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Abstract: Measurement of sub-clinical atopic dermatitis (AD) is important for determining 

how long therapies should be continued after clinical clearance of visible AD lesions. An 

important biomarker of sub-clinical AD is epidermal hypertrophy, the structural measures of 

which often make optical coherence tomography (OCT) challenging due to the lack of a 

clearly delineated dermal-epidermal junction in AD patients. Alternatively, angiographic 

OCT measurements of vascular depth and morphology may represent a robust biomarker for 

quantifying the severity of clinical and sub-clinical AD. To investigate this, angiographic data 

sets were acquired from 32 patients with a range of AD severities. Deeper vascular layers 

within skin were found to correlate with increasing clinical severity. Furthermore, for AD 

patients exhibiting no clinical symptoms, the superficial plexus depth was found to be 

significantly deeper than healthy patients at both the elbow (p = 0.04) and knee (p<0.001), 

suggesting that sub-clinical changes in severity can be detected. Furthermore, the morphology 

of vessels appeared altered in patients with severe AD, with significantly different vessel 

diameter, length, density and fractal dimension. These metrics provide valuable insight into 

the sub-clinical severity of the condition, allowing the effects of treatments to be monitored 

past the point of clinical remission. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.3880) Medical and biological imaging; (110.4500) Optical coherence tomography; (170.2655) 

Functional monitoring and imaging; (170.1870) Dermatology. 
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1. Introduction 

Atopic dermatitis (AD � synonym atopic eczema) is a chronic, inflammatory disorder of the 

skin which has a profound effect on quality of life. The prevalence of the condition within the 

US is estimated to be approximately 10.7% for child AD [1] (Global � 7.3% [2]) and 10.2% 

for adult AD [3], and is generally increasing within both the developed and developing world 

[2,4]. Symptoms include dry, itchy, erythematous skin, which exhibit abnormalities such as 

increased trans-epidermal water loss (TEWL) [5]. These symptoms arise due to complex 

interactions between many different genes and environmental factors, which lead to a 

defective epidermal barrier and Th 2 driven inflammation [6]. Clinical assessment of the 

extent and severity of AD is typically performed using external grading systems such as the 

severity scoring of AD [7] (SCORAD) or the eczema area and severity index [8] (EASI) 

which look for specific signs and coverage of the condition. These externally visible signs 

include erythema, edema, papulation, excoriation, lichenification and oozing [8]. There is 

however substantial evidence that unaffected, lesion-free skin sites of AD patients can remain 

abnormal, even following remission of the condition [9]. Such �subclinical� abnormalities 

include significant differences in TEWL, pH and capacitance between healthy and unaffected 

skin [10,11] as well as structural abnormalities such as epidermal thickening [9,12]. Indeed it 

appears clear that externally healthy looking skin of previously diagnosed AD patients is 

likely to contain hidden abnormalities beneath the skin surface [12]. Identification of these 

subclinical factors could facilitate improved treatments which aim to monitor and suppress 

progression of the disorder past the point of clinical remission [9]. 

Optical Coherence Tomography (OCT) is an established non-invasive medical-imaging 

technique which utilizes near-infrared light to capture a reflectance profile of the sub-surface 

layers within skin. Previous studies have utilized the high axial resolution (~5-10ȝm) of OCT 

to delineate the dermal-epidermal junction (DEJ) within skin, allowing for automated 
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measurements of epidermal thickness [13�15]. In the context of AD, measurements of 

epidermal atrophy (thinning) following corticosteroid treatment have been well documented 

using both OCT [16�18] and other non-invasive modalities [18,19]. In contrast, epidermal 

thickening, associated with skin inflammation [12], is more challenging to accurately quantify 

using simple structural OCT, owing to a reduction in contrast between the epidermal and 

dermal layers of the skin as the epidermis thickens and the dermal papillae extend upwards 

(Sec. 3.2). To avoid subjective and time-consuming manual measurements of epidermal 

thickness, an alternative method of quantifying the degree of thickening could be to measure 

the depth of vascular layers of the skin. Firstly, the superficial plexus which lies horizontally 

in the upper papillary dermis could be considered a lower boundary for the true DEJ location. 

Secondly, the tips of the capillary loops which extend vertically into each of the dermal 

papillae represent the thinnest points of the epidermis and could be considered an upper 

boundary for the DEJ location (Fig. 1). The depths of these vessel layers are likely to be 

influenced by inflammation, as a thickening epidermis will push the superficial plexus deeper 

into the tissue. 

 

Fig. 1. The structure of skin affected by epidermal thickening (Sebaceous glands and sweat 

ducts omitted for clarity). Vertical arteries and capillaries rise from the deep plexus and form a 

horizontal network termed the superficial plexus (SP). From this, capillary loops consisting of 

both rising arterioles and falling venules form hairpin like structures in the dermal papillae. A) 

An en-face angiographic svOCT image captured at a depth corresponding to the tips of the 

capillary loops, visible as small dots in the en-face perspective. B) An en-face angiographic 

svOCT image captured at a depth corresponding to the SP. Large interconnected vessels are 

visible. The depth of these layers may provide a direct measure of the tissue inflammation. 

Recently developed processing methods have enabled the extraction of three-dimensional 

angiographic data from oversampled structural OCT data sets [20,21], which has enabled 

further study of numerous dermatological conditions [22]. One such method, termed speckle-

variance OCT (svOCT) identifies the presence of fluid flow by considering the temporal 

evolution of intensity (speckle) within each pixel of a volume. Pixels in a solid region of 

tissue exhibit intensities which can be characterized by a Gaussian distribution, due to static 

coherent speckle and random acquisition noise. Comparatively, pixels in a fluid region of 

tissue will exhibit intensities in a Rayleigh distribution, as a combination of both acquisition 

noise and moving speckle [23]. This gives rise to contrast between solid and fluid regions of 

the skin. 

The aims of this study are two-fold: firstly, we aim to develop and validate angiographic 

OCT for automated measurements of epidermal thickness within skin affected with a range of 

AD severities. Secondly, we aim to investigate whether subclinical morphological differences 

within the microcirculation of AD patients correlate with the severity of the condition. 
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2. Materials and methods 

2.1 Participants 

A total of 32 volunteers were recruited for this study. Both male and female volunteers aged 

18-60 with Fitzpatrick skin type I-III (Mexameter melanin reading of <350) were considered 

on a first-come first served basis. Exclusion criteria included pregnancy, folliculitis, acne, 

suntan, hyperpigmentation, multiple nevi, tattoos, blemishes or dense body hair in the test 

areas. Cosmetic products were also restricted prior to the study initiation. Of the 32 

participants; 5 were healthy, having no prior history of any chronic skin condition (Including 

AD). The remaining 27 participants had currently active AD (As defined by the UK working 

party diagnostic criteria) at a range of severities, as well as having no history of any other 

chronic skin conditions. Informed consent was obtained from each participant prior to 

imaging. The National Research Ethics Service (NRES) Committee East Midlands�Derby, 

formally known as Trent Multicentre Research Ethics Committee (MREC), approved the 

study, under the project reference 04/MREC/70. 

2.2 Imaging protocol 

All imaging for this study was performed using a multi-beam OCT system (Vivosight, 

Michelson Diagnostics Ltd, Orpington, Kent, UK) running at 20 kHz line acquisition rate. 

This system utilizes a swept-source 1305nm Axsun laser with a bandwidth of 147nm, 

allowing visualization of structures to a depth of ~1mm in skin. Four imaging sites which 

commonly exhibit AD symptoms were chosen for the study, these being the left and right 

cubital fossa (crook of the elbow) as well as the left and right popliteal fossa (crook of the 

knee). 

 

Fig. 2. The OCT imaging set-up used for this study. A mechanical clamp (A) was used to fix 

the Vivosight imaging probe (B) into place above the region of interest. The vertical stage of 

the clamp (C) was then lowered such that the plastic cap (D) gently touched the surface of the 

skin (E). This plastic cap reduced any lateral (sliding) motion between the probe and the skin. 

Data was then transferred to the optical processing unit of the OCT system through a cable (F). 

Prior to imaging, each participant was asked to wait 20 minutes in the study room with the 

skin of the test sites exposed, this process aimed to acclimatize each of the test sites such that 

any homeostatic variance was minimized. Following this, each skin site of the participant was 

assessed independently by two different graders to establish severity scores based on dryness, 

erythema, edema/papulation, excoriation and lichenification, assigning a number between 0 

and 3 for each. A local EASI score for each specific skin site was defined as the sum of each 

of these severity scores, averaged between the two assessors. A global (full-body) EASI score 
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was calculated for each participant through a similar scoring and area coverage assessment at 

the head/neck, upper limbs, trunk and lower limb regions following previously described 

weighting and methodology [8]. The handheld probe of the OCT system was then positioned 

for imaging using a mechanical clamp, such that any movement artifacts originating from the 

operator were eliminated. A plastic cap bridged the gap between the OCT probe and the skin, 

which was deemed necessary to reduce any lateral sliding of the skin surface during imaging. 

The OCT imaging set-up is illustrated in Fig. 2. Given that the imaging protocol involves 

physical contact with the skin surface, one might expect some degree of vasoconstriction 

through the white dermographism response which is common within AD affected skin [24]. 

White dermographism within AD is known to have a relatively long onset (23 ± 1.4s) with 

comparatively short duration (6 ± 1s) [25]. Thus, in order to reduce the influence of this effect 

on the resulting vascular data, a delay of approximately 30 seconds was added following the 

fixation of the imaging probe. 

Imaging was then performed, with four-dimensional (x-y-z-time) structural OCT volumes 

being collected from each skin site in turn. All scans captured a volume of 4x4x2mm with 10 

repeat B-scans being collected at each y-location such that a measure of variance could be 

calculated as per the svOCT methodology. The first 12 AD patient data sets were acquired 

with a 10ȝm A-scan spacing in the x-direction (fast scan) and a 20ȝm A-scan spacing in the 

y-direction (slow scan), with these scans taking approximately 50 seconds to acquire and save 

(40-frames/s). While the angiographic quality of these scans was sufficiently high for vessel 

depth measurement, the decision was made to increase the A-scan spacing in the y-direction 

to 10ȝm such that uniform spacing between scans was achieved, further increasing scan 

quality while doubling the required acquisition time. The remaining 20 data sets were 

acquired with this 10ȝm A-scan spacing (In both x and y) with each scan taking 

approximately 100 seconds to acquire and save. The increased resolution of these scans had 

no notable effect on the measurement of vascular layers (Sec. 2.4) but greatly enhanced the 

vascular morphology measurements (Sec. 2.3), thus quantification of vascular morphology 

was restricted only to data sets which were acquired with the higher resolution. The raw data 

was processed offline in MATLAB (R2014b � MathWorks) into an angiographic format 

following a previously described methodology [21,26]. Motion artefacts were suppressed by 

registering each of the repeat B-scans to the first B-scan captured at each location, using a 

sub-pixel accurate cross-correlation based algorithm to an accuracy of 100th of a pixel [27]. 

A combined wavelet-FFT filter was then utilized to effectively suppress any remaining 

motion artefacts with minimal degradation to the underlying vascular information [21,26]. 

This filter works by considering that a vertical line artefact has a high-frequency component 

in the horizontal (x) direction and a low frequency component in the vertical (y) direction. 

Vertical information within the volume is first extracted through wavelet decomposition, 

which high-pass filters the rows and low-pass filters the columns. The resulting image is then 

Fourier transformed, and frequency components along the x-axis are suppressed using a 

damping function. The image is then inverse Fourier transformed and repackaged together 

with its corresponding detail, horizontal and diagonal wavelet bands. Further details of this 

filter can be found in a previous publication [26]. 

2.3 Automatic quantification of vascular morphology 

For both automatic quantification of microvessel morphology and plexus depth (Sec. 2.4) it 

was necessary to binarize the angiographic data such that vascular skeletons could be 

generated. Figure 3 shows the steps that were taken to skeletonize the data. 
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Fig. 3. Steps taken to skeletonize and quantify vascular parameters from angiographic data 

sets. A) En-face mean intensity projection captured from the popliteal fossa site of a healthy 

participant. White box shows the FOV used for B-G. B) Median filtering step. C) Multiscale 

Hessian filtering. D) Result of masking B with the �vesselness� data in C. E) Resulting 

skeleton (Green) overlaid on the masked data. F) Measured vessel diameter at each point along 

the vessel. 

Firstly, an angiographic image was generated by performing mean-intensity-projections 

(MIP) over the depth range of interest (Fig. 3(A)), this image was median filtered to remove 

noise (Fig. 3(B)). The image was then processed with a Hessian filtering algorithm [28], 

which quantifies the �vesselness� of a pixel through consideration of the eigenvalues of the 

local Hessian matrix. To minimize artificial vessel dilation following Hessian filtering, a 

multi-scale approach was used. Compared to a single-scale approach, which uses gaussian 

kernels with a single value of ı in order to build the Hessian matrix, the multi-scale approach 

uses a range of ı values in order to consider a range of vessel scales. Here values of 1:10 

were used for ı, corresponding to vessel scales of 10-100ȝm, with the strongest detection 

(maximum value) of each pixel across all vessel scales being recorded (Fig. 3(C)). The values 

of ı were selected empirically and offered reliable performance over the vessel scales 

observed here, with minimal vessel dilation being qualitatively visible. The filtered image 

was then used to compose a mask for the original data, preserving only areas of signal which 

were likely to be vascular derived (Fig. 3(D)). These filtering steps were deemed necessary 

due to the large magnitude of svOCT background noise, some of which is derived from 

movement of the participant during imaging. Following these steps, the image was binarized 

using an automatically determined threshold (Otsu�s method [29]), with this binary image 

then being used to generate a vessel skeleton (Fig. 3(E)). 

Four quantitative parameters were extracted using both the binarized data together with 

the vascular skeleton. Average vessel diameter (ȝm) was defined as double the average 

distance from the skeleton to the closest zero in the binarized image. Average vessel length 

(ȝm) was defined as the average length of skeleton segments between branching points in the 

skeleton, measured using a geodesic distance transform [30]. Vessel density (Vessels/mm
2) 

was calculated by dividing the total number of vessel segments in the image by the size of the 

area (16mm2). Lastly, the fractal dimension of the skeleton network was calculated using the 

box-counting method [31], which outputs a value between 0 and 3, with higher values 

indicating a more irregular and tortuous network. 

2.4 Automatic quantification of vascular depth 

As discussed in Sec. 1, the capillary loop depth (CLD) and superficial plexus depth (SPD) 

within skin could potentially be used as a robust measure of acanthosis (epidermal 

hypertrophy). In our previous work, measurements of CLD and SPD were acquired 

qualitatively through visual observation of an en-face flythrough of the corresponding 

angiographic data [32]. Here, the skeletonization procedure outlined in Sec. 2.3 is used to 
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automate this step. Firstly, a pseudo-3D skeleton was generated over the entire visible depth 

range (0-1mm) by applying the skeletonization methodology to each z-depth in turn. With 

OCT angiography, forward scattering of photons by the red blood cells result in a shadowing 

artefact beneath detected vasculature [33]. This effect was utilized to improve the 

skeletonization further, as signal derived from the vasculature was present over a range of 

depths within the tissue, while noise-derived signal was inconsistent with respect to depth. A 

simple median filter of 3-pixel window size in the z-direction was used to remove skeleton 

points which were inconsistent with depth. The total number of independent skeleton 

segments was then calculated for each z-depth in the volume. In this context, an independent 

skeleton section was defined as a section of skeleton that was disconnected from other 

sections of the skeleton. As there is no vasculature present in the upper sections of the 

epidermis, there were no independent skeleton segments detected for superficial depths. Once 

the tips of capillary loops start entering the field-of-view (typically around 40-100ȝm in 

depth) the number of independent skeleton segments increased rapidly until reaching a local 

maximum. This maximum value represents the point at which the maximum number of 

unconnected capillary loops are visible, and is thus defined as the CLD. Typically at the CLD 

depth, between 200 and 500 independent skeleton sections were observed (corresponding to 

13-31 capillaries per mm2), this is in agreement with known measurements of the capillary 

density within skin, which typically range from 10 to 70 capillaries per mm2 of skin [34]. 

Following the CLD, one might expect the number of independent skeleton segments to 

plateau as subsequent depths are simply following each loop along its axis. Instead, the value 

gradually reduces, suggesting that the vessel network almost immediately begins to 

interconnect. This is potentially a direct result of the ascending and descending limbs of each 

capillary loop spreading slightly apart with depth, as OCT lacks the resolution to clearly 

discriminate between each limb. The result is a dilation of the visible loops, with neighboring 

loops potentially merging together though not physically connected. At sufficient depth, the 

gradient of the curve of skeleton segment number vs depth reaches 0, suggesting that the 

network is fully connected; this point is defined as the SPD. The SPD depth was more 

challenging to automatically quantify, owing to an increase in noise and a lack of OCT signal 

at deeper depths in the tissue. To improve reliability of this detection, the curve was smoothed 

with a moving averaging filter which spanned ~20ȝm and each detection was manually 

checked for reliability. In future, SPD detection can potentially be improved through use of an 

alternate metric which would peak at the SPD depth, such as the total vessel signal or length, 

however this was not explored in the context of this study. Typically, past the SPD depth, the 

number of independent skeleton sections fluctuate slightly due to inconsistencies in the 

shadowing artefact of the vasculature, until reaching the noise floor, at which point a final 

reduction in value is observed. The noise floor in this context is the point at which the entire 

en-face angiogram shows detected speckle-variance due to random noise in the corresponding 

structural images, resulting in an extremely interconnected skeleton and a low number of 

independent skeleton segments. Figure 4 illustrates this process for both healthy and AD skin, 

with healthy skin typically exhibiting a thin peak at superficial depths and AD skin typically 

exhibiting a much wider peak at comparatively deeper depths in the tissue. 
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Fig. 4. Automatic measurement of CLD and SPD through consideration of the number of 

independent (non-connected) skeleton segments as a function of tissue depth. The top row 

shows the results for a healthy participant at the left cubital fossa: the local maximum (CLD) is 

located at 42.9ȝm beneath the skin surface, while the following local minima (SPD) is located 

at 132.6ȝm beneath the surface. The bottom row shows the results for a participant with AD 

(Local EASI = 5.25) at the left cubital fossa: the local maximum (CLD) is located at 89.4ȝm 

beneath the skin surface, while the following local minima (SPD) is located at 304.2ȝm 

beneath the surface. 

2.5 Statistics 

Statistical analysis was carried out using MATLAB (R2014b � Mathworks). A one-way 

ANOVA followed by the Tukey-Kramer honest significance difference (HSD) test was used 

to test for significant differences between four different data sets (Sec. 3.1). In all cases, 

comparisons were described as significant if the probability of the null hypothesis was <0.05. 

All stated and graphed measurements are of the form mean ± standard deviation. 

3. Results 

3.1 Scan cohorts 

A total of 128 OCT data sets were acquired from the 32 participants, corresponding to 64 

scans at the cubital and popliteal fossa sites respectively. To aid in analysis, these scans were 

separated into four different data sets based on the presence of localized AD and their local 

EASI score. The healthy data set (n = 20) consisted of skin sites of participants with no prior 

history of AD. The unaffected data set (n = 35) consisted of the skin sites of AD participants 

with a local EASI score of 0, thus showing no visible external symptoms of AD. The mild 

AD data set (n = 40) consisted of the skin sites with a local EASI greater than 0 and less than 

5. Lastly the severe AD data set (n = 33) consisted of the skin sites with a local EASI greater 

than 5. The average global EASI score (full body) was 1.84 ± 0.92 for the unaffected data set, 

4.29 ± 4.69 for the mild data set and 7.57 ± 6.62 for the severe data set. It is important to note 

that in this context, a skin site being allocated to the severe/mild AD data sets simply meant 

that the localized AD appeared severe/mild and did not necessarily imply that the global 

severity would be graded as severe/mild. There was however a strong correlation to this 
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effect, as evidenced by the comparatively higher average global EASI scores for the mild and 

severe AD data sets. 

3.2 Automatic structural measurements of epidermal thickness 

To enable comparison with the vessel derived metrics, average epidermal thickness was 

automatically quantified for each of the data sets using an algorithm which has been 

previously validated in healthy skin [15]. Briefly, this automatic algorithm first detects the 

air-skin (stratum corneum) boundary through application of a Sobel edge detection filter 

which was optimized for detecting any sharp changes in image intensity (dark to bright) in the 

depth-direction. Superficial detected edges which exceeded a size threshold of 15-pixels were 

identified and interpolated across such that the entire stratum-corneum was detected. The 

thresholding of smaller detected edges reduced the sensitivity of this technique to noise and 

other artefacts, such as superficial hairs. The second step of the automatic algorithm aimed to 

detect the DEJ itself, which is characterized by a transition from a hyporeflective band to a 

more hyperreflective band, where the grainy keratinocytes of the spinosum meet the basement 

membrane of the papillary dermis. This is detected as a local-minima within each A-scan 

[35]. Minima which are sufficiently connected are interpolated between to form the complete 

DEJ detection. The average distance between the detected stratum-corneum and DEJ was 

used as a measure of the average epidermal thickness. 

To demonstrate this process, the structural OCT images seen in Fig. 5 have been averaged 

over 50 consecutive frames to reduce speckle-noise and improve clarity of the DEJ. The 

stratum corneum and DEJ in each image were segmented both manually by eye and 

automatically using the algorithm discussed above. Despite the averaging, the automated 

algorithm failed to accurately capture the complex geometry of the DEJ at the involved site, 

severely underestimating the true epidermal thickness. Failure in this case was determined 

through visual observation of each volume to check that the automatic segmentation was 

reasonable. This is problematic, as manual assessment of epidermal thickness is a time 

consuming and subjective task, particularly across volume regions of tissue. Across all data 

sets, detection of the DEJ using the automatic algorithm failed in 41 cases, with a high 

tendency towards failure at higher local EASI scores (Healthy = 1 failure, Mild AD = 11 

failures, Severe AD = 29 failures). The primary reason for failure was a distinct lack of 

contrast at the DEJ for many of the AD skin sites. Comparatively, automatic assessment of 

the CLD and SPD failed in 13 cases (Healthy = 1 failure, Unaffected AD = 2 failures, Mild 

AD = 5 failures, Severe AD = 5 failures) with motion corrupted data being the primary reason 

for failure. Angiographic post-processing at the bedside would enable repeat measurements to 

be made in cases where motion artefacts have corrupted the data, potentially reducing the 

failure rates of the angiographic method. For the structural method, we believe the loss of 

contrast at the DEJ is related to the presence of localized acanthosis; which involves the 

elongation of the rete-pegs/dermal papillae into the thickening epidermis, a condition 

previously documented in AD affected skin [36]. The result is a highly oscillatory DEJ which 

rises and falls around each individual rete-peg, these sharp undulations result in the lack of a 

clearly defined border between the epidermis and dermis. Furthermore, it remains challenging 

to consistently define epidermal thickness under these conditions as measurements fluctuate 

between thin sections of epidermis at the tips of the dermal papillae and at comparatively 

thick sections of epidermis along the deepest points along each rete-peg. 
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Fig. 5. Averaged (n = 50 � acquired at the same location) OCT images of the popliteal-fossa 

highlighting the reduction of DEJ contrast as epidermal thickness increases. A) OCT image 

captured from a healthy subject (Local EASI = 0), showing clear delineation of the epidermis 

and dermis. B) OCT image captured from an uninvolved site on an eczema patient, showing 

slightly extended rete-pegs and an undulating DEJ. C) OCT image captured from an involved 

site on a different eczema patient, showing what appears to be inflammatory acanthosis (Long 

thin epidermal papillae/rete-pegs). D-F) Manually segmented skin layers, for these an observer 

simply traced the DEJ by eye, which is laborious and potentially subjective. G-I) 

Automatically segmented skin layers using the algorithm described above. For D-I, red lines 

are the skin surface / stratum corneum layer. Green coloration represents the epidermis, 

Yellow-lines are the DEJ and blue coloration represents the dermis. 

3.3 The effect of local severity on vascular depth 

Figure 6 shows a selection of 3D angiographic data sets from each data set at each unique 

skin site. Each image shows the depth resolved vasculature over a depth range of 40-275ȝm 

beneath the skin surface. 

 

Fig. 6. A selection of 3D angiographic OCT images projected over a depth range of 40-275ȝm 

beneath the skin surface. A-D) Scans from each data set captured from the cubital fossa 

(Elbow) skin site. E-H) Scans from each data set captured from the popliteal fossa (Knee) skin 

site. All images are 4x4mm. 
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Fig. 7. Top) Charts showing differences in the CLD, SPD and epidermal-dermal junction depth 

at both the cubital fossa and popliteal fossa skin sites for a range of AD severities. Columns: 

Mean depth. Bars: Standard deviation. Significance was calculated at each skin site 

independently using a one-way ANOVA followed by the Tukey-Kramer honest significance 

difference (HSD) test. Significance matrix colors correspond to the measured p-value (p>0.05 - 

Red, 0.05>p>0.005 - Orange, 0.005>p>0.0005 - Yellow, 0.0005>p - Green). Quoted data set 

sizes reflect angiography measurements only, as automatic epidermal-dermal junction 

assessment failed in a greater number of cases (With a bias towards failing in severe AD 

cases). Cohort sizes for the epidermal-dermal junction values were as follows: (From left to 

right): n = 9, 12, 14, 7, 9, 18, 13, 5. Bottom) Scatter plots showing the ungrouped SPD as a 

function of local EASI score, with a negative correlation visible at both sites. 1st degree 

polynomial fit was generated using all data points (Including healthy data). 

For the healthy data sets seen in Fig. 6, a highly connected plexus was visible over this 

depth range, suggesting that the epidermis remains relatively thin. In contrast, in cases of 

severe localized AD, numerous dots (capillary loops) could be seen with very few connecting 

vessels joining them together. As expected, this suggests that a thickened epidermis is 

present, as the superficial plexus has been pushed deeper into the tissue (>275ȝm). Cases of 
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unaffected or mild localized AD appear to bridge this gap with the connecting vascular plexus 

becoming less visible as the epidermis thickens. 

Figure 7 summarizes the results of automatic quantification of the CLD, SPD and 

epidermal-dermal junction depth across the entire data set. Measurements of the epidermal 

thickness (Blue columns) were included for comparative purposes. As expected due to 

localized inflammation, the thickness of the epidermis increases as the severity of localized 

AD increases. However, particularly for mild or severe cases of localized AD, the reported 

value of mean epidermal thickness is likely to be underestimated. This is a result of the 

automatic epidermal-dermal junction segmentation algorithm having an increased tendency to 

fail at thicker skin sites compared to areas with a thinner epidermis as discussed in Sec. 3.2 as 

evidenced by the comparatively smaller cohort sizes used for the mild/severe AD epidermal 

thickness measurements. This may explain the lack of any significance differences between 

the epidermal thickness of unaffected, mild and severe localized AD at the popliteal fossa 

skin site, as any thicknesses above approximately 100ȝm are unlikely to be measured 

accurately. 

Both the CLD (purple columns) and SPD (red columns) follow a similar trend to that of 

epidermal thickness, with an increase in depth as the severity of the localized AD increases 

(Fig. 7). For the case of the CLD, the differences are relatively small, with no significant 

differences found between the healthy and unaffected data sets at either skin site. Significant 

differences in CLD depth were however found between the healthy data set and the 

mild/severe data sets at both skin sites, suggesting that a significantly deepened CLD may be 

an indicator that the condition is clinically active with moderate localized severity. The SPD 

displayed comparatively greater differences between each data set. Of particular interest, 

significant differences in SPD were found between the healthy and unaffected data sets at 

both the elbow (p = 0.04) and the knee (p<0.001), suggesting that this metric could be used to 

as a means of differentiating between the two. This could prove useful when aiming to 

monitor the efficacy of a treatment for AD, past the point of clinical remission. Furthermore, 

for both skin sites, significant differences in SPD were recordable between the healthy and 

mild/severe data sets as well as between the severe and unaffected/mild data sets. This 

suggests that the metric may remain robust and be able to differentiate between more severe 

cases of the condition. 

Of potentially greater interest, SPD depth did discriminate between healthy (do not suffer 

from AD) skin and skin at the site of a healed flare (i.e. �unaffected�), whereas EASI did not 

(both skin types are assessed as EASI = zero). Similarly, no OCT-derived parameter, 

structural or angiographic, provided a strong discrimination between skin scored as 

unaffected and skin scored as mildly inflamed, even though the EASI scores are different. 

This could indicate that what is clinically scored as �healed� skin retains some physically 

detectable traits which are characteristic of mildly inflamed skin. In general, all three metrics 

followed a negative correlation as the local AD severity increased, suggesting that vascular 

measurements of CLD and SPD may have potential as robust measures of skin inflammation 

alongside epidermal thickness. Such measurement of the vascular layers may prove useful for 

monitoring the delicate balance between epidermal atrophy and acanthosis in response to 

topical corticosteroid application [17,19,37], particularly in areas of extreme thickening. 

Furthermore, since the inflammatory skin of AD can be characterized by altered angiogenesis 

[38,39], the depth and shape of the vasculature may hold additional information regarding the 

state of inflammation that is not provided by simple measures of epidermal thickness. Future 

research may focus on monitoring baseline variations of these parameters within the same 

patient over a period of time, a case where biological variability is far less likely to influence 

the data. 

The scatter plots shown at the bottom of Fig. 7 show how the ungrouped SPD 

measurements vary as a function of the local EASI score. While there is a negative correlation 

visible between the SPD depth and local EASI score at both the elbow (R = −0.53) and knee 
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(R = −0.37), the variation in the recorded measurements is high. This makes it unlikely that 

accurate estimates of the local EASI score could be inversely attained from measurements of 

the SPD depth. In a sense this is not concerning, as 100% correlation would imply that the 

SPD biomarker, which is technically difficult and expensive to measure, offers no additional 

information over EASI score, which is cheap and easy to assess by eye. Given that much of 

this variability can also likely be attributed to biological variations in the skin between 

different volunteers, one potential avenue of future work will be assessing how much 

variation remains when considering intra-patient measurements over a period of time. 

Furthermore, local EASI is a composite metric, combining multiple skin features (redness, 

excoriation, oedema and lichenification) in order to quantify the severity of the condition. The 

current study population was deemed insufficient for stratification on the individual signs, but 

it may be that SPD correlates more robustly with a particular sign. This idea is to be assessed 

in the future. 

3.4 The effect of severity on vascular morphology in the superficial vascular plexus 

One key output of the angiographic OCT processing technique is the availability of depth-

resolved en-face visualizations of the vascular network. The skin of patients with AD can be 

characterized by an abnormal erythematous vascular pattern visible from the surface of the 

skin [40]. Furthermore it is known that such patients exhibit abnormal vasoconstrictive 

responses to stimuli, including mechanical pressure (white dermographism [25]) and 

temperature [24]. Previously, differences in the microcirculatory flow of AD patients 

following treatment with a pimecrolimus cream have been quantified using laser doppler 

flowmetry [41]. Furthermore svOCT has been utilized to demonstrate the relevance of 

morphological vascular changes within inflammatory skin conditions including psoriasis and 

scleroderma [22]. Combined angiographic OCT and photoacoustic imaging has previously 

detected abnormal morphology and even potential micro aneurisms within skin affected by 

AD [42]. Thus, it is highly likely that the morphology of the vessels themselves will present 

some information regarding the severity of the AD. 

Previously we have shown that measurable morphological differences between healthy 

and AD scans are attainable using svOCT depth projections over a wide depth range (30-

300ȝm) [32], however it is unclear if the differences were related to true morphological 

differences or simply a result of the AD vessels being much deeper in the skin. To investigate 

this, the SPD data from Sec. 3.3 was utilized to acquire depth projections only over the depth 

range of the SPD ( ± 30ȝm). For example, if the SPD was recorded at a depth of 200ȝm, a 

projection image for quantification would be generated over the range 170-230ȝm, 

normalizing the depth considered to that of the SPD. This projection image was then 

skeletonized and quantified following the methodology outlined in Sec 2.3. 

Figure 8 shows a selection of the depth projected angiographic images which were used 

for quantification, while Fig. 9 shows the results of the quantification. Due to the sensitivity 

of these measurements to noise, and as discussed in Sec. 2.2, only scans which were acquired 

using the higher quality scan settings (10ȝm y-resolution) and which were deemed 

sufficiently noise free were used for these measurements, resulting in a reduction in overall 

group size. Qualitative observation of the angiographic SPD images shown in Fig. 8 shows 

the morphology of scans in the healthy, unaffected AD and mild AD cohorts are difficult to 

differentiate, as they all display long, thin vascular morphology. Comparatively scans of sites 

with severe localized AD showed a dense network of small, comparatively wide vessels. 
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Fig. 8. A selection of 2D angiographic OCT images projected over a depth range of ± 30ȝm 

around the detected SPD depth, showing morphological differences in the SPD. A-D) Scans 

from each data set captured from the cubital fossa (Elbow) skin site. E-H) Scans from each 

data set captured from the popliteal fossa (Knee) skin site. All images are 4x4mm. 

Through the quantitative measurements shown in Fig. 9, the measured mean vessel 

diameter was found to be significantly higher for patients with severe localized AD, when 

compared to all other data sets at both skin sites. The sole exception being the unaffected 

elbow, which did not quite reach significance (p = 0.058). Vascular enlargement is one of the 

primary alterations to the cutaneous circulation within inflammatory skin conditions such as 

AD, psoriasis and rosacea [43], thus it is unsurprising that the vessel diameter is measurable 

larger for severe cases of localized AD. 

Mean vessel segment length was significantly higher in the healthy data set than in the 

severe AD data set at both skin sites. This suggests that for severe localized AD patients, the 

individual vessel segments are shortened, with more branch points. There was however no 

significant discrimination in vessel segment length between healthy skin and skin graded as 

unaffected or mildly inflamed. Vessel density was found to be significantly higher for the 

severe AD data set when compared to all other data sets, with the unaffected elbow being the 

exception (p = 0.108). In general, these two metrics correspond to an observed increase in 

vessel growth and branching within the severe AD data set. This is expected, as lesioned skin 

affected by AD has previously been shown to exhibit higher levels of the angiogenic growth 

factor VEGF compared to healthy skin [44,45], which is associated with increased levels of 

vascular remodeling [46]. 

Lastly, the differences in fractal dimension between the healthy and severe data sets did 

not reach significance at the elbow site (p = 0.098), however a significant increase in fractal 

dimension was found for higher severities at the knee site suggesting those vessel networks 

became more tortuous and irregular as severity increased. Previously, the study of the fractal 

dimension of vascular networks has proven to be a fast, reliable and robust parameter for 

observing and evaluating angiographic processes [47], thus it may prove a useful metric when 

considering the increased angiogenic proliferation within AD. 
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Fig. 9. Bar charts showing the variance of quantitative parameters which were automatically 

extracted from the superficial vascular plexus layer of data sets following the binarization and 

skeletonization steps outlined in section 2.3. Columns: Mean depth. Bars: Standard deviation. 

Significance was calculated at each skin site independently using a one-way ANOVA followed 

by the Tukey-Kramer honest significance difference (HSD) test. H = Healthy, U = Unaffected, 

M = Mild localized AD, S = Severe localized AD. Numbers at the base of each column 

correspond to group size (n). 
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4. Conclusions 

Unequivocal assessment of the severity of AD is a challenging and subjective task to perform, 

particularly within flare-free AD patients. This is a result of many of the external, clinical 

features of the condition being characteristic, but not specific indicators of severity. Sub-

clinical measurements of epidermal thickening remain robust for areas exhibiting mild 

symptoms, but become increasingly difficult as the epidermis increasingly thickens due to the 

extension of the dermal papillae during acanthosis. Here we demonstrate how the 

visualization and quantification of the microcirculatory depth using OCT can be utilized as an 

alternative means of achieving this measurement, as the superficial plexus remains relatively 

flat regardless of its depth within the tissue. It is shown that the superficial plexus depth 

(SPD) differs significantly between healthy patients and those who are unaffected or suffering 

from mild or severe localized AD, and thus can potentially be utilized as a metric for 

monitoring the severity of the condition. Recent treatment strategies for AD emphasize the 

importance of treating a flare (e.g. with topical corticosteroids) beyond the point at which 

visible lesions have disappeared. Of particular relevance to this idea, we have shown that the 

SPD metric differs significantly (p = 0.04 at the elbow, p = 2.0 × 10−5 at the knee) between 

healthy (do not suffer from AD) subjects and AD subjects whose flares have indeed 

disappeared visually. Hence SPD depth has potential as a non-invasive biomarker of sub-

clinical inflammation. Furthermore, the morphology of the vessels themselves appear to be 

altered with the presence of AD, with significant changes in vessel diameter, length, density 

and fractal dimension between healthy and severe localized AD patients. These metrics 

provide a means of quantifying and differentiating between subtle changes in the condition, 

particularly past the point of clinical-remission. 

Limitations of the current study include the need to make physical contact with the skin 

surface, which may induce some degree of vasoconstriction within the observed vessels. 

Contactless scans were deemed impractical at the imaging speeds used herein, but faster OCT 

systems could potentially be used to acquire contactless angiographic scans without inducing 

excessive motion artefacts in the data. Furthermore, we only considered one algorithm for 

measuring the structural epidermal thickness. It is possible that more advanced detection 

algorithms will have a greater success rate for DEJ detection and should be considered 

moving forward. 

Future developments will focus on the further refinement of both angiographic and 

structural detection methods. In particular, the application of the techniques described herein 

to long-term clinical observations of drug and treatment efficacy may help to assess clinical 

benefit. Angiographic OCT may also provide a valuable guide to determining how long 

treatments for AD should be continued after visible lesions have resolved, in order to induce 

clearance of all sub-clinical manifestations of AD. This OCT biomarker can therefore be used 

to stratify patients into those requiring different durations of therapy to achieve optimal long-

term control of their AD. Angiographic OCT could also be used to determine the long-term 

safety of therapies such as topical corticosteroids, by providing a robust, non-invasive 

measure of epidermal atrophy. 
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