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Abstract: We report electrically-controlled continuous frequency tuning over ~20 GHz by 
exploiting the additive Vernier tuning effect in a THz QCL based on a longitudinally-coupled Y-
branched waveguide. 
OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (140.3570) Lasers, single-mode; (140.3600) Lasers, 
tunable.  

 
1. Introduction 

Terahertz (THz) quantum cascade lasers (QCLs) are compact semiconductor sources of radiation in the THz 
frequency band of the electromagnetic spectrum [1]. Devices are typically processed into a ridge waveguide 
structure that acts as a Fabry–Pérot cavity supporting multiple lasing frequencies. However, many potential 
applications of THz QCLs, such as gas spectroscopy and heterodyne radiometry, would benefit from a source that 
provides continuously-tunable single mode emission. Whilst devices providing ~50–300 GHz of frequency 
tuning [2,3] have been demonstrated, these tuning approaches are experimentally non-trivial, requiring controlled 
gas or dielectric deposition, or electro-mechanical control. Furthermore, the continuous tuning range that can be 
achieved electrically through control of the laser current in distributed feedback devices is limited to only 
~7.5 GHz [4]. 

An alternative approach to achieve fast and wideband electrical tuning in monolithic lasers exploits the Vernier 
tuning effect. Such lasers, for e.g. coupled-cavity lasers [5], consist of multiple sections, each of which supports a 
comb of frequencies; emission is selectively favored at frequencies at which the lines of individual combs match. 
Coupled-cavity lasers are based on the ‘multiplicative’ Vernier effect where the mode selection is based on a 
multiplication of frequency combs. However, mode selection can also be accomplished via an ‘additive’ Vernier 
effect based on the addition of frequency combs. This latter approach is expected to result in higher side mode 
suppression of the first side modes compared to multiplicative Vernier effect lasers. 

In this work, we develop a coupled-cavity scheme for THz QCLs based on the additive Vernier effect. In this 
scheme two QCLs are coupled optically to form a Y-branched device, in which continuous electrical tuning of the 
emission frequency can be achieved through exploiting the Stark effect and cavity pulling effects. Using this 
approach we report fast electrically-controlled continuous frequency tuning over ~19 GHz—the largest range 
reported to date.  

2. Design and simulation 

Our device structure is illustrated schematically in Fig. 1(a), and consists of two double-metal THz QCLs (WG1 and 
WG2) that are electrically isolated but optically coupled in the longitudinal direction through a 5-µm-wide air gap. 
Each QCL consists of four sections: a coupler containing a photonic lattice (PL) structure, which is connected to a 
‘Y-branch’ power amplifier by an S-shaped bend and an impedance-matching tapered section. 

The spectral behavior of a device with PLs incorporated on the coupler sections was modelled using a transfer 
matrix approach. In order to achieve the broadest continuous frequency coverage from the coupled device, the PL in 
WG1 (pitch ȁ = 13.66 µm, offset from center of the coupler section by ǻPL1 = 6.5×ȁ) was designed to provide a 
continuous frequency tuning, and the PL in WG2 (pitch ȁ = 13.66 µm, offset from the center of PL in WG1 by 
įPL = 0.5×ȁ) was designed to allow discrete mode hops. WG1 was simulated to lase at a frequency of f1=3.356 THz 
and to provide continuous tuning over ȟf1=12 GHz when operating independently. Transmission peaks in WG2 were 
simulated to be at 3.358, 3.332 and 3.293 THz, with a frequency separation of Ɂf2 = 2 × ȟf1 ≈ 26 GHz. In this case, 
emission in the coupled device was simulated to be at 3.357 THz due to Vernier alignment between modes in WG1 
and WG2 [Fig. 1(b)]. In this study frequency tuning is controlled electrically by exploiting the Stark shift of the gain 
in the QCL, as well as cavity pulling in the coupled waveguides. The effects of the Stark shift and cavity pulling in 
WG1 and WG2 were calculated from the applied field (F) and the dipole matrix element of the QCL active region 
using a first-order perturbation [6]. A change in the refractive index of |ǻn| < 1×10-3 was calculated by 



systematically varying the applied electric fields to WG1 and WG2 in the range 4–10 kV/cm. A continuous 
frequency tuning of ~17 GHz was predicted for the coupled device as the applied electric fields in WG1 and WG2 
were varied heterogeneously [Fig. 1(c)]. 

3. Results 

The emission spectra of fabricated devices were recorded for different combinations of drive current supplied to 
sections WG1 and WG2 (IWG,1and IWG,2) [Fig. 1(d)]. A continuous tuning over 19 GHz (3.352–3.371 THz), with a 
side mode suppression ratio >30 dB, was recorded at 50 K when IWG,1 was varied in the range 0.5–1.6 A and 
IWG.2>1.2 A. This continuous tuning range is almost twice the tuning range observed from WG1 (ȟf1=9 GHz), and is 
due to cavity pulling effects arising from the heterogeneous drive currents [4]. Furthermore, emission frequencies 
centered at 3.307, 3.335 and 3.361 THz with a continuous tuning ranges of 2 GHz, 7 GHz and 20 GHz, respectively, 
were recorded through simultaneous control of IWG,1, IWG,2 and at heat sink temperatures in the range 10–90 K. 
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Fig. 1. (a) Illustration of the device geometry. (b) Simulated transmission from WG1 and WG2, when operating independently, 
and when both QCLs are coupled. (c) Simulated continuous tuning of ~17 GHz from the coupled device, through Stark shift 
and cavity pulling. (d) Contour map of emission frequency when both WG1 and WG2 are coupled. A continuous tuning of 
19 GHz is recorded at a heat sink temperature of 50 K. 

4. Conclusions 

In conclusion, fast electrically controlled frequency tuning over 19 GHz (at 50 K) has been demonstrated by 
exploiting the additive Vernier tuning effect in a THz QCL based on a longitudinally-coupled Y-branched 
waveguide. These results represent the broadest electrically-controlled continuous frequency tuning reported for a 
monolithic THz QCL device. 
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