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Abstract

The use of Markov random field (MRF) models has proven to be a fruitful approach

in a wide range of image processing applications. It allows local texture information to be

incorporated in a systematic and unified way and allows statistical inference theory to be

applied giving rise to novel output summaries and enhanced image interpretation. A great

advantage of such low-level approaches is that they lead to flexible models, which can be

applied to a wide range of imaging problems without the need for significant modification.

This paper proposes and explores the use of conditional MRF models for situations where

multiple images are to be processed simultaneously, or where only a single image is to be re-

constructed and a sequential approach is taken. Although the coupling of image intensity val-

ues is a special case of our approach, the main extension over previous proposals is to allow

the direct coupling of other properties, such as smoothness or texture. This is achieved using

a local modulating function which adjusts the influence of global smoothing without the need

for a fully inhomogeneous prior model. Several modulating functions are considered and a

detailed simulation study, motivated by remote sensing applications in archaeological geo-

physics, of conditional reconstruction is presented. The results demonstrate that a substantial

improvement in the quality of the image reconstruction, in terms of errors and residuals, can

be achieved using this approach, especially at locations with rapid changes in the underlying

intensity.

KEYWORDS: Bayesian model; image reconstruction; inverse problems; magnetometry; Markov

chain Monte Carlo; prior models.
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1 Introduction

Usually, the first step in any image analysis application is image reconstruction. The use of

Bayesian modelling with the incorporation of prior information into the reconstruction was first

suggested more than 30 years ago by Besag (1986) and Geman and Geman (1984) – excellent col-

lected works of the key papers appear in Mardia and Kanji (1993) and Mardia (1994). Although

the use of homogeneous Gibbs prior models quickly became widely accepted they are often not

sufficient. This is particularly true when the true scene contains regions with a wide variety of

textures or when it contains features with distinct intensity compared to a background. A com-

mon consequence of the inappropriate use of homogeneous prior models is that some interesting

structures are removed during noise suppression. In such cases, it is preferable to use different

levels of smoothing for different regions in the image, that is to use a locally adaptive prior model

(see, for example, Aykroyd (1998) or Aykroyd and Zimeras (1999)).

There have been several approaches to adaptive smoothing based on the use of coupled MRF

distributions (Melas and Wilson, 1997). In one version, a hidden MRF model is used to describe

edges between regions (Besag, 1986). This allows local interaction between neighbours in the

image MRF itself to be reduced or removed. In a similar way, region labels can be modelled with

an MRF,in terms of categorical variables, allowing image segmentation and then separate MRF

models used to allow different textures within each region. Alternatively, it is possible to describe

the smoothing levels between each neighbouring pair in the main MRF using a second MRF

model (Aykroyd, 1998). This allows for more complex texture patterns including continuously

varying smoothing.

In all these cases the coupled MRF models refer to the same image. The main proposal in

this paper is to couple two MRF models which are acting on different images. Hence, two images

are being reconstructed simultaneously with the help of exogenous information from the other

image. In particular, it is assumed that there is some known relationship between the level of

some local characteristic in the two images. That is, for example, smooth regions in one im-

age correspond to smooth regions in the other, and rough regions in one correspond to rough

regions in the other.Such examples include multi-sensor satellite data (see, for example, Dousset

and Gourmelon, 2003), polarimetric imaging (see, for example, Hu et al., 2018). The location
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of these regions, however, is not known a priori but emerges as part of the reconstruction pro-

cess. The modelling can also be applied to the situation where a map of the local characteristic is

available from some other source, such as the case with PET/MR (Positron emission tomography

combined with magnetic resonance) or PET/CT (PET combined with X-ray computed tomogra-

phy) in medical imaging (see, for example, Vandenberghe and Marsden, 2015). In these cases the

noisy PET information about biological function can be enhanced by the low-noise anatomical

information from MRI or CT (see, for example, Ehrhardt et al., 2016). This reduces the joint prior

modelling to a conditional prior model given this exogenous information.

This paper is structured as follows. Section 2 provides background to the general modelling

approach based on a standard Markov random field prior distribution. Section 3 contains details

of the proposed modulated Markov random field model including general properties of the mod-

ulating function with specific examples. Brief details of parameter estimation using the Markov

chain Monte Carlo algorithm are given in Section 4 and results from a detailed simulation study,

based on the archaeological prospecting technique of magnetometry, is presented in Section 5.

The final summary and conclusions are presented in Section 6.

2 Image reconstruction using homogeneous MRF models

Suppose that we are interested in some physical quantity, X , which varies within some study

region, R ⊂ R3. Let X = (Xi : i = 1, 2, . . . ,m) be the value at a finite number of locations

(si : i = 1, 2, . . . ,m). Suppose also that data are measured at n locations sj : j = 1, 2, . . . , n

from some region S ⊂ R3, and are denoted Y = (Yj : j = 1, 2, . . . , n). Note that there is no

restriction on the relative values of n andm, and the estimation and data locations need not be the

same. In particular, the locations may be from disjoint subsets of the study region. This makes the

approach valid for remote sensing applications in environmental science or medicine as much as

for cases where the two sets of locations are identical and the problem is one of image de-blurring

or de-noising.

In this paper we consider a class of imaging problems in which the data values Y are a

degraded version of the true image X defined by the relationship

Y = HX+ ǫ (1)
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where E[Y] = HX is a corresponding blurred version but without noise. The blurring is due

to the convolution with a known transfer matrix H whose elements are defined in terms of a

point spread function, h, which depends only on the vector distance between the locations H =

[hij ]m×n = h(si − sj). The error term ǫ represents the noise component of the data which

is appropriately represented by a Gaussian error model with zero mean and covariance matrix

Σ =
[

σjj′
]

n×n
. Often the errors are also assumed to be independent with constant variance and

so Σ = σ2In. Thus, in general, Y is distributed normally with likelihood,

L(x) =
1

√

|2πΣ|
exp

{

−1

2
(y −Hx)TΣ−1(y −Hx)

}

, x ∈ Rm. (2)

The usual maximum likelihood estimator of x from the data y is x̂ = (HTΣ−1H)−1HTΣ−1y.

In the case of independent and identically distributed data, that is with Σ = σ2In, this reduces to

L(x) =
1

√

(2πσ2)n
exp

{

− 1

2σ2
(y −Hx)T (y −Hx)

}

, x ∈ Rm. (3)

In many image processing applications m >> n and so this linear inverse problem is ill-

posed, and maximum likelihood estimation is not possible. If the number of unknown param-

eters, however, is fewer than the number of data values, that is m < n, but there is correlation

between some rows, or between some columns, then the problem is ill-conditioned and maximum

likelihood estimation is still not reliable — this problem is also known as multicollinearity in the

regression literature. One approach is to introduce additional information and hence to regularise

the problem. This can be done in a statistical framework where the regularisation is achieved

using a prior distribution which describes the extra information using a probability model. The

above likelihood is combined with the prior distribution, using Bayes’ theorem, to produce a

posterior distribution — which is then used as the basis for estimation and inference.

In Bayesian image analysis, Markov random field models are widely used to model prior

information in terms of local characteristics (Cheng and Huang, 1993; Cross and Jain, 1983;

Derin and Elliott, 1987; Kinderman and Snell, 1992). The underlying true scene represents the

unknown distribution of some spatially varying process which is modelled by a prior distribution

π(x|β). This prior information is commonly quantified in the form of a Gibbs or Boltzmann

distribution, which reflects only the local behaviour of the true scene, with probability function
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of the form

π(x|β) = 1

Zβ
exp {−β V (x)} , x ∈ Rm, β > 0. (4)

The non-negative constant β is a smoothing parameter which controls the degree of correlation

between neighbouring pixels and determines the level of influence the prior has in the posterior

distribution and Zβ is a normalising constant such that Zβ =

∫

x

exp{−βV (x)}dx. In general,

it is not possible to evaluate Zβ as the high dimensional integral is intractable. It is possible,

however, to use numerical approximations, see for example Aykroyd (2002), as defined below.

Such distributions have their origins in statistical mechanics where they were first used to describe

the thermodynamic energy of gaseous molecules.

In the statistical mechanics literature function V (x) is called the energy function, which is de-

signed to assign high probabilities to expected configurations which have low energy. A common

form for the energy is as the sum of local energy contributions and further that the local energy

be simply a spatially invariant function, v, applied to a local neighbourhood, and so

V (x) =
m
∑

i=1

vi(x) =
m
∑

i=1

v(x[∂i]) (5)

where ∂i is the set of pixels in the neighbourhood of i, x[∂i] is the set of pixel values in this neigh-

bourhood and the sum is over all pixels. In the first-order neighbourhood the four nearest neigh-

bours are used, that is the pixel to the left, right, above and below, whereas in the second-order

neighbourhood the four diagonal nearest neighbours are also included. Further, it is common for

the local energies only to depend on local differences, that is

v(x[∂i]) =
∑

j∈∂i

wij φ(xi − xj) (6)

where φ is a potential function and wij allow different comparisons to be given different weight.

The only required properties of the potential function are that it is always non-negative, φ(u) > 0

for all u, symmetric, φ(u) = φ(−u), and monotonic increasing in |u|, that is φ(u2) > φ(u1) if

|u2| > |u1|. Taken together these ensure consistency of the corresponding MRF (Besag, 1986).

In particular, here a second order neighbourhood is used, with the four nearest neighbours

receiving weight 1 and the four diagonal neighbours receiving weight 1/
√
2. The most widely

used potential function, which will be included in the later numerical study, is the quadratic

φ(u) = u2, −∞ < u <∞,
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leading to a Gaussian distribution. Also popular is the potential function φ(u) = |u| giving rise

to the Laplace distributions respectively. These functions, however, have been shown to lead

to poor estimation for cases where the truth resembles a piece-wise constant function—see for

example Geman and McClure (1987), Green (1990), Weir (1997) and Allum (1997). Here, the

implicit-disontinuity prior proposed by Allum (1997) is proposed, which has potential defined as

φ(u) =















|u| − κ−1
4κ u

2, |u| < 2,

a
κ |u|+ κ−1

κ , |u| ≥ 2,

where the parameter κ is arbitrarily chosen as a large positive number so that the function is

similar to the median for small values of |u| and a low gradient linear increase for values above

the threshold. The function is strictly monotonic increasing with continuous derivative.

Although the strict monotonicity means that the corresponding density has a finite integral

with respect to u, there is no closed form expression. However, using a numerical approximation

(Aykroyd, 2002) for the normalising constant, 1/Zβ = βm/K where K is a constant, leads to the

approximate prior distribution

π(x|β) = 1

Zβ
exp {−β V (x)} =

βm

K exp







−β
m
∑

i=1

∑

j∈∂i

wijφ(xi − xj)







, x ∈ Rm, β > 0.

It is important to notes that this is not a proper distribution with respect to x as any constant

added to x does not change the value of π(x|β). This has no impact on posterior estimation,

but an alteration would be needed to allow simulation from the prior (see for example, Aykroyd,

2002).

The unknown prior parameter, β, is in turn modelled though a hyper-prior distribution, π(β).

Here, the prior should favour large values of β, and hence the following density has been used

π(β) =
1

Zλ
exp {−λ/β} , β > 0, λ > 0.

The normalising constant is defined by Zλ =
∫

β exp {−λ/β} dβ. This has introduced an addi-

tional unknown parameter, λ and, although it is possible to model this via a hyper-prior distribu-

tion, here the value will be fixed during preliminary analysis.

The posterior distribution, π(x, β|y) can be written in terms of the likelihood and the prior
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distributions using Bayes’ theorem

π(x, β|y) = f(y|x)π(x|β)π(β)/f(y)

∝ exp

{

− 1

2σ2
(y −Hx)T (y −Hx)− β V (x) +m log β − λ/β

}

,

after noting that f(y|x) ≡ L(x), and dropping constant terms which do not involve the un-

known parameters x and β. Inference now involves the simultaneous estimation of x and β from

π(x, β|y), for example using the marginal posterior means x̂ = E[x|y] and β̂ = E[β|y], or the

joint maximum a posterior estimate (x̂, β̂) = arg max
x,β

π(x, β|y) — the former approach will be

discussed in later sections.

3 Image reconstruction using modulated MRF models

3.1 Joint estimation

In this section we extend the previous description to consider two images x1 and x2 which are

to be reconstructed simultaneously from two datasets y1 and y2. It is assumed that the local

characteristics in one image provide information about the local characteristics in the other. In the

simplest of examples, this information might say that the two images are replicates, but here we

have in mind that the characteristic is some form of “local smoothness”, following any reasonable

definition of smoothness, or texture. In particular, if we expect that smooth areas in one image

correspond to smooth areas in the other, and rough areas correspond to rough areas. Many other

examples are, however, possible and some will be discussed later. It is assumed, however, that

values of all prior parameters are not under estimation, but instead might be fixed at the estimated

values from the homogeneous model discussed in the previous section.

In this case the posterior distribution is then

π(x1,x2|y1,y2) =
f(y1,y2|x1,x2)π(x1,x2)

f(y1,y2)
=
f(y1|x1)f(y2|x2)π(x1,x2)

f(y1,y2)
(7)

since we assume that y1 and y2 are conditionally independent given x1 and x2; and further that

y1 given x1 does not depend on x2, and that y2 given x2 does not depend on x1. For estimation,

the probability function f(y1,y2) is not important as it does not depend on any of the quantities

to be estimates. Hence it forms part of an overall normalising constant.
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The remainder of this section considers the novel contribution of the work. In the prior mod-

elling it is not assumed that x1 and x2 are independent, but instead that a joint prior in terms of a

single Gibbs distribution can be defined, that is

π(x1,x2) =
1

K exp {−U(x1,x2)} (8)

with joint energy of the form

U(x1,x2) = β1V (x1) + β2V (x2) + γ W (x1,x2) (9)

where β1, β2, and V (x1), V (x2), with definitions as in Section 2, describe within-image proper-

ties, whereas the new term describes between-image properties. There is an association parameter

γ ≥ 0 and association measure W (x1,x2). Note that, although implied here, there is no reason

why the same form of energy function must be applied to both x1 and x2.

To exploit various simplifications, which will be useful later, consider each energy defined in

terms of local energies, in a similar way to the homogeneous case, as

U(x1,x2) = β1
∑

vi(x1) + β2
∑

vi(x2) + γ
∑

wi(x1,x2) (10)

with, for example,

vi(x) =
1

m∂i

∑

j∈∂i

φ(xi − xj) (11)

and where ∂i represents the set of pixel indexes of the neighbours of pixel i andm∂i is the number

of neighbours, that is m∂i = |∂i|. Now bringing together the last two terms in Equation (10) to

give

U(x1,x2) = β1
∑

vi(x1) + β2
∑

[

1 +
γ

β2

wi(x1,x2)

vi(x2)

]

vi(x2) (12)

and then define a modulating function, the form of which will be discussed later,

ψi(x1,x2) = 1 +
γ

β2

wi(x1,x2)

vi(x2)
(13)

giving our definition of the joint prior distribution as

π(x1,x2) =
1

K exp
{

−β1
∑

vi(x1)− β2
∑

ψi(x1,x2)vi(x2)
}

. (14)

Note that, clearly there is an alternative representation where the roles of x1 and x2 are exchanged,

but there is no added value as the two images can always be re-labelled.
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Now, motivated by early discussion, we will define the local modulating functions and local

energies in terms of neighbouring pixel values

ψi(x1,x2) = ψ (x1[∂i],x2[∂i]) and vi(x) = v(x[∂i]), i = 1, . . .m, (15)

for example

ψi(x1,x2) = ψ

(

vi(x1)/v̄(x1)

vi(x2)/v̄(x2)

)

and ψi(x1) = ψ (vi(x1)/v̄(x1)) (16)

where v̄(x1) =
1

m∂i

m
∑

i=1

vi(x1) is the mean local energy across x2 and similarly for v̄(x1). The

aim of these is to introduce normalisation of the input variables and to contrast the properties of

the two inputs.

3.2 Conditional estimation

Suppose now that instead of simultaneous modelling two images with a joint prior distribution

we have a situation where we wish to reconstruct a single image, but we have additional spatial

information about the image in the form of an explanatory variable z = (z1, z2, . . . , zm) recorded

at the same locations (si : i = 1, 2, . . . ,m) at which we wish to estimate the values of x. A

conditional Markov random field model (Divino et al., 2000) can now be defined where the energy

function is allowed to depend on the explanatory variable

π(x|z) = K(z) exp {−U(x|z)} . (17)

The idea is to reduce, or increase, the energy as indicated by the explanatory variable. In particu-

lar, again we have in mind that the value of the explanatory variable will have some information

regarding local properties of x. Divino et al. (2000) only consider the situation where the explana-

tory variable contains information about the value of the image x. Hence, again the modelling

is extended to consider the situation where the explanatory information indicates the degree of

smoothness expected in the image x. This can be thought of as representing a kind of target

smoothness. So, z may be another image from which smoothness can be measured, or it could

directly be a smoothness map. Hence we now re-define the energy in the conditional model, using

our modulating function approach

π(x|z) = K(z) exp {−βΨ(x|z)V (x)} . (18)
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In general ψ depends on both x and the explanatory variable z, but we may also consider

cases where it only depends on the explanatory variable and so Ψ(x|z) = Ψ(z), hence

Ψ(x|z)V (x) =

m
∑

i=1

ψi(z)vi(x) with ψi(z) = ψ (z[∂i]) . (19)

Now the whole choice of modulating function has reduced to one of specifying the univariate

function, ψ. Recall that this function should be designed to adjust the prior using knowledge of the

relationship between corresponding local characteristics. We have chosen to define this function

requiring that it is non-negative, monotonic and it takes value 1 when local characteristics are

equivalent. If ψ is monotonic increasing, then the local characteristics will be called positively

associated; if monotonic decreasing, then the characteristics will be negatively associated.

There are many alternatives satisfying the above conditions, but we choose to base our modu-

lating functions on cumulative distribution functions. This choice will produce bounded functions

which will avoid extreme adjustments – a case identified as producing unappealing results in early

experiments.

Suppose we want the modulating function, ψ, to range from a minimum, α0, to a maximum,

αM , where α0 = 1/αM , and let F be our chosen cumulative distribution function which in turn

depends on a set of parameters. Then, for positive association, we write ψ as

ψ(u) = α0 + (αM − α0)F (u) (20)

and for negative association consider

ψ(u) = (α0 + (αM − α0)F (u))
−1 . (21)

Note that an apparently obvious alternative to this negative association scheme is to consider

ψ(u) = (α0 + (αM − α0) {1− F (u)}), that is using the survivor function 1 − F (u). However

for positive skew distributions, as is likely to be the case, then it will only be possible to solve

ψ(u = 1) = 1 for the case in Equation (20) but not when using the survivor function for negative

association. Now the choice of α0 and αM is determined by the range of modulation required. To

fix the other parameters we will impose the conditions that the mode of the underlying distribution

is at u = 1, and that the function at u = 1 has value 1, that is ψ(1) = 1. Again there are many

possible options for the cumulative distribution function F , but it appears, in experiments not

presented here, that there will be little practical difference across a broad range of alternatives.
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Consider the log-logistic function with scale parameter α and shape parameter β, and hence

probability density function

f(x|α, β) = (β/α)(x/α)β−1

(1 + (x/α)β)2
, x ≥ 0, α, β > 0,

and cumulative distribution function F (x|α, β) = 1
1+(x/α)−β . Setting the mode at 1, requires

α = ((β + 1)/(β − 1))1/β , and then β = ((αM − α0)/(1 − α0))/((αM − α0)/(1 − α0) − 2).

This latter condition simplifies to β = (αM + 1)/(αM − 1) when α0 = 1/αM . Figure 1 shows

examples of the modulating function for a few values of αM (each with α0 = 1/αM ) and both

positive and negative association. It is worth noting that if the log-logistic distribution is replaced

by, for example, the Weibull or the gamma distribution then very similar functions are obtained

reinforcing the comment that the exact form is unlikely to be important.
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Figure 1: Examples of cdf-based modulating functions with: (a) αM = 2, (b) αM = 3, (c)

αM = 5, (d) αM = 10 (all have α0 = 1/αM ).

4 Parameter estimation and the MCMC algorithm

The Markov chain Monte Carlo (MCMC) approach is now widely used for many statistical es-

timation problems; for theoretical details see Gamerman and Lopes (2006), Geyer (2011) and

Brooks et al. (2011), and for practical examples see Gilks et al. (1995). The following description
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follows Aykroyd (2015) where more details can be found, also see, for example, Voss (2013). The

MCMC method provides an approach when the model is complex or the number of parameters

is large and deterministic gradient-based algorithms are infeasible. In brief, the transitions in the

Markov chain are designed so that an equilibrium distribution exists and is equal to the target

distribution, for example the posterior distribution in a Bayesian analysis. If the transitions are

designed well, then after an initial transient period, referred to as burn-in, values are produced

in the same proportions as would be obtained by direct simulation. Hence, the resulting sample

will have the same statistical properties as a sample obtained directly from the posterior distri-

bution. The only difference is that, by the very nature of a Markov chain, there will be serial

correlation within the sample which must be taken into account when the algorithm output is

summarised. If transitions are badly designed, however, then the initial transient period could be

long and the within sample correlation could be high. This means that the algorithm is inefficient

and larger samples would be required to achieve acceptable accuracy and precision. There are no

special aspects to the algorithm used here, and so the interested reader is directed to one of the

above references for details. The specific MCMC numerical method is summarised in Algorithm

1 with computational code, written using the R software (R Core Team, 2016), available from

the corresponding author. The only points needing to be mentioned are that here the parameter

vector is θ = (x, β) for the homogeneous model, θ = (x1,x2) for the joint modulated model

and θ = (x1) for the conditional modulated model. In all cases only a single component of θ is

updated at each iteration, giving vector θ∗, and that a proposed value is generated as a Gaussian

perturbation of the current value using a suitable variance.

Although the theoretical proof of convergence etc is complicated, the statement and imple-

mentation of the algorithm is often straightforward. When considering complex estimation prob-

lems, however, great care may be needed; Lui (2001) gives an in depth catalogue of basic ap-

proaches that are likely to cover a range of situations.

Then, the only remaining practical issue is the choice of the proposal variance. It is important

to realise that both low and high values lead to long transient periods and highly correlated sam-

ples and hence unreliable estimation (see, for example, Gelman et al., 1997; Sokal, 1989; Cowles

and Carlin, 1996; Raftery and Lewis, 1995). A reasonable proposal variance can be chosen adap-
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Set an initial value for θ, call this θ0 = (θ1 . . . θp)

Repeat the following steps for k = 1, . . . ,K

Repeat the following steps for i = 1, . . . , p

Generate ǫ from a Gaussian distribution N(0, τ2)

Generate a propose new value θ∗i = θi + ǫ

Evaluate

α =
π(θ∗|y)
π(θ|y)

Generate u from a uniform distribution U(0, 1)

If α > u then accept the proposal and set θi = θ∗i , otherwise θi = θi

End repeat

End repeat

Discard initial values and use remainder to make inference.

Algorithm 1: A simple random-walk Metropolis-Hastings algorithm.

tively during the early burn-in period. Once the sample has been generated from the posterior

distribution, a number of possible estimators are available. Let θ1,θ2, . . . ,θK be the MCMC

sample collected after equilibrium of the Markov chain has been declared, then the pixel-wise

posterior mean and variances can be estimated by the sample mean and variance, and credible

intervals using the appropriate sample percentiles. Similarly, marginal posterior distributions and

other functions of the parameters can be estimated easily using the corresponding function of the

MCMC sample.

5 A simulation study based on archaeological geophysics

5.1 Background

In archaeological geophysics various remote sensing methods, including magnetometry and seis-

mology, use surface measurements to indirectly investigate the underground scene. The set of

magnetometer readings across an archaeological site provides an image of the magnetic features

beneath the ground surface. In particular, the readings depend on the nearby magnetic suscep-

tibility values, but they are a blurred and noisy version of the true, but unknown, susceptibility

distribution. In the following example simulated data will be generated where x represents the

true magnetic susceptibility distribution with y the corresponding surface magnetometry data.

13



Details of the data modelling process, and the definition of blur matrix H in particular, can be

found in Aykroyd et al. (2001) and Aykroyd and Al-Gezeri (2014).

(a) (b) (c)

Figure 2: Stages in the data modelling: (a) true intensity distribution with four small circles

around a large circle, (b) point-spread matrix, H , and (c) resulting example dataset.

The true underground scene, see Figure 2(a), is make-up of a large circular region of moderate

susceptibility material in the centre, surrounded by four small circular high susceptibility regions

on the perimeter of the large circle. The diameters of the small circles vary with the greatest

at the top-right decreasing in an clockwise direction to the smallest at the top-left—these small

circles are particularly challenging to reconstruct amongst the blurring and noise. This means

that there is a substantial susceptibility contrast between adjacent regions, but precise uniformity

within region. The blur matrix, see Figure 2(b), introduces a slight southerly shift in the peak

intensity in the recorded magnetic field strength of a feature compared to the truth, and the random

error, which in practice is caused by natural variation and measurement error, masks details—an

example dataset is shown in Figure 2(c).

5.2 MCMC convergence and sample size

To start the analysis, the standard prior based model is used, and the MCMC algorithm produces

an estimate of the posterior mean which is calculated using the pixel-wise sample mean after

a burn-in period. Here, a burn-in of 500 iterations is used with a main run of 10000 using the

hyper-parameter value of λ = 105. Separate proposal variances for each parameter were set

during the burn-in period to achieve acceptance rates of 20–25%. To reduce autocorrelation, a

1-in-10 thinning is applied to give a working sample of 1000 for estimation. Figure 3 shows

traces through the MCMC run for β and two selected pixels, one from the background and one

14
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Figure 3: Examples of MCMC monitoring output with 500 iteration for the burn-in and 1000 for

the main run: (a) trace of β, (b) & (c) trace of two selected pixels, (d) ACF of β, and (e) & (f)

ACF of selected pixels.

from the small region towards the top-right, along with corresponding autocorrelation functions

from the values after the burn-in. Together these show a rapid convergence to the equilibrium

distribution with only moderate autocorrelation, and hence that estimation should be adequately

reliable. Sample size calculations (Aykroyd and Green, 1991) indicate that a sample size of almost

1000 is needed to reduce the Monte Carlo variation to 1% of the sampling variance, but that about

200 is sufficient to achieve an acceptable 5% figure. This suggest that the existing run is more

than enough for good estimation and that a smaller sample would be adequate. In the next section

all example reconstructions use these large samples, whereas in Section 5.4 shorter runs, with a

main working sample of 200, are used in a simulation study involving replication.

5.3 Reconstruction results

The posterior mean estimate based on the Allum prior distribution is shown in Figure 4(a) and that

based on the Gaussian prior distribution is in (d). In both it can be seen that a reasonably clear re-

construction is obtained with the southerly shift removed and the noise reduced substantially.The
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Allum prior reconstruction, however, is much clearer with better defined changes between re-

gions and flatter within regions—these are key properties. However, the errors shown in (b) and

(e), comparing the estimates with the true values, show clear patterns. Similar comments can be

made about the residuals shown in (c) and (f), which compare the fitted values with the data. It

is possible to reduce the patterns in the residuals by decreasing the value of λ in the hyper-prior

distribution of β, however this is at the expense of introducing additional noise into the posterior

mean estimate. Given that our primary aim is to produce a piecewise constant reconstruction,

the larger value of λ is preferred. Hence a suitable value of λ is one which produces a small, to

moderate, pattern in the residuals and general smoothness in the reconstruction.

Figure 5 shows marginal posterior distributions for the same three parameters shown in Fig-

ure 4, that is the parameter β and two individual pixel values. The top row are from the estimation

using the Allum prior and the bottom row using the Gaussian prior. In each the histogram sum-

marises the posterior sample and the continuous curve is the smoothed density estimate. The

thick horizontal bar at the bottom shows the posterior 95% credible interval and the small triangle

(a) (b) (c)

(d) (e) (f)

Figure 4: Standard reconstruction: top row using the Allum prior and bottom row using a Gaus-

sian prior, then (a)/(d) posterior mean, (b)/(e) error relative to true values and (c)/(f) residuals

relative to data values.
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Figure 5: Standard reconstruction: top row using the Allum prior and bottom row using a Gaus-

sian prior, then (a)/(d) marginal posterior distribution of β, (b)/(e) marginal posterior distribution

of single background pixel and (c)/(f) marginal posterior distribution of single small region pixel.

is the posterior mean. The posterior estimates for β, using (i) the Allum prior is β̂ = 35.0, with

a credible interval of (33.9, 36.2), and (ii) the Gaussian prior is β̂ = 74.9, with a credible inter-

val of (71.2, 78.8). Each has a reasonably symmetric distribution which passes a Shapiro-Wilk

normality test (p = 0.3 and p = 0.8, respectively). For the individual pixel values it is very no-

ticeable that the marginal distributions using the Allum prior are much narrower than those with

the Gaussian prior. Three of these fail a Shapiro-Wilk normality test (p < 0.001, p = 0.003,

p = 0.096 and p = 0.004, respectively) and hence it is best not to base any inference on a

normality assumption.

Further investigation is shown in Figure 6, again with results for the Allum prior in the top

row and the Gaussian prior in the bottom row. Panels (a) and (d) show profiles through the image

reconstruction with the solid curve being the posterior mean surrounded by the 95% credible

interval and with the true value shown as a step function. These show the superiority of the Allum

prior especially where the true values change rapidly. Panels (b) and (e) show the width of the

95% credible interval with a clear pattern of larger values around the boundaries of the regions
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Figure 6: Standard reconstruction: top row using the Allum prior and bottom row using a Gaus-

sian prior, then (a)/(d) posterior mean along the middle row, (b)/(e) posterior credible interval

width (c)/(f) posterior local energy.

with the Allum prior, but in contrast there is no pattern for the Gaussian prior. The posterior

means were used to calculate the local energy map in (c) and (f) which show the smooth regions

in white and the locations of more abrupt change in grey. Again, it can be seen that the Allum

prior allows sharp change at the regions boundaries.

Now moving to reconstruction using the modulated MRF model. Given that we require re-

duced smoothing in areas with high values of local energy, a negative association modulating

function is selected. Figure 7 shows the posterior means, errors and residuals using αM = 10,

with the value of β kept fixed at the posterior estimate from the standard model. Both sets of

results show noticeable improvement over the corresponding standard reconstruction. The edges

are clearer, with a slight increase in smoothness elsewhere, and the residuals show a reduced

spatial pattern. Figure 8 shows further results. The patterns in the Allum prior posterior mean

profile, panel (a), is particularly noteworthy showing very wide credible intervals at the region

boundaries. This pattern is also shown in (b) by the dark shades. The sharpening of the recon-

struction is also demonstrated by the increase in local energy at region boundaries, particularly as
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(a) (b) (c)

(d) (e) (f)

Figure 7: Modulated reconstruction using the Allum (top row) and Gaussian priors (bottom row),

then (a)/(d) posterior mean, (b)/(e) error relative to true values and (c)/(f) residuals relative to data.
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Figure 8: Modulated reconstruction using the Allum (top row) and Gaussian priors (bottom row),

then (a)/(d) posterior mean profile, (b)/(e) credible interval width (c)/(f) local energy.
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shown for the Allum prior shown in (c).

5.4 A simulation study

To compare the various image reconstruction methods quantitatively, the whole estimation pro-

cess is repeated K = 10 times to produce reconstructions (x̂k : k = 1, . . . ,K) where x̂
k =

(x̂k1, . . . , x̂
k
n). Several goodness of fit measures will be considered, starting with the average sum

of squared errors (SSE)

SSE =
1

K

K
∑

k=1

n
∑

i=1

(x̂ki − xi)
2 (22)

which gives an overall measure of accuracy. We are, however, mainly interested in the accuracy

around the various region boundaries and hence a narrow-band SSE is also defined which is only

calculated over the pixels within a narrow band one pixel each side of a boundary,

SSEB =
1

K

K
∑

k=1

∑

i∈B

(x̂ki − xi)
2 (23)

where B is the set of pixel in the narrow-band set. We also consider the average residual sum of

squares (RSS) given by

RSS =
1

K

K
∑

k=1

n
∑

j=1

(ŷkj − ykj )
2 (24)

where ŷk1 , . . . , ŷ
k
m are the fitted values corresponding to reconstruction using data yk1 , . . . , y

k
m, re-

spectively. Finally, to focus on within-region variability, we consider a sum of squared deviations,

SSDB̄ , calculated ignoring the narrow-band pixels, that is over the set B̄, defined as

SSDB̄ =
1

K

K
∑

k=1

∑

i∈B̄

(x̂ki − ¯̂xki )
2 (25)

where (¯̂xk1, . . . ,
¯̂xkm) are mean values calculated from pixels within corresponding regions—note

that this requires knowledge of true region locations.

A summary of the results, in terms of SSE, SSEB , RSS and SSDB̄ , are shown as boxplots

in Figure 9. In each panel, the left-hand pair use the Allum prior and the right-hand pair the

Gaussian prior, then within each pair the left-hand is with the standard prior and the right-hand

is with the modulated prior. The standard Gaussian prior produces the higher SSE followed by

the standard Allum prior. There is then a substantial reduction produced by the modulated priors,

with the modulated Allum prior having the lowest SSE. For the RSS, the highest value is for
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the standard Allum prior, but both modulated prior distributions have substantially lower values.

When concentrating on the narrow-band SSE the picture is clearer than for the regular SSE with

a substantial improvement due to the modulated approach for both prior distributions. Similarly,

concentrating on the variability within region, it is clear that the Allum prior distributions lead

to flatter regions and that the modulated functions improve the flatness. Taking together the

visual appearance and the quantitative measures, it is clear that the modulated prior approach is

worthwhile and that the Allum prior performs better than the Gaussian. Hence, the modulated

Allum prior is the best approach.

S
S

E

●

0
5

10
15

20
25

30

Allum Gaussian

(a)

●

R
S

S

●

35
0

40
0

45
0

50
0

55
0

Allum Gaussian

(b)

N
ar

ro
w

−
ba

nd
 S

S
E

0
5

10
15

20
25

30

Allum Gaussian

(c)

W
ith

in
 r

eg
io

n 
S

S
D

●

0.
0

0.
5

1.
0

1.
5

2.
0

Allum Gaussian

(d)

Figure 9: Comparison over replication: (a) sum of squared error (SSE), (b) residual sum of

squares (RSS), (c) narrow-band sum of squared error (SSEB) and (d) within region sum of squared

deviations (SSDB̄). In each panel, the left-hand pair use the Allum prior and the right-hand pair

the Gaussian prior, then within each pair the left-hand is with the standard prior and the right-hand

is with the modulated prior.
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6 Discussion

One of the greatest challenges when performing any kind of Bayesian image reconstruction is

the choice of prior parameter. One approach is to use trial-and-error, that is to try many values

and see which results in the most “appealing” estimated image. This may produce a “nice” im-

age but is ad-hoc, very subjective and open to question . Such lack of reproducibility naturally

suggests the use of an automatic procedure which can also incorporate uncertainty. Fortunately,

the Bayesian approach can accomplish this easily by the additional of a hyper-prior distribution

into the hierarchical modelling framework, and the MCMC algorithm provides a straightforward

method for full estimation. However, the standard homogeneous prior will not work for all cases.

In particular, if the scene itself is not homogeneous, but instead contains regions of very different

intensities with sharp changes – this is the usual case when the scene contains objects – then the

boundaries will be over-smoothed or the uniform regions will be under-smoothed. Any choice

of a single prior parameter cannot balance the dual requirement of strong smoothing within uni-

form regions with the need for low, or no, smoothing across region boundaries. Although, one

approach is to consider a full inhomogeneous prior model the resulting increase in the number of

prior parameters requires more modelling and much more computational time as the number of

prior parameters which need estimating will increase dramatically.

In this paper, a radical alternative to the fully inhomogeneous MRF model has been proposed.

This prior distribution allows local adjustments to the model based on some pre-specified function

of a second image. Although this is related to previous approaches it is not limited to comparing

corresponding intensities, but instead proposes the use of a local statistic, such as local energy, to

modulate the prior. Hence the previously suggested approaches are special cases of our proposed

method. There are many real data examples which have this structure and it is our intention to

perform an investigation as future work. Obvious examples include archaeological geophysics,

the motivation for the simulation study presented here, which can combine magnetometry, seis-

mology and radar, or in medical imaging where high-resolution magnetic resonance imaging

can to used to provide a contextual smoothing map to guide a PET reconstruction. The clear

wide-spread applicability and encouraging numerical results suggest that the use of the locally-

modulated Markov random field (lm-MRF) model has the potential for major impact and can
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become a standard tool for all those working in image processing and statistical image analysis.
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