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a b s t r a c t

Cost data are crucial in conservation planning to identify more efficient and equitable land

use options. However, many studies focus on just one cost type and neglect others,

particularly those borne locally. We develop, for a high priority conservation area, spatial

models of two local costs that arise from protected areas: foregone agricultural opportu-

nities and increased wildlife damage. We then map these across the study area and

compare them to the direct costs of reserve management, finding that local costs exceed

management costs. Whilst benefits of conservation accrue to the global community, sig-

nificant costs are borne by those living closest. Where livelihoods depend upon oppor-

tunities forgone or diminished by conservation intervention, outcomes are limited.

Activities can be displaced (leakage); rules can be broken (intervention does not work); or

the intervention forces a shift in livelihood profiles (potentially to the detriment of local

peoples’ welfare). These raise concerns for both conservation and development outcomes

and timely consideration of local costs is vital in conservation planning tools and

processes.
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1. Introduction

Spatially explicit land use planning for conservation has advanced substantiall through the modelling of multiple

ecosystem service values alongside biodiversity (Bateman et al., 2013; Cimon-Morin et al., 2013). This work has highlighted

the risk of making suboptimal choices if not all of the benefits that can arise from different land use decisions are accounted

for (Bateman et al., 2013). Likewise, multiple costs exist and there is broad and increasing recognition of the importance of

considering economic costs in biodiversity conservation planning (Ando et al., 1998; Armsworth, 2014; Naidoo et al., 2006;

Polasky, 2008). For many parts of the world, however, there are limited data on the spatial distribution of costs, and even

fewer studies on how who bears them (although see Badola et al., 2010; Emerton, 1999; Ferraro, 2002; Franks, 2008). This is

all the more important because the benefits of conservation disproportionately accumulate to the international community,

whilst we expect the costs mainly to accrue locally (Badola et al., 2010; Balmford and Whitten, 2003; Franks, 2008; Ghate,

2003; Wells, 1992). These issues feed directly into important wider debates about who should pay for conservation, where

those payments should be directed, and by what mechanism should they be made (Balmford andWhitten, 2003; Ferraro and

Kiss, 2002; Pechacek et al. 200) as well as around the integration of strategies for poverty reduction and biodiversity con-

servation (Adams et al., 2004).

There are three important uses of cost data in conservation. First, they can greatly improve cost effectiveness of systematic

conservation planning because spatial variation in cost is frequently greater than (and not congruent with) spatial variation in

biodiversity value (Di Minin et al. 2013; Naidoo et al., 2006). Second, conservation measures are regularly justified by the

value of ecosystem services that they generate. However, net value cannot be calculated unless the cost of providing or

maintaining those services is also known (Badola et al., 2010; Balmford et al., 2011). Third, whilst conservation leads to

increased welfare amongst some in society, it can impose a burden upon others (e.g. Cernea and Schmidt-Soltau, 2003;

Cernea and Schmidt-Soltau, 2006). Recognising and addressing inequalities in the distribution of costs and benefits is

essential to developing equitable and effective conservation interventions (Di Minin et al. 2013; Ferraro, 2002; Pechacek et al.,

2013; Sheil et al., 2013; Turner and Fisher, 2008).

Protected areas (hereafter “reserves”) remain instrumental in current conservation efforts (Joppa and Pfaff, 2011). In much

of the biodiverse tropics, however, data on the local costs that reserves impose - such as opportunity and damage costs - are

scarce (although see Hariohay and Røskaft, 2015; Rantala et al., 2013) and rarely are they spatially explicit (Naidoo and

Iwamura, 2007). When land is set aside for conservation, an opportunity cost results, which is at least equal to the net

benefits obtained if the land were available instead for development to some other productive use (Naidoo and Adamowicz,

2006). Damage costs are those associated with the elevated wildlife damage to crops or property that occur around reserves

(Naidoo et al., 2006).

It is timely, then, to compare multiple costs in a high priority conservation area where development and conservation

concerns compete for finite resources and attention. We consider the magnitude and distribution of these three cost types e

reserve management costs, wildlife damage costs and opportunity costs e and highlight the importance of considering local

costs in conservation planning.

2. Methods

2.1. Study area

The Eastern Arc Mountains (EAM) in Tanzania support tropical moist forests with exceptionally high species richness and

endemism (Burgess et al., 2007). They also support miombo woodland that has lower biodiversity value but which, as an

important source of ecosystem goods such as charcoal, and firewood, is converted at much higher rates (Green et al., 2013;

Lund and Treue, 2008).

To understand how the costs of conserving a tropical biodiversity hotspot are distributed, we compare subnational spatial

models of three conservation costs that vary in their distribution from local to international. In the EAM the direct costs of

reservemanagement, borne nationally and internationally, have beenmodelled spatially (Green et al., 2012). We also develop

models for opportunity cost and damage costs, which villagers living adjacent to reserves elsewhere in Tanzania considered

the most important local costs (Kideghesho & Mtoni, 2008).

Below we first describe the data that we used to estimate income from farming through, which came from existing

literature and from our own farmer survey. We then describe the models used to estimate opportunity cost and calculate

damage cost, and finish by describing the spatial data and units of analysis.

2.2. Yield data

We use estimated yields of maize and bean across East Africa (approx. 18.5 km resolution; Thornton et al., 2009) under

current smallholder farming practices for sowing time, planting density and fertiliser application. Maize is a vital food crop in

East Africa (Thornton et al., 2009) and a farmer survey in 2009 (below) showed that it accounted for 63% of sampled fields in

the EAM. We also mapped bean yields for areas in which the climate allows two harvests per year: maize in season one,

followed by beans in season two. This second harvest is important to annual farm productivity (Thornton et al., 2009).
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2.3. Farmer survey

During August-October 2009, we surveyed 135 farmer households from 23 EAM villages. We collected information on

planted crops, yields, prices, and labour. We also asked whether the farm experienced crop damage and, if so, the species

causing the damage, its frequency and extent, and the measures taken to guard crops. Median maize and bean farm gate

prices were 0.2 and 0.6 USD/kg, respectively (maize: range¼ 0.05e0.7 USD/kg, n¼58; bean: range¼ 0.4e0.7 USD/kg, n¼12).

54% of fields were planted with bought seed at a rate of 20 kg/ha for maize and 66 kg/ha for bean (maize: range¼ 2e100 kg/

ha, n¼72; bean: range¼ 3.5e328 kg/ha, n¼26). We multiplied seed application rates by crop price to derive the input cost for

seed. Annual application of Nwas assumed to be 5 kg/ha at 0.6 USD/kg (Thornton et al., 2009). Annual household labour input

was 55 days/ha for maize farming and 49 days/ha for bean farming. Labour was multiplied by the median unskilled wage

available to surveyed villagers (1.7 USD/day; range¼ 0.4e4.0 USD/day; n¼16). We calculated net rent by multiplying crop

yields by their market value and subtracting seed, labour and fertiliser costs (Equation (1)).

NetRentit ¼ ðYi � PÞ � ðSþ F þ LÞ (1)

where NetRentit is the annual net rent frommaize or bean production on a one hectare land parcel i, Yi is the yield (kilograms)

per hectare, P is the price of maize or bean per kilogram, S is the costs of seed per hectare, F is the fertiliser cost per hectare and

L is the labour cost per hectare. We did this separately for maize and beans; wherever farming maize or bean was profitable

(i.e. net rent exceeded zero), we summed profits across seasons (maize plus bean) to derive annual net rent.

2.4. Opportunity costs of reserves

The opportunity cost of reserves is calculated from the most likely profitable alternative if the land were not conserved.

Wheremarket data are unavailable, land price can be estimated from the expected net present value of future profits from the

land, which will vary across space, reflecting changes in land quality and transportation costs (Naidoo and Adamowicz, 2006).

We assume that the most likely alternative use in the EAM is agriculture, which accounts for >80% of Tanzania's employment

and 30% of its gross domestic product (Arndt et al., 2012). In addition to benefits from agricultural production, we also

quantify one-off “windfall” benefits. Upon conversion, we assume that woody biomass is processed and sold as charcoal,

given the role of charcoal production as a major mechanism of forest and woodland conversion across Africa (Fisher et al.,

2011). We used published data on charcoal value (net of licensing, production and transportation costs), which vary for

different land covers: 400e900 USD per ha for woodland and 1450e2,000 USD per ha for forest (Fisher et al., 2011).

The opportunity cost of land is calculated from its net agricultural and charcoal value multiplied by the probability that it

will be converted (Naidoo and Adamowicz, 2006). Thus we calculate the expected net value (bounded between zero and the

expected rent from the land if it were converted immediately), rather than the potential net value. An area of land may be

highly fertile, but if conversion is unlikely due, say, to inaccessibility, this is important for its valuation (Schaafsma et al., 2012).

We use a published model of conversion probability for all remaining forest and woodland in the study area (Green et al.,

2013). This model was parameterised for forest and woodland outside of statutory protection (driven mostly by topog-

raphy and accessibility variables) and extrapolated to all forest and woodland, including that which lies within reserves. To

calculate present values of future costs, we use a r¼ 15%/y discount rate, applied over a 25-year time horizon, but also report

results for r¼ 5%/y and r¼ 20%/y. These reflect the median (15%), minimum (4%) andmaximum (21%) discount rates reported

by the Bank of Tanzania from December 2005eNovember 2010.

We first calculate the net present value of harvest of a given cell in any particular year (Equation (2)).

Ag:NPVit ¼
ðNetRentmi þ NetRentbiÞ

ð1þ rÞt
(2)

where NetRentmit and NetRentbit are the expected net rent from maize and bean, respectively, for a particular land parcel i in

year t (Equation (1)), and r is the discount rate. We assume that the probability of conversion, p, remains constant and that,

once converted, land remains farmed.We thenmultiply the probability that the cell has been converted by any particular year

(Equation (3); Green et al., 2013) by the net present value of farming in that year, Ag.NPVit, to give an expected value of

conversion in each year. Summing this across a 25-year time horizon, gives the opportunity cost of agriculture if that cell is set

aside for conservation (Equation (4)).

pit ¼ 1� ð1� piÞ
t (3)

OppCostagric ¼
X25

t¼1

Ag:NPVit � pit (4)

Similarly, we calculate the net present value of charcoal production Ch.NPVit for each year t¼1… 25. We assume all charcoal

benefits accrue at the time of conversion. Therefore, the probability of conversion in each year, pit, is multiplied by Ch.NPVit to
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estimate the expected charcoal value of conversion in each year. We sum across a 25-year time horizon to derive the op-

portunity cost of charcoal (Equation (5)).

OppCostch ¼
X25

t¼1

Ch:NPVit � pit (5)

2.5. Wildlife damage costs of reserves

Damage goes largely unreported in Tanzania and, although we collected data on crop damage, these were insufficient to

develop reliable spatial models. However, the most consistently reported predictor of damage by wildlife in Tanzania and

elsewhere is distance to reserves (e.g. Hariohay and Røskaft, 2015; Mackenzie and Ahabyona, 2012; Naughton-Treves and

Treves, 2005). Therefore, we estimated damage costs using work by Naughton-Treves and Treves (2005) that was con-

ducted in parts of East Africa with similar farming techniques and damaging species to those found in our study area

(Kideghesho, 2008; Green, 2012). This work demonstrates that over 90% of wildlife damage from a reserve occurs within

0.2 km of its boundary. Within this zone, mean damage varies from 4 to 9.4% of crop yields (Naughton-Treves and Treves,

2005). Therefore, to estimate damage costs, we constrained the rent derived from farming to currently cultivated areas

and quantified losses of 4%, 7% and 10% of yield within 0.2 km of habitat borders. For consistency with estimates of oppor-

tunity cost we focus on damage to maize and beans. Maize was also the most commonly damaged crop in our farmer survey

(48% of events) and in an earlier studies (Kideghesho, 2008; Mc Guinness and Taylor 2014).

2.6. Spatial analyses

Land cover data (1ha resolution) from a survey by Hunting Technical Services (1997) were updated to the year 2000 by

local experts (Swetnam et al., 2011). We estimated human population density within and adjacent to the reserve network

using the derived product LandScan 2008 (Bright et al., 2009). This layer is a modelled surface, based upon administrative

boundaries, land cover data, topography, roads and population centres. We further modified it to exclude populations from

National Parks and Game Reserves and to match ward-level census data for the year 2002 (NBS, 2002; Platts et al., 2011).

Reserve boundaries are from IUCN & UNEP-WCMC (2010), modified to correct errors (Larrosa, 2011). Reserve management

costs were from a spatially explicit model for the EAM, which extrapolates managers’ estimates of necessary expenditure to

all areas (including non-reserves) based on topography and human pressure (Green et al., 2012, Table 1).

We mapped all costs to all areas for several reasons. First, we wanted an EAM-wide assessment of each cost to allow us to

make a consistent comparison between the three. This also ensures that we do not bias our comparison by the tendency for

reserves to be sited in areas of lower human pressure (Joppa and Pfaff, 2009). Second, in demonstrating the costs of

conserving the remaining natural habitat in the hotspot (forest and woodland), we also argue that unpaid opportunity and

damage costs for existing PAs may still need to be met if conservation is to be accepted and supported by local people.

The median size of state-owned reserves in the EAM is 9 km2, so we chose this as an appropriate scale for modelling

damage costs andmanagement costs across the study area (Green et al., 2012).We also aggregated opportunity cost estimates

to this resolution (3 km� 3 km) to allow for direct comparison. We modelled costs across the study region, both inside and

Table 1

Comparison of cost data layers. For all three cost types, protected area shapefiles are fromUNEP-WCMC (2010) and annual costs are discounted over a 25-year

time horizon, using discount rates of 5%, 15% and 20%, to estimate net present cost.

Data layer Description of derivation Data sources Resolution

Management

cost

Data from a survey of 40 protected area managers in the

Eastern Arc Mountains, responsible for 96% of the

mountains' protected areas, were modelled according

to human population pressure. This model was

extrapolated to the entire Eastern Arc Mountains.

� Questionnaire and modelling

procedure: Green et al. (2012).

� Population density: Landscan

2008 (Bright et al., 2009)

� Population pressure calculation:

Green et al. (2012).

Datamodelled at 9 km2, themedian size

of protected areas in the Eastern Arc

Mountains.

Opportunity

cost

Input costs and farm gate crop values were collected

during farmer interviews. These were combined with a

regional map of crop yields to estimate net potential

value. An Eastern Arc Mountain-specific model of

conversion probability was then applied to derive net

expected value.

� Crop yield: Thornton et al. (2009).

� Farmer interviews: this study.

� Conversion probability: Green

et al. (2013).

Data were modelled at 0.1 km2 for

estimating the cost of the existing

reserve network. Data were also

aggregated to 9 km2 for comparison

with other data layers.

Damage cost We used farmer interviews to determine the type of

species causing crop damage and farmers' responses.

These data were used to identify crop damage studies

that were conducted in similar farming systems those in

the Eastern Arc Mountains and with a similar subset of

damaging species. Using local data for farm productivity

and land cover, we then applied the simple models

described in these studies to the Eastern Arc Mountains.

� Farmer interviews: this study

� Damage models: Naughton-

Treves and Treves (2005).

� Crop yield: Thornton et al. (2009).

� Interview data: this study.

� Land cover: Hunting Technical

Services (1997) updated to year

2000 (Swetnam et al., 2011).

Data were modelled for 9 km2 pixels to

illustrate their variation across the

study region (Fig. 1b). For all other

calculations, however, they were

applied only to boundaries between

either forest/woodland and cropland or

protected areas and cropland (land

cover data at 0.1 km2 resolution).

J.M.H. Green et al. / Global Ecology and Conservation 14 (2018) e003854



outside of reserves and provide summaries by vegetation type (woodland and forest). We calculated the level of association

between these cost layers using a Spearman-rank correlation test. We also provide results based on the existing reserve

network, which we estimated using the native resolution of the analyses (Table 1). We used R 2.15.1 (R Development Core

Team., 2009) and ArcGIS 10 (ESRI, 2010) for analyses. Monetised values are for 2010 USD, using an exchange rate of 1

USD¼ 1,450TZS.

3. Results

Across the EAM, opportunity cost varies substantially, with estimates for a medium discount rate (r¼ 15%) ranging from

0 to 1336 USD/ha (mean¼ 191± 234SD; Fig. 1; Table 2). Opportunity costs are greater near mountain bloc edges, where

population densities and accessibility are higher, resulting in a greater probability of conversion. Although the value of

Fig. 1. Spatial variation in the costs of conserving forest and woodland in the Eastern Arc Mountains, summed for management, damage and opportunity costs

(net present value, r¼ 15%). Yellow area indicates habitat other than forest/woodland within the Eastern Arc Mountains. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)
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charcoal stocks and agricultural yields are greater in forest (Fig. 2a), forest is converted at far lower rates than woodland,

resulting in expected opportunity costs for forest that are substantially smaller than those for woodland (Fig. 2b and c).

The mean wildlife damage cost of forest and woodland is far lower than our estimated opportunity costs, at just 9.3 USD/

ha, in part because of the many areas of forest and woodland that do not border cropland (Table 2). However, this varies

widely and is highest in the centre and northeast of the study area, where high value cropland borders forest and woodland

habitat (Fig. 1; Fig. S1).

Management and opportunity costs are greater near more populated and accessible areas, while damage costs are

associated with cultivated areas (Fig. 1; Fig. S1; Green et al., 2012; Green et al., 2013). Spearman-rank coefficients measuring

spatial correlation between them, however, are low at these scales of analysis (forest: 0.20e0.36; woodland: 0.13e0.41;

Tables S1 and S2). Nevertheless, we estimate that in 2002, just 0.6% of Tanzania's population of 36 million lived within 200m

of the EAM reserve network and just 2.5% within 2 km (Table S3).

Across the entire study area, opportunity andmanagement costs are roughly equal for forest cells, accounting for 44% each

of the total cost, whilst damage costs account for 12% (Fig. 3). The average woodland cell has much higher total costs that are

dominated by opportunity costs at 80%, followed by management costs (17%) with damage costs accounting for just 3%

(Fig. 3). Within just the current reserve network, opportunity costs account for around two thirds of the total, management

costs slightly less than one third and damage costs just 5% (Fig. 3).

Table 2

Comparing mean (±SD) net present cost/ha across reserved and non-reserved forest and woodland in the Eastern Arc Mountains. Results are presented for

high and low discount rates (r¼ 20% and 5%, to give low and high estimates, respectively), but we use the medium estimate (in bold; r¼ 15%) for all further

results and comparisons. As well as accounting for low and high discount rates, the net present costs of wildlife damage are further adjusted for low and high

rates of yield loss (4% and 10%, respectively). The net present cost of forest and woodland in the current reserve network (553,500 ha) is given in the final

column.

Cost Type Estimate Forest Woodland Forest and Woodland Reserve Network

Reserves Non-Reserves Reserves Non-Reserves Min. Max. Mean Total

Opportunity Cost Low (r¼ 20%) 34± 56 36± 41 106± 104 181 ± 190 0 940 134± 167 $37,643,030

Medium (r¼15%) 49± 81 54± 61 160± 154 256 ± 265 0 1336 191± 234 $56,331,583

High (r¼ 5%) 181± 300 202± 234 635± 589 867 ± 949 0 4566 668± 831 $219,723,355

Damage Costs Low (yl¼ 4%; r¼ 20%) 6± 8 8± 9 2± 4 4 ± 6 0 45 4± 7 $2,087,302

Medium (yl¼7%; r¼15%) 12± 17 18± 20 4± 10 9 ± 14 0 98 9± 15 $4,584,191

High (yl¼ 10%; r¼ 5%) 35± 50 52± 59 12± 27 27 ± 41 0 283 27± 43 $13,243,022

Management Costs Low (r¼ 20%) 40± 5 40± 5 39± 3 39 ± 3 25 57 39± 3 $21,742,969

Medium (r¼15%) 50± 6 50± 6 49± 4 49 ± 3 31 72 49± 4 $27,287,160

High (r¼ 5%) 101± 13 101± 12 99± 8 99 ± 7 63 145 99± 9 $55,179,884

yl¼ yield loss due to damage by wildlife.

Fig. 2. Calculating opportunity cost of conservation for the forest (grey boxes) and woodland (white boxes). Black bars show median; boxes show interquartile

range; whiskers indicate points within 1.5 times the interquartile range above and below the upper and lower quartiles. (a) The first step in calculating op-

portunity costs of conservation is to estimate the net present value (r ¼ 15%; time horizon ¼ 25y) of converting the existing biomass to charcoal (Ch.NPV) and

then farming (Ag.NPV) on the converted land to derive an estimate of the private benefits (Ch.NPV þ Ag.NPV) that could be earned by converting the land now

(plotted values assume conversion in year 1). However, this does not account for the expected rates of habitat conversion (Prob.Conv.) in the absence of protection

(b), which are much lower for forest. (c) Once the modelled probability of conversion is accounted for the expected value (or opportunity cost) is substantially

lower.
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4. Discussion

Conservation costs accrue disproportionately to poorer nations and communities (Balmford and Whitten, 2003; Wells,

1992). Our analyses allow us to investigate this within a tropical biodiversity hotspot. Even accounting for the relatively

low rate of forest conversion, we find that opportunity and damage costs, largely borne by those living within the vicinity of

the reserves, are greater than reserve management costs, which are borne at national and international scales, paid for via

taxes, and revenues from wildlife tourism and hunting licenses (Kideghesho, 2008; Green, 2012).

The incidence of poverty in districts in and around the Eastern Arc Mountains is high; over thirty percent of people live

below the national poverty line, and access to improved water, electricity and decent shelter is low on average (Fisher, 2012).

Evenwithin the EAM, however, poverty in more rural districts is higher (Fisher, 2012). As in much of the world, conservation

areas in Tanzania tend to be located away from urban areas, so that rural households bear the opportunity costs of conser-

vation and wildlife damage costs. Poverty in Tanzania has been described as “mainly a rural phenomenon” (Schaafsma, 2012)

and the incidence of poverty in rural areas is substantially higher than in urban areas, whether measured as the ability of

households to meet their basic needs or as access to infrastructure and education (IMF, 2010; JBIC, 2006; Schaafsma, 2012).

Taken together with our findings, this highlights the disproportionate burden that conservation has on the rural poor. This

corroborates earlier work that shows the poorest suffer the greatest negative impact from reserves (Ferraro, 2002; Franks,

2008; Ghate, 2003; Kideghesho, 2008; Kideghesho and Mtoni, 2008). As well as the total amount being greater, the na-

ture of local costs means that they accrue to fewer people.

The economic costs of damage by wildlife are an order of magnitude smaller than opportunity or management costs.

However, the loss of harvest associated with wildlife damage can be a significant burden on those struggling to subsist

nutritionally or economically (Mc Guinness and Taylor, 2014). We caution against dismissing them as trivial for four reasons.

First, although average costs are low, potential losses from a rare but devastating wildlife damage event warrants the

attention of conservation policy makers. Second, if perceived costs are high then, even if actual costs are low, critical local

support for conservation may be missing (Kideghesho, 2008; Nyirenda et al., 2013; Pechacek et al., 2013). Third, although

comparatively small, damage costs accrue very locally e to the immediate neighbours of reserves. This land, most subject to

wildlife damage, may be the least desirable and, consequently, occupied by the poorest or most marginalised farmers. Fourth,

we have not considered the opportunity costs of time spent guarding crops against damage, which are likely to exceed the

direct costs (Kideghesho, 2008). On average, farmers in our study spent 25 days per year (median), which equates to 43 USD

per year at the unskilled labour wage. We expect the indirect costs of guarding, however, to outweigh such economic con-

siderations considerably (Nyirenda et al. 2013). The indirect costs can include loss of sleep, loss of time to do other chores, and,

for children in farming households who are required to guard fields rather than attend school, loss of educational oppor-

tunities, potentially reducing their future welfare (Kideghesho, 2008; Mackenzie and Ahabyona, 2012; Nyirenda et al. 2013).

Fig. 3. Breakdown of the different costs of conservation. (a) In forest pixels, the mean present cost of management is approximately equal to the opportunity cost;

between them, they account for almost 90% of the costs considered here. In woodland pixels, opportunities costs dominate, with a relatively small proportion

arising from damage to crops by wildlife. (b) The greatest cost of the current reserve network (553,500 ha) is opportunity costs, followed by management costs

and then damage costs.
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The hidden costs of wildlife damage extend even further to, for example, elements of psychosocial wellbeing and the potential

economic or nutritional impact of switching to less susceptible crops (Barua et al., 2013; Mc Guinness and Taylor, 2014).

Although our estimates of opportunity cost are dominated by topographical and accessibility parameters, farming de-

cisions are in reality conditioned by a range of factors including property rights, subsistence needs, cultural values, market

price volatility and yield uncertainty (Parks, 1995). We constrain our analysis to the opportunity costs of smallholder farmers,

which is justified in this context where small-scale conversion to agriculture dominates habitat conversion (Fisher et al.,

2011). By confining our study to a single stakeholder group and ignoring costs associated with crop guarding, however,

our estimates of both types of local cost are conservative (Adams et al., 2010; Nyirenda et al. 2013). Moreover, a wide body of

literature describes costs and risks to livelihoods that are associated with involuntary loss of (access to) land. These are multi-

dimensional, mediated through landlessness, joblessness, homelessness, marginalization, food insecurity, increased

morbidity, loss of access to common property resources, community disarticulation, and loss of educational opportunities

(Cernea 2000, 2005). By using net profits from land as a proxy for local costs, we do not include these factors, which would

need further consideration during planning. However, whilst we acknowledge the limits to economic information, it forms a

vital part of understanding the impacts of conservation, alongside other sociological data and considerations (Cernea, 1999).

Moreover, their ready incorporation into spatial conservation planning toolsmean that spatially explicit data on locally-borne

costs provide an important step forward for integrating and mainstreaming local considerations into early stages of con-

servation planning processes (Ban et al., 2009; Pechacek et al., 2013), which has traditionally incorporated acquisition and

management costs (Armsworth, 2014). It is crucial to understand differences between cost types and to preserve these

through the planning process to account for unequal impacts on different stakeholder groups (Armsworth, 2014; Mazor et al.,

2014).

The reported costs, and underfunding, of biodiversity conservation has focused largely on management costs (e.g.

McCarthy et al. 2012); locally borne costs have received less attention. Protected areas are a vital component of conservation

efforts, yet unless those living closest to a resource receive benefits that are equal to or exceed the cost that they bear under

conservation, the system is likely to be less effective from either conservation or development perspectives (Ferraro, 2002;

Sheil et al., 2013; Smith et al., 2009). Where livelihoods depend upon opportunities forgone or diminished by conservation

intervention, outcomes are limited. Activities can be driven elsewhere, so displacing threats, rather than removing them

(leakage; Robinson and Lokina, 2011); the rules can be broken, reducing the effectiveness of the conservation strategy; or the

conservation intervention forces a shift in livelihood profiles, potentially to the detriment of local peoples’welfare. All of these

raise concerns for both people and wildlife and timely consideration of the magnitude and distribution of local costs in the

conservation planning process is, therefore, vital.
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