UNIVERSITYW

This is a repository copy of Simulation of non-Pauli Channels.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129750/

Version: Accepted Version

Article:
Cope, Thomas, Hetzel, Leon, Banchi, Leonardo et al. (1 more author) (2017) Simulation of
non-Pauli Channels. Physical Review A. ISSN 1094-1622

https://doi.org/10.1103/PhysRevA.96.022323

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/




arXiv:1706.05384v2 [quant-ph] 3 Nov 2017

Simulation of non-Pauli Channels
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We consider the simulation of a quantum channel by two parties who share a resource state
and may apply local operations assisted by classical communication (LOCC). One specific type of
such LOCC is standard teleportation, which is however limited to the simulation of Pauli channels.
Here we show how we can easily enlarge this class by means of a minimal perturbation of the
teleportation protocol, where we introduce noise in the classical communication channel between
the remote parties. By adopting this noisy protocol, we provide a necessary condition for simulating
a non-Pauli channel. In particular, we characterize the set of channels that are generated assuming
the Choi matrix of an amplitude damping channel as a resource state. Within this set, we identify
a class of Pauli-damping channels for which we bound the two-way quantum and private capacities.

I. INTRODUCTION

Simulation of quantum channels is a central tool in
quantum information theory [1-4]. One of the first sem-
inal ideas was introduced in Ref. [5], where the channel
simulation was based on the standard teleportation pro-
tocol [6, 7], but where the shared maximally-entangled
state was replaced by an arbitrary two-qubit resource
state. Later on, Ref. [8] showed that this method al-
lows one to simulate any Pauli channel, i.e., any quan-
tum channel whose action on an input state can be ex-
pressed by a Kraus decomposition in terms of Pauli op-
erators [1]. In Ref. [5], the teleportation simulation was
used to transform protocols of quantum communication
through a (Pauli) channel into protocols of entanglement
distillation over the resource states. The same technique
was then exploited in Ref. [9] to show the reproducibility
between (isotropic) states and (Pauli) channels.

In 2001, Ref. [10] described generalized teleportation
protocols in the context of discrete variable (DV) sys-
tems, allowing for more general quantum measurements
beyond Bell detection. Following these steps, Ref. [11]
moved the first steps in investigating teleportation-
covariance for DV channels, which is that property of
a quantum channel to commute with the random uni-
taries of teleportation. This property has been general-
ized by Ref. [12] to quantum channels at any dimension,
including continuous variable (CV) channels. Thanks to
teleportation covariance, a quantum channel can be sim-
ulated by teleporting over its Choi matrix. This result
was re-stated in a different form by a follow-up work [13].

One crucial step introduced by Ref. [12] has been the
removal of any restriction on the dimension of the quan-
tum systems involved in the simulation process. For this
reason, one can simulate DV channels, CV channels and
even hybrid channels between DVs and CVs. More gen-
erally, Ref. [12] was not limited to teleportation LOCCs
(i.e., Bell detection and unitary corrections), but con-
sidered completely general LOCCs which may also be
asymptotic, i.e., defined as suitable sequences. This more

general LOCC simulation allowed them to simulate any
quantum channel. In particular, it allowed them to sim-
ulate, for the first time in the literature, the amplitude
damping channel (which is a DV channel) by using the
Choi matrix of a bosonic lossy channel (which is a CV
channel) and an LOCC based on hybrid CV-DV telepor-
tation maps [14].

One of the most powerful applications of channel sim-
ulation is teleportation stretching [12]. In this method,
the LOCC simulation of a quantum channel (with some
resource state o) is used to completely simplify the struc-
ture of adaptive protocols of quantum and private com-
munication, which are based on the use of adaptive
LOCCs, i.e., local operations assisted by unlimited and
two-way classical communications (CCs). Any such pro-
tocol can be re-organized in such a way to become a much
simpler block protocol, where the output state, after n
uses of the channel, is expressed in terms of a tensor-
product of the resource states o®™ up to a global LOCC.
Contrary to previous approaches [5, 15-17], the method
devised in Ref. [12] does not reduce quantum communi-
cation (over specific channels) into entanglement distilla-
tion, but reduce any adaptive protocol (over any chan-
nel at any dimension) into an equivalent block form,
where the original task is perfectly preserved (e.g., so
that adaptive key generation is transformed into block
key generation). For this reason, the technique has been
also extended beyond point-to-point quantum communi-
cation [18, 19], and also to simplify adaptive protocols
of quantum metrology and quantum channel discrimina-
tion [20, 21].

By using teleportation stretching and extending the
notion of relative entropy of entanglement (REE) [22-
24] from states to channels, Ref. [12] derived a simple
single-letter bound for the two-way quantum and private
capacities of an arbitrary quantum channel. Such bound
is shown to be achievable in many important cases, so
that Ref. [12] established these capacities for dephas-
ing channels, erasure channels (see also Refs. [25, 26]),
quantum-limited amplifiers, and bosonic lossy channels.
The two-way capacity of the lossy channel, also known



as Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound,
completes an investigation started back in 2009 [27, 28],
and finally sets the ultimate achievable limit for opti-
cal quantum communications in the absence of quantum
repeaters. This benchmark for quantum repeaters has
been already exploited in literature [29-33]. Building on
most of the methods discovered by Ref. [12] (i.e., chan-
nel’s REE and teleportation stretching), the follow-up
work [13] later discussed the strong converse property of
the various bounds and two-way capacities established in
Ref. [12]. See Ref. [34] for clarifications on literature.

In this context, the present work brings several new in-
sights. It considers a minimum perturbation of the stan-
dard teleportation protocol, where the noiseless classical
communication channel between the parties (Alice and
Bob) is replaced by a noisy classical channel, where the
Bell outcomes k are stochastically mapped into a variable
[ on the same alphabet, according to some conditional
probability distribution p;;. We show that this already
allows us to enlarge the class of simulable channels well
beyond that of Pauli channels. This is non-trivial be-
cause this is achieved without changing the dimensions of
Alice’s and Bob’s local Hilbert spaces H 4 and ‘H g associ-
ated with the resource state ¢ = 4. In fact, changing
such dimensions is another way to generate non-Pauli
channels, an example being the erasure channel which
can be generated using a 2 x 3 dimensional resource state
(i.e., a qubit entangled with a qutrit).

Adopting the vectorial Bloch sphere representation for
qubits [1], we provide simple conditions to be satisfied in
order to simulate non-Pauli channels. A profitable way
to generate such kinds of channels is to start from the
Choi matrix of an amplitude damping channel as resource
state for the noisy teleportation protocol. In this way, we
can generate non-Pauli channels which are significantly
far from the Pauli class, as quantified by the trace norm
and the diamond norm. In particular, we identify a class
of simulable channels that we call “Pauli-damping chan-
nels” because they can be decomposed into a Pauli and
an amplitude damping part. For channels in this class we
compute lower and upper bounds for the two-way quan-
tum and private capacities, by adopting the methodology
developed by Ref. [12].

The paper is structured as follows. We start with dis-
cussing preliminary notions in Sec. II, including the ba-
sics of quantum teleportation, channel simulation and
teleportation stretching and its application to derive up-
per bounds for the two-way capacities. Then, in Sec. III,
we show how to simulate non-Pauli channels via our
noisy teleportation protocol. This is further developed
in Sec. IV, where we consider the channels simulated
starting from the Choi matrix of the amplitude damping
channel and we also define the Pauli-damping channels.
The properties of these channels are studied in Sec. V.
Finally, Sec. VI is for conclusions.

II. PRELIMINARIES
A. Quantum teleportation

Teleportation [6, 7, 40-43] is one of the strangest and
most intriguing results to come out of quantum infor-
mation. We shall outline the standard approach here,
so that the generalizations in the following sections are
more apparent. The basic version of the protocol is as
follows. Alice (A) and Bob (B) share a maximally en-
tangled state, e.g., a Bell state of the form

d—1
) = % (g i) a |z'>B> (1)

for DV systems, and the asymptotic EPR state [4]

Tim /1~ tanh?(r) S [~tanh(n)]" ) 4 In) (2)

for CV systems (where |n) is the number state),
which produces correlations ¢4 = ¢ for the position-
quadrature, and ps = —pp for the momentum-
quadrature [40, 41]. For the qubit case d = 2 which
we shall be focusing on later, the state of Eq. (1) is
1 (]00) + [11)).

Alice also has an arbitrary state po to be teleported
to Bob. To begin the process, Alice performs a Bell mea-
surement on her two systems, AC. In DVs this is done
by using the d dimensional Bell basis, consisting of the d?
maximally entangled states |, 3), with a, 5 € {1... d}.
In operator notation we describe the measurement by
{MQ)B}, with M, g = |<I)a”@> <<I)a”@| and

Pap) = (la @ 05 0f) @), 3)

where

|
®
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The set {0%0?} is known as the d-dimensional Weyl-
Heisenberg group. In the qubit case, we use the usual set
of Pauli operators [1]
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In CVs, the measurement operator can be thought of as

O = O

My = (1@ D(k)) |®) (2| (I® D(k))! (7)

where D(k) = exp(ka' — k*a) is the displacement oper-
ator with complex amplitude k£ and a being the annihi-
lation operator.



The effect of the Bell measurement, in which all out-
comes occur with equal probability, is to transform Bob’s
half of the maximally entangled state into the teleported
state up to a random unitary. In DVs, the state of Bob
(system B) takes the form pp|a,5 = 0502 pc(cSaf)T,
for a given Bell outcome («, 8), while for CVs this state
is ppk = D(k)peD(k)T, given the Bell outcome k. Since
Alice communicates the Bell outcome to Bob, he can
undo the random unitary and recover Alice’s input state
pc. Note that the Alice’s CC to Bob is necessary to re-
produce the state, otherwise the two remote users could
communicate faster than the speed of light. In the fol-
lowing, we focus on DV systems and we discuss how the
teleportation protocol can be progressively modified to
simulate more and more quantum channels.

B. Changing the resource for teleportation

From the protocol described in the previous section, a
natural question to ask is “what is the consequence of
changing the resource state shared by Alice and Bob?”
This was first considered in [5], who looked into the sce-
nario where Alice and Bob instead share a generic mixed
two-qubit state, which we can express as [44]

3
1

3 3
+ZI®bjO'j + Z tijUi@O’j). (8)
j=1 ij=1
in terms of Pauli operators {o;}?_, = {I,0,,0,,0.}, the
vectors a = {a;}, b = {b;}, and the matrix [T];; = t;;.
Theorem 1 ([8]) The effect of teleportation over an ar-
bitrary two-qubit state T as in Eq. (8) is the Pauli channel

3

Epip— ZpiUiPUz’, 9)
i=0

where p; = Tr (E;7) and E; are the projectors on the Bell
states, i.e.,

Eo = [0°) (9%, [8%) = = (00) +[11)). (10
By = W) (0], 0 = (1) +[10)). (11
By = |97 (U] [¥) = 2= (o) —[10)). (12
By = [07) (27, [87) = o= (00) ~[11)). (13

Using this theorem, we can view the standard telepor-
tation protocol of Sec. II A in a new context, as simu-
lating a trivial Pauli channel (the identity channel from
Alice to Bob). We can re-state the previous theorem by
using the Bloch sphere representation of qubit states.

Definition 2 ([1]) In the computational basis, an arbi-
trary qubit state p can be represented by the density ma-

triz
114z -y
p2<x+iy 1z>' (14)

This is one-to-one with a Bloch vector, r = (x,vy, 2), with
FEuclidean norm ||r|| < 1 (equality for pure states). We
can thus represent the actions of qubit channels by their
effect on the Bloch vector of the sent state.

Given a generic resource state of the form (8), we easily
find that the Pauli channel simulated by teleportation
over this state corresponds to the transformation

E:(x,y,2) = (tiz, —tay, tazz), (15)
of the Pauli channel as follows

tin= pot+p1—p2—p3 =
too = —po+p1 —PpP2+Dp3
tsg= po—p1—p2+p3 =

1 — 2p2 — 2]737 (16)
—1+ 2p; + 2ps, (17)
1—2p; —2ps. (18)

It is also easy to verify that

t11 + oo + 133 < 1, (19)
t11 —to2 —t33 < 1, (20)
—t11 +ta2 —t33 < 1, (21)
—t11 — a2 + 33 < 1, (22)

which means that the vector (t11,ta2,t33), characteriz-
ing the Pauli channel, must belong to the tetrahedron 7
defined by the convex combination of the four points

€y = ( 1) _17 1)7
€y = (713 717 71)7

61:( 1, 1»_1)7 (23)
63:(71, 1, 1).

According to Eq. (15), there is a simple way to simulate
a Pauli channel with arbitrary probability distribution
{pi}. One may just take the resource state

3
1
p4<1®1+;tii‘7i®01’>7 (24)

with ¢;; being connected to {p;} by the formulas above.
Note that this resource state is Bell diagonal, i.e., a mix-
ture of the four Bell states.

C. Generalized channel simulation

In general, the simulation of a quantum channel does
not necessarily need to be implemented through quan-
tum teleportation (even in some generalized form [10]).
In fact, we may consider a completely arbitrary LOCC
applied to some resource state [45].



Definition 3 ([12]) A quantum channel £ is called T-
stretchable if there exists an LOCC' S and a resource state
T simulating the channel. More precisely, for any input
state p, we may write

Ep)=S(peT). (25)

Note that this is an extremely general idea. The di-
mension of the Hilbert spaces involved can be finite, infi-
nite, equal or non-equal. Because of the generality of the
LOCCG, it is clear that any channel is (trivially) simulable
by a maximally entangled state. In fact, it is sufficient
to include the channel £ into Alice’s LOs and then per-
form the standard teleportation of the output. In fact,
the point is to find the best resource state 7 among all
the possible LOCC simulations. Typically, the best case
is when 7 represents the Choi matrix of channel

xe =& (|®) (@) (26)

Definition 4 ([12]) A quantum channel & is called
“Choi-stretchable” if it can be LOCC-simulated by using
its Choi matriz, i.e., we can write Eq. (25) with T = x¢.

There is a simple condition that allows us to identify
Choi-stretchable channels, teleportation covariance.

Definition 5 ([12]) A quantum channel & is called
“teleportation covariant” if, for any teleportation unitary
U, there exists some unitary V' such that

EUPUT) =VE(p) V. (27)

Because of teleportation covariance we can simulate a
quantum channel by means of teleportation over its Choi
matrix. In fact, let pc be an input state (owned by Al-
ice) of channel £ and consider the teleportation of po
using the maximally entangled state |®) , ;. When Alice
performs her Bell measurement, if the outcome corre-
sponding to the Bell state (I ® U) |®) is obtained, then
the state UpcUT is teleported to B. Applying a telepor-
tation covariant £ to this state, we obtain

€ (UpcU') = VE (pc) V1. (28)

Therefore, if the corrective unitary V! is applied by
Bob after the channel for all the possible U, then he will
obtain the final state £ (pc) irrespective of the Bell de-
tection outcome. This corresponds to simulation of £ by
teleportation. However, because the Bell measurement
on systems AC' is locally separated from the application
of £ on system B, we can commute these operations and
the result is the simulation of £ by teleporting over its
Choi matrix xg. This leads to the following.

Lemma 6 ([12]) If a quantum channel £ is teleporta-
tion covariant, then it is Choi-stretchable via teleporta-
tion. This channel may also be called a “teleportation
stmulable” channel.

All Pauli channels (regardless of dimension) are telepor-
tation covariant, and are therefore Choi-stretchable.

Note that in the previous lemma, we are stating a
sufficient condition only. We would like to modify the
lemma into a sufficient and necessary condition. Let us
define the Weyl-Heisenberg (WH) teleportation protocol.
This is a teleportation protocol over an arbitrary resource
state where the output corrective unitary is a unitary
representation of the Weyl-Heisenberg group associated
with the Bell detection. This protocol defines the WH-
teleportation channels as follows.

Definition 7 We say that a quantum channel is a “WH-
teleportation channel” if it can be written in the form

L. (p) =Y Vi(9)TrcalEcal9)(pe®7an)Vi(g), (29)
geG

where Tap s a preshared resource state between Alice
and Bob, Eca(g) = Ui‘(g)|<1>> (®|Ua(g) is a Bell de-
tection operator with U(g) € {02‘05} belonging to the d-

dimensional Weyl-Heisenberg group, and V(g) is a (gen-
erally different) representation of the same group.

Note that conventional teleportation may be written in
the form of Eq. (29) by setting V(g) = U(g) and tap =
|®) (®|, the maximally entangled state. In Appendix A,
we then show the following characterization.

Theorem 8 For DV systems, a channel is teleportation
covariant iff it is a WH-teleportation channel, i.e., Choi-
stretchable via a WH-teleportation protocol.

D. Teleportation stretching and weak converse
bounds for private communication

The most general protocol for key generation (or pri-
vate communication) between two remote parties, con-
nected by a quantum channel &, consists in the use of
adaptive LOCCs interleaved between each transmission
through the channel. This type of private protocol is very
difficult to study due to the presence of feedback that
may be exploited to improve the inputs to the channel
in a real-time fashion. As Ref. [12] has recently shown,
an adaptive protocol for private communication can be
transformed into a much simpler (non-adaptive) proto-
col by means of teleportation stretching. This means
that each use of channel £ is replaced by its simulation
via an LOCC and a corresponding resource state 7. All
the LOCCs, both the original from the protocol and the
new ones introduced by the simulation, can be collapsed
into a single (trace-preserving) LOCC A. As a result,
after n transmissions, the output of the protocol can be
decomposed into the form

pn = A(T"). (30)

To understand the huge simplification that this
method brings, we need to combine it with the use of



the relative entropy of entanglement (REE) [22-24]. Re-
call that the relative entropy between two states p and o
is defined as [22]

S(pllo) :==Tr(plogp — plog o), (31)

and the REE of a state is given by the following mini-
mization over all separable states (SEP) [23, 24]

Er (p) = min S(pllo). (32)
This is monotonic under trace-preserving LOCCs A, i.e.,
Er[A(p)] < Egr(p), and sub-additive over tensor prod-
ucts, i.e., Er(p®0) < Er(p) + Er (o).

Now consider the secret-key capacity K of a quantum
channel (maximum number of secret bits per channel
use which are generated by adaptive protocols). This is
equal to the two-way private capacity P, of the channel
(maximum number of private bits per channel use which
are deterministically transmitted from Alice to Bob by
means of adaptive protocols) and greater than the two-
way quantum capacity Q2 (maximum number of qubits
per channel use which are reliably sent from Alice to Bob
by means of adaptive protocols). We have the following.

Theorem 9 ([12]) The secret key capacity of a channel
must satisfy the weak converse upper bound

K(&) < EL(E) :=sup lim M, (33)

L n—oo n

where L is an adaptive protocol for key generation and
Pn 1S 1ts n-use output.

Now we can see that combining the REE bound in
Eq. (33) with the stretching in Eq. (30), and exploiting
the monotonicity and sub-additivity of the REE, we de-
rive the following.

Theorem 10 ([12]) If a channel & is T-stretchable, then
its secret-key capacity is upper bounded by the REE of its
resource state T, i.e.,

K(€) < Egr(7). (34)
In particular, for a Choi-stretchable channel, we write
K(€) < Er(xe), (35)

where xg 1s its Choi matriz.

III. SIMULATING NON-PAULI CHANNELS
VIA “NOISY” TELEPORTATION

Whilst we have an extremely simple way of simulat-
ing Pauli channels, i.e., just standard teleportation on
a two-qubit mixed state [5, 8], we would like to have
a similarly easy way for simulating non-Pauli channels.
Here we show that this is possible by means of a simple

modification of the teleportation protocol where we also
include a classical channel in the CCs from Alice to Bob.
This is non-trivial because until now, the only way to
generate non-Pauli channels via DV teleportation is by
changing the dimension of the Hilbert space between the
systems A and B of the shared resource of Alice and Bob
(e.g., using a qubit-qutrit resource state, one may simu-
late an erasure channel). In the following discussion, we
shall limit ourselves to the case where £ maps qubits to
qubits.

Consider a classical channel IT from Alice’s outcome
k for the Bell measurement to Bob’s variable [ for the
corrective Pauli unitary U;. This is characterized by con-
ditional probability distribution [51] {p;;} such that

3

Pik >0, Zpl\k: =1, Vk € {07 17273} (36)
=0

What this means in practical terms is that when Alice
obtains the Bell outcome k, rather than Bob performing
the corrective unitary Uy with certainty, instead he per-
forms one of the four unitaries U; with probability pyy.
Using such a noisy teleportation protocol, we prove the
following.

Theorem 11 Consider a teleportation protocol based on
a Bell detection and Pauli correction unitaries but where
the resource state is a gemeric two-qubit state 7 and the
CCs from Alice to Bob are subject to a classical channel
IT (“noisy teleportation”). In this way, we simulate a
quantum channel E¢ whose action on the Bloch sphere is
described by

& (x,y,2) = (fro+ fuiz + fi2y + fisz,
fo0 + forw + faay + fo3z,
f30 + f312 + faoy + f332) (37)

where fi; is given by the formula fi; = t;iSij, where
138
Sij e i Z _15k,0+6j,2+5j,0+6k,j+5i,l+50.lp”k) (38)
k,1=0

and T' is defined as the “augmented” T matriz,

t. — bi
J t]z

taking tj; from the T matriz of Eq.(8).

J=0

ie{1,2,3) i€{1,2,3}, (39)

By comparing Eq. (15) with Eq. (37), we can see imme-
diately that the inclusion of a classical channel opens up
much wider variety of simulated quantum channels. In
fact, we may now have dependence on z, y and z in any
part of the transformed Bloch vector, and it is also pos-
sible to add constant terms. This clearly allows us to go
well beyond Pauli channels (a specific class of non-Pauli
channels will be discussed in the next section). Here we



may also state the following result which is a no-go for
the simulation of non-Pauli channels when the noisy tele-
portation protocol is restricted to Bell diagonal resource
states.

Theorem 12 Using a Bell diagonal resource state, i.e.,
of the form in Eq. (24), it is only possible to simulate
Pauli channels regardless of the classical channel in place
between the two parties.

Proof. From the structure of S;;, we can see it can only
take values in [—1, 1]. Making use of (37), we see that the
action of any channel generated using resource state (24)
will be

£ (iE,y,Z) — (tllsll.’li,tQQSQQy,t33533z) . (40)

Looking at the structure of the sums S;; for i € {1,2,3}
(given in Appendix B), we find that for any valid py
term within the sum induces one of four transformations

Epp 1 (@Y, 2) = ( tiw, —toy, t332) (41)
— ( tuz, tooy, —t332) (42)
— (—ti1z, —tooy, —t332) (43)
= (=tuz, tay, tzz), (44)

which are the four Pauli transformations induced by sim-
ulation over the respective states defined by

( ti, tog,
(*tlh

( t11, —to2, —ts3),
(—t11, —t22, ts3),

t33),
tao, —t33),

with perfect classical communication. We have assumed
that (t11, tag,t33) is given by a convex weighting of our
four bell states with some probabilities p;, and it is
easy to spot that we may obtain the other three states
from the Bell states by permuting these weights. Since
the set {¥*} sums to 1, this may also be thought
of as a convex weighting, and thus we may conclude
that (t11.511,t22522,t33533) € T, and so induces a Pauli
channel. 0J

It is important to understand the difference between
Theorem 12 and Theorem 1. Theorem 1 tells us that an
arbitrary two qubit resource state with perfect CC from
Alice to Bob may only simulate Pauli channels, whereas
Theorem 12 states that a Bell diagonal resource with an
arbitrary classical channel for the CC from Alice to Bob
may only simulate Pauli channels. As a result, we have
the following corollary which will drive us in the choice
of the resource state in the next section.

Corollary 13 In order to simulate a non-Pauli channel
via noisy teleportation, the resource state T of Eq. (8)
must have b # 0 or T non-diagonal. This means T can-
not be the Choi matriz of a Pauli channel.

IV. AMPLITUDE DAMPING AS A RESOURCE
FOR SIMULATING NON-PAULI CHANNELS

Following Corollary 13, we will explore resource states
which are non-diagonal in the Bell basis. A natural choice
is to consider the Choi matrix of the amplitude damping
channel. This is the most studied (dimension preserving)
non-Pauli channel. It has the action

£, :10) = |0), (45)
1) = v710) + V1 =7]1), (46)

where v € [0, 1] is the probability of damping. Alterna-
tively, on the Bloch sphere, we have

E i (zy,2) — (\/l—vx,\/l—'yyﬁ—i—(l—v)z).

(47)
The Choi matrix of this channel is
1—
P 003
Xy = , 48
Y 107 0 % 19 ( )
2 100 TV

which is a resource state of the form (8), where the non-
zero entries are only

b3 =7, ti1=+1—7, taa =—/1 =7, t33=1-17.
(49)
It is useful to define the F matriz of a channel, which
compactly describes the action of the channel on the aug-
mented Bloch vector (1, z,y, 2).

Definition 14 A quantum channel & (r,y,2) —
(2,9, 2") can be described by its F matriz Fe, where

1 1 1 0 0 0 1

a’ —Fr- |7 Jio fu fiz fis x

Yy £ Y f20 for fa2 fo3 Yy

2 z f30 f31 f32 f33 z
(50)

The F matrix of an amplitude damping channel &, is

1 0 0 0
0 VI—x 0 0
By = 0 0 I—v 0 (51)
¥ 0 0 1—7v

For a Pauli channel € : (z,y, z) — (t112, —tl22y, t332), we
may set ¢; := t;; and write

10 0 0

0@ 0 0

Fr=1090 ¢ 0 | (52)
00 0 g

with q = (g1, ¢2, g3) belonging to the tetrahedron 7 (see
Sec. IIB).



We are now ready to present the first of our two main
results, where we provide the general form of the channel
that are simulable by noisy teleportation over the Choi
matrix y, of the amplitude damping channel.

Theorem 15 All channels that are simulable by noisy
teleportation over the amplitude damping Choi matriz X,
can be uniquely decomposed in the following way

Esim=04,0E,0Ep (53)

where w =0 or 1, o, is the Pauli unitary o,(p) = o.pol,
&, is an amplitude damping channel with parameter 1,
and Ep is a Pauli channel with suitable parameters q =
(q1,42,q3) belonging to the tetrahedron T.

Proof. Making use the formula in Eq. (37) we know that
any channel &y, simulated with x- will have F' matrix

1 0 0 0

0 VI—~5n 0 0

0 0 — 1-— ’ySQQ 0

0 0 (1 —7)Sa3
(54)

If two channels have identical F' matrices, then they are

equivalent. This is because they both enact the same ac-

tion on an arbitrary qubit state. Thus we aim to prove

the theorem by equating the above F' matrix of a simu-

lated channel with that of our decomposition defined in

Eq. (53). From the F' matrices of &, and £p, we derive

Fsim =
7530

that & := &,0&p and £_ := 0,0, 0Ep have F' matrices
1 0 0 0
| 0 VI—=nq 0 0
Fe=10o " o —VI-mg2 0 o (55)
no 0 0 (1 —mn)gs
1 0 0 0
_| 0 vI-nq 0 0
=lo "o v 0 ) 9
-n 0 0 —(I=mas

where (q1,q2,q3) € T. Since n > 0, yet vS30 € [—7,7],
we are proposing that

Fsim = {FJr
F_

We will begin by considering the first case where S3g > 0.
Equating the fsg components it is clear that we must set
1 = yS30. As S30 < 1 this is a valid n value. Rearranging
(57) this gives us that

if S50 > 0,

57
if Sy < 0. (57)

(q1,42,93) = <

1_7533) (58)

The vector (Si1,522,533) belongs to the tetrahedron
T, which we prove by showing (in Appendix C)

S11+ S22 + 533 < 1
S11— S22 — 533 <1
=811 + 822 — 533 < 1
—S11 — S22+ 533 < 1.

Moreover, the scaling of this vector seen in equation (58)
simply maps to another point still within the tetrahedron
(also proven in Appendix C). Thus we may conclude, in
the case where S3g > 0, that our decomposition is valid
and unique, since equality defines a valid value for 7, and
a valid point in T defining Ep given by Eq. (58).

The proof for the case when S39 < 0 is very similar to
the first case, therefore we have included it in Appendix
C. O

A. Pauli-damping channels

We have shown that all the channels simulable by noisy
teleportation over the resource state . are necessarily
of the form (53). Here we discuss the converse, i.e.,
we establish what channels of this form are simulable,
i.e., the region of parameters that are accessible in the
parametrization of Eq. (53). This is the content of the
following theorem.

Theorem 16 Using noisy teleportation over the ampli-
tude damping Chot matriz X, it is only possible to simu-
late channels of the form in Eq. (53) where n € [0,7] and
a = (q1,42, q3) belonging to the convex space bounded by
the points

( a ,tab, $a2b),
(iab, a ,$a2b),
(—a , +ab, iaQb) ,
(+ab, —a ,+a’b), (59)
with
L—v n
=/—, b=1——.
L—n Y

These correspond to the extremal points of the tetrahe-
dron T truncated by the two planes z = £b, and shrunk
by the transformation

(x,y,2) — (ax,ay,a2z) . (60)
This theorem motivates the following definition.

Definition 17 We define the Pauli-damping channels as
the class of qubit channels that are simulable by teleport-
ing over amplitude damping Choi matriz x~ and using
a classical channel 11 for the CCs. They have a unique
decomposition form in Theorem 15, and must satisfy the
criterta in Theorem 16.



Proof. First we consider &,. Since n = |yS30|, and
S3o can take any value in [—1,1], we can conclude that
n € [0,7]. A slightly trickier question now arises: Given
our resource has parameter v, and our amplitude damp-
ing channel within the decomposition has parameter 7,
what Pauli channels are attainable? We know that in our
two cases (positivity /negativity of Ssp), the Pauli chan-
nel elements q are

case 1:
V=Y g g,
V1755, P 11s 1—[vS30]
= Ml g VA S S
q 11—’}/530 22 1—"’7530‘ 22 ’
e 1—~
17V530533 T—[7Ss0] 33
(61)
case 2:
V=Y g 7\M5117
\/1+7530 115 1—|17530|
= V S = _7_75
4 «m 22, S0l 22
S 1y
1+’Y~930 33 1—HSBD\S33
(62)

Since we may prove that both
(S11, 522, S33), (S11, —S22, —533) € T, (63)

(see Lemma 24 in Appendix C), then we can state with
certainty that the class of possible Pauli channels will be
bound by the “shrunk” tetrahedron

(= =)
(== =)
(- )
(ﬁ 7)' (64

1y
As well as this, we fixed the value of S3y when choos-
ing our 7 value. Since Si1, S22, 533 are dependent of the
same variables as S3q, this places some restrictions of the
values they may take. In order to obtain this, we first use
vertex enumeration [52] to find all extremal probability
distributions of the space defined by

1—

2
=2

13

ik

—]
(-
2| 3
—] ]
[
2| 3

TT

I—n’

3

3
Py = {Puk [Pk =0, Y pik =1, (65)
k=0

Sao = i% k,l€{0,1,2,3} }
which we will denote {QE}. Now we may consider

(S11, 522, S33), (S11, —S22, —S33) as two linear functions,
Sy and S_, which map

St :Py =T,

Thus for a given probability distribution II, we may cal-
culate this transformation as

S.(1) = Sy (Z A,,Q;—Z) = S+ (Q), (66)

with >3 Am =1, A, > 0. Therefore, we need only
consider the values of Sy at these extremal probability
distributions, in order to obtain all allowable S;; values.
These are easily calculated, and we obtain that the eight
extremal distributions are

(v =) =0-)
Y Y
e N
Y v
(0 =0=5) =09)
Y v
(i(l—n) -1 ,i<1—”>>, (67)
’7 Y
regardless of the case (S3¢ positive or negative). These

points correspond to T, truncated by two planes at Ss33 =

i(l—g).m

An immediate consequence of this theorem is that we
cannot simulate the amplitude damping channel &, us-
ing its Choi matrix x.. In fact, this would require n =«
and &p = 1, corresponding to q = (1,—1,1). How-
ever, when 1 = ~ our possible Pauli channels are lim-
ited from both above and below by the same plane,

— 1= (12
1=y v
Therefore the amplitude damping channel is not Choi-
stretchable even with the noisy teleportation protocol.
The only exceptions to this are the special cases where
v = 0, which is simply the identity channel, and when
v = 1, which sends all qubit states deterministically to
|0). This can be decomposed into the completely depo-
larizing channel £p with q = 0 which sends all states
to the maximally mixed btate , followed by itself, to fit
our decomposition (see Fig. 1)

= 0, and thus this is impossible.

V. PROPERTIES AND CAPACITIES OF
PAULI-DAMPING CHANNELS

Now that we have shown what channels can be simu-
lated, we study some of the properties of these channels.
First of all, we quantify how distinguishable they are from
their closest Pauli equivalent. It turns out that the de-
composition in Theorem 15 provides a simple answer to
this problem: the distance is simply 7.



{-1,1,1}

{1.1,-1}

{-1,-1,-1}

FIG. 1: Possible Pauli channels when S3p = 0.5 and v =
0.6, including the shrinking effect of Eq. (64). The hol-
low tetrahedron is T characterizing all Pauli channels, whilst
the shaded region is the allowable values of q bounded by
( &*57FD (F5m & FH). (% 51D,
(i%, —%, i%) for these particular values.

A. Distance in trace norm

The trace norm distance between two quantum chan-
nels £ and & can be defined as

|€1 — &E|1 :=sup[|&1 (p) — E2 (p) |1 (68)
P

where ||o||; =TrVoo!. For Hermitian matrices, this is
equivalent to the sum of the absolute values of the eigen-
values of o. We then state the following.

Proposition 18 Given a decomposition Egim = 0¥ o
&, o Ep characterized by n and (q1,q2,q3) respec-
tively, then the trace norm between Egiy and the
closest Pauli channel E. is simply 7. More-
over, the closest Pauli channel has (fi1, fa2, f33) =

(VI=nq,—vVIT—=1ng, (1—n)gs) foru=0,
(VI=nqi, vVI—ng,—(1—n)g) foru=1.

Proof. For qubits, the trace norm between two states
is simply the Euclidean distance between their Bloch
vectors. Therefore we have a very natural way to find
the trace norm between two-qubit channels. When
u = 0, the Bloch vector of a state under &g, iS rejm =
(V1 =nqz,—/1—nqy, (1 —n)gsz+n), whilst under an
arbitrary Pauli channel it is rp = (c12, —cay, c3z). Thus
the problem we need to solve is

min max
(c1,¢2,c3)ET  z,y,z:22+y2+22<1

(( I—ng — 01)$>2 + (—( 1 —ng2 — 02)y>2

(0= mas — ez ) (69)

which is the square of the trace norm. Let us first look at
the final term (((1 — n)gs — ¢3) z +1)°. Given our max-
imum occurs for some fixed |z| value, we have that the
value of this term will be

max{(((l —n)gz —c3) |z| + 77)2’

(= (1= n)as — e5) 2] + n>2}

=(1(1 = n)gs — csll2] +n)". (70)

Clearly this is minimized when ¢ = (1 — ) g3, and has
value n?.

The remaining two parts of the equation are simpler.
Clearly we want to set

1—mnq1, c2 = +/1—n4qo,

to make these parts disappear, regardless of the values of
z and y. Thus we obtain our closest Pauli channel to be

(z,9,2) = ( 1 —nqay, (1 —n)g3z). (71)

We can be sure that this channel is Pauli as a consequence
of Lemma 22 in Appendix C.

For the case when u = 1, the proof is very similar, and
given in Appendix C. O

C1 =

1— nqgq1x, —

B. Distance in diamond norm

It is not wise to use the trace norm as a measure for the
distinguishability of channels, since it has been shown we
can do it better in general by sending part of an entangled
state through the channel [53-58]. With this in mind,
we look to an alternative distance. The diamond norm
distance ||€; — &a|o is defined as:

1€1 = Elo := sup L. ® &1 (p) — L @ &2 (p) [[1, (72)
PERRH

where x in an ancillary Hilbert space to the one acted
upon by &£, H. In general, one has ||&; — &flo >
[|E&1 — &1 Also we know that the diamond norm
can be achieved with an ancillary Hilbert space x with
dim x = dim H [59]. Therefore, we need only consider a
1 qubit ancillary space in our case and state the following.

Proposition 19 For a channel Egy, = 0y 0 €y 0 Ep, the
closest Pauli channel under the diamond morm is the
same as under the trace norm, given in Proposition 18,
and the diamond norm distance is equal to n.

Sketch Proof. (Full proof in appendix C). First off, we
know that

52161’11:1’2uli ‘ |gblm 62 ‘ |<> > | ‘SSII‘H gcl | |<> (73)

In order to find the diamond norm between &, and &,
we look at

T2 @ Esim (p) — L2 @ Ear (p) |1 (74)



for an arbitrary 2 qubit state p. We find the absolute
sum of eigenvalues for Is ® Esim (p) — I2 ® £a (p) to be
independent of p and equal to . Thus we can conclude
that

Hgsim - gc1||<> =n= ||€sim - 501”1- (75)

Using this, suppose there exists a channel £ with a
strictly smaller diamond norm than our closest channel.
Then we have the chain of inequalities

||€sim_€/||1 S ||gsim_g/||<> < ||gsim_gcl‘|<> = Hgsim_gclnl

(76)
leading to a contradiction, since we know the closest
channel under trace norm to be &;. Thus we are forced
to conclude that the diamond norm is smallest between
Esim and &1, with distance n. O

The consequence of this result is that we have a natural
measure of the generalization allowed by the introduction
of classical channels. Given a resource state X, we know
that we will be able to simulate channels || - ||, =« dis-
tinct from the set of Pauli channels, since that is the
largest allowable value n may take.

C. Upper bound for the two-way private capacity

Now that we have characterized the class of Pauli-
damping channels, we are interested in their quantum
and private communication capacities. As explained in
the introduction, the two-way assisted capacities are in
general hard to calculate. Yet because we have shown
that these channels can be simulated with an LOCC pro-
tocol (noisy teleportation) over a pre-shared resource (the
amplitude damping Choi matrix x.,), we may use telepor-
tation stretching and Theorem 10 to upper-bound their
two-way quantum (Q2) and private capacities (P, = K).
In fact, for an arbitrary Pauli-damping channel £ with re-
source state x., we may compute the upper bound (weak
converse)

Q2(€) < B(€) = K(€) < Er (xy)
1 _1-9v 1—9\ , 2-1 2—1
(77)

Within the Pauli-damping class, let us analyze the
“squared” channel &, with its F matrix being given by

1 0 0 0

o vi=r(1-2) 0 0

Fa=1 0o T—7(1-3) 0
0a 0 0 (1—7)?

(78)
The decomposition of this channel into the form (53) of
Theorem 15 is u = 0, n = v2, and

_((=3) (-3) 1-9
q‘(m"mwﬂ)’ 7
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where v is the damping parameter of the resource state.
Its two-way quantum and private capacities are upper
bounded by using Eq. (77) and lower bounded by op-
timizing the coherent information of the channel. The
results are shown in Fig. 2.

T

1.0

c o 9
> o ™

bits per use

o
N

o
o

S R S S R S S |

0.2 0.4 0.6 0.8 1.0

n

FIG. 2: Upper and lower bounds for the two-way private
capacity P> and the two-way quantum capacity Q2 of the
squared channel &q, in terms of its parameter 7 which is the
square of the amplitude damping parameter v associated with
its resource state.

o
o

VI. CONCLUSIONS

In this paper we have studied a particular design for
the LOCC simulation of quantum channels. This de-
sign is based on a modified teleportation protocol where
not only the resource state is generally mixed (instead of
maximally entangled) but also the classical communica-
tion channel between the parties is noisy, i.e., affected by
a classical channel. The latter feature allows us to sim-
ulate family of quantum channels, much larger than the
Pauli class, for which we have provided a characterization
in Theorem 11.

Starting from the Choi matrix of an amplitude damp-
ing channel as a resource state for the noisy teleporta-
tion protocol, we can easily simulate non-Pauli channels.
In particular, we have introduced a new class of simu-
lable channels, that we have called Pauli-damping chan-
nels. Their distance from the set of Pauli channels can
be quantified in terms of the diamond norm and turns
out to be easily related with the damping probability
associated with the generating Choi matrix. For these
Pauli-damping channels we have then used the method
of teleportation stretching to derive upper bounds for
their two-way quantum and private capacities.

In conclusion, our results are useful to shed new light
in the area of channel simulation with direct implications
for quantum and private communication with qubit sys-
tems. Further developments may include the study of
Pauli-damping channels in the context of adaptive quan-
tum metrology [20], or in the setting of secure quantum
networks [18].
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Appendix A: Proof of Theorem 8

Let us suppose that the channel £(p¢) is Choi-stretchable via a WH-teleportation protocol. This means that

E(pc) =Txelpe) = Y V() Trea (Eoalg)(pe @ xe)) Va(g). (A1)
geG
Now consider Vg(h)c‘f (Uc(h)chg(h)) Vi (h) which expands out to
) | D2 Vi) Trea (Bealo) Ue)peUl(h) @ xe) ) Vis(g) | Vi (k) (A2)
geG
= > ViWVi(9)Trea (Beale) Uc(hpcUL(h) © xe)) Va(9)Va(h). (A3)
geG
Since {Vp(g)} is a representation of the WH-group, we may use Vg(g)Vg(h) = @M Vg (gh),
where €'?(9:") is some overall phase.
= > Vilgh)Trea (UL(R) Eca(g)Uc(h)(pe © xe)) Via(gh) (A4)
geG
=" Vigh Trea (UEMUL(9) [9) (@] Uc()Uc(h)(pe @ Xe)) Vigh) (A5)
geG
=" Vh(gh)Trea (UL (gh) @) (@] Uc(gh)(po © xe)) Va(gh) (A6)
geG
= Vi(gh)Trea (Eca(gh)(pe © xe)) Vi(gh). (A7)
geG
Now we may use the group property that ¢G = G, for any g € G
= > Vg Troa (Ecalg)(pe @ xe) Va(d') (A8)
g'eG
=Ixe(po) = E(po). (A9)

We can therefore conclude that Choi-stretchable channels via WH-teleportation are teleportation covariant. [
We could also consider a more general case, where we have a channel in the form seen in Eq. (29), but without the

group representation structure. However, we would not expect this to be covariant, since Eq. (27) forces

V(gh)E(p)VT(gh) = E(U(gh)pUT (gh))

E(U(g)U (h)pUT (R)U(g))
V(g)E(U(h)pUT(h)V(g)
V(g)V(REPVT(mVi(g).

Appendix B: The form of S;;

In this section, we present the 12 possible forms for S;; in a concise way. We present a 3 x 4 matrix, 8§ of 4 x 4

matrices. The rows of 8 correspond to i = 1,2, 3 respectively, and the columns to j = 0,1,2,3. Given i, j*™

element
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8S;j, Sij can be obtained by the sum Ziﬁo 1—0(Sij)k. Pk - note we are counting the rows and columns of S;; from 0.

11 -1 -1 11 -1 -1 -1 -1 1 1 1 1 -1 -1
11 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1
11 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
11 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1
1 -11 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1
1 -11-1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1
S = 1 -11-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
1 -11 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1
1 -1 -11 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
1 -1 -11 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1
1 -1 -11 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
1 -1 -11 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1

Appendix C: Proofs

1—
Lemma 20 —2— € [0,1]

Proof. Remember that v € [0,1]. Therefore 1 —~ € [0, 1] also.
Now, S3o € [0,1] in the first case. Thus,

7830 <y
= —vS30 > —7
=1-7550>1-17

-~
=1>—
17830

remembering 1 —vS39 > 0. O

Corollary 21 1_1;;?30 € [0,1].

Lemma 22 If a point (z,y, z) belongs to the tetrahedron defined by T, then so too does the point (v/ax, /oy, az),where

a € [0,1]

Proof. Since any point in the tetrahedron can be expressed as a convex combination of the four extremal points in

T, it is sufficient to show that the four points,

( Vo,—Va, a)( Va, Va,-a),
(—Ve, Va, a)(—Va,—Va,—a),

belong to the tetrahedron (i.e. are themselves a convex combination of the four extremal points), and thus any

rescaled tetrahedron point also still remains with the full tetrahedron.
Expressing any point as

(xvyvz):p(J( 1,717 1)+p1( 13 1,71)
+pa(=1,—1,-1) +ps(—1, 1, 1),
potpitp2+tp3=1, p;=>0

(C1)
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then we can achieve the points in Eq. (C1)

Point PP P2 ps
(Va,—va,a)  GHEE e o dge O
(Va,va,—a)  ge UofEl fhpel e (C2)
(_\/av \/aa a) (1721/6) 1TTO( ) 1TTOC R (1+21/E)
(_\/av _\/av —Ol) PTO( (1+:1/E) (17:1/5) %

The normalization and positivity conditions are easy to verify. [J

Corollary 23 If (S11, S22, S33) belongs to tetrahedron T, then so too does

11—~ 1—~ 1—~
— S S S. C3
<\/1 — 4S5 MY \/1 — 783071 = 4539 33) (C3)

= (qh CI27(]3)

Proof. We can simply set o = 171;7:330, and apply Lemma 22. (J

Lemma 24 For all classical channels 11, as defined in our noisy teleportation protocol, we have that (S11,S22,533)
belongs to the tetrahedron T .

Proof. An alternative way to define T is by four inequalities which are satisfied by all points within the tetrahedron,
namely

r+y+2<1
r—y—2<1
—r+y—2<1
—r—y+2<1

We have already seen these used in Section II B. Testing these with Sy1, S22 and Ss33 we find

S11 + Sa2 + S33 =1 — (po2 + p13 +p2o +p31) < 1
S11 — S22 — S33 = 1 — (po3 + P12 + pa1 +p3o) < 1
—S11 + S22 — S33 = 1 — (poo + P11 + paz +p33) < 1
—S11 — S22 + S33 = 1 — (po1 + p1o + pa3 +p32) < 1.

From this, we can conclude that all (S11, S22, 533) possible belong to the tetrahedron. This immediately gives that,
in the case where S50 > 0 our decomposition is a valid one. [J

Proof of Theorem 15 for S35 < 0.
We have already proven this result to be true for S5y > 0 in the main body of the text. We also need to consider our
second case, S39 < 0. Here we set n = —7v.539. This time we obtain

Vo S
V14839 ’
A

V14 ’7530 ’

(91,42,93) = (

11—~
-8 C4
o) (©9)
Except for the fact our scaling factor is now 1i;g30’ we have a very similar situation to our first case, except now we

need to prove that (S11, —S22, —Ss33) is in the tetrahedron, in order for our decomposition to be valid for our second
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scenario. If we look at the four inequalities that we need to satisfy, we find that

Sll + (—822) + (—533) = Sll - Szg — 533
S11 — (—=S22) — (—533) = S11 + Sa2 + S33
—S11 + (—=S22) — (—=S33) = —S11 — S22 + S33
=511 — (=S22) + (—S33) = —S11 + S22 — S33.

which we already know satisfy our tetrahedron inequalities. Thus we have proved that our decomposition is valid too
for cases where S39 < 0, and so is true for all channels simulable with x. as a resource.l]

Proof of Proposition 18 with v = 1.

In this case, we have to contend with the sign change enacted by o,; however the proof is similar. This time, we aim
to solve

min max
(c1,c2,e3)ET  z,y,z:x2+y2+22<1
2 2
(( 1 —nq — cl):c) + (( 1 =g + C2)y)
2
+((=(1=n)gs = e5)z 1) - (C5)
Again, we begin by looking at the final part of the sum. For a fixed value of |z|, this term will be
2
max{ ((~(1 = aa = ca) o~ ),
2

(@ =n)as-+ e ol =)’ |

_ max { (((1 = m)as + 3) 2| +n)°,

(= (1= n)as +e5) o] + 17)2}

2
=(1(1 = m)as + esllz[ +n)". (C6)
This is clearly minimized when ¢5 = —(1 — n)gs. For the « and y terms, they are clearly minimized for
c1=+v1—nq, co =—v1—1nq.

Remembering that 7 is invariant under o, and thus if (1, g2, ¢3) belongs to the tetrahedron so too does (¢1, —g2, —¢s),
therefore we can again conclude that the channel corresponding to (c1,ca,c3) is Pauli, and our second part of the
proposition is proved. [

Lemma 25 ||&; — &||o > [[&1 — &1

Proof.
[[€1 = &llo = sup |[[I, @ &1 (p) — 1. @ &2 (p) |1 (C7)

PERRH

> sup  |[L®@&(p) — 1. @&(p)|h (C8)
pEsep(kQH)

= sup I ® &1 (p1 ® p2) — L @ E2 (p1 @ p2) 1 (C9)
P1P2

= Slé)p [[p1 ® &1 (p2) — p1 ® E2 (p2) 1 (C10)
P1YP2

— sup IEa (p2) — & (p2) [ (c11)
P2

= [|&1 — &1 (C12)

Note we have used the property of subadditivity over tensor product of the trace norm. [J
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Full proof of Proposition 19.
We shall begin with the case where u = 0. First off, we know that

min Hgsim - g2||<> < ||gsim - gcl||<>- (013)

EyEPauli -
In order to find the diamond norm between &g, and &1, we look at
[|Io ® Esim (p) — L2 ® Ea (p) |1 (C14)

for an arbitrary 2 qubit state p. We find the matrix Mp = (Io ® Esim (p) — L2 ® €1 (p)) to be

(1+a3)n 0 (a1 —iag)n 0
1 0 1(1+a3)n 0 —(aq —iaz)n
Mp = 4| (a1 +ia2)n 0 (1—as3)n 0 (C15)
0 —(a1 +iaz)n 0 (=1+a3)n
which has eigenvalues
1 24 .20 2 1 24 .20 2
1(— 1—1/a? +a2+a3>n 1(1— a3 +a2+a3>n (C16)
1 1
Z(—1+\/af+a§+a§>n 1(14— a%+a§+a§>n.
Remembering that a? + a2 + a3 < 1, this means the singular values are:
1 24 .24 2 1 24 .20 2
1(1—1— aj +a2—|—a3)n 1(1— a3 +a2+a3)n (C17)
1 1
1(1—\%%‘*‘@%"‘@%)77 Z(l—h/a%—&—a%—i—a%)n,

and thus their sum is 7. This gives ||Eim — Eallo =17 = ||Esim — Eall1-
Using this, suppose there exists a channel £ with a strictly smaller diamond norm than our closest channel. Then
we have the chain of inequalities

||gsim - 5,”1 < ||€sim - 5/”0 < ||gsim - 8c1||<> =n= ||€sim - gClHla (CIS)

leading to a contradiction, since we know the closest channel under trace norm to be &;. Thus we are forced to
conclude that the diamond norm is smallest between &y, and &, with distance 7.

In the case where u = 1, we are writing £, as the unitary o, applied after a similar simulable channel, £,05 = &,0Ep.
This has closest Pauli channel Eposel = (\/1 —ng1,v/1 =gz, (1 — n)qg,). Since the trace norm is invariant under

unitaries, and the 2 qubit channel I, ® o, is unitary, we can conclude that

ngos - gposcl| |<>
= sup H]I2 ® Epos (p) — L Eposcl (p) ||1
P

=sup|| (l2 ® 02) (Io ® Epos (p) — L2 @ Eposer () |1
p

= sup [[Iz ® &im (p) — Iz © Ea (p) |11
P

= ||(€sim - gcl||<>7

where we have spotted that the channel & = 0, ® Eposc1. We can then conclude that ||Egim — £allo = 1, and therefore
by using the same chain of inequalities (76), we force this to be the minimum distance possible. [
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