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FAT NERVES KEEP PAIN AT BAY  
Shihab Shah and Nikita Gamper 
Faculty of Biological Sciences, University of Leeds, Leeds, UK 
 
Summary. Inflammatory pain is a debilitating condition and a severe health burden; physiologically it 
is a complex phenomenon with multiple contributing mechanisms. A new study published in EMBO 
Journal has discovered one such mechanism. This multidisciplinary investigation demonstrates that 
tissue inflammation results in local depletion of cholesterol in nociceptive nerves, causing a loss of 
lipid raft localization of a sodium channel Nav1.9 and, ultimately, resulting in potentiation of its 
activity. The discovered effect contributes to the inflammatory overexcitability of peripheral 
nociceptive nerve terminals resulting in inflammatory hyperalgesia. Impressively, authors were able to 
offset this inflammatory pain mechanism by topical application of cholesterol-containing gels, opening 
a novel avenue for therapeutic intervention. 
 
Cholesterol is generally perceived as an ‘evil’ molecule since high blood cholesterol levels are linked 
to severe cardiovascular disorders such as atherosclerosis, heart attack and stroke (Wald & Law, 1995). 
Yet, cholesterol is an essential component of an animal cell comprising ~30% or more of a mammalian 
cell plasma membrane; the human body produces about 1g of cholesterol daily (Sardesai, 2011). 
Physiological importance of cholesterol as an essential structural element of the plasma membrane has 
become evident with development of the ‘lipid raft hypothesis’ (Simons & Ikonen, 1997), which 
proposes that the lipid bilayer of the plasma membrane is not just a passive solvent, but a complex 
milieu laterally segregated by specific interactions between cholesterol, sphingolipids and integral 
membrane proteins. These molecules form stable and discrete assemblies (‘rafts’) within the 
membrane, often hosting specialized structures such as ion channels or G protein signaling complexes 
(Lingwood & Simons, 2010). 
 
A study from Muriel Amsalem and colleagues found an unanticipated role for cholesterol in controlling 
sensitivity of peripheral somatosensory fibers specifically responsible for inflammatory pain 
(Amsalem, 2018). They found that tissue inflammation reduces cholesterol content in dorsal root 
ganglion (DRG) neurons, causing loss of lipid raft localization and subsequent potentiation of sensory-
neuron-specific voltage-gated Nav1.9 channels - important determinants of excitability in a subset of 
pain-sensing (nociceptive) nerves (Dib-Hajj et al, 2015). As a result, the affected neurons displayed 
enhanced excitability and firing rates, effects that contributed to inflammatory hyperalgesia observed in 
animal models of inflammatory pain. Importantly, the authors also demonstrated strong analgesic 
efficacy of transcutaneous cholesterol delivery in vivo; indeed cholesterol containing skin formulations 
prevented inflammation-mediated cholesterol loss and alleviated hyperalgesia in animal models of 
acute and chronic inflammatory pain.  
  
The authors began their study by demonstrating that intraplantar injection of inflammation-induced 
agent Ȝ-carrageenan or a cocktail of inflammatory mediators (histamine, bradykinin, ATP, 
prostaglandin E2 and norepinephrine) reduced cholesterol levels in skin biopsies by 15-20%; the same 
cocktail also reduced total cholesterol in DRG cultures. This reduction coincided with the development 
of mechanical and thermal hypersensitivity in injected paw in vivo, along with decreased action 
potential firing thresholds and increased firing frequencies in cultured DRG neurons. Even though the 
reduction in cholesterol levels was fairly modest, application of ‘soluble’ cholesterol (cholesterol in 
complex with methyl-betacyclodextrin, MCD-chol) prevented the excitatory effect of inflammatory 
mediators seen accompanying cholesterol depletion. Another observation reinforcing the link between 
tissue inflammation, nerve cholesterol level and inflammatory pain was that cholesterol depletion with 
MCD or cholesterol oxidase also produced excitatory effects when applied to cultured DRG neurons. 



Likewise, hind paw injections of MCD produced hyperalgesia; both in vitro and in vivo effects were 
prevented by MCD-chol.  
 
Interestingly, pro-algesic effects of cholesterol extraction (induced by hind paw MCD injection) were 
significantly less pronounced (although still significant) in Nav1.9 knock-out mice.  In contrast, Nav1.8 
knock-out mice showed unaltered MCD-induced hyperalgesia. These data pointed to the hypothesis 
that the excitatory effect of cholesterol depletion is partially mediated by Nav1.9. In support of this 
idea, Nav1.9-like currents recorded from cultured DRG neurons were strongly potentiated by the 
inflammatory mediators and by cholesterol extraction. These findings are in good agreement with 
previous literature on potentiation of TTX-resistant Na+ channels by inflammatory mediators (Maingret 
et al, 2008; Ostman et al, 2008; Rush & Waxman, 2004; Vanoye et al, 2013). Nav1.9 potentiation 
by GTPȖS, a proxy for G-protein signaling, was also prevented by MCD-chol (as was the potentiation 
induced by cholesterol extraction). The authors identified several putative cholesterol-binding motifs in 
transmembrane regions of Nav1.9 protein and showed that three of these (tested as free peptides) can 
bind cholesterol in vitro. However this was not followed through so it is still unclear if a full-length, 
folded Nav1.9 can directly bind cholesterol and if this binding is affected by tissue inflammation.   
 
Following on from the putative role of cholesterol as a Nav1.9 modulator, the authors discovered that 
Nav1.9 localised to the cholesterol-rich ‘raft’ membrane fractions in whole DRG extracts, whereas 
inflammatory mediators induced translocation of the channels into non-raft fractions. Distribution of 
other raft marker proteins (caveolin-1 and flotilin) was unaffected by inflammatory mediators which 
indicated no obvious destruction of rafts themselves. This result was somewhat unexpected since 
MCD treatment, even at lower concentrations as compared to those used by Amsalem and colleagues, 
does destroy lipid rafts in DRG neurons (Jin et al, 2013). Thus, the exact relationship between 
cholesterol levels, raft integrity and Nav1.9 localization and activity has yet to be established. 
 
How would inflammatory mediators deplete cholesterol levels in nociceptive nerve terminals though? 
The authors have tested (to some degree) a hypothesis that inflammation may result in local oxidative 
stress followed by the release of reactive oxygen species (ROS) and cholesterol oxidation (Gamper & 
Ooi, 2015). Accordingly, inflammatory mediators induced measurable ROS generation in cultured 
DRG neurons while antioxidant N-acetyl-cysteine (NAC) abolished Nav1.9 potentiation in vitro and 
reduced mechanical hypersensitivity induced by plantar injection of inflammatory mediators in vivo. 
Thus, the ROS hypothesis seems plausible, even though at present there is no clarity which receptors 
(out of those activated by the cocktail) mediate ROS production in DRG and via which signaling 
mechanism(s).  
 
What makes this study really fascinating is the fact that the authors were able to capitalize on their 
observations that MȕCD-chol can reverse the majority of excitatory and pro-algesic effects of 
inflammatory mediators. They developed a formulation of cholesterol-containing transdermal gels and 
showed that topical application of such gels has significant analgesic activity against carrageenan-
induced hyperalgesia and also reduced mechanical allodynia in a model of rheumatoid arthritis. While 
these experiments do not offer much further insight into mechanisms behind the proalgesic effects of 
cholesterol depletion, they do offer an exciting therapeutic opportunity for treatment of pains with 
inflammatory origin (e.g. arthritis pain, some back pain etc.) using topical cholesterol-containing 
formulations. 
 
It is worth pointing out that fairly high concentrations of MCD (40 mM) were used to deplete 
cholesterol in this study; it is likely that such treatment produced a greater degree of cholesterol 



depletion as compared to that induced by inflammatory mediators or carrageenan. Furthermore, 
inflammatory mediators produce multiple other effects, via their respective receptors, in addition to 
mild reduction in cholesterol levels. Finally, Nav1.9 KO only partially reducing MCD-induced pain. 
Thus, while there is a convincing case that cholesterol depletion and subsequent potentiation of Nav1.9 
does contribute to inflammatory pain, multiple other mechanisms for inflammation-induced peripheral 
nerve overexcitability must exist (as acknowledged by the authors and explicitly summarised in their 
schematic). Nevertheless, the new role of cholesterol in modulation of pain transmission is a 
fascinating discovery which opens new avenues for pain relief. 
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