosasaurs, plesiosaurs, and turtles. Pp. 71-105 *in* Actas de las V Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno. Salas de los Infantes, Burgos, Spain.
- Mehl, M.G. 1930. A new genus of mosasaurs from Mexico, and notes on the pelvic girdle of *Platecarpus*. Denison University Bulletin, Journal of the Scientific Laboratories 29:383-400.
- Meredith, R. W., J. E. Martin, and P. N. Wegleitner 2007. The largest mosasaur (Squamata: Mosasauridae) from the Missouri River area (Late Cretaceous; Pierre Shale Group) of South Dakota and its relationship to Lewis and Clark. Special Papers-Geological Society of America 427:209-214.
- Merewether, E. A., W. A. Cobban and J. D. Obradovich 2007. Regional disconformities in Turonian and Coniacian (Upper Cretaceous) strata in Colorado, Wyoming, and adjoining states—biochronological evidence. Rocky Mountain Geology 42:95-122.
- Merriam, J. C. 1894. Über die Pythonomorphen der Kansas Kreide. Palaeontographica 41:1-39.

#### Palaeontology

Mortim	ore, R. N. 1986. Stratigraphy of the Upper Cretaceous White Chalk of Sussex.
Proc	E W A 1000 Transation latest Cratagoous massagurs (Dontilio Lagertilio) fro
the N	, E. W. A. 1999. Italisatiantic fatest Cretaceous mosasaurs (Repuina, Lacertina) it
	Maastrichtian type area and New Jersey. Geologie en Mijnbouw $78.281-500$ .
Mulder	, E. W. and H. Mai 1999. The oldest tylosaurine mosasaur (Repulsi, Lacertilia) fro
the I	Late Cretaceous of Belgium: Hermann von Meyer (1860) revisited. Geologie en
Mijn	1000W / 8:20/-213.
Mulder	, E. W.A., P/ Formanoy, W. B. Gallagner, J. W. M. Jagt and A. S. Schulp 2013. Ind
nrst	North American record of Carinodens beigicus (Squamata, Mosasauridae) and
corre	elation with the youngest in situ examples from the Maastrichtian type area:
pala	eoecological implications. Netherlands Journal of Geosciences 92:145-152.
Müller,	R. D., M. Sdrolias, C. Gaina, B. Steinberger, and C. Heine. 2005. Long-term sea-I
fluct	uations driven by ocean basin dynamics. Science 319:1357-1362.
Mustafa	a, H. and I. Zalmout 2000. On the dentitions of Mosasauridae (marine reptiles) from
the I	Late Cretaceous (Early Maastrichtian) of the Jordanian Phosphate. Dirasat, Pure
Scie	nces 28:56-61.
Mustar	d, P.S. 1994. The Upper Cretaceous Nanaimo Group, Georgia Basin. <i>in</i> J. W. H.
Mon	ger, ed. Geology and Geological Hazards of the Vancouver Region, British Colum
Geol	logic Society of Canada Bulletin 481:27-95.
Nationa	Il Geologic Map Database (ngmdb.usgs.gov)
Nicholl	s, E. L. 1988. The first record of the mosasaur Hainosaurus (Reptilia: Lacertilia) fr
Nort	h America. Canadian Journal of Earth Sciences 25:1564-1570.
Nicholl	s, E. L. and S. J. Godfrey 1994. Subaqueous flight in mosasaurs—a discussion.
Jour	nal of Vertebrate Paleontology 14:450-452.
Nicholl	s, E. L. and D. Meckert 2002. Marine reptiles from the Nanaimo Group (Upper
Cret	aceous) of Vancouver Island. Canadian Journal of Earth Sciences 39:1591-1603.
Okada,	H. and T. Sakai, T. 1993. Nature and development of Late Mesozoic and Early
Ceno	ozoic sedimentary basins in southwest Japan. Palaeogeography, Palaeoclimatology
Pala	eoecology 105:3-16.
Lourde	s, O., J. M. Pons and G. Alencaster 2008. Latest Cretaceous Foraminitera from the
Cárc	lenas Formation, San Luis Potosí, Mexico: biostratigraphical, paleoenvironmental a
pale	obiogeographical significance. Micropaleontology 54:445-462.
Osborn	, H. F. 1899a. A complete mosasaur skeleton, osseous and cartilaginous; A skeletor
Dipl	odocus. Memoirs of the American Museum of Natural History 1:4-5.
Osborn	, H. F. 1899b. A complete mosasaur skeleton, osseous and cartilaginous. <i>Science</i> , N
Serie	es 10:919-925.
Palci, A	., M. W. Caldwell and C. A. Papazzoni 2013. A new genus and subfamily of
mos	asaurs from the Upper Cretaceous of northern Italy. Journal of Vertebrate Paleonto
33:5	99-612.
Páramo	-Fonseca, M. E. 2000. Yaguarasaurus columbianus (Reptilia, Mosasauridae), a
prim	itive mosasaur from the Turonian (Upper Cretaceous) of Colombia. Historical Bio
14:1	
Paramo	-Fonseca, M. E. 2012. Mosasauroids from Colombia. Bulletin de la Société
Géol	logique de France 183:103-109.
Pierce,	G. K. and S. P. Welles, S. P. 1959. First record of mosasaur from the Cretaceous of
Sant	a Barbara de Barinas, Venezuela. Journal of Paleontology 33:966-967.
Polcyn,	M. J. and G. L. Bell 2005. <i>Kussellosaurus coheni</i> n. gen., n. sp., a 92 million-year
mos	asaur from Texas (USA), and the definition of the paratamily Russellosaurina.
Neth	erlands Journal of Geosciences 84:321-333

Polcyn, M. J. and J. Lamb 2012. The snout of *Halisaurus platyspondylus* Marsh 1869: phylogenetic and functional implications. Bulletin de la Société Géologique de France, 183:137-143.

- Polcyn, M. J. and M. J. Everhart 2008. Description and phylogenetic analysis of a new species of *Selmasaurus* (Mosasauridae: Plioplatecarpinae) from the Niobrara Chalk of western Kansas. *In* M. J. Everhart ed., Proceedings of the Second Mosasaur Meeting Fort Hays Studies Special Issue 3:13-28. Hays, Kansas.
- Polcyn, M. J., L. L. Jacobs, A. S. Schulp and O. Mateus 2010. The North African mosasaur *Globidens phosphaticus* from the Maastrichtian of Angola. Historical Biology 22:175-185.
- Polcyn, M. J., J. Lindgren, N. Bardet, D. Cornelissen, L. Verding, L. and A. S. Schulp 2012. Description of new specimens of *Halisaurus arambourgi* Bardet & Pereda Suberbiola, 2005 and the relationships of Halisaurinae. Bulletin de la Societe Geologique de France, 183:123-136
- Puckett, T. M. 1995. Planktonic foraminiferal and ostracode biostratigraphy of the late Santonian through early Maastrichtian strata in Dallas County, Alabama. Geological Survey of Alabama Bulletin 164.
- Ross, M. R. 2009. Charting the Late Cretaceous seas: mosasaur richness and morphological diversification. Journal of Vertebrate Paleontology 29:409-416.
- Russell, D. A. 1967. Systematics and morphology of American mosasaurs (Reptilia, Sauria). Peabody Museum of Natural History Bulletin 23:1-241.
- Russell, D. A. 1970. The vertebrate Fauna of the Selma Formation of Alabama part VII: The Mosasaurs. Fieldiana Geology Memoirs 3:367-380.
- Russell, D. A. 1975. A new species of *Globidens* from South Dakota. Fieldiana Geology Memoirs 33:235-256.
- Sachs, S., J.J. Hornung and M. Reich 2015. Mosasaurs from Germany–a brief history of the first 100 years of research. Netherlands Journal of Geosciences 94:5-18.
- Sánchez-Villagra, M. R., W. Brinkmann and R. Lozsán 2008. The Paleozoic and Mesozoic vertebrate record of Venezuela: An overview, summary of previous discoveries and report of a mosasaur from the La Luna Formation (Cretaceous). Paläontologische Zeitschrift 82:113-124.
- Sato, T., T. Konishi, R. Hirayama and M. W. Caldwell 2012. A review of the Upper Cretaceous marine reptiles from Japan. Cretaceous Research 37:319-340.
- Schulp, A. S. 2005. Feeding the mechanical mosasaur: what did *Carinodens* eat? Netherlands Journal of Geosciences 84:345-357.
- Schulp, A. S. 2013. Our emerging knowledge of *Carinodens belgicus*. 4th International Mosasaur Conference, Dallas, Texas.
- Schulp, A. S., J. W. Jagt and F. Fonken 2004. New material of the mosasaur *Carinodens belgicus* from the Upper Cretaceous of The Netherlands. Journal of Vertebrate Paleontology 24:744-747.
- Schulp, A. S., M. J. Polcyn, O. Mateus, L. L. Jacobs, M. L. Morais and T. da Silva Tavares 2006. New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and palaeoecology of the genus *Prognathodon*. *In* On Maastricht Mosasaurs. Publicaties van het Natuurhistorisch Genootschap in Limburg 45:57-67.
- Schulp, A. S., M. J. Polcyn, O. Mateus, L. L. Jacobs and M. L. Morais 2008. A new species of *Prognathodon* (Squamata, Mosasauridae) from the Maastrichtian of Angola, and the affinities of the mosasaur genus *Liodon*. *In* M. J. Everhart, ed. Proceedings of the Second Mosasaur Meeting, *Fort Hays Studies Special Issue* 3:1-12. Hays, KS.
- Schulp, A. S., N. Bardet and B. Bouya 2009. A new species of the durophagous mosasaur *Carinodens* (Squamata, Mosasauridae) and additional material of Carinodens belgicus

from the Maa $88.161-167$	strichtian phosphates of More	occo. Netherlands Journa	al of Geosciences
Schulp, A. S., A First record of (Squamata, M Russian Jour	. O. Averianov, A. A. Yarkov of the Late Cretaceous durophy (Iosasauridae) from Volgograd nal of Herpetology 13:175-18	y, F. A. Trikolidi and J. V agous mosasaur <i>Carinod</i> dskaya Oblast'(Russia) a 0.	W. Jagt, J. W. 2013. <i>lens belgicus</i> and Crimea (Ukraine).
Schulp, A. S., M mosasaurs fr Geosciences	1. J. Polcyn, O. Mateus, L. L. om the Maastrichtian of Ango 92.3-10	Jacobs and M. van Dinte la and the Netherlands.	er, M. 2013. Two rare Netherlands Journal of
Schulp, A.S. and Mosasaurida Geosciences	1 J. W. M. Jagt 2015. New ma e) from the type Maastrichtiar 94: 19-21	aterial of <i>Prognathodon</i> of the Netherlands. Net	(Squamata, herlands Journal of
Schultze, H. P., Fossil Verteb History Part History Misc	L. Hunt, J. Chorn and A. M. M. M. M. Tates in the Collection of the II. Fossil Amphibians and Repellaneous Publication No. 77.	Neuner 1985. Type and I University of Kansas Mu ptiles. University of Kan Lawrence, KS	Figured Specimens of useum of Natural sas Museum of Natural
Schumacher, B. Smoky Hill ( Unpublished	A. 1993. Biostratigraphy of M Chalk Member, Niobrara Chal Master's Thesis. Fort Hays S	Mosasaridae (Squamata, k, (Upper Cretaceous) o tate University, Havs, K	Varanoidea) from the f western Kansas.
Schumacher, B. Carlile Shale early mosasa Science 114:	A. 2011. A ' <i>Woollgari</i> -Zone 1 (lower middle Turonian) of c urs and pliosaurid plesiosaurs 1-14.	mosasaur' (Squamata; M entral Kansas and the str . Transactions of the Kar	losasauridae) from the ratigraphic overlap of nsas Academy of
Shannon, S. W. of Alabama.	1975. Selected Alabama mos	asaurs. Unpublished Ma	sters Thesis, University
Sohl, N.F. and I Cretaceous) Professional	A. A. Christopher 1983. The B n the Cape Fear River region Paper 1285. US Government	Black Creek-Peedee form of North Carolina. Geol Printing Office, Washing	ational contact (upper ogical Survey gton D.C.
Swinton, W.E. 1 Survey of Ni	930. On fossil Reptilia from t geria 13:1-56.	the Sokoto Province. Bu	lletin of the Geological
Takashima, R., stratigraphy events on the	F. Kawabe, H. Nishi, K. Mori of forearc basin sediments in I north-west Pacific margin. C	ya, R. Wani and H. And Hokkaido, Japan: Cretac retaceous Research 25:3	o, H. 2004. Geology and eous environmental 65-390.
Tanimoto, M. 2 Japan. Nethe	)05. Mosasaur remains from t rlands Journal of Geosciences	he Upper Cretaceous Izu 84:373-378.	umi Group of southwest
Tanimoto, M. 2 of the second University.	008. New material of <i>Kouriso</i> mosasaur meeting. Sternberg	<i>don</i> sp. from Japan. Pp. g Museum of Natural His	156-158 <i>In</i> Proceedings story, Fort Hays State
Thévenin, A. 18 Bulletin de la	96. Mosasauriens de la Craie	Grise de Vaux-Éclusier	près Péronne (Somme).
Thies, D. and J. Paläontologis	Vespermann, J. 1995. Die Mo sche Zeitschrift 69:459-465.	osasaurier des Roemer-N	Auseums in Hildesheim.
Thurmond, J. T. Paleontology	1969a. New name for the mo 43:1298.	osasaur <i>Compressidens</i> I	Oollo,1924. Journal of
Thurmond, J. T. Tsujita, C. J. and the perforation	1969b. Notes on mosasaurs f d G. E. Westermann, G. E. 20 ons in the ammonite <i>Placentic</i>	From Texas. Texas Journ 01. Were limpets or mos <i>eras</i> ? Palaeogeography,	al of Science 21:69-79. sasaurs responsible for Palaeoclimatology,

Vega, F. J., A, Garassino and R. Z. Jaime 2013. *Enoploclytia tepeyacensis* n. sp. (Crustacea, Decapoda, Erymidae) del Cretácico (Campaniano) de Coahuila, NE México. Boletín de la Sociedad Geológica Mexicana 65:207-211.

Webb, P. N. 1971. New Zealand Late Cretaceous (Haumurian) foraminifera and stratigraphy: a summary. New Zealand Journal of Geology and Geophysics 14:95-828.

- Weems, R. E., J. M. Self-Trail and L. E. Edwards 2004. Supergroup stratigraphy of the Atlantic and Gulf coastal plains (Middle? Jurassic through Holocene, eastern North America). Southeastern Geology 42:191-216.
- Welles, S. P. and D. R. Gregg 1971. Late Cretaceous marine reptiles of New Zealand. Records of the Canterbury Museum 9:1–111.
- Wiffen, J. 1980. *Moanasaurus*, a new genus of marine reptile (Family Mosasauridae) from the Upper Cretaceous of North Island, New Zealand. New Zealand journal of geology and geophysics 23:507-528.

Wiffen, J. 1990. New mosasaurs (Reptilia; Family Mosasauridae) from the Upper Cretaceous of North Island, New Zealand. New Zealand Journal of Geology and Geophysics 33:67-85.

Williston, S. W. and E. C. Case 1892. Kansas Mosasaurs. Kansas University Quarterly 1:15-32.

Williston, S. W. 1897. *Brachysaurus*, a new genus of mosasaurs. Kansas University Quarterly 6:95-98.

- Williston, S.W. 1895. New or little known extinct vertebates. Kansas University Quarterly 3:165-176.
- Williston, S.W. 1898. Mosasaurs. Kansas University Quarterly 4:81-347.
- Wilson, G. J., P. Schiøler, N. Hiller and C. M. Jones 2005. Age and provenance of Cretaceous marine reptiles from the South Island and Chatham Islands, New Zealand. New Zealand Journal of Geology and Geophysics 48:377-387.
- Wright, K.R., 1988. The first record of *Clidastes liodontus* (Squamata, Mosasauridae) from the eastern United States. Journal of Vertebrate Paleontology, 8:343-345.
- Wright, K. R. and S. W. Shannon, S. W. 1988. Selmasaurus russelli, a new plioplatecarpine mosasaur (Squamata, Mosasauridae) from Alabama. Journal of Vertebrate Paleontology 8:102-107.
- Yamasaki, T. 1986. Sedimentological study of the Izumi Group in the northern part of Shikoku, Japan. Science Reports of the Tohoku University, Second Series, Geology 56:43-70.
- Young, M. D. and M. J. Hannah, M. J. 2010. Dinoflagellate biostratigraphy of the vertebrate fossil-bearing Maungataniwha Sandstone, northwest Hawke's Bay, New Zealand. New Zealand Journal of Geology and Geophysics 53:81-87.
- Zavaleta-Villareal, V., M. Montellano-Ballesteros and J. Alvarado-Ortega 2013. The Mexican mosasaur fossil record: an overview. 4th Triennial International Mosasaur Conference. Dallas, TX.

1 2					
3	Substage	Country	Region	Group	Formation
4	Mid Tur	USA		Benton Group	Carlisle Shale
5 6	Mid Tur	USA	NM/CO/KS		Greenhorn IS
7	Mid Tur		NM		Tres Hermanos
8	Mid Tur		тх	Eagle Ford	"Fagle Ford"
9 10	Mid Tur	Mex	Puehla	Lugic Ford	Mexcala
11				Benton Group	Carlisle Shale
12	Late Tur		W TX	Terlingua Group	Boquillas
13	Late Tur		TX	Fagle Ford	"Fagle Ford"
14 15	Late Tur		тх	Eagle Ford	Arcadia Dark
16	Late Tur	Moy	IA Duchla	Lagie I Ulu	
17	Late Tur	Movico	Nuova Loop		Vallecille
18		IVIEXICO			
19 20		England			
21		italy			Scaglia Rossi Veneta
22	Late Tur	Germany			Strenken
23	Late Tur	Angola			Itombe
24 25	Late Tur	Columbia			Villeta
26	Early Con	USA	ТХ	Austin Chalk	"Austin Chalk"
27	Early Con	USA		Niobrara	Ft.Hayes Ls
28	Early Con	USA	ТХ	Terlingua Group	Boquillas
29 30	Early Con	England			Upper Chalk
31	Early Con	Mexico	Monterrey		San Felipe
32	Mid Con	USA	ТХ	Austin Chalk	"Austin Chalk"
33 34	Mid Con	Mexico	Monterrey		San Felipe
35	Mid Con	Italy			Scaglia Rossi Veneta
36	Mid Con	USA		Niobrara	Lower
37	Mid Con	England			Upper Chalk
38 30	Mid Con	USA	ТХ	Terlingua Group	Boquillas
40	Mid Con	England			Upper Chalk
41	Late Con	USA		Niobrara	Lower
42	Late Con	USA	ТХ	Austin Chalk	"Austin Chalk"
43 44	Late Con	USA	AL/MS	Selma	Eutaw
45	Late Con	USA		Terlingua Group	Pen
46	Late Con	USA	ТХ	Terlingua Group	Boquillas
47 49	Late Con	Mexico	Monterrey	0	San Felipe
40 49	Late Con	Venezuela	,		Navav
50	Late Con	England			Upper Chalk
51	Late Con	Italy			Scaglia Rossi Veneta
52 53	Farly San	USA	NM		Point Lookout Sandstone
54	Farly San	USA	AL/MS	Selma	Futaw
55	Farly San	USA	тх	Austin Chalk	"Austin Chalk"
56	Larry Surr	00,0			
57 58					
59					

2					
3	Early San	USA		Niobrara	Lower
4 5	Early San	USA	ТХ	Terlingua Group	Boquillas
6	Early San	USA	ТХ	Terlingua Group	Pen
7	Early San	USA	MT	Montana	Telegraph Creek
8	Early San	Canada	Alberta		Puskwakau
, 10	Early San	Mexico	Monterrey		San Felipe
11	Early San	England			Upper Chalk
12	, Early San	Italy			Scaglia Rossi Veneta
13 14	, Early San	, Japan	Yezo	Yezo Group	Kashima
15	, Early San	Japan		·	Tamayama
16	Early San	Russia			Penza region
17 18	Mid San	USA	Alabama/Miss	Selma	Eutaw
18	Mid San	USA	Kansas	Niobrara	Smoky Hill Chalk
20	Mid San	USA	ТХ	Terlingua Group	Boguillas
21	Mid San	USA	ТХ	Terlingua Group	Pen
22 23	Mid San	USA	ТХ	Austin Chalk	"Austin Chalk"
24	Mid San	Canada	Alberta		Puskwakau
25	Mid San	England			Upper Chalk
26 27	Mid San	France	Somme		Phosphatic Chalk
27	Mid San	Russia	<b>Comme</b>	Penza region	
29	Mid San	lanan	Yezo	Yezo Groun	Kashima
30 21	Late San	USA	Kansas	Niobrara	Upper
32	Late San	USA	NM	Point Lookout Sa	ndstone
33	Late San	USA	AI/GA	Selma	Blufftown
34	Late San	USA	AL/MS	Selma	Mooreville Chalk
35 36	Late San		TX	Austin Chalk	Dessau
37	Late San		ТХ	Austin Chalk	"Austin Chalk"
38	Late San		тх	Terlingua Group	Boquillas
39	Late San		тх	Terlingua Group	Pen
40 41	Late San	Canada	Alberta	reningua Group	Puskwakau
42	Late San	Canada	Vancouver		Pender
43	Late San	England	Vancouver		
44 45	Late San	Erance			Marnes de Bugarach
46	Late San	France			Marnes bleves de Sougraigne
47	Late San	France			Gros do Labastido
48	Late San	France	Sommo		Dhosphatic Chalk
49 50	Late San	Pussia	Somme	Donzo rogion	
51	Late San	Lanan	Vozo	Vozo Croup	reliza Kashima
52	Early Comp	Jahan		Selma	Rlufftown
53 54	Early Camp			Solma	Moorovillo Chalk
55					"Auctin Chalk"
56 57	Earry Camp	USA		AUSUN CHAIK	

1 2					
3	Farly Camp	1154	ту	Austin Chalk	Burditt
4	Early Camp		TV	Austin Chalk	Porton Ic
5	Early Camp			Austin Chaik	Roxion is
o 7	Early Camp	USA			Point Lookout Sandstone
8	Early Camp	USA			Brownstone Mari
9	Early Camp	USA	IX/ARK	Taylor Group	Uzan
10	Early Camp	USA	NC	Black Creek Group	lar Heel
11	Early Camp	USA	ТХ	Austin Chalk	Dessau
13	Early Camp	USA	NJ	Matawan Group	Merchantville
14	Early Camp	USA	ТХ	Tornillo	Aguja
15	Early Camp	USA	ТХ	Terlingua Group	Pen
10	Early Camp	USA	KS/CO/WY/NE/SD	Niobrara	Smoky Hill
18	Early Camp	USA	СО	Mesa Verde	Lewis Shale
19	Early Camp	Canada	Alberta		Puskwakau
20	Early Camp	Belgium		Spiennes Chalk	
21	Early Camp	England			Upper Chalk
23	Early Camp	France	Burgogne		White Chalk
24	Early Camp	Sweden			Kristianstad Basin
25 26	Early Camp	Saudi Arabia		Suqah Group	Adaffa Formation
20	Early Camp	Angola			Bentiaba
28	Early Camp	Japan	Yezo	Yezo Group	Kashima
29	Early Camp	Japan		Halebuchi Group	
30 31	Early Camp	NZ			Conway Siltstone
32	Early Camp	Antarctica			Santa Marta
33	Mid Camp	USA		Pierre Shale	
34 35	Mid Camp	USA	KS/SD	Pierre Shale	Sharon Springs
36	Mid Camp	USA	СО	Mesa Verde	Lewis Shale
37	Mid Camp	USA		Niobrara	Upper
38	Mid Camp	USA	AL/MS	Selma	Demopolis
39 40	Mid Camp	USA	AL/MS	Selma	Arcola Limstone
41	Mid Camp	USA	TX/ARK	Taylor Group	Ozan
42	Mid Camp	USA	NJ	Matawan Group	Marshalltown
43 44	Mid Camp	USA	NJ	Matawan Group	Woodbury
45	Mid Camp	USA	тх	Tornillo	Aguia
46	Mid Camp	USA	тх	Terlingua Group	Pen
47	Mid Camp	Canada	Manitoba	Pierre Shale	Pembina
48 49	Mid Camp	Canada	Alberta	Belly River	Oldman
50	Mid Camp	Canada	Alberta	Belly River	Dinosaur Park
51	Mid Camp	Canada	Alberta	Wapiti	Wapiti
52 53	Mid Camp	England			Upper Chalk
55 54	Mid Camp	Sweden			Kristianstad Rasin
55	Mid Camp	Angola			Rontiaha
56		лівоіа			Бенцара
5/					

2					
3	Mid Camp	Saudi Arabia		Suqah Group	Adaffa Formation
4 5	Mid Camp	Japan		Isumi Group	
6	Mid Camp	Japan	Yezo	Yezo Group	Kashima
7	Mid Camp	Japan		Halebuchi Group	
8	Mid Camp	NZ			Maungataniwaha ss
9 10	Mid Camp	NZ			Conway Siltstone
11	Mid Camp	Antarctica			Santa Marta
12	Late Camp	USA	AL/MS	Selma	Demopolis
13 14	Late Camp	USA	TX/ARK	Taylor Group	Ozan
15	Late Camp	USA	TX	Taylor Group	Wolfe City
16	Late Camp	USA	ARK	, Taylor Group	, Marlbrook Marl
17 19	Late Camp	USA	NJ	, Monmouth Grou	Mt Laurel
18	Late Camp	USA	Tennessee		Coon Ck
20	Late Camp	USA	ТХ	Tornillo	Aguia
21	Late Camp	USA	ТХ	Terlingua Group	Pen
22	Late Camp	USA	MT	Montana	ludith River
24	Late Camp			Pierre Shale	
25	Late Camp		SD	Pierre Shale	Verendrve
26 27	Late Camp	US/Canada	MT/Alberta	Montana	Bear Paw
27 28	Late Camp	Canada	Alberta	Belly River	Diposaur Park
29	Late Camp	Canada	Alberta	Waniti	Waniti
30	Late Camp	Canada	Alberta	Edmonton	ναριτί
31	Late Camp	Canaua	Alberta	Eumonton	Corre del Dueble
32 33	Late Camp	Mex	Coanulia	Difuncto	
34	Late Camp	Nex	ramaulipas	Dirunta	All
35	Late Camp	Argentina			Allen
36	Late Camp	Argentina			Allen/Jagûel
37 38	Late Camp	Argentina			La Colonia
39		Netherlands,			
40	Late Camp	Belgium			Gulpen
41	Late Camp	England			Upper Chalk
42 43	Late Camp	France			Meudon Chalk
44	Late Camp	Spain			Vitoria
45	Late Camp	Turkey			Davutlar
46	Late Camp	Israel			Mishash
47 48	Late Camp	Saudi Arabia		Suqah Group	Adaffa Formation
49	Late Camp	Angola			Bentiaba
50	Late Camp	Japan		Isumi Group	
51 52	Late Camp	Japan		Isumi Group	Hiketa Fmn
53	Late Camp	Japan	Yezo	Yezo Group	Kashima
54	Late Camp	Japan		Halebuchi Group	
55	Late Camp	NZ		·	Maungataniwaha ss
56 57	•				-
58					
59					
3	Late Camp	NZ			Conway Siltstone
----------	-----------------	--------------	------------	-----------------	------------------
4 5	Late Camp	Antarctica			Santa Marta
6	Early Maas	USA	СА	Chico	Moreno
7	Early Maas	USA	MS/ALA/GA	Selma	Ripley Fm
8	Early Maas	USA	AL/MS	Selma	Bluffport Marl
9 10	, Early Maas	USA	NC	Lumbee Group	Peedee
11	, Early Maas	USA	NJ	Monmouth Grou	ır Navesink
12	Farly Maas	USA	тх	Navarro Group	Nevlandville
13	Farly Maas	USA	AL/MS/LA	Navarro Group	Saratoga Chalk
15	Farly Maas	USA	TX	Tornillo	Aguia
16	Farly Maas	US/Canada	MT/Alberta	Montana	Bear Paw
17	Farly Maas	Canada	Alberta	Montana	St Mary River
18 19	Early Maas	Canada	Alberta	Waniti	Waniti
20	Early Maas	alberta		Edmonton	<b>W</b> upiti
21	Early Maas	Mex	SI Potosi	Lamonton	Cardenas
22 23	Early Maas	Mex	Tamaulinas	Difunta	Cardenas
23	Early Maas	Argentina	ramaanpas	Diraita	Paso del Sano
25	Early Maas	Argentina			Allen
26	Early Maas	Argentina			
27 28	Early Maas	Argentina			
29	Larry Waas	Nothorlands			La Colonia
30	Early Maac	Relation			Culpon
31	Early Maas	Deigiuiti			Boreza Roda
32 33	Early Maas	Russia			Bereza Beus
34	Early Maas	Morocco			Couche 4
35	Early Maas	Norocco			Couche S
36 37	Early Maas	Norocco			Couche 6
38	Early Maas	Angola			Bentiaba
39	Early Maas	Syria			Souknek Group
40	Early Maas	Jordan			Rouseifa Group
41 42	Early Maas	Saudi Arabia		Suqah Group	Adaffa Formation
43	Early Maas	NZ			Laidmore Fmn
44	Early Maas	NZ			Conway Siltstone
45	Early Maas	NZ			Maungataniwha ss
40 47	Early Maas	NZ			Katiki
48	Early Maas	Japan		Isumi Group	
49	Early Maas	Japan		Halebuchi Group	)
50 51	Early Maas	Antarctica			Snow Hill
52	Late Maas	USA	AL/GA	Selma	Providence Sand
53	Late Maas	USA	AL	Selma	Prairie Bluff
54	Late Maas	USA	ТХ	Navarro Group	Corsicana
55 56	Late Maas	USA	NJ	Monmouth Grou	ır Mt Laurel
57					
58					
59			_		

1 2					
3	late Maas		NI	Monmouth Grou	r New Equat
4	Late Maas		NI	Wonnouth Grou	Hornerstown
5	Late Maas		MD		Sovern
7	Late Maas			Chico	Morono
8				Tornillo	Aguio
9		USA			Aguja
10 11	Late Maas	Nex	Tamaulipas	Difunta	0
12	Late Maas	Chile			Quiriquina
13	Late Maas	Argentina			Paso del Sapo
14	Late Maas	Antarctica			López de Bertodano
15 16	Late Maas	Argentina			Allen
10	Late Maas	Argentina			Allen/Jagüel
18	Late Maas	France	Aquitaine		Nay Marl
19	Late Maas	France			Baculites Is
20	Late Maas	Spain			Raspay Fmn
21		Netherlands,			
23	Late Maas	Belgium			Maastricht
24		Netherlands,			
25	Late Maas	Belgium			Gulpen
20 27	Late Maas	Belgium			Ciply Phosphatic Chalk
28	Late Maas	Russia			Bereza Beds
29	Late Maas	Jordan			Rouseifa Group
30 21	Late Maas	Morocco			Couche II
31	Late Maas	Morocco			Couche III
33	Late Maas	Niger			Dukamaie Emn
34	Late Maas				Bentiaha
35	Late Maas				Mucuio
30	Late Maas	N7			Laidmore Emn
38	Late Maas	NZ			Maungataniwha ss
39				Halobuchi Group	Mauligatalliwila 55
40 41		заран		паеристі бтоцр	
41					
43					
44					
45 46					
40					
48					
49					
50					

59

Plesiosaur Material	Stage	Substage
Plesiosaur	Tur	Mid/Late
Plesiosaur	Tur	Mid
Plesiosaur	Tur	Mid
	Cen/Tur	
	Tur	
	Tur	Mid/Late
	Cen/San	
	Cen/Tur	
	Tur	Mid/Late
	Tur	
	Tur	Late
	Tur/Camp	Late/Late
	Tur/San	Mid/Early
Plesiosaur	Tur	Late
	Tur	Late
	Tur	Late
	Con/Camp	Early/Early
Plesiosaur	Con	Early
	Cen/San	
	Tur/Camp	Late/Late
	Con/San	Early/Early
	Con/Camp	Early/Early
	Con/San	Early/Early
	Tur/San	Mid/Early
Plesiosaur	Con/San	Mid/Early
	Tur/Camp	Late/Late
	Cen/San	
	Tur/Camp	Late/Late
Plesiosaur	Con/San	Mid/Early
	Con/Camp	Early/Early
	Con/San	Late/Mid
	Con/San	Ltae/Early
	Cen/San	
	Con/San	Early/Early
	Tur/Camp	
	Tur/Camp	Late/Late
	Con/San	Late/Early
Plesiosaur	San	Early/Early
	Con/San	Late/Mid
	Con/Camp	Farly/Farly

59

Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	Con/San Cen/San San/Camp San San/Camp Con/San Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Cen/San	Mid/Early Early Early/Early Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	Cen/San San/Camp San San/Camp Con/San Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Cen/San	Early Early/Early Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	San/Camp San San/Camp Con/San Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Cen/San	Early Early/Early Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	San San/Camp Con/San Tur/Camp Con/San San/Camp San Con/San San/Camp Cen/San San/Camp Con/Camp	Early Early/Early Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	San/Camp Con/San Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Con/Camp	Early/Early Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur <u>Plesiosaur</u> Plesiosaur Plesiosaur Plesiosaur	Con/San Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Con/Camp	Early/Early Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur <u>Plesiosaur</u> Plesiosaur Plesiosaur Plesiosaur	Tur/Camp Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Con/Camp	Late/Late Late/Early Early Late/Mid Mid/Early
Plesiosaur <u>Plesiosaur</u> Plesiosaur Plesiosaur Plesiosaur	Con/San San/Camp San San Con/San San/Camp Cen/San San/Camp Con/Camp	Late/Early Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur Plesiosaur	San/Camp San San Con/San San/Camp Cen/San San/Camp Con/Camp	Early Late/Mid Mid/Early
Plesiosaur <u>Plesiosaur</u> Plesiosaur Plesiosaur Plesiosaur	San San Con/San San/Camp Cen/San San/Camp Con/Camp	Early Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur Plesiosaur	San Con/San San/Camp Cen/San San/Camp Con/Camp	Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur	Con/San San/Camp Cen/San San/Camp Con/Camp	Late/Mid Mid/Early
Plesiosaur Plesiosaur Plesiosaur	San/Camp Cen/San San/Camp Con/Camp	Mid/Early
Plesiosaur Plesiosaur	Cen/San San/Camp Con/Camp	
Plesiosaur Plesiosaur	San/Camp Con/Camp	
Plesiosaur Plesiosaur	Con/Camp	
Plesiosaur Plesiosaur	San /Camp	Early/Early
Plesiosaur Plesiosaur	San/Camp	Early/Early
Plesiosaur Plesiosaur	Tur/Camp	Late/Late
Plesiosaur Plesiosaur	San	Mid/Late
Plesiosaur	San	
Plesiosaur	San/Camp	
	San/Early Camp	
	San/Camp	Early/Early
	San/Camp	Late/Early
	San/Camp	Late/Early
	San/Camp	Late/Early
	Con/Camp	Early/Early
	Cen/San	
	San/Camp	
	San/Camp	Early/Early
	San	Late
	Tur/Camp	Late/Late
	San	Late
	San	Late
	San	Late
	San	Mid/Late
Plesiosaur	San	-
	Sant/Camp	
	San/Camp	Late/Early
	San/Camp	Late/Early
	Con/Camp	Early/Early
	/	- 11 - 11

Page 111 of 114

1				
2				
3		Camp	Farly?	
4		Camp	Early	
5		San	Early/Farly	
7		Comp	Early/2	
8		Camp	Early/!	
9		Camp	Early/Late	
10		Camp	Early	
12		San/Camp	Late/Early	
13		Camp	Early	
14		Camp/Maas		
15		San/Camp		
16 17	Plesiosaur	Camp	Early	
17	Plesiosaur	Camp	Early/Mid	
19		San/Camp	Early	
20	Plesiosaur	Camp	Early	
21		Tur/Camp	Late/Late	
22		Camp	Farly	
24		Camp	Early/Mid	
25		Camp/Maas	Farly/Farly	
26		Camp/Maas	Larry	
27		Carrip/Waas		
20		Sall/Callip		
30		Camp/.iviaas		
31		Camp		
32		Camp	Early/Late	
34		Camp	Mid/Late	
35	Plesiosaur	Camp	Mid	
36		Camp	Early/Mid	
37		San/Camp	Late/Mid	
30 39		Camp	Mid/Late	
40		Camp	Mid	
41		Camp	Early/Late	
42		Camp	Mid	
43 44		Camp	Mid	
45		Camp/Maas		
46		San/Camp		
47		Camp	Mid	
48 40		Camp	Mid	
49 50		Camp	Mid/Lato	
51		Camp Comp /Maas		
52				
53		Tur/Camp		
54 55		Camp	Early/Mid	
56		Camp/Maas		
57				
58				
58 59 60			Palaeontology	

3 4Camp/MaasEarly/Early5Camp/MaasMid/Early	
Camp/Maas Mid/Early	
6 Sant/Camn	
7 Camp/ Maas	
8 Plosiosaur Camp Mid/Lato	
9 Plesiosaur Camp Wild/Late	
10 Plesiosaur Camp Early/Mid	
12 Camp Early/Late	
13 Camp Mid/Late	
14 Camp Early/Late	
15 Camp Late	
Camp Late	
18 Camp Late	
19 Camp Late	
20 Camp/Maas	
San/Camp	
23 Camp Late	
²⁴ Camp Mid/Late	
25 Camp Late	
20 27 Plesiosaur Camp/Maas Late/Early	
28 Camp Mid/Late	
²⁹ Camp/Maas Mid/Mid	
30 Plesiosaur CampMaas Late/Farly	
32 Camp Late	
33 Camp/Maas Late/Late	
34 Camp/Maas Late/Late	
35 Camp/Maas Late/Late	
36 Camp/Maas Late/Late	
37 Piesiosaur Camp/Maas Late/Early 38	
39	
40 Camp/Maas Late/Late	
41 Tur/Camp Late/Late	
42 Camp Late	
44 Camp Late	
45 Camp Late	
46 Camp Late	
47 Camp/Maas Early/Early	
49 Camp/Maas	
⁵⁰ Camp/Maas Mid/Early	
51 Camp Late	
53 Sant/Camp	
54 Camp/.Maas	
⁵⁵ Plesiosaur Camp Mid/Late	
56 57	
58	

Page 113 of 114

Plesiosaur	Camp	Early/Mid	
	Camp	Early/Late	
	Maas		
	Maas	Early/Mid	
	Maas	Early	
	Maas	Early	
	Maas	Early	
	Maas	, Early	
	Maas	Mid	
	Camp/Maas		
	Camp/Maas	Late/Farly	
	Maas	Early	
	Camp/Maas	Mid/Mid	
Plesiosaur	Camp/Maas	Late/Farly	
	Maas	Early	
	Camp/Maas	Late/Late	
	Maas	Late	
	Camp/Maas	Late/Late	
	Camp/Maas	Late/Late	
	Camp/Maas	Late/Early	
	Campy Waas		
	Camn/Maas	late/late	
	Maas		
	Maas	Mid	
	Maas	Farly	
	Maas	Early	
	Camn/Maas	Larry	
	Maas	Farly	
	Maas	Larry	
	Camp/Maas	Farly/Farly	
	Maas	Earry/Earry	
Plesiosaur	Camp	Early/Mid	
110303001	Camp		
Plesiosaur	Maas	Early	
FIESIOSaul	Comp/Maas	Mid/Early	
	Camp/Maas	What Early	
Dlociocour	Camp/Maas	Farly	
FIESIUSAUI	Maas		
	IVIdd5 Maac		
	IVIdd5		
	IVIddS Comm	iviiu/Late	
	Camp	Late	

	Maas	Late
	Maas	Late
	Maas	Late
Plesiosaur	Maas	
	Camp/Maas	
	Camp/Maas	Late/Late
Plesiosaur	Maas	Late
Plesiosaur	Maas	Late
Plesiosaur	Maas	Late
Plesiosaur	Camp/Maas	Late/Late
Plesiosaur	Camp/Maas	late/late
	Maas	Late
	Maas	Late
	Maas	
	IVIAAS	Late
	Maaa	Lata
	IVIAAS	Late
	o /h.	
	Camp/Maas	Late/Late
	Maas	Late
	Maas	Late
	Maas	
	Maas	Late
Plesiosaur	Maas	Late
	Maas	Late
	Camp/Maas	
	Maas	Late
	Maas	
Plesiosaur	Camp/Maas	Late/Late
	Camp/Maas	
	F <b>/</b>	