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Abstract

The use of explicit object detectors as an in-

termediate step to image captioning – which

used to constitute an essential stage in early

work – is often bypassed in the currently dom-

inant end-to-end approaches, where the lan-

guage model is conditioned directly on a mid-

level image embedding. We argue that explicit

detections provide rich semantic information,

and can thus be used as an interpretable repre-

sentation to better understand why end-to-end

image captioning systems work well. We pro-

vide an in-depth analysis of end-to-end image

captioning by exploring a variety of cues that

can be derived from such object detections.

Our study reveals that end-to-end image cap-

tioning systems rely on matching image rep-

resentations to generate captions, and that en-

coding the frequency, size and position of ob-

jects are complementary and all play a role in

forming a good image representation. It also

reveals that different object categories con-

tribute in different ways towards image cap-

tioning.

1 Introduction

Image captioning (IC), or image description gen-

eration, is the task of automatically generating

a sentential textual description for a given im-

age. Early work on IC tackled the task by

first running object detectors on the image and

then using the resulting explicit detections as in-

put to generate a novel textual description, e.g.

(Kulkarni et al., 2011; Yang et al., 2011). With

the advent of sequence-to-sequence approaches

to IC, e.g. (Karpathy and Fei-Fei, 2015; Vinyals

et al., 2015), coupled with the availability of

large image description datasets, the performance

of IC systems showed marked improvement, at

least according to automatic evaluation metrics

like Meteor (Denkowski and Lavie, 2014) and

CIDEr (Vedantam et al., 2015).

The currently dominant neural-based IC sys-

tems are often trained end-to-end, using parallel

(image, caption) datasets. Such systems are es-

sentially sequential language models conditioned

directly on some mid-level image features, such as

an image embedding extracted from a pre-trained

Convolutional Neural Network (CNN). Thus, they

bypass the explicit detection phase of previous

methods and instead generate captions directly

from image features. Despite significant progress,

it remains unclear why such systems work. A

major problem with these IC systems is that they

are less interpretable than conventional pipelined

methods which use explicit detections.

We believe that it is timely to again start explor-

ing the use of explicit object detections for image

captioning. Explicit detections offer rich semantic

information, which can be used to model the enti-

ties in the image as well as their interactions, and

can be used to better understand image captioning.

Recent work (Yin and Ordonez, 2017) showed

that conditioning an end-to-end IC model on vi-

sual representations that implicitly encode object

details yields reasonably good captions. Never-

theless, it is still unclear why this works, and what

aspects of the representation allow for such a good

performance. In this paper, we study end-to-end

IC in the context of explicit detections (Figure 1)

by exploring a variety of cues that can be derived

from such detections to determine what informa-

tion from such representations helps image cap-

tioning, and why. To our best knowledge, our work

is the first experimental analysis of end-to-end IC

frameworks that uses object-level information that

is highly interpretable as a tool for understanding

such systems. Our main contributions are as fol-

lows:

1. We provide an in-depth analysis of the perfor-

mance of end-to-end IC using a simple, yet

effective ‘bag of objects’ representation that
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Figure 1: Using explicit detections as an intermediate step towards end-to-end image captioning. The question we

investigate is what information can we extract from explicit detections that can be useful for image captioning.

is interpretable, and generates good captions

despite being low-dimensional and highly

sparse (Section 3).

2. We investigate whether other spatial cues can

be used to provide information complemen-

tary to frequency counts (Section 3).

3. We study the effect of incorporating different

spatial information of individual object in-

stances from explicit detections (Section 4).

4. We analyze the contribution of the categories

in representations for IC by ablating individ-

ual categories from them (Section 5).

Our hypothesis is that there are important com-

ponents derived from explicit detections that can

be used to effectively inform IC. Our study con-

firms our hypothesis, and that features such as the

frequency, size and position of objects all play a

role in forming a good image representation to

match their corresponding representations in the

training set. Our findings also show that differ-

ent categories contribute differently to IC, and this

partly depends on how likely they are to be men-

tioned in the caption given that they are depicted

in the image. The results of our investigation will

help further work towards more interpretable im-

age captioning.

2 Related work

Early work on IC apply object detectors explic-

itly on an image as a first step to identify enti-

ties present in the image, and then use these de-

tected objects as input to an image caption gen-

erator. The caption generator typically first per-

forms content selection (selecting a subset of ob-

jects to be described) and generates an intermedi-

ate representation (e.g. semantic tuples or abstract

trees), and then performs surface realization using

rules, templates, n-grams or a maximum entropy

language model. The main body of work uses ob-

ject detectors for 20 pre-specified PASCAL VOC

(Visual Object Classes) (Everingham et al., 2015)

(Yang et al., 2011; Kulkarni et al., 2011; Li et al.,

2011; Mitchell et al., 2012), builds a detector in-

ferred from captions (Fang et al., 2015), or as-

sumes gold standard annotations are available (El-

liott and Keller, 2013; Yatskar et al., 2014).

Currently, deep learning end-to-end approaches

dominate IC work (Donahue et al., 2015; Karpa-

thy and Fei-Fei, 2015; Vinyals et al., 2015). Such

approaches do not use an explicit detection step,

but instead use a ‘global’ image embedding as

input (generally a CNN) and learn a language

model (generally an LSTM) conditioned on this

input. Thus, they are trained to learn image cap-

tion generation directly from a parallel image–

caption dataset. The advantage is that no firm de-

cisions need to be made about object categories.

However, such approaches are hard to interpret

and are dataset dependent (Vinyals et al., 2017).

Some recent work use object-level semantics

for end-to-end IC (Gan et al., 2017; Wu et al.,

2016; You et al., 2016). Such systems represent

images as predictions of semantic concepts occur-

ring in the image. These predictions, however,

are at a global, image level (“does this image con-

tain a chair?”), rather than at object instance level

(“there is a big chair at position x”). In addition,

most previous work regard surface-level terms ex-

tracted directly from captions as ‘objects’, while

we use off-the-shelf predefined object categories

which have a looser connection between the im-

age and the caption (e.g. objects can be described

in captions using different terms, depicted objects

might not be mentioned in captions, and captions

might mention objects that are not depicted).
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Yin and Ordonez (2017) propose conditioning

an end-to-end IC model on information derived

from explicit detections. They implicitly encode

the category label, position and size of object in-

stances as an ‘object-layout’ LSTM and condition

the language model on the final hidden state of

this LSTM, and produce reasonably good image

captions based only on those cues, without the di-

rect use of images. Our work is different in that

we feed information from explicit object detec-

tions directly to the language model in contrast to

an object-layout LSTM which abstracts away such

information, thereby retaining the interpretability

of the input image representation. This gives us

more control over the image representation which

is simply encoded as a bag of categorical variables.

There is also recent work applying attention-

based models (Xu et al., 2015) on explicit ob-

ject proposals (Anderson et al., 2018; Li et al.,

2017), which may capture object-level informa-

tion from the attention mechanism. However,

attention-based models require object information

in the form of vectors, whereas our models use in-

formation of objects as categorical variables which

allow for easy manipulation but are not compati-

ble with the standard attention-based models. The

model that we use, under similar conditions (i.e.

under similar parametric settings), is comparable

to the state-of-the-art models.

3 Bag of objects

We base our experiments on the MS COCO

dataset (Lin et al., 2014). From our preliminary

experiments, we found that a simple bag of ob-

ject categories used as an image representation for

end-to-end IC led to good scores according to au-

tomatic metrics, comparable to and perhaps even

higher than those using CNN embeddings. This is

surprising given that this bag of objects vector is

low-dimensional (each element represents the fre-

quency of one of 80 COCO categories) and sparse

(mainly zeros, as only a few object categories tend

to occur in a given image). In simple terms, it ap-

pears that the IC model can generate a reasonable

caption by merely knowing what is in the image,

e.g. that there are three persons, three benches and

a bicycle in Figure 1.

This observation raises the following questions.

What is it in this simple bag of objects repre-

sentation that contributes to the surprisingly high

performance on IC? Does it lie in the frequency

counts? Or the choice of categories themselves?

It is also worth noting that the image captions

in COCO were crowd-sourced independent of the

COCO object annotations, i.e. image captions

were written based only on the image, without

object-level annotations. The words used in the

captions thus do not correspond directly to the 80

COCO categories (e.g. a cup may not be men-

tioned in a description even though it is present

in the image, and vice versa, i.e. objects described

in the caption may not correspond to any of the

categories).

In order to shed some light into what makes bag

of object categories representations work so well

for IC, we first investigate whether the frequency

counts is the main contributor. We then proceed to

studying what else can be exploited from explicit

object detections to improve on the bag of objects

model, for example the size of object instances.

We also perform an analysis on these representa-

tions to gain more insights into why the bag of ob-

jects model performs well.

3.1 Image captioning model

Our implementation is based on the end-to-end ap-

proach of Karpathy and Fei-Fei (2015). We use

an LSTM (Hochreiter and Schmidhuber, 1997)

language model as described in Zaremba et al.

(2014). To condition the image information, we

first perform a linear projection of the image rep-

resentation followed by a non-linearity:

x = σ(W ·Im) (1)

where Im ∈ Rd is the d-dimensional initial image

representation, W ∈ Rn×d is the linear transfor-

mation matrix, σ is the non-linearity. We use Ex-

ponential Linear Units (Clevert et al., 2016) as the

non-linear activation in all our experiments. We

initialize the LSTM-based caption generator with

the projected image representation, x.

Training and inference. The caption generator

is trained to generate sentences conditioned on

x. We train the model by minimizing the cross-

entropy, i.e. the sentence-level loss corresponds to

the sum of the negative log likelihood of the cor-

rect word at each time step:

Pr(S|x; θ) =
∑

t

log(Pr(wt|wt−1..w0;x)) (2)

where Pr (S|x; θ) is the sentence-level loss con-
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ditioned on the image feature x and Pr(wt) is the

probability of the word at time step t. This is

trained with standard teacher forcing as described

in Sutskever et al. (2014), where the correct word

information is fed to the next state in the LSTM.

Inference is usually performed using approxi-

mate techniques like beam search and sampling

methods. As we are mainly interested in study-

ing different image representations, we focus on

the language output that the models can most con-

fidently produce. In order to isolate any other vari-

ables from the experiments, we generate captions

using a greedy argmax approach. We use a 2-

layer LSTM with 128-dimensional word embed-

dings and 256-dimensional hidden dimensions.

As training vocabulary we retain only words that

appear at least twice. We provide details about hy-

perparameters and tuning in Appendix A.

3.2 Visual representations

The first part of our experiments studies the role

of frequency counts of the 80-dimensional bag

of objects representation. We explore the effects

of using the following variants of the bag of ob-

jects representation: (i) Frequency: The number

of instances per category; (ii) Normalized: The

frequency counts normalized such that the vector

sums to 1. This represents the proportion of ob-

ject occurrences in the image; (iii) Binarized: An

object category’s entry is set to 1 if at least one

instance of the category occurs, and 0 otherwise.

Berg et al. (2012) explore various factors that

dictate what objects are mentioned in image de-

scriptions, and found that object size and its po-

sition relative to the image centre are important.

Inspired by these findings, we explore alternative

representations based on these cues: (i) Object

size: The area of the region provided by COCO,

normalized by image size; we encode the largest

object if multiple objects occur for the same cat-

egory (max pooling). (ii) Object distance: The

Euclidean distance from the object bounding box

centre to the image centre, normalized by image

size; we encode the object closest to the centre

if multiple instances occur (min pooling). We

also explore concatenating these features to study

their complementarity.

Finally, we study the effects of removing in-

formation from the bag of objects representation.

More specifically, we compare the results of re-

taining only a certain number of object instances

Representation GT Detect

CNN (ResNet-152 POOL5) - 0.749

Frequency 0.807 0.752
Normalized 0.762 0.703
Binarized 0.751 0.703

Object min distance 0.759 0.691
Object max size 0.793 0.725

Obj max size + Obj min distance 0.799 0.743
Frequency + Obj min distance 0.830 0.769
Frequency + Obj max size 0.836 0.769
All three features 0.849 0.743

Table 1: CIDEr scores for image captioning using bag

of objects variants as visual representations. We com-

pare the results of using ground truth annotations (GT)

and the output of a detector (Detect). As comparison

we also provide, in the first row, the results of using a

ResNet-152 POOL5 CNN image embedding with our

implementation of an end-to-end IC system.

in the frequency-based bag of objects representa-

tion, rather than representing an image with all ob-

jects present. We experiment with retaining only

the frequency counts for one object category and

25%, 50%, and 75% of object categories; the re-

maining entries in the vector are set to zero. The

object categories to be retained are selected, per

image: (i) randomly; (ii) by the N% most frequent

categories of the image; (iii) by the N% largest

categories of the image; (iv) by the N% categories

closest to the centre of the image.

We performed these evaluations based on (i)

ground truth COCO annotations and (ii) the output

of an off-the-shelf object detector (Redmon and

Farhadi, 2017) trained on 80 COCO categories.

With ground truth annotations we can isolate is-

sues stemming from incorrect detections.

3.3 Experiments

We train our models on the full COCO training

set, and use the standard, publicly available splits1

of the validation set as in previous work (Karpa-

thy and Fei-Fei, 2015) for validation and testing

(5,000 images each). We use CIDEr (Vedantam

et al., 2015) – the official metric for COCO – as

our evaluation metrics for all experiments. For

completeness, we present scores for other com-

mon IC metrics in Appendix B.

Table 1 shows the CIDEr scores of IC sys-

tems using variants of the bag of objects repre-

sentation, for both ground truth annotations and

1http://cs.stanford.edu/people/

karpathy/deepimagesent
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Feature vs. Pooling Min Max Mean

Obj. Size 0.748 0.793 0.789
Obj. Distance 0.759 0.768 0.740

Table 2: CIDEr scores for captioning comparing the

use of min, max or average pooling of either object size

or distance features, using ground truth annotations.

the output of an object detector. Compared to

a pure CNN embedding (ResNet-152 POOL5),

our object-based representations show higher (for

ground truth annotations) or comparable CIDEr

scores (for detectors). Our first observation is that

frequency counts are essential to IC. Using nor-

malized counts as a representation gives poorer re-

sults, which intuitively makes sense: An image

with 20 cars and 10 people is significantly dif-

ferent from an image with two cars and one per-

son. Using binarized counts (presence or absence)

brings the score further down. This is to be ex-

pected: An image with one person is very different

from one with 10 people.

Using spatial information (size or distance) also

proved useful. Encoding the object size in place

of frequency gave reasonably better results over

using object distance from the image centre. We

can conclude that the size and centrality of objects

are important factors for captioning, with object

size being more informative than position.

We also experimented with different methods

for aggregating multiple instances of the same

category, in addition to choosing the biggest in-

stance and the instance closest to the image cen-

tre. For example, choosing the smallest instance

(min pooling) or the instance furthest away from

the image centre (max pooling), or just averag-

ing them (mean pooling). Table 2 shows the re-

sults. For object size, the findings are as expected:

Smaller object instances are less important for IC,

although averaging them works comparably well.

Surprisingly, in the case of distance, using the ob-

ject furthest from the image centre actually gave

slightly better results than the one closest. Fur-

ther inspection revealed that aggregating instances

is not effective in some cases. We found that the

positional information (and interaction with other

objects) captured by the object further away may

sometimes represent the semantics of the image

better than the object in the centre of the image.

For example, in Figure 2, encoding only the posi-

tion of the person in the middle will result in the

Obj. min distance:
• a man in a kitchen preparing food in a kitchen .
Obj. max distance:
• a group of people standing around a kitchen counter .

Figure 2: Example where encoding the distance of the

object furthest away (solid green) is better than that of

the one closest to the image centre (dashed red). The

IC model assumes that only one person is in the middle

in the former case, and infers that many people may be

gathered around a table in the latter.

representation being similar to other images with

only one person in the centre of the image (and

also on a kitchen counter). Representing the per-

son as the one furthest from the image will result

in some inference (from training data) that there

could be more than one person in the image sit-

ting around the kitchen counter rather than a sin-

gle person standing at the kitchen counter.

The combination of results (bottom row of Ta-

ble 1) shows that the three features (frequency,

object max size and min distance) are comple-

mentary, and that combining any pair gives bet-

ter CIDEr scores than each alone. The combina-

tion of all three features produces the best results.

These results are interesting, as adding spatial in-

formation of even just one object per category can

produce a better score. This has, to our knowl-

edge, not been previously demonstrated. The per-

formance of using an explicit detector rather than

ground truth annotations is poorer, as expected

from noisy detections. However, the overall trend

generally remains similar, except for the combina-

tion of all three features which gave poorer scores.

Finally, Figure 3 shows the results of partially

removing or masking the information captured

by the bag of object representation (frequency).

As expected, IC performance degrades when less

than 75% of information is retained. The perfor-

mance of the system where the representation is

reduced using frequency information suffers the

most (even worst than removing categories ran-

domly), suggesting that frequency does not corre-

spond to an object category’s importance, i.e. just

because there is only one person in the image does
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Figure 3: Change in CIDEr scores for image caption-

ing by reducing the number of (ground truth) object in-

stances in the image representation, based on different

heuristics.

not mean that it is less important than the ten cars

depicted. On the other hand, object size correlates

with object importance in IC, i.e. larger objects are

more important than smaller objects for IC: The

performance does not degrade as much as remov-

ing categories by their frequency in the image.

3.4 Analysis

We hypothesize that the bag of objects represen-

tation performs well because it serves as a good

representation for the dataset and allows for bet-

ter image matching. One observation is that the

category distribution between the training and test

sets are very similar (Figure 4), thus increasing the

chance of the bag of objects representation pro-

ducing a close match to one in the training set.

From this observation, we posit that end-to-end

IC models leverage COCO being repetitive to find

similar matches for a test image to a combination

of images in the training set. Further investigation

on the category distribution (e.g. by splitting the

dataset such that the test set contains unseen cate-

gories) is left for future work.

k-Nearest neighbour analysis. We further in-

vestigate our claim that end-to-end IC systems es-

sentially perform complex image matching against

the training set with the following experiment.

The idea is that if the IC model performs some

form of image matching and text retrieval from

the training set, then the nearest neighbour (from

training) of a test image should have a caption

similar to the one generated by the model. How-

ever, the model does not always perform text re-

trieval as the LSTM is known to sometimes gen-

erate novel captions, possibly by aggregating or

‘averaging’ the captions of similar images and per-

forming some factorization. We first generate cap-

tions for every training image using the bag of ob-
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Figure 4: Object category distributions for COCO

train, validation and test splits: normalized document

frequency of each category. The distribution between

the training and test sets are almost identical. A higher

resolution version can be found in Appendix B.

Type BLEU Meteor CIDEr SPICE

Freq. 0.868 0.591 6.956 0.737
Proj. 0.912 0.634 7.651 0.799

Exact (2301) 1.000 1.000 10.000 1.000

Freq. (¬ Exact) 0.757 0.498 4.337 0.512
Proj. (¬ Exact) 0.837 0.560 5.638 0.628

Table 3: k-Nearest Neighbour (k=5) trial on the ground

truth bag of objects (Freq.) and the projected bag of

objects (Proj.) representations. The references are cap-

tions of 5-nearest images in each space. Exact repre-

sents a subset of 2301 samples where all the 5 neigh-

bours have 0 distance (replicas) and ¬ represents near-

est neighbours that are not replicas of the test image.

jects model (with ground truth frequency counts).

We then compute the k-nearest training images for

each given test image using both the bag of ob-

jects representation and its projection (Eq. 1). Fi-

nally, we compute the similarity score between the

generated caption of the test image against all k-

nearest captions. The similarity score measures

how well a generated caption matches its nearest

neighbour’s captions. We expect the score to be

high if the IC system generates an image similar

to something ‘summarized’ from the training set.

As reported in Table 3, overall the captions

seem to closely match the captions of 5 near-

est training images. Further analysis showed that

2301 out of 5000 captions had nearest images at

a zero distance, i.e., the same exact representa-

tion was seen at least 5 times in training (note that

CIDEr gives a score of 10 only if the test caption

and all references are the same). We found that

among the non-exact image matches, the projected

image representation better captures candidates in

the training set than bag of objects. Figure 5 shows

the five nearest neighbours of an example non-

exact match and their generated captions in the
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te
st

person (5), cup (8), spoon (1), bowl (8), carrot (10),

chair (6), dining table (3)

⇒ a group of people sitting around a table with food .

1

person (4), cup (4), spoon (1), bowl (5), chair (6), dining

table (4)

⇒ a woman sitting at a table with a plate of food .

2

person (9), bottle (1), cup (6), bowl (4), broccoli (2),

chair (5), dining table (3)

⇒ group of people sitting at a table eating food .

3

person (11), cup (2), bowl (4), carrot (6), cake (1), chair (4),

dining table (1)

⇒ a group of people sitting around a table with a cake .

4

cup (1), spoon (1), bowl (9), carrot (10), chair (3), potted

plant (1), dining table (1), vase (1)

⇒ a table with a variety of food on it .

5

cup (4), bowl (7), carrot (6), dining table (1)

⇒ a table with bowls of food and vegetables .

Figure 5: Five nearest neighbours from the training set

in the projected space, for an example test image’s (top

row) original bag of objects representation that does not

have an exact match in the training. For each image, we

show the ground truth categories (and frequencies in

parenthesis) and the generated caption. More examples

can be found in Appendix D.

projection space. Note that the nearest neighbours

are an approximation since we do not know the

exact distance metric derived from the LSTM. We

observe that the captions for unseen representa-

tions seem to be interpolated from multiple neigh-

bouring points in the projection space, but further

work is needed to analyze the hidden represen-

tations of the LSTM to understand the language

model and to give firmer conclusions.

4 Spatial information on instances

Here we further explore the effect of incorporat-

ing spatial information of object detections for IC.

More specifically, we enrich the representations by

encoding positional and size information for more

object instances, rather than restricting the encod-

ing to only one instance per category which makes

the representation less informative.

4.1 Spatial representation

We explore encoding object instances and their

spatial properties as a fixed-size vector. In con-

trast to Section 3, we propose handling multiple

instances of the same category by encoding spatial

properties of individual instances rather than ag-

gregating them as a single value. Each instance is

represented as a tuple (x, y, w, h, a), where x and

y are the coordinates of the centre of the bound-

ing box and are normalized to the image width

Feature set Fixed Tuned

Bag of objects 0.807 0.834

(x, y, w, h, a) 0.870 0.915
(x, y, w, h) 0.859 0.898
(x, y, a) 0.850 0.900
(w, h) 0.870 0.920
(a) 0.869 0.857
(x, y) 0.810 0.863

LSTM Yin and Ordonez (2017)† 0.922

Table 4: CIDEr scores for image captioning using rep-

resentations encoding spatial information of instances

derived from ground truth annotations, with either fixed

hyperparameters (Section 3.1) or with hyperparameter

tuning. † Results taken from (Yin and Ordonez, 2017).

and height respectively, w and h are the width and

height of the bounding box respectively, and a is

the area covered by the object segment and nor-

malized to the image size. Note that w × h ≥
a (box encloses the segment). We assume that

there are maximum 10 instances per vector, and

instances of the same category are ordered by a

(largest instance first). We encode each of the 80

categories as separate sets. Non-existent objects

are represented with zeros. The dimension of the

final vector is 4000 (80 × 10 × 5). We also per-

form a feature ablation experiment to isolate the

contribution of different spatial components.

4.2 Experiments

All experiments in this subsection use ground truth

annotations – we expect the results of using an ob-

ject detector to be slightly worse but in most cases

follow a similar trend, as shown in the previous

section. Table 4 shows the CIDEr scores using

the same setup as Section 3, but using represen-

tations with spatial information about individual

object instances. Encoding spatial information led

to substantially better performance over bag of ob-

jects alone. Consistent with our previous obser-

vation, w and h (bounding box width and height)

seems to be the most informative feature combi-

nation – it performs well even without positional

information. Area (a) is less informative than the

combination of w and h, possibly because it com-

presses width-height ratio information despite dis-

carding noise from background regions. Positional

information (x, y) does not seem to be as infor-

mative, consistent with observations from previ-

ous work (Wang and Gaizauskas, 2016).

The last column in Table 4 shows the CIDEr
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Image ID: 378657

Objects in the image person, clock

Representation Caption

Frequency a large clock tower with a large clock on it .

Object min distance a clock tower with a large clock on it ’s face .

Object max size a man standing in front of a clock tower .

All three features a clock tower with people standing in the middle of the water .

(x, y) a large clock tower with a clock on the front .

(w, h) a clock on a pole in front of a building

(a) a large clock tower with people walking around it

(x, y, w, h, a) a group of people standing around a clock tower .

CNN (ResNet-152) a large building with a clock tower in the middle of it .

person removed a clock tower with a weather vane on top of it .

Figure 6: Example captions with different models. The models with explicit object detection and additional spatial

information ((x, y, w, h, a)) are more precise in most cases. The output of a standard ResNet-152 POOL5 is also

shown, as well as that of the model where the most salient category – person – is removed from the feature vector.

More example outputs are available in Appendix C.

scores when training the models by performing

hyperparameter tuning during training. We note

that the results with our simpler image representa-

tion are comparable to the ones reported in Yin and

Ordonez (2017), which use more complex mod-

els to encode similar image information. Interest-

ingly, we observe that positional information (x,

y) work better than before tuning in this case.

Example outputs from the models in Sections 3

and 4 can be found in Figure 6.

5 Importance of different categories

In the previous sections, we explore IC based on

explicit detections for 80 object categories. How-

ever, not all categories are made equal. Some cat-

egories could impact IC more than others (Berg

et al., 2012). In this section we investigate which

categories are more important for IC on the

COCO dataset. Our category ablation experi-

ment involves removing one category from the

80-dimensional bag of objects (ground truth fre-

quency) representation at a time, resulting in 80
sets of 79D vectors without each ablated category.

We postulate that salient categories should lead

to larger performance degradation than others.

However, what makes a category ‘salient’ in gen-

eral (dog vs. cup)? We hypothesize that it could

be due to (i) how frequently it is depicted across

images; (ii) how frequently it is mentioned in the

captions when depicted in the image. To quantify

these hypotheses, we compute the rank correla-

tion between changes in CIDEr from removing the

category and each of the statistic below:

• f(vc) =
∑N

i 1(c ∈ Ci): frequency of the

ablated category c being annotated among N

images in the training set, where Ci is the

set of all categories annotated in image i, and

1(x) is the indicator function.

• p(tc|vc) ≈
f(tc,vc)
f(vc)

: proportion of ablated cat-

egory being mentioned in any of the refer-

ence captions given that it is annotated in the

image in the training set.

For determining whether a depicted category is

mentioned in the caption, the matching method de-

scribed in Ramisa et al. (2015) is used to increase

recall by matching category labels with (i) the term

themselves; (ii) the head noun for multiword ex-

pressions; (iii) WordNet synonyms and hyponyms.

We treat these statistics as an approximation be-

cause of the potential noise from the matching pro-

cess, although it is clean enough for our purposes.

We have also tried computing the correlation

with f(tc) (frequency of the category being men-

tioned regardless of whether or not it is depicted).

However, we found the word matching process too

noisy as it is not constrained or grounded on the

image (e.g. “hot dog” is matched to the dog cate-

gory). Thus, we do not report the results for this.

5.1 Experiments

Figure 7 shows the result of the category ablation

experiment. Categories like train, sandwich, per-

son and spoon led to the largest drop in CIDEr

scores. On the other end, categories like surf-

board, carrot and book can be removed without

negatively affecting the overall score.

By comparing the CIDEr score changes against

the frequency counts of object annotations in the

training set (top row), there does not seem to be a

clear correlation between depiction frequency and

CIDEr. Categories like bear are infrequent but led

to a large drop in score; likewise, chair and din-

ing table are frequent but do not affect the results

2187



0.0

2.5

5.0

7.5

10.0

lo
g 

f(v
)

0.00

0.25

0.50

0.75

1.00

p(
t|v

)

0.04

0.03

0.02

0.01

0.00

0.01

 C
ID

Er
 w

.r.
t. 

fu
ll 

ba
g 

of
 o

bj
ec

ts

tra
in

sa
nd

wi
ch

pe
rs

on
sp

oo
n

to
ile

t
sh

ee
p

cl
oc

k
do

g
be

d
be

nc
h

gi
ra

ffe
be

ar
el

ep
ha

nt
ki

te
sk

at
eb

oa
rd

bi
cy

cl
e

ov
en

ze
br

a
ap

pl
e

la
pt

op
ce

ll 
ph

on
e

br
oc

co
li

ho
t d

og
m

ic
ro

wa
ve

ha
nd

ba
g

cu
p

sp
or

ts
 b

al
l

bi
rd

st
op

 s
ig

n
m

ou
se

bo
wl

ho
rs

e
um

br
el

la
bu

s
wi

ne
 g

la
ss

ca
r

tv m
ot

or
cy

cl
e

re
fri

ge
ra

to
r

pi
zz

a
su

itc
as

e
tru

ck
fo

rk
tie bo

ttl
e

ca
t

ke
yb

oa
rd

kn
ife

sc
is

so
rs

sk
is

co
uc

h
va

se
fri

sb
ee

ba
na

na
ba

se
ba

ll 
gl

ov
e

ba
ck

pa
ck

ba
se

ba
ll 

ba
t

re
m

ot
e

tra
ffi

c 
lig

ht
ch

ai
r

co
w

do
nu

t
ca

ke
bo

at
fir

e 
hy

dr
an

t
po

tte
d 

pl
an

t
si

nk
or

an
ge

ai
rp

la
ne

to
as

te
r

te
dd

y 
be

ar
di

ni
ng

 ta
bl

e
ha

ir 
dr

ie
r

to
ot

hb
ru

sh
pa

rk
in

g 
m

et
er

te
nn

is
 ra

ck
et

sn
ow

bo
ar

d
su

rfb
oa

rd
ca

rr
ot

bo
ok

Figure 7: Difference in CIDEr scores when removing each category from the bag of objects representation (79

dimensions), compared to using the full 80D vector (bottom plot). See main text for details.

Coefficient value (p-value)

f(vc) p(tc|vc)

Spearman’s ρ 0.137 (0.226) 0.227 (0.043)
Kendall’s τ 0.093 (0.223) 0.153 (0.047)

Table 5: Correlation between changes in CIDEr score

from category ablation and the frequency of depiction

of the category (f(vc)) against the probably of it being

mentioned in the caption given depiction ((p(tc|vc)).

as negatively. In contrast, the frequency of a cate-

gory being mentioned given that it is depicted is a

better predictor for the changes in CIDEr scores in

general (middle row). Animate objects seem to be

important to IC and are often mentioned in cap-

tions (Berg et al., 2012). Interestingly, removing

spoon greatly affects the results even though it is

not frequent in captions.

Table 5 presents the rank correlation (Spear-

man’s ρ and Kendall’s τ , two-tailed test) between

changes in CIDEr and the two heuristics. While

both heuristics are positively correlated with the

changes in CIDEr, we can conclude that the fre-

quency of being mentioned (given that it is de-

picted) is better correlated with the score changes

than the frequency of depiction. Of course, the

categories are not mutually exclusive and object

co-occurrence may also play a role. However, we

leave this analysis for future work.

Figure 6 shows an example when the category

person is removed from the feature vector. Here,

the model does not generate any text related to per-

son, as the training set contains images of clocks

without people in it.

6 Conclusions

In this paper we investigated end-to-end image

captioning by using highly interpretable represen-

tations derived from explicit object detections. We

provided an in-depth analysis on the efficacy of a

variety of cues derived from object detections for

IC. We found that frequency counts, object size

and position are informative and complementary.

We also found that some categories have a bigger

impact on IC than others. Our analysis showed

that end-to-end IC systems are image matching

systems that project image representations into a

learned space and allow the LSTM to generate

captions for images in that projected space.

Future work includes (i) investigating how ob-

ject category information can be better used or ex-

panded to improve IC; (ii) analyzing end-to-end

IC systems by using interpretable representations

that rely on other explicit detectors (e.g. actions,

scenes, attributes). The use of such explicit infor-

mation about object instances could help improve

our understanding of image captioning.
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A Hyperparmeter Settings

The hyperparameter settings for our model are as

follows:

• LSTM layers: 2-Layer LSTM

• Word Embedding Dimensionality: 128

• Hidden Layer Dimensionality: 256

• Maximum Epochs: 50

• Batch Size: [50, 100]

• LSTM dropout settings: [0.2, 0.7]

• Vocabulary threshold: 2

• Learning Rate: [1e-4, 4e-4]

• Optimiser: Adam

For items in a range of values, we used grid

search to tune the hyperparmeters.

B Full Experimental Results

Tables 6 and 7 show the results of several of our

experiments with the most common metrics used

in image captioning: BLEU, Meteor, ROUGEL,

CIDEr and SPICE.

Figure 8 gives a high resolution version of Fig-

ure 4, showing the similarity between train and test

distributions in terms of object categories.

C Example captions for different models

Figure 9 shows example images from COCO and

the output captions from different models. We

compare the outputs of selected models from Sec-

tions 3 and 4, and a model where the person cate-

gory is removed from the input vector (Section 5).

D Example nearest neighbours for test

images

Figure 10 shows the five nearest neighbours in the

training set of each non-replica example from the

test set (where the exact ground truth frequency

representation does not occur in training). See

Section 3.4 for a more detailed description of the

experiment.
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Image ID: 165225

Objects in the image person, tie, tv, laptop, chair

Representation Caption

Frequency a group of people sitting around a table with a laptop .

Object min distance a man sitting at a desk with a laptop computer .

Object max size a man standing in front of a tv in a living room .

All three features a group of people sitting at a table with a laptop .

(x, y) a group of people standing around a table with a microphone .

(w, h) a group of people sitting around a table with a laptop .

(a) a group of people standing in a living room .

(x, y, w, h, a) a group of people sitting at a table with laptops .

CNN (ResNet-152) a group of people sitting around the table .

person removed a man standing in front of a laptop computer .

Image ID: 196715

Objects in the image person, car, truck, surfboard

Representation Caption

Frequency a man riding a surfboard on top of a wave .

Object min distance a man riding a surfboard on top of a wave .

Object max size a red and white truck driving down a street .

All three features a red and white truck driving down a street .

(x, y) a large white car parked in a parking lot .

(w, h) a large white truck with a surfboard on the back of it .

(a) a man riding a horse on a beach next to a dog .

(x, y, w, h, a) a car is parked on the side of a street with a car in the background .

CNN (ResNet-152) a boat is parked on the side of the road .

person removed a man is standing on a surfboard in the water .

Image ID: 491793

Objects in the image person, car, motorcycle, bus, handbag

Representation Caption

Frequency a group of people riding motorcycles down a street .

Object min distance a city bus driving down a street next to a traffic light .

Object max size a bus is driving down the street in the city .

All three features a group of people standing around a parking lot .

(x, y) a group of people standing around motorcycles in a parking lot .

(w, h) a group of people standing around a bus stop .

(a) a group of people riding bikes down a street .

(x, y, w, h, a) a group of motorcycles parked next to each other on a street .

CNN (ResNet-152) a bus is driving down a street with a lot of people .

person removed a group of people riding motorcycles on a city street .

Image ID: 378657

Objects in the image person, clock

Representation Caption

Frequency a large clock tower with a large clock on it .

Object min distance a clock tower with a large clock on it ’s face .

Object max size a man standing in front of a clock tower .

All three features a clock tower with people standing in the middle of the water .

(x, y) a large clock tower with a clock on the front .

(w, h) a clock on a pole in front of a building

(a) a large clock tower with people walking around it

(x, y, w, h, a) a group of people standing around a clock tower .

CNN (ResNet-152) a large building with a clock tower in the middle of it .

person removed a clock tower with a weather vane on top of it .

Figure 9: Examples of descriptions where models differ. The models with explicit object detection and additional

spatial information ((x, y, w, h, a)) is more precise in most cases (even though still incorrect in the second exam-

ple). In the first example, aggregating multiple instances for size and distance cues clearly removes the information

about the group of people in the image. The output of a standard CNN (ResNet-152 POOL5) is also shown, as

well as that of the model where the most salient category – person – is removed.

2192



Test Image ID: 242946

te
st person (5), cup (8), spoon (1), bowl (8), carrot (10), chair (6), dining table (3)

⇒ a group of people sitting around a table with food .

1
person (4), cup (4), spoon (1), bowl (5), chair (6), dining table (4)

⇒ a woman sitting at a table with a plate of food .

2
person (9), bottle (1), cup (6), bowl (4), broccoli (2), chair (5), dining table (3)

⇒ a group of people sitting at a table eating food .

3
person (11), cup (2), bowl (4), carrot (6), cake (1), chair (4), dining table (1)

⇒ a group of people sitting around a table with a cake .

4
cup (1), spoon (1), bowl (9), carrot (10), chair (3), potted plant (1), dining table (1), vase (1)

⇒ a table with a variety of food on it .

5
cup (4), bowl (7), carrot (6), dining table (1)

⇒ a table with bowls of food and vegetables .

Test Image ID: 378962

te
st person (14), backpack (3), umbrella (4), handbag (1), banana (4), apple (6), orange (10), chair (7), dining table (2)

⇒ a group of people standing around a fruit stand .

1
person (14), backpack (1), banana (5), apple (5), orange (13)

⇒ a group of people standing around a fruit stand .

2
person (13), truck (1), backpack (1), apple (2), orange (10)

⇒ a group of people standing around a fruit stand .

3
person (12), bicycle (1), handbag (3), banana (2), apple (2), orange (7)

⇒ a group of people standing around a fruit stand .

4
person (11), banana (4), apple (1), orange (14)

⇒ a man standing next to a fruit stand with bananas .

5
person (14), backpack (1), handbag (3), apple (7), orange (14)

⇒ a group of people standing around a fruit stand .

Test Image ID: 223648

te
st fork (3), spoon (14), chair (6), dining table (1), book (14)

⇒ a dining room with a table and chairs .

1
fork (1), knife (1), spoon (13), scissors (1)

⇒ a drawer of a variety of different types of food .

2
person (1), cup (3), knife (1), spoon (14), bowl (1), potted plant (1), dining table (1), vase (1)

⇒ a woman is sitting at a table with a glass of wine .

3
person (1), cup (1), fork (3), spoon (6), chair (9), dining table (5), vase (1)

⇒ a woman sitting at a table with a plate of food .

4
person (3), bottle (3), wine glass (5), cup (4), fork (3), knife (2), spoon (11), bowl (5), chair (4), dining table (2), book ( 2)

⇒ a group of people sitting around a table with food .

5
fork (4), knife (4), spoon (7), chair (1), couch (2), dining table (1)

⇒ a table with a table and chairs and a table .

Figure 10: Five nearest neighbours from the training set in the projected space, for several example test images’

(top row of each table) original bag of objects representation that does not have an exact match in the training. For

each image, we show the ground truth categories (and frequencies in parenthesis) and the generated caption.
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