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Adaptive Refinement of Hierarchical T-splines

L. Cher?, R. de Borst*

aUniversity of Shgield, Department of Civil and Structural Engineering, SieBerick Mappin Building, Mappin Street, $fiedd S1 3JD, UK

Abstract

We present an adaptive local refinement technique for isng&ac analysis based on hierarchical T-splines. An
element-wise point of view is adopted, which exploits Béetraction,and allows adaptive refinement of standard
hierarchical T-splines and truncated hierarchical Trediin a straightforward and unified manner. No explicitbasi
function operations are required to build the hierarchixeadis function space, as only matrix manipulations are in-
volved. This makes thefigciency superior to that of existing implementations. Intigatar, the implementation of
truncated hierarchical T-splines requires no explicintation of the basis functiondn the analysis, a multi-level
T-mesh is constructed by successive cell subdivisions afifial, coarse T-meshAn important feature is that Bézier
extraction is employed to compute the refinement operatiovd®n two successive hierarchical levels, and that, at
each level, Bézier extraction is applied to obtain théress matrix without, initially, considering multi-leveiter-
action.This interaction is recovered through a subdivision omgradlumerical examples are presented for validation
purposes, and to assess the convergence properties.

Keywords: Hierarchical T-splines; Bézier extraction; isogeomednalysis; adaptive refinement

1. Introduction

A main advantage of isogeometric analysis is that NURBStfans commonly employed in the Computer Aided
Geometric Design model, can directly be employed in theyammodel [1, 2], thus reducing théfert expended
in (re)meshing, and improving, or even eliminating the eoce@mmitted in the geometry description. However, the
tensor product structure of NURBS prevents local mesh nefame. To obviate this drawback, various local refine-
ment strategies have been proposed, including T-splirég fd hierarchical and truncated hierarchical T-splames
further developments [6-8], LR-splines [9—12], hieracethiand truncated hierarchical B-splines [13-18], and PHT-
splines [19-21]. It is further noted that adaptive splinkss &dehold promise as aiffective tool for local refinement
in isogeometric analysis [6, 7, 13, 17, 22].

T-splines were introduced by Sederberg [3, 4]. They remlogeigidity of the tensor product structure of NURBS
by allowing extra vertices to be inserted. Their first useisngeometric) analysis is in Reference [23], and the pos-
sibility to use them in existing finite element datastruetuthrough Bézier extraction has been described in [24].
Mathematical properties of T-splines, for instance linedependence and partition-of-unity property of basicfun
tions, are given in [25-27]. The local refinement of T-spdit@as been investigated in [5-7, 28, 29]. Of particular
relevance for the work reported here is Reference [6, 7],hickvthe concepts of hierarchical and truncated hierar-
chical T-splines were proposed. They enable to combineliii¢gyao locally refine hierarchical B-splines with the
geometrical representation capability of T-splines.

In this contribution, we will develop the adaptive hierace refinement of T-splines. An element-wise point of
view, enabled through Bézier extraction, will be employedifmplementation purposes. A multi-level, hierarchical
T-spline mesh is generated by successive cell subdivisibag initial, coarse T-spline mesh. At each hierarchy level
the element sfiness matrices are obtained by applying Bézier extractidinowt, initially, considering multi-level
interaction. This interaction is enforced through theadtrction of a subdivision operator. Two cases are congidere
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standard hierarchical T-spline bases and truncated bldcal T-spline bases. It is noted that the hierarchicaébas
are not implemented explicitly in the formulation, but ingily through matrix multiplications.

The paper is structured as follows. Section 2 gives a sucsimomary of T-splines and Bézier extraction, includ-
ing the construction of the Bézier extraction operator. 8dasic notions of hierarchical T-spline basis functioms ar
discussed in Section 3. Section 4 illustrates the use ofeBéxziraction for hierarchical T-splines, and Section 5 pro
vides information on adaptive hierarchical refinement. paper is completed with numerical examples in Section 6
to validate the approach, and with some concluding remarks.
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Figure 1. Example of a cubic T-spline mesh. The object ismivethe index domaiti, j), in the physical domain
(X1, X2), and in the parameter doma(ifnl, 52). The element s also shown in the parent domain.

2. T-spline and Bézier extraction

In this Section, we will first give a concise overview of Tisigls and Bézier extraction, please see [23, 24] for a
more in-depth discussion.

2.1. Fundamentals of T-splines

T-splines are constructed on a T-mesh. For two dimensidnjakts, the T-mesh is a mesh of quadrilateral el-
ements, which allows T-junctions. An example of a cubic lirgpmesh is given in Figure 1. In the figure, the
index domain(i, j), the physical domaifx;, x;), the parameter and sub-parameter dor@aﬁngz) of T-splines are
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Figure 2. Determination of the local knot vector and the ¢tauttion of blending functions for quadratic and cubic
T-spline meshes.

shown. To carry out Gaussian integration, the elereemiist be mapped from the physical domain onto the parameter
domain, and then onto the parent domgia [-1, 1], see Figure 1.

In a T-spline mesh, elements are defined by the edges of fesplesh and continuity reduction lines [26], see
the areas that are shaded gray in Figures 1 and 2. Anchorsemeiped in the index domain and in the parameter
domain [23], and a multivariate blending function is attdho each of them. In Figure 1, the anchors are placed
at each vertex of a cubic T-mesh. To obtain the blending fanassociated with an anchor, a local knot vector
(Ei)izo o has to be defined, with denoting the number of anchors. In Reference [26] the cocisdn of local
knot vectors for T-meshes of even and of odd degrees has leseriltbd in detail. Figure 2 gives an example of the
determination of local knot vectors. On the basis of localtkrectors, we obtain the blending functions associated
with an anchor [24], see Figure 2.

2.2. Bézier extraction fundamentals

The blending functiorNa is defined over entire support of anchirsee Figures 1 and 2. It is cumbersome to
directly incorporate a blending function in a standard éikitement code. However, Bézier extraction overcomes this
by representing blending functions as element-wise Beimshape functions [24], and this approach will be adopted
herein. We suppose that the domain can be decompose# ielements withn anchors. The local knot vectors of
anchori areZ} and=,,. Then, the blending functioN; of anchori over elemené can be expressed as

NE (&) = [CP]" B®(¢) (1)

whereB® (¢) contains (element-local) Bernstein polynomials with disien(p + 1)? x 1 [26]. Here, we consider
T-splines with same polynomial degrgg,in the&! and thet? parametric direction.
C? is the Bézier extraction operator of anchawver elemeng, which is determined by the tensor product [26]:

ce=Cc®ecCt (2)
3



whereC® andC# are univariate Bézier extraction operators of anctower elemenein the£! and thet? parametric
direction, respectively.

We take anchoA in Figure 2(a) as an example to illustrate the calculatioiBétier extraction operatdat;.
The local knot vectors of anchérare=} = {53, &, &, 57} {1, Z2 1 1} andz) = {gl, &, &, 54} {0 0, 3. 3},
respectively. We evaluate the Bézier extract|0n operdtanchorA over elemenb, WhICh is bounded in the parameter
domain by[gé, gé] X [§§ §§] and in the sub-parameter domain[ 1] X [0, %] Figure 3 shows the blending function
NP for each parametric direction. The part\f in the&' parametric direction, i.eN®, is plotted as a solid line over
elementb. Now, we express the blending functitblﬁ' as a linear combination of Bernstein polynomiBf over

element:

B?l B?l

Nt =[CRI'B™ = [CB} CR} cii||B3|=[3 1 oOf|BS (3)
BBt B2
BL2 BR2

NR? = [CRI°B™ = [cf2 CB3 cR|(B®|=[0 1 3||BY (4)
Bgz Bgz

Employing Equation (2) and considering Equations (3) andw# obtain the Bézier extraction operator of anchor

over elemenb, as follows:

ci=[0 00103 3 0 (5)
When we subsequently apply Equation (2) to all elementsBémer extraction operator of anchds obtained:
ct
I
Ci = : (6)
CE

The dimension o€; is E (p + 1)? x 1, whereE is the total number of elements.

1 1
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Figure 3: The blending functiohlg' of anchorA and the Bernstein polynomials over elembrin the¢' parametric
direction.

When we consider Equation (6) for all anchors, we can exghess blending functions as a linear combination
of Bernstein basis functions:

N (&) =

CB() =

N1 (£)

Nn (&)
4

Ci|[B*©)

crl[BE )

(7)



whereC has the dimension x E (p + 1) andB (¢) is of E (p + 1)?> x 1. The blending functions with support over
element are then expressed as:

Ne (£) = CeBe (¢) (8)

with C element Bézier extraction operator.

3. Hierarchical T-splines

Hierarchical T-splines were introduced in Reference [@&] altow for local refinement of a given, normally coarse
T-spline mesh. The basic idea of hierarchical T-spline®iktally enrich the approximation space by replacing
selected coarse grid T-splines by fine grid T-splines. We gioe’a concise outline of the mechanism how to construct
hierarchical T-splines.
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(a) T-spline mesi“ (b) T**! created by subdividing@®

Figure 4: Construction of T-spline me3li*! from T®. The anchors are indicated by circular dots. Black denbies t
mesh and the anchors of T-spline m@sh and red stands for the mesh and the anchors generat&et‘for

3.1. Nested spaces and domains
A hierarchical T-spline space is constructed from a finitgusmce ofP nested T-spline spaceég")

bounded byP open setséQ')lzo _

1=0,,P-1
et The nested nature of T-spline space defines the nested m®foahierarchy:
Jo9cglc...cqP? QP lcQf?c...cqf (9)

The sequence dP T-spline meshes is built by subdividing eacffieetive rectangular cell iT* into two or four
congruent cells such that® c 791, a = 0, ---, P — 2, where the term &ective rectangular cell’ refers to a cell
with non-zero parametric length in at least one parametrgcton. Figure 4 illustrates the algorithm to generate th
T-spline mesiT*! from T¢. Cell A has a zero parametric length in both directions, which tesalno subdivision
in A. Cell B only has a non-zero length in tl§é parametric direction. It is divided into two congruent set To+2,
For cellC, the parametric length is non-zero in both directions, Whéads to four congruent cells T#+2.

3.2. Hierarchical T-spline bases

The algorithm of [6] has been adopted for the constructiohiefarchical T-spline bases, but we rephrase the
algorithm below. Defining as a T-spline basis function and fywe denote the T-spline basis function space [13].
The hierarchical T-spline basés is recursively built as follows:
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(1) Initialize: H° = {r € 70 : suppr # 2.

+1 i i +1 _ +1 +1 — +1
(2) ConstructH*** from H* in a recursive mannet{*** = Heio U Hi S, a =0, -+, P — 2 whereHggyree=

{T c H - suppr ¢_ Q<r+l}; 7..{(¥+1 — {T c r]'(r+l : suppr C Q<y+l}_

fine

(3) SetH = HP-L.

Using linear combinations between basis functions on tgésalevela anda + 1, we can obtain a truncated
hierarchical basis function space [7, 14]:

(1) Initialize: H° = {r € 7° : suppr # 2.

(2) ConstructH**! from H* in a recursive mannefH**! = H&L U HI L @ =0, - -, P-2 whereHg L =

7€ HYA suppr € Q@ Hetl = tr e 7oL suppr ¢ Q1L
{ ¢ Q) { }

fine

(3) SetH = HP-L.

Figure 5 illustrates the hierarchical and truncated haiaal basis function spaces for the univariate case, while
Figures 6 and 7 do so for the bivariate case. The mathematioperties of hierarchical and truncated hierarchical
basis functions, e.g. nested nature, linear independentpartition of unity property have been discussed in [6, 7].

4. Bézier extraction of hierarchical T-splines

We will now extend the Bézier extraction framework to allosv the implementation of hierarchical T-splines.
This procedure is similar to that used for hierarchical Bags [17]. As stated, an element-wise point of view is
adopted, which conforms ideally to Bézier extraction framek. The hierarchical T-spline basis functions are defined
over multiple hierarchy levels. Strong boundary condii®imposed over dierent hierarchy levels [13]. This results
in a nested hierarchical element structure.

4.1. Data structure

The element-wise implementation of hierarchical T-s@irsea natural choice in adaptive finite element analysis.
The hierarchical T-spline bases consist of T-splines owdtipte hierarchical levels with same polynomial degree.
Below, we will outline the data structure of multi-level héechical bases.

4.1.1. Multi-level mesh and Bézier extraction operator

We first construct a hierarchy &f levels. The T-spline basis functions at each hierarchy lexe defined over
local knot vector seg; (i =0, 1, ... P—1). &, is defined aE; = {EI'}T':_Ol in which n; denotes the number of anchors
at leveli. E; is obtained by successive cell subdivision witfig, starting from initial local knot vectd&g, whereQq

denotes the parameter domain. The algorithm is visualis&ejure 4. In this process, the nested parameter domains
Q'Jl c Q and the nested local knot vectd®&s c E;,; are obtained, see Figure 4. Each knot ve&odefines a set

of T-spline basis functionsl’ = {N']}Tzl which in turn forms a nested T-spline approximation spatesee Figure

6. With E; andQ,, the Bézier extraction operat@ can be obtained for each anchor at leijedee Section 2.2.
Furthermore, T-spline basis functions at leveln be defined in terms of elements at leivel1 by the Bernstein
polynomialsB'+! (¢): o

N' = CiB"! (¢) (10)

whereCl, denotes Bézier extraction operator of each anchor atiexar elements at levek 1.



. -~

1 i S N
2 - AN A ) ’ RIS RE A,

. . . \ . RN .

. .’ ‘. ’ ‘. 4 R N . . S

O < s AW sl s A
0 - ‘ %V-- ‘ 1 = = 3 .-xl_- ‘ 5_-‘ = 3 | .->x7‘ .._x
0,0,0,0 1 1 3 1 5 3 I 1111
N? 1

<
() N
X%r

>1< ‘>1< >3<‘ ‘>f3 x7‘ >$5 X
0000 5 5 16 6 s 1 bLLI
Hr 1

NI

1
0,0,0,0 1 % 16 2 16 % i L1111
§
Hr 1
1
2
0%00 1 g 1L 2 5 3 1,1,1,1
[t 4 8 16 2 16 8 4 IR
3

4.1.2. Subdivision operator and control point
Due to the nested nature @f, the T-spline basis functions at hierarchy leveln be described by the T-spline
basis functions at hierarchy levgl

-1

Ni — Si,]Nj — l_[sl,|+lN|+l

NI - ClRB|+1 ({,:) — Sl,|+1c|+lB|+l (f)

7

(b)

©

Figure 5: Definition of basis function space; (a) illustoatbf basis function setd', A' and A ; (b) final hierarchical
basis functions; (c) final truncated hierarchical basicfioms.

whereS'*1 is the subdivision or refinement operator [26]. For the NURBSis functions, the subdivision operator
SH*+1 can be directly obtained from the linear relation betweesissnctions from two hierarchy levels [15, 18]. Itis
noted thaS"'*1 is a matrix with a high degree of sparsity. Using Equationsa® (10),S"'*1 can now be computed:
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Figure 6: T-spline meshes and bases at hierarchy level 0 and 1

WhereC'R denotes Bézier extraction operator of each anchor at lexar elements at levék 1, andC'*! represents
Bézier extraction operator of each anchor at lévell.
Expanding Equation (12) in a vector form, it obtains

[CLITT T[S [ChT
Col=] : (13)
[CIRn]T [gr;tl]T [C|+1_1]T

1 N1

with n; andn;,; the number of anchors at leveand! + 1, respectively.C'Ri denotes Bézier extraction operator of
anchori at levell over elements at levék 1, whose dimension i),1 (p + 1) x 1. Cl*1 represents Bézier extraction
operator of ancharat levell + 1 with the dimension oE;,; (p + 1)2 x 1. Ej;+1 is the number of elements at level 1.
The row values o8"'*! are obtained from:

Ck = [C*YTs ' for i=0--,n-1 (14)
8



Active T-spline bases at level 0 Active T-spline bases atllév Hierarchical T-spline bases
(a) Active basis functions at level 0 and level 1 and corrasgipa hierarchical T-spline bases

Active T-spline bases at level 0 Active T-spline bases allév Truncated hierarchical T-spline bases
(b) Active basis functions at level 0 (already truncated) kvel 1 and corresponding truncated hierarchical T-sfiases

Figure 7: Hierarchical and truncated hierarchical T-spliases

With the subdivision operator, the coordinates and weighemchors in a refined T-spline mesh at hierarchy lével
can be determined recursively [26]:

i-1 T
P =[S¥°]TP9V=[]_[ 9'*1] P, (15)

whereP!, are the weighted control points at leveEach weighted control point is defmedl%@,§ (W X i w )& w )
With the subdivision operator defined in Equation (12), drelweightw from Equation (15) the T-spllne bases
can also be written in a rational form [17]:

W, Z SITNG () Li+1
— Wl' N|I (é:) — S +1
Using the rational T-spline bases, the subdivision operatest be modified as below:
S - sl an

to replace the standard subdivision oper&dr?.

4.2. Multi-level implementation of hierarchical T-splge
We next take univariate bases to illustrate the constrnatiohierarchical basis functions. Due to the nested
structure of T-spline basis function space, the multiatgricase can be derived straightforwardly. To construct the

9



hierarchical basis function spadé, the active elements and basis functions in the multi-lévefarchy must be
identified. The active element is chosen by a certain margiitgrion, for example a posteriori error estimator [16].
No overlap or gap may exist between the active elements fiiéi@reint hierarchy levels, Figure 5(a). In the figure,
the parameter domain of active elements is plotted in grgkare the parameter domain of active elements is defined
as the union of three parameter domains associated witarbier levell:

-1 P-1
Qu=0f +Ep+Qy =| JEA+EL+ [ JEL  with  Ej=| Jof (18)
i=0 i=l+1 e

whereP is the number of hierarchy IeveIE_'iA represents the parameter domain of active elements atdtigrievel

i Qd""' denotes the parameter domain of elemesat hierarchy level QIJ is the parameter domain of active elements

at coarser hierarchy levels; amg+ represents the parameter domain of active elements at ferarthy levels.
Herein, an element-based selection approach is employeefitte the hierarchical basis function spa¢d17].

On the basis of)g, Q'd+ andQ'd‘, one defines three sets of basis function spaces:

A =

—_——

Nj e 7" :suppN'jﬂE'A;t(Z)}

o
U

A= JA, with A, =[N e A :suppn! ()Y # 0]

(19)

o

o
i

A= JA with A =[N e suppN} (1)@ # 0]

o

A' denotes the union of basis functions with support over aeigments at hierarchy leveFigure 5(a).A'. denotes
the basis function set it with support over active elements at finer hierarchy levalisited as dashed lines, see
Figure 5(a).A' represents basis functionsl which have a support over active elements at coarser higréeels,
as indicated by dotted lines in Figure 5(a). Finally, thecgpaf hierarchical basis functior$ is defined as:

-1
H=| |A with A =A\A (20)

where '\" is the logic NOT, A} denotes active basis functions at hierarchy léyske Figure 5(b), an@# denotes
standard hierarchical basis function space [6].

From the linear combination between basis functions aahifiy level andl + 1, a space of truncated hierarchical
basis functions is obtained [7], see Figure 5(c):

P-1
Hr = U‘ﬂ!r,a with A, = {7 € A, : suppr| ¢ E?) (21)
=0

wherer] is defined as] = {r € 7' : 7} = ¥ S|/*!N!*!}, see Equation (11).

Considering the active elements and basis functions, amémalement hierarchical basis functions to obtain the
stiffness matrix in a multi-level, adaptive manner. First, udggier extraction, the sthess matrix of active ele-
ments at each hierarchy level is obtained, without conatitar of possible interaction of multi-level basis funciso
Assembling the sfiness matrix at each hierarchy level, a global system of @nsis obtained:

KU =F (22)

whereU contains nodal degrees of freedom at each hierarchy lelielfdrce vector is given by andK is the stiftness
matrix, with the submatrice$’ along the diagonak' being the stfness matrix of active elements at hierarchy level
i, a square sparse matrix of size.  2n\.. The number of control points at hierarchy leve given byn. It is noted
that the submatrice$' are also highly sparse.

10



To enforce the interaction between multi-level hierarahizases in Equation (22), a hierarchical subdivision
operatoMy, is introduced, resulting in the following hierarchical s of equations [30]:

KnUn=Fn  with  Ky=MyKM] and Fn=MyF (23)

Again, Ky, is a very sparse matrix. The hierarchical subdivision ojpeid |, is defined as:

0 N1 %2 ppoP-1
It M2 MRt
My, = 12 ... M2P1 (24)
0
| P-1
in which | |
1 for I=J and N, eA
Iy = e (25)
0 else
The matrixM"¥ in Equation (24) is defined as follows:
. Sk for Nl eA
Standard hierarchical bases: MK =371 Lo
0 else (26)
- Shk for Nl eA and Nfe A
Trunctated hierarchical bases: M = { (')J ' " eise IO

whereS'* has been defined in Equation (11).

In this contribution, standard hierarchical T-splines &mhcated hierarchical T-splines have been considered in
a unified framework, see Equation (23). Explicit basis fiorcbperations are avoided, as only matrix manipulations
have to be carried out. Hence, th@ency of the proposed approach is superior to that of reogiementations of
hierarchical T-splines [8]. We note that, in particulamgrtcated hierarchical T-splines can be applied withoutiexpl
truncation of the basis functions. Therefore, the inneeatispect of this work is the multi-level implementation of
hierarchical T-splines by using Bézier extraction in #iicent way without basis function operations. The extension
of the method to three dimensions case is straightforwardrbgloying Bézier extraction to analyse cases as in
[31, 32].

Solution of Equation (23) yields the displacemeudtsfor the control points associated with hierarchical bases.
However, a non-linear solution scheme requires the disph@nt vectot rather tharlJ, from previous iteration, cf.
Equation (22):

U=M[Up (27)

4.3. Implication of truncation mechanism

When constructing hierarchical T-spline bases, the hidieal and truncated hierarchical basis functions aremeve
computed explicitly. Instead, the hierarchical subdasisbperatoMy, builds the hierarchical T-spline bases in an
implicit manner. For the hierarchical basis functionsyahk contributions of active basis functions in the gktare
considered, see Equation (26). During the (multi-levelziBéextraction of T-spline bases, the numerical integrati
is performed separately for each active element, at eachrbfey level, regardless of whether the basis functions,
which have a support over the active element, are part ofitdkical bases or not. The hierarchical subdivision
operatomMy, accounts for the activity of basis functions and recoveestirrect support of active basis functions, see
Figure 6. For the truncated hierarchical T-spline basestrtimcation mechanism is implemented by the hierarchical
subdivision operatoMy, in Equation (26). The contribution of basis functions in fetsA_ andA. is considered
next. In the calculation of the §iness matrix<y,, the mapping of the contribution of basis functionsAti* to that
of basis functions inA!, is included [17]. Eventually, the sfhess matrix elements resulting from basis functions in
A+* are mapped onto those relatedAit and stored afterwards ifl!, . Thus, the support domain ¢t. is truncated.
This is explained graphically in Figure 7.

11



5. Adaptive hierarchical refinement

We now proceed to adaptive mesh refinement, and we will ptéisesteps and algorithms for element refinement
as well as element coarsening:

81 Solve Equation (23) to obtain the displacemidpntand computd) using Equation (27).

82 Estimate the approximation error. Thiz norm and the energy norm of the element residual are employed
herein.

83 Mark elements for refinement and coarsening on the basi of

84 Refine or coarsen the marked elements. If no refinement os@oiag is required, stop the calculation, other-
wise return taS1.

5.1. Element marking

For element refinement, element marking can be done eitiveg geantile marking or Dérfler marking [29]. For
a domainQ with E elements, element errofsQl Q € Qf c Rare obtained from Stef2. Then, we define a marking
parameter, € [0, 1] to determine elements which must be refined. Qet {Qy, ---, Qg} andeg, > -+ > &g, the
list of elements to be refined then reads:

Quantile marking: M={Qq, -, Q} with k = ceil(nE)
k-1 E K

E

28

Dorfler marking: ™ M ={Qq, ---, Qk} with Zst < nZ:sQi and ZSQi > nZst (28)
i1 =i i1 =1

where ceil stands for the ceiling function, which roundsaithie nearest integer gt.
For element coarsening, the rule for element marking islproldlependent. For example, in crack propagation
analysis, elements marked for coarsening are those wik ack opening [30].

Remark 1:To obtain a well-conditioned sthess matriX<, in Equation (23) the elements adjacent to marked
elements must be from the same, or at most from two conseduigvarchy levels [17].

5.2. Refinement procedure

With the data structure in Section 4.1 at hand, we proceeddptive hierarchical refinement. Two sets of logical
vectors are defined to indicate the state of elements — amtiveactive — at each hierarchy level. They are initialised
asfalse

(1) Eq: indicator of active element&!, = {true : element is active}.

(2) Eac: indicator of active child eIementEiac = {true : child elements of elememntreactive}.

FromE, andE,, three sets of logical vectors are obtained, which inditia¢estate of basis functions — active or
inactive — at each hierarchy level. They are initialisedase Here, we define all basis functions Rthierarchy
levels asN = NI}, (i = 1,2,--- ). n,; being the total number of basis functionsahierarchy levels:

(1) Aa: indicator of basis function in the hierarchical basis fime spaceH or Hr, Equations (20) and (21).
Al = {true ‘N eH or HT}.

(2) A_: indicator of basis function in sefi_, Equation (19)A’ = {true ‘N e ?L}.

(3) A.: indicator of basis function in sefl,, Equation (19)Al, = {true : N' € A, .

A pseudo code to obtaifi;, A- andA, can be found in [17]. The procedure for adaptive hierardmafinement is
given in Algorithm 1.

12



Algorithm 1 Adaptive hierarchical refinement

Al

A2

A3
Ad

AS

A6

AT

Read the geometry data to obtain the initial local knotme(a(l), Eg) and the initial control point®o.

Carry out successive cell subdivision to gene(ﬁﬁe Elz) andP, for each hierarchy levelfrom (Eé, Eg) and
Po.

Compute the subdivision opera®t*! between two consecutive hierarchy leviedsdl + 1.

Obtain the list of active elements and active child elemeriior the first load step, the active elements are
provided by initial T-spline mesh.

Compute the logic vectos,, A, A_ and the subdivision operatbty,.

Solve Equation (23) and employ Equation (27) to obtain fepldcement vectdd.

Check if elements should be refined or coarsened and markdbeordingly, see Algorithm 2. If there is no
marked element for refinement or coarsening, stop the @diounlfor current load step and go to next load step.

Otherwise obtain new list of active elements and activedceiements on the basis of marked elements and
return toA4.

Algorithm 2 Element refinement and coarsening in adaptive hierarcréiakment.

81 Compute the element erreg of each active element. If coarsening is required, comphwecorresponding

error indicators.

B2 Mark elements for refinement and coarsening.

B3 Refine the elements in order to obtain new list of active eleimand active child elements. Here, the elements

to be refined are representedi&sand all child elements dE; asEc.
B3.1 Getthe old list oE, andE;..

B3.2 SetEa(E,) = false Eac(Er) = true.
B3.3 SetEy(Erc) = true, Exc(Erc) = false

B4 Coarsen the elements in order to obtain the updated listtafeaelements and active child elemerig,and

Eac. Elements to be coarsened are denotelathe parent elements & asEp, the parent elements &, as
Egp, and all child elements d&, asEac.
B4.1 Getthe list oE; andEg after element refinement.
BA4.2 SetEa(Ep) = true, Eac(Egp) = true.
B4.3 SetEa(Eac) = false, Eac(Ep) = false.
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5.3. Update process

During mesh refinement and coarsening, elements are irdeadin the set of active elements. For non-linear
problems, it is then necessary to transfer the displacefrantprevious time stepto provide initial values for newly
activated elements at At. The displacements that result from a transfer from codesaents to fine elements are
exact. However, in the reverse process, some informatigerierally lost.

When the displacement vectdl is mapped to generate a new initial state vector during nm‘i!hecmentgfmu,
the process is exact:

LAty - (§,I+1)TIUI (29)
wherel is the hierarchy level, an8'*! denotes the modified subdivision operator from Equatiof (12
él,l+l ~ S::I]+1 for N!]+l c t+AtﬂI+l or t+Atﬂ!Frl (30)
[N
0 else
with %447 or At A the space of hierarchical basis functions atAt.
For coarsening, a global least-square fit is employed toparthe mapping, and we minimise:
W= f ”E;Atu _ tu”dQ — f ||I+ATNA E;—AIU _ tU”dQ (31)
Q Q
with respect tg*'U, yielding:
trAt ; tratyy \T t+At . teAty !t
My 52U =p  with Msz( Na) "'NAdQ; p:f( Na) ‘udQ (32)
Q Q

whereu contains the displacements, ditiN, the basis functions associated with active elemertts-att. My can
be computed directly through the Gaussian quadrature dnagdive element &dt+ At. However, the integration gf
needs to be modified as below:

p=L(HMNA)TtUdQ:L(HAINA)T (tNA)tUdQ (33)

where the second integration is carried out on each actareait at. ‘N, contains basis functions associated with
active elements dt

6. Examples

We will now present four examples, aimed to validate the meth terms of accuracy and assess its performance.
Truncated hierarchical basis functions will be used thhmug to describe the geometry of domain and to approximate
the field variable.

Inthe examples, only element refinement will be considaredparsening. The error of each elementis computed
using theH'-norm and the energy norjel| [33], which are defined as:

lu = Ul = \/(LS(U—LDT'(U—G)dS+er(U—U)'T'(U—LD/dS)

llelle = \/}f @-0)"-Ct(c-0)dS
2 Qe

. . — . . _ 2
whereu ando stand for the analytical solution,ando denote the approximate solutiofy, u € (Hl (Qe)) ,andC
is the elastic sffness tensolu — u)’ is the first derivative ofu — u) with respect tox andy, respectively. These error

(34)
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measures are employed for convergence studies, where efestnment is considered. The domain error is obtained
by summing up the element error.

[lu— LT||H1(Q) = \/Ze(HU - lT”Hl(ge))z llell = \[Ze”ené (35)

In marking elements for refinement and coarsening, theivelatror of each element is employed to define the
element-wise erroge:

U = Ulliqy) ~ lelle
o =
\/(fﬂeuT~udS+eru’T-u’dS) \/%fﬂea-T(D*La-dS

In general, T-spline meshes are generated by adaptiverkfaament of NURBS meshes [28]. To provide a good
illustration of hierarchical T-spines, we will directly\g the initial mesh of the first two examples as a T-mesh with
T-junctions. For the rest examples, the initial mesh wildedined by quadratic NURBS surface, since it is a special
case of T-spline mesh. For all examples the geometry is restieith same polynomial degrgein both parametric
directions.

(36)

Ee =

T2\

& N

S|
£
Figure 8: Cantilever beam subjected to a parabolic tracpooblem definition.

6.1. Cantilever beam under a parabolic traction

First, we will test the method to construct a T-spline m&8&Hrom an initial T-spline mesi?, see Sections 3.1
and 4. A cantilever beam of lengttand height is considered, see Figure 8. It is fixedxat= 0 and subjected to a
parabolic traction at the free end = | with a resultant forc€. The geometry and material parameters read: length
| = 50 m, heighth = 10 m, Young’s modul& = 100 Pa, Poisson’s ratio= 0.3, andP = 1 N. The analytical solution
of the displacement field can be found in [34].

The domain is discretised by cubic T-splines. The initiapline meshr? is given in Figure 9, which shows the
index domain, the parameter domain and the physical dordafierarchy of 3 levels is constructed fron?. The
T-spline mest? is shown in Figure 10(a). _

In the analysis we apply Dirichlet boundary conditionscat= 0 and the tractiott = [0, o12]" atx; = L. For
the Dirichlet boundary condition, we could not directly ioge the exact displacement at control points due to the
non-interpolatory nature of T-splines. They are computethfthe displacement and the parameter v@ﬂegz) at
Gauss integration points.

For the computation of dthess matrixK and right-hand force vectdt, three-point Gaussian quadrature is em-
ployed to avoid shear lockingfect in the simulation. Since we utilize cubic T-splines, tlaenerical solution should
be exact up to machine precision. The stress compongn@ndo;, are given in Figures 11. The error in the stress
value, defined as theftierence between numerical solution and analytical solutsoshown. The values are indeed
around the machine precision, which implies the proposetiodeof constructing hierarchical T-meshes works well.
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Figure 9: Initial T-spline mesA© for the cantilever beam. Here, the beam is given in the indewrain(i, j), in
the parameter doma(ql, g—‘z), and in the physical domaifx;, x2). The anchors are indicated by circular dots. The
polynomial degree of T-splines 3= 3 and the weights of anchors axe= 1.
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Figure 11: Stress distribution for the cantilever beam.
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Figure 12: Bending of a curved beam by a force at the end.

6.2. Bending of a curved beam by a force at the end

A curved beam with a unit thickness is considered next, sgar€il2(a). The beam is subjected to shear tractions
at the free enc, = 0, with resultant forc®. The geometry parameters are: inner radig = 5 m and outer radius
Rmnax = 10m. A linear elastic material is considered with: Young'sduleE = 100 kPa, Poisson’s ratio = 0.3,
while P = —1 N. The analytical solution of displacements in polar camaite system can be found in [34].

The problem has been solved using cubic T-spline bases withitial T-spline meshT®, see Figure 13. A
hierarchy of four levels is constructed froff. The Dirichlet boundary conditions are weakly imposed attbundary
x; = 0. The Neumann boundary conditioe [o12, 0]T is applied atx; = 0 in an exact manner.

During adaptive refinement, elements are selected for rménéusing Dorfler marking with = 0.4. The conver-
gence in the energy nornigl|, is shown in Figure 12(b) for cubic NURBS and cubic T-splirfesr uniform refinement,
the convergence rate will approach the optimal rate of c@jarecek = —p/2 = —1.5. The error level of the solution
for T-spline bases is higher than that for NURBS bases. Aiplesexplanation is that the pre-defined T-splines do
not dficiently model the problem localisation. For the case of &dapefinement, the convergence plot exhibits a
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Figure 13: Initial T-spline mesi® for the curved beam. The beam is shown in the index dorfiaij), in the
parameter domaif¢!, 52), and in the physical domaifx;, x2). The anchors are indicated by circular dots. The
polynomial degree of T-splines ig = 3. The local knot vectors and the coordinates of all anchorggaven in
Appendix A.

zig-zag behaviour with a convergence rate which approxamtte optimal ratk = —p/2 = —1.5. In general, the
error level for adaptive mesh refinement is between thosaifdum T-spline and NURBS mesh refinement.

Figure 14 gives the contour plot of exact solution and erirotke stress componetb, obtained numerically. In
the figure, Bézier meshes at refinement stepsh, 9, 14 are indicated by solid lines. They show a local refinemént o
the mesh, giving an improved resolution of stress gradi@sigecially in the part with T-junctions in initial T-spén
meshT?,

6.3. Infinite plate with a circular hole

The third example considers the adaptive hierarchicaleefant using only NURBS. We have employed the cell
subdivision approach to construct hierarchical basistfans, see Sections 3 and 4. An infinite plate with a circular
hole is considered, with a radis= 1 m, see Figure 15. The material properties are: Young's tus@ii= 100 N/m?,
Poisson’s ratior = 0.0 and thicknesh = 1 m. The exact solutions of radial and tangential displaceraee:

u = ”%ES(Z@)[(HV)M;—(1+v)§]+%[(1—v)+(1+v)§
Tyrsin(26) R? R (37)
U9=—?[(1+V)+2(1—V)r—2+(1+1/)r—4?|
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Figure 14: Stress distribution for the curved beam. Béziestms of active elements at each refinement step are
indicated by solid lines.

7= 1.0

Figure 15: Infinite plate with a circular hole.

wheref is the azimuthal coordinate. The corresponding stress oaes read:

Ty 1 R?\ Tycos?d (3R* 4R? 1
T\ e 2\ 2T
Ty R?\ T.cos? (3R}
@:7(1 r—z)‘ 7 (r_4 1) (38)

o = T,sSin2Y (E _@f - 1)

2 r4 r2



By virtue of symmetry only one quarter of the plate has to belefled. Two diferent geometries are used to
represent the problem: a quarter of an annulus and a finiteegydate. The exact traction from analytical solution is
imposed at the free boundary, see e.g. [35, 36].

—RO
Ry (<R SO

(a) problem definition of the quarter of an annulus (b) Béplgysical mesh and control points

Figure 16: Infinite plate with a circular hole: a quarter ofsaamulus representation and initial T-spline m&$hin the
physical domain. The weights of control points 1, 2 and 3¥2¢2; the weights of other control points are 1.
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Figure 17: Quarter of an annulus representation: exactisaltor o-1; andH* norm.

6.3.1. Quarter of an annulus representation

The geometry and boundary conditions of the annulus aresioWwigure 16a. The domai is initially discre-
tised by NURBS with a polynomial degrge= 2, with knot vector&€* = [0, 0, 0, 1, 1, 1]and=? = [0, 0, 0, 1, 1, 1].
The coordinates of control poinBsare given in Figure 16(b). In this example, we consider NURBS polynomial
degreed = 2 andp = 4. For the fourth-order NURBS, the knot vector and the cdmtaints are updated by order
elevation from second-order NURBS. The NURBS discretimatiforp = 2, 4 are taken as initial T-spline me3H.

In the analysis, a hierarchy of six levels is constructednfinitial meshTC. In adaptive refinement, elements
chosen for refinement are decided by quantile marking with0.2. The convergence in thé! norm is shown in
Figure 17(b). Uniform mesh refinement can achieve an optimavergence rate = —p/2. Local mesh refinement
can reduce the error, but not the convergence rate. Theeddaumor level may be due to th&ect of the resolution of
stress gradient by local mesh refinement. The exact solafiof points to a stress concentratior(&t, x2) = (0, 1),
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Figure 18: Bézier meshes and errowipy for active elements at each refinement step for fourth-dWdéRBS bases.
The Bézier meshes of active elements are indicated by $oéd.!

see Figure 17(a). Figure 18 presents the error@fat each refinement step for the fourth-order NURBS. The figure
show a local refinement of the mesh around the hole, wheretbrnstress gradient is achieved.

6.3.2. Finite quarter plate representation

For this case the geometry and boundary conditions are shmWwigure 16(a). The domaif is discretised
by NURBS with a polynomial degrep = 2, with knot vectors® = [0,0,0, 3. 4. 2, 3.2, 2, 1,1, 1] and
=2=1[0,0,0, ;11, % %, 1, 1, 1]. These knot vectors are obtained throtmgtefinement of open knot vectors, see [1].
Accordingly, the number of control poini8is adapted. The corresponding physical mesh and anchoshaven
in Figure 16(b). Herein, we consider second-order as welbagh-order NURBS bases to discretize the domain.
For the fourth-order NURBS bases, the knot vector and cbpuints are obtained by order elevation from second-
order NURBS bases. For the construction of initial T-splimesh,T?, the initial local knot vector(;El =2) and the

0’ =0
coordinates of anchors can be derived in a straightforwandner from?, 22 andP.

We consider a hierarchy of four levels to construct hiermadhbasis functions. It is constructed from initial
T-spline meshr®. Elements are refined by adaptive hierarchical refinemett guiantile markings{ = 0.2). The
convergence plot of thel! norm is shown in Figure 20(b). As expected, the optimal coysece ratk = —p/2 is
achieved for uniform and for adaptive mesh refinement. Ther éevel for adaptive mesh refinement is lower than
that for uniform mesh refinement. This is due to the fact tidajpgive mesh refinement smoothens the stress gradient.
The phenomenon of smoothing the stress gradient is illestia Figure 21. The mesh around the hole with stress
concentration is refined gradually until the lowest hiehgrtevel. With adaptive mesh refinement, the error level is
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Figure 20: Representation of a finite quarter of a plate: es@ation ofo1; andH* norm.

reduced for the whole domain, which indicates that adaptiesh refinement could not onlyfieiently model the
localisation, but also improve the accuracy globally.

6.4. Poisson problem on an L-shaped domain

As final example we consider a Poisson problem, which sotwethé temperature on an L-shaped domain, Fig-
ure 22(a). The definition of the L-shaped domain and the gicalysolution of the problem can be found in [17]. The
L-shaped domain has been modelled by a si@jleontinuous quadratic B-spline patch, Figure 22(b). To eetfire
patch, the knot vectors are given®5=1[0,0,0, 3, , 3, 1, 2,3, £, 1,1, 1]andE2=[0,0,0, %, 3, 2, 1, 1, 1].
The corresponding Bézier physical mesh and anchors areshdvigure 22(b). For the construction of initial T-spline
mesh,TO, the local knot vector(;E}), Eg) are derived fronE® and=2. A hierarchy of five levels is constructed from
the initial meshT®, which constitutes the hierarchical T-spline basis fuoregpace. During the adaptive refinement,
elements are selected for refinement using quantile maviittg; = 0.2.
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Figure 21: Bézier meshes and the erroein for active elements at each refinement step for second-bid&BS.
The Bézier meshes of active elements are indicated by $oéd.|

Due to the singularity at the re-entrant coriiey, x;) = (0, 0), the rate of convergendeof the H! norm with
respect to the total number of degrees of freedom is given as:

1 T 1 2 1
k= > mln(p, 27r—,8) =-3 mln(p, 3)_ 3 (39)
Figure 23(b) presents a comparision of the convergenceagita@ mesh refinement and uniform mesh refinement.

For uniform refinement, the corresponding rate of convergesk = —1/3, Figure 23(b). The optimal convergence
ratek = —1 is recovered by adaptive refinement, see Figure 23(b)oltsihat the error level for adaptive refinement
is smaller than that for uniform refinement. This is becawsaptive refinement better captures the gradient around
the re-entrant corner, Figure 24. From these figures it ismiesl that the mesh around the re-entrant corner is refined
gradually until the lowest hierarchy level.

7. Concluding remarks

We have developed a Bézier extraction framework for hidniaed T-splines,treating standard hierarchical T-
splines and truncated hierarchical T-splines in a unifiebistraightforward manner. Explicit basis function operasi
are avoided, and only matrix manipulations have to be chmwigt. In particular, no explicit truncation of basis
functions is needed for the application of truncated hriaal T-splines.The use of an element-wise point of view
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Figure 22: Poisson problem on an L-shaped domain: probldmititen and initial quadratic T-spline mesh in the
physical domain.
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Figure 23: Poisson problem on an L-shaped domain: exadisolof u andH?* error norm.

facilitates the implementation in existing finite elemeotles. Moreover, adaptive refinement can be incorporated in
the analysis directly.

Algorithmically, a multi-level T-spline mesh is generateyl successive cell subdivisions of an initial coarse T-
spline mesh. Subsequently, on each hierarchy level, Béxieaction is applied to obtain thef$tiess matrix. Initially,
this is done without consideration of any multi-level irtetion, and this interaction is then enforced by a subdiwisi
operator. It has been detailed how the algorithms can becimghted. Numerical examples illustrate the accuracy of
the proposed method. Optimal convergence rates are obi@inall cases. However, the error level for adaptive mesh
refinement is generally lower than that for uniform mesh egfient, as to be expected. Upon local mesh refinement,
the error in the stress is reduced in the entire domain, wihidicates that adaptive mesh refinement also improves
the accuracy globally.
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Figure 24: Bézier meshes and errouiat each refinement step for quadratic T-spline bases. Theismgiven as the
difference between numerical solution and exact solution.
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Appendix A. Examples of anchors of T-spline meshes

Table A lists the local knot vector and the global coordisateT-spline anchors in Figure 13.

Table A: Local knot vecto(”l ”2) homogeneous coordinatégw, x,w) and weights\{) of T-spline anchors in

Figure 13;a = v2/2,b = Ruyin, € = Rmax d = (Rmin + 11Rnax/12, € = (Ruin + 5Rmax/6, T = (Rmin + 3Rmax/4,
g= (Rmin + Rmax)/zr h= (3Rmin + Rmax)/4r m= (11Rmin + Rmax)/lzv n= (5Rmin + Rmax)/G-
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Table A: Local knot vecto(El, =2

g = (Rnin+ Rmax/2,h =

(3Rmin + Rmax) /4, m =

), homogeneous coordinatésw, xow) and weights\{) of T-spline anchors in

Figure 13;a = ‘/2/2, b = Rmin, € = Rmax d = (Rmin + 11Rnax/12, € = (Rmin + 5Rmax) /6, T = (Rmin + 3Rmax/4,
(11Rmin + Rmax/12,n = (5Rmin + Rmax) /6.
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