

This is a repository copy of A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca²⁺ Signaling in Tomato.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129743/

Version: Accepted Version

Article:

Zhang, H, Hu, Z, Lei, C et al. (11 more authors) (2018) A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca²⁺ Signaling in Tomato. Plant Cell, 30 (3). pp. 652-667. ISSN 1040-4651

https://doi.org/10.1105/tpc.17.00537

© 2018 American Society of Plant Biologists. This is an author produced version of a paper published in Plant Cell. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplemental Figure 1. The effect of PSK concentration on immunity, and the transcript abundance of PSK biosynthesis-related genes in VIGS tomato plants (supports Figure 1).

(A) The dose-dependent alleviatory effect of PSK on leaf *B. cinerea* transcript abundance. Four-week-old tomato plants were treated with indicated concentrations of PSK 12 h before *B. cinerea* inoculation, and leaf samples were taken at 1 day post *B. cinerea* inoculation (dpi) for relative leaf *B. cinerea* actin transcript abundance assay.

(B) Phylogenetic analysis of PSK precursor genes from tomato and *Arabidopsis*. Amino acid sequence alignment and tree construction were performed with MEGA program. A consensus neighbor-joining tree was obtained from 1000 bootstrap replicates of aligned sequences. The percentage at branch represents the posterior probabilities of amino acid sequences.

(C) Relative transcript abundance of homologous PSK precursor genes and *SITPST* in VIGS tomato plants. After initial silencing efficiency test 3~4 weeks after *A. tumefaciens* infiltration, tomato plants were subject to *B. cinerea* inoculation, and leaf samples were collected at 1 dpi. The samples are same with those used for *B. cinerea actin* assay in Figure 11. The transcript abundance were expressed as a ratio of the mean levels in TRV:0 control plants, which were defined as 1.

The results in (A and C) are presented as the mean values \pm SD; n = 3. Different letters indicate significant differences between treatments (P < 0.05, Tukey's test). The experiments in (A) were repeated two times, and experiments in (C) were repeated three times with similar results.

Supplemental Figure 2. Analysis of PSK receptor sequences, and the transcript abundance of *SIPSKRs* in VIGS tomato plants (supports Figure 2).

(A) Phylogenetic analysis of PSK receptors from tomato, *Arabidopsis* and *Daucus carota*. Amino acid sequence alignment and tree construction were performed with MEGA program. A consensus neighbor-joining tree was obtained from 1000 bootstrap replicates of aligned sequences. The percentage at branch represents the posterior probabilities of amino acid sequences.

(B) Schematic of SIPSKR1/R2 protein. The diagram shows the signal peptide (SP), extracellular leucine-rich repeats (LRRs), an island domain, a transmembrane domain (TM), and a cytoplasmic Ser/Thr kinase domain. (C) Relative transcript abundance of *SIPSKRs* in VIGS tomato plants. After initial silencing efficiency test $3\sim4$ weeks after *A. tumefaciens* infiltration, tomato plants were subject to *B. cinerea* inoculation, and leaf samples were collected at 1 dpi. The samples are same with those used for *B. cinerea actin* assay in Figure 2F. The transcript abundance were expressed as a ratio of the mean levels in TRV:0 control plants, which were defined as 1. The results are presented as the mean values \pm SD; n = 3. Different letters indicate significant differences between treatments (P < 0.05, Tukey's test). The experiments were repeated two times with similar results.

Supplemental Figure 3. The transcript abundance of PSK signaling-related genes in VIGS tomato plants (supports Figure 4).

(A) Relative transcript abundance of SIPSK3, SIPSK3L, SITPST, and SIPSKR1 in VIGS tomato plants.

(B) Relative transcript abundance of *SIPSKR1* in VIGS tomato plants.

After initial silencing efficiency test 3~4 weeks after *A. tumefaciens* infiltration, tomato plants were subject to pharmalogical treatment and *B. cinerea* inoculation, and leaf samples were collected at 1 dpi. The samples in **(A)** are same with those used for *B. cinerea actin* assay in Figure **4B**. The samples in **(B)** are same with those used for Figure **4D**. The transcript abundance were expressed as a ratio of the mean levels in TRV:0 control plants, which were defined as 1. The results are presented as the mean values \pm SD; n = 3. Different letters indicate significant differences between treatments (P < 0.05, Tukey's test). The experiments in **(A)** were repeated three times, and experiments in **(B)** were repeated two times with similar results.

Supplemental Figure 4. The effect of PSK concentration on cytosolic Ca²⁺ levels, and the transcript abundance of *SIPSKRs* in VIGS tomato plants (supports Figure 5).

(A) The dose-dependent effect of PSK on cytosolic Ca^{2+} elevation in leaves of aequorin-expressing tomato plants. The signals shown at 0.5-min intervals are the mean values \pm SD generated from 8 leaf discs per treatment.

(B) Relative transcript abundance of *SIPSKR1* and *SIPSKR2* in VIGS tomato plants. Approximately three weeks after *A. tumefaciens* infiltration, each plant was taken with an uppermost expanded leaflet for target gene silencing efficiency analysis by qRT-PCR. Five plants with efficient silencing from each TRV: *SIPSKR1* and TRV: *SIPSKR2* group were selected and transcript abundance of target genes are shown as the mean values \pm SD (n = 5). These selected plants were further used for cytosolic Ca²⁺ assay in Figure **5B**, and leaf discs samples for cytosolic Ca²⁺ assay were taken from the corresponding opposite leaflet for the silencing efficiency assay. The transcript abundance were expressed as a ratio of the mean levels in TRV:0 control plants, which were defined as 1. Different letters indicate significant differences between treatments (P < 0.05, Tukey's test).

The experiments in (A) were repeated two times, and experiments in (B) were repeated three times with similar results.

Supplemental Figure 5. Analysis of tomato CaM and YUC homologs (supports Figure 6).

(A) Amino acid sequence alignments of tomato CaM homologs with Clustal X program.

(B) Phylogenetic analysis of YUCs from tomato and *Arabidopsis*. Amino acid sequence alignment and tree construction were performed with MEGA program. A consensus neighbor-joining tree was obtained from 1000 bootstrap replicates of aligned sequences. The percentage at branch represents the posterior probabilities of amino acid sequences.

(C) Effects of *B. cinerea* inoculation on the relative transcript abundance of *SlYUCs* in leaves at 0.5 dpi. The transcript abundance of *SlYUC1* in mock-inoculated condition were defined as 1. The results are presented as the mean values \pm SD; n = 3. nd, not detected. The asterisk indicates a significant effect of *B. cinerea* inoculation with tomato plants. The experiments were repeated two times with similar results.

Supplemental Figure 6. Co-expression of SlCaMs and SlYUCs in *N. benthamiana* leaves (supports Figure 6).

(A) Co-expression of p2YC-SICAMs and p2YN-SIYUCs proteins were detected by immunoblot analysis with an anti-HA antibody. Samples of infiltrated areas were collected from *N. benthamiana* leaves after 48 h *A. tumefaciens* infiltration. Rubisco (RBC) was stained with Ponceau for protein loading control (bottom). The black boxes indicate specific SIYUCs and SICaMs bands.

(B) SIYUC6 localizes to plasma membrane. SIYUC6-GFP and FLS2-mCherry (marker for plasma membrane localization) plasmids were transiently co-expressed into *N. benthamiana* leaves. The GFP and mCherry signals were visualized under confocal microscopy after 48 h infiltration. Scale bar = $50 \mu m$.

The experiments were repeated two times with similar results.

Supplemental Figure 7. Effects of *SlCaM2* silencing on the transcript abundance of *SlCaM* homologs in tomato plants (supports Figure 7).

After initial silencing efficiency test 3~4 weeks after *A. tumefaciens* infiltration, tomato plants were subject to *B. cinerea* inoculation, and leaf samples were collected at 1 dpi. The samples are same with those used for *B. cinerea actin* assay in Figure 7C. The transcript abundance were expressed as a ratio of the mean levels in TRV:0 control plants, which were defined as 1. The results are presented as the mean values \pm SD; n = 3. Different letters indicate significant differences between treatments (P < 0.05, Tukey's test). The experiments were repeated three times with similar results.

Supplemental Data Set 1. Nucleotide sequence alignments based on mRNA region of tomato PSK homologs (supports Figures 1 and 4; Supplemental Figures 1 and 3).

Slpsk1	:ATGGA	: 5
Slpsk2	:ATGATGAGCAAAA	: 14
Slpsk3	:ATGTCTAA	: 8
Slpsk3L	:ATGTCTAA	: 8
Slpsk4	: GAACATTTGTCCCTTCAC) TTCTTGGTTCCCTCACTCTATATATCCATCGTCCCCCAAAAAACTCAACTAAGCAATAT	: 80
Slpsk5	:ATGAA	: 5
Slpsk6	:ATGAACAATT	: 11
Slpsk7	:ATGTCTAA	: 8
Slpsk1	: GCAAAAAAAATATTTTTTTTTTTTTTTTTTTTTTTTT	: 82
Slpsk2	: TGTATATTTTGTGCCACATCATCATCATCATCATCATCACAAGCATCTAGTCGTTTTTTAG	: 82
Slpsk3	: AGCATCTGCCAGCTTTTTTTTCATCATCCTTCTCCTCTGTTTTGCCCTGTCCTATGCTGCTCGCCCTAACCCACTTT	: 85
Slpsk3L	: AGCCAATACCAGTTTTTCTTCATTATACTTCTCCTCTGTTTTGCCCTGTCCTATGCTTCTCGTCCTGCCCCAGCTT	: 85
Slpsk4	: GGCTAAACTTAACACCTTTTGTATGATAGCATTCCTCCTCTTTCTCGCGCTAACTTGCGCTTCTTCCCGTCCAGTGCGTG	: 160
Slpsk5	: GCCTATTATTAATTCA CICITATTCATCTTTCATTATACIACTACTCATTCGCAAATAGTATCGGTICGTCTACCTC	: 85
Slpsk6	: AAGCATATCATGTTTTCTTGTATTTCTCAACATGTTCCTCTTTGTCTTCACCAGCATGTCTTCACGTTATTTCT	: 91
Slpsk7	: ATTGTGCACTATTTTTGTTGTGGGCATTTCTTCTTGCTTCAATÁCTCTCACATTTGCTGTTCGTCCTAATTCTT	: 82
SlPSK1 SlPSK2	: CAACAATTAATTCTCAAGAATCTAATGGGATTATTAGTAATAATCCAATTTCCTCACAA : TAAACAACTTGCAAGTGGAAAAGGAAGCAAAATTAACTAATAAATCTAGTGATGGAGGACTCAATTGAGAAGATGAGA	: 141 : 159
Slpsk3	: TTCACGAGGCTACTCTCAACAATATTCAACAC	: 117
Slpsk3L	: TTCACGAGGCATCCCTCAACATTGATCACCAO	: 117
Slpsk4	: CGCCTTATCGCGATGTTACTCCGATGGAGCAT	: 192
Slpsk5	: CTACAACTATTCAAGATAACAACAAGATTGAAGCTAATGGGATTATTCATTC	: 150
Slpsk6	: TATCAACCATAAGTGAAGTGAAAGAGGATATAAAGCAAGAGAAAGTCAACCTTTCGTTACATACA	: 171
Slpsk7	: TTTCTGTTCTCGATCCCAAAATTCAGGTTGCA	: 114
Slpsk1	: GTACAAGAAGATTUCAATGATCTCATGCGAATAGAAGAATGTGAAGAAAA CA TGAAGAAATT TG TT UC AAG <mark>AG</mark>	: 212
S1PSK2	: AGTACTAATTTAAATAGGTTGATGCGGTTAGAAGAATATTCATCTGAGGATGAAAATGATCAAGAATGCATGAAGAATGCATTAAGAG	: 236
Slpsk3	: CAGGATGTTGTTGAACCAAAGGAACTTGGTAAGCAAGAGGATTCCAAAGGAGTCAAGGAAGAAGAATGTTTAGAAAG	: 194
S1PSK3L	: CAGGATCATGTTAGGGAACCAAAACCAACCAAGAGAGCTCCAACCGACGGCAGGATGAAGAATGTTTAGAAAG	: 197
SIPSK4	: ACTAAGGATAAGGCAGCAATGAAAGAACATGTGGAGGATAGATGTGAAGGCCCTGGTGGAGAACAAGAATGTTTGATGAG	: 272
Slpsk5	:GAAGACGACTTCACCAATCTGATGCGGGATGGAGAAATGTGAAGACAGAGATGAAGTTTGTTTAAATAG	: 218
SIPSK6	: ACCAACGATAGCCTAAATAAACTTATGCGGTTGGAGGAATGTGTTGAAGAAGATGGAGAATGCATGCAAGAG	: 242
SIPSK7	: AGTGAAGGAAAAGTTGAAATTAAAGAAGCAAAAATGTGAACGACTGGAGGAAGAATGTTTGAAGAG	: 182
Slpsk1	: AAGAATGACTGCAGAGGCTCATTTAGATTATATTTATACTCAACACAAGCCAAAACATTGA	: 273
Slpsk2	: AAGAGTTCTTGTACAAGCTCACTTGGATTACATCTACACCCAAACACCATAATCACCCTTAA	: 297
Slpsk3	: GAGGACT ₄ TTCGCTCCTCATCTTGACTATATCTATACCCAAAATCAGAACCCTTGAAGAAAGTTTACGATTCCCAAGG	: 271
Slpsk3L	: AAGGAACTTGECTGCTCACCTTGACCTATATCTATACCCAAAATCAGAACCCGTGAACTAGTTTGGTATTTGGTATAT	: 274
Slpsk4	: AAGAACATTAGAGGCTCATCTTGATTATATATACCCAGAGACATAAGCAACCTTAA	: 330
Slpsk5	: AACCATGCTAGCTCACCTTGGATTATATATATATACTCAAAACAAAC	: 279
Slpsk6	: AAGGGTAGTAGCAGAAGCTCATCTTGATTACATCTACACTCAGAGCCATAATCATCCTTGA	: 303
Slpsk7	: CAGGACAATCCCTGCTCATCTTGATTATATTATACTCAAAGTATTAATAAC	: 234
Slpsk1	:ACAAGTTTATATTAATATTATTTTTTTTTTTTAAGGATGGTTAATTAGTAATGTTCTT	: 330
Slpsk2	:	: -
Slpsk3	· <u>ACCAAAATGA</u> CAGTTAATTTGTTTTACAATGATTAATTGACCTAAGTTTAACGTTAATTCATGTTTCACTAAAGTAGTG	: 351
Slpsk3L	: TGGAAGTAGATGAGACAGTTACATATCACACATTAAAATTACCTTACTGTACATCAGTCCCGTTG	: 339
Slpsk4	:	: -
Slpsk5	:	: -
Slpsk6	:TATTAATTAATATAATCAATCCTC	: 327
Slpsk7	:ATCATCCA	: 243

Slpsk1	:	TTCTATACTTTAAATTATAGTACAACGTACTAAAAGAAACTTTAATTAA
Slpsk2	:	
Slpsk3	:	ATAGAACGAGTGAGTTATCACATATATTTATAGTATTGCTTTTCGTGTGTTGCTTGTTAACT <u>TTTCCCCTGTACG</u> : 425
Slpsk3L	:	atttttcctgtacgttaaaatgtattaatagcatttcctcttccgtcctagatgatactatctctgtttttgctttgtatt : 419
Slpsk4	:	
Slpsk5	:	:
Slpsk6	:	TAAGCTAGCTGGTGTTGTTAATAAATTAAAAGGACTAGCTAG
Slpsk7	:	TGAATTAATCAAGAACTT
		-
Slpsk1	:	TGTAGTACTATGTTTTGTGAGAATTATAAAGATAGCCAAAAGTTTAATTATTACTCTTTG : 470
Slpsk2	:	
Slpsk3	:	TTAATCCCCATATGAAGTTTCTGGTGTATGCAAGTTGATCGATTACTT : 476
Slpsk3L	:	TGGCGGTATTTCAACTAGGCATATGGTTTAATTACGAAATAAAACCTTCTTTGT : 473
Slpsk4	:	AAAAAATTTGATCTATCTAGATTTATCAATTCATTAAAATTACTAGTTCC- : 439
Slpsk5	:	: -
Slpsk6	:	TAAATAATTTTCCTACCTAAGTTT : 428
Slpsk7	:	TT : 263

Forward primer region for qPCR	Reverse primer region for qPCR
Forward primer region for VIGS	Reverse primer region for VIGS

Supplemental Data Set 2. Amino acid sequence alignments of PSKR homologs from tomato, *Arabidopsis* and *Daucus carota* (supports Figure 2 and Supplemental Figure 2). The conserved domains were predicted by SMART (http://smart.embl-heidelberg.de).

Signal peptide

Slpskr1 slpskr2 Atpskr1 Atpskr2 DcPSKR	: <u>MGVLQVCVIFIFLGICLQAQSQNLQNLICNPKDLKALEGFVKSLETVIDFWDLGNSTNCCNLVGVTCDS</u> : <u>MVIWEFLPMSFVCWVFLAYLFCTTL</u> SLETPVQNCHPYDLLALKEIAGNLTNGVILSAWSNEPNCCKWDGVVCGN : <u>MRVHRFC</u> VIVIFLTELLCFFYSSESQTTSRCHPHDLEALRDFIAHLEPKPDGWINSSSSTDCCNWTGITCNS :	: 69 : 74 : 72 : 59 : 75
Slpskr1 slpskr2 Atpskr1 Atpskr2 Dcpskr	Leucine-rich repeats :GRVvKLELGKRRINGKLSESLGNLDELRTLNLSHNFFKGPVPFTLLHLSKLEVLDLSNNDFFGLFPSSMN :VSTQSRVIRLNLSRKGLRGVVSQSLERLDQLKLLDLSHNHLEGGLPLDLSKMKQLEVLDLSHNVLLGPVLRVFD :NNTGRVIRLELGNKKLSGKLSESLGKLDEIRVLNLSRNFIKDSIPLSIFNLKNLQTLDLSSNDLSGIPTSIN :SDVSGRVTKLVLPEKGLEGVISKSLGELTELRVLDLSRNQLKGEVPAEISKLEQLQVLDLSHNLLSGSVLGVVS : SLGLDDVNESGRVVELELGRRKLSGKLSESVAKLDQLKVLNLTHNSISGSIAASLLNLSNLEVLDLSSNDFSGLFPSLIN	: 139 : 148 : 145 : 133 : 155
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	:LPLLQVFNISDNSFGGPVPLGICENSTRVSVIKMGVNYFNGS PVGIGNCGSFKLF : GLESIHSLNISSNLFTGNFSEFGEFPNLVAFNISNNSFTGSFKFEICSFSKKLKVLDISLNHLTGDLGGLDNCSSLLQQI :LPALQSFDLSSNKFNGS PSHICHNSTQIRVVKLAVNYFAGNFTSGFGKCVLLEH : GLKLIQSLNISSNSLSGKLSDVGVFPGLVMLNVSNNLFEGE HPELCSSSGGIQVLDLSMNRLVGNLDGLYNCSKSIQQI :LPSLRVLNVYENSFHGLIPASLCNNLPRIREIDLAMNYFDGS PVGIGNCSSVEY	: 195 : 228 : 201 : 213 : 211
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	 CVGSNLLSGSLPDELFKLSRUTVLSLQENRFSGQLSSQIGNLSSUVHLDICSNGFSGNIPDVFDRLGKLTYLSAHSNRFF HVDSNDLGGHLPDSLYSMTSLEQLSLSANNFSGQLSPQLSKLSKLKSLVLSGNRFHGLLPNVFGNUTLLEQLAAHSNRFS CLGMNDLTGNIPEDLFHLKRHNLGIQENRLSGSLSREIRNLSSUVRLDVSWNLFSGEIPDVFDELPQLKFFLGQTNGFI HIDSNRLTGQLPDYLYSIRELEQLSLSGNYLSGELSKNLSNLSGLKSLLISENRFSDVIPDVFGNUTQLEHLDVSSNKFS GLASNNLSGSIPQELFQLSNLSVLALQNNRLSGALSSKLGKLSNLGRLDISSNKFSGKIPDVFLELNKLWYFSAQSNLFN 	: 275 : 308 : 281 : 293 : 291
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	: GNIPTSLANSGTVSSLSLRNNSLGGIIELNCSAMVSLVSLDLATNGFRGLVPDYLPTCQRLQTINLARNSFTGQLPESFK : GPLPSTISYLSVLRVLDLRNNSLSGPVDLDFIKLTSLCTLDLATNHFKGNLPVSLSSR-ELKILSLAKNEFTGPIPENYA : GGIPKSLANSPSLNLLNLRNNSLSGRLMLNCTAMIALNSLDLGTNRFNGRLPENLPDCKRLKNVNLARNTFHGQVPESFK : GRFPPSLSQCSKLRVLDLRNNSLSGSINLNFTGFTDLCVLDLASNHFSGPLPDSLGHCPKMKILSLAKNEFRGKIPDIFK : GEMPRSLSNSRSISLLSLRNNTLSGQIYLNCSAMTNLTSLDLASNSFSGSIPSNLPNCLRLKTINFAKIKFIAQIPESFK	: 355 : 387 : 361 : 373 : 371
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	: NFHSLSSLSVSNNSMHNIDAADRILQHCKNLSTLVLTLNFRDEDLPTDSSLQFSELKALIIANCRETGVVPQWLRNSSKL : NLSSLVFLSLSNNSLSNLSGALSVLQHCRNLSTLILTRNFRGEDIPKN-VSGFENDMIFALGNGGLDGRIPIWLYNCSKL : NFESLSYFSLSNSSLANISSALGILQHCKNLTTLVLTLNFHGBALPDDSSLHFEKLKVLVVANGRLTGSMPRWLSSSNEL : NLQSLLFLSLSNNSFVDFSETMNVLQHCRNLSTLILSKNFIGEDIPNN-VTGFDNLAILALGNGGLRGQIPSWLLNCKKL : NFQSLTSLSFSNSSIQNISSALBILQHCQNLKTLVLTLNFQKEDLPSVPSLQFKNLKVLIIASSQLRGTVPQWLSNSPSL	: 435 : 466 : 441 : 452 : 451
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	Island domain ULDLSWNRLSGTLPPWIGDFQFLFYLDFSNNSFTGEIPKEITRLKSLIS GPVSMNEPSPDFPFIKRNVSVRGLQYN QVLDLSWNHLDGEIPTWIGEMEKLFYLDFSNNSLIGEIPKNLTDLKSLISPHNYASSLNSPTGIPLFVKRNQSGSGLQYN QLLDLSWNRLTGAIPSWIGDFKALFYLDLSNNSFTGEIPKSLTKLESLTSRNISVNEPSPDFPFFKKRNESARALQYN EVVLDLSWNHFYGTIPHWIGKMESLFYIDFSNNTLTGAIPVAITELKNLIRLNGTASQMTDSSGIPLYVKRNKSSNGLPYN OLLDLSWNQLSGTIPPWLGSLNSLFYLDLSNNTFIGEIPHSLTSLQSLVSKENAVEEPSPDFPFFKKKNTNAGSLQYN	: 513 : 546 : 519 : 532 : 529
Slpskr1 slpskr2 Atpskr1 Atpskr2 Dcpskr	Leucine-rich repeats CIFSFPPT LEUGNNFLTGATLPBEGNLKRLHVLDLKSNNLSGTIPSSLSGMASVENLDLSHNNLIGSIPSSLVQCSFMSK CASSFPPSILLSNNRLNGTIWEBIGRLKQLHVLDLSKNNITGTIPSSISMGNLEVLDLSCNDLNGSIPASLNKLTFLSK OIFGFPPTIELGHNNLSGPIWEBFGNLKKLHVEDLKWNALSGSIPSSLSGMTSLEALDLSNNRLSGSIPVSLQQLSFLSK OVSRFPPSIYLNNNRLNGTILPEIGRLKELHMLDLSRNNFTGTIPDSISGLDNLEVLDLSYNHLYGSIPLSFQSLTFLSR OPSSFPPMIDLSYNSLNGSIWPEFGDLRQLHVLNLKNNNLSGNIPANLSGMTSLEVLDLSHNNLSGNIPPSLVKLSFLST	: 593 : 626 : 599 : 612 : 609
	Transmembrane do	nain
S1PSKR1 S1PSKR2 AtPSKR1 AtPSKR2 DcPSKR	 FSVAYNKLSGEIPTGGQFPTFPTSSFEGNQGLCGEHGSTCRNASQVPRDSVAKGKRRKGTVIGMGIGIGLGTI FNVANNHLQGAIPTGGQFLSFPNSSFEGNPGLCCKIISPCAASNLDLRPASPHPSSSSRLGRGGIIGITISIGVGIA FSVAYNNLSGVIPSGGQFQTFPNSSFESN-HLCGEHRFPCSEGTESALIKRSRRSRGGDIGMAIGIAFGSV FSVAYNRLTGAIPSGGQFYSFPHSSFEGNLGLCRAIDSPCDVLMSNMLNPKGSSRRNNNGGKFGRSSIVVLTISLAIGIT FSVAYNKLSGPIPTGVQFQTFPNSSFEGNQGLCGEHASPCHITDQSPHGSAVKSKKNIRKIVAVAVGTGLGTV 	: 666 : 703 : 669 : 692 : 682

Ser/Thr kinase domain

Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	 FLLALMYLIVVRASSR-KVVDQEKELDASNRELEDLGSSLVIFFHNKENTKEMCLDDLLKCTDNFDQSNIVGCGGFGL LLLAIVLLRVSRRDAGHQIGDFEDFSRPPRSSDTFVPSKLVLFQNSD-CKELTVADLLKSTNNFNQSNIVGCGGFGL FLLTLSLIVLRARRSGEVDPIIEESESMNRKELGEIGSKLVVLFQSNDKELSYDDLLDSTNSFDQANIIGCGGFGL LLLSVILLRSRKDVDDRINDVDETISGVSKALGPSKIVLFHSCG-CKDLSVEELLKSTNNFSQANIIGCGGFGL FLLTVILLIIIRTSR-GEVDPEKKADADEIELGSRSVVLFHNKDSNNELSLDDILKSTSSFNQANIIGCGGFGL 	::	743 780 747 767 756
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	 VYKAILRDGRKVAIKRLSGDYGQMEREFQAEVESLSRAQHPNLVHLQGYCKYRTDRLLIYSYMENGSLDYWLHEKVDGPA VYKAELPNGIKTAIKRLSGDCGQMEREFQAEVEALSRAQHKNLVSLOGYCQHGSDRLLIYSYMENGSLDYWLHERVDG-S VYKATLPDGKKVAIKKLSGDCGQIEREFEAEVETLSRAQHPNLVLLRGFCFYKNDRLLIYSYMENGSLDYWLHERNDGPA VYKANFPDGSKAAVKRLSGDCGQMEREFQAEVEALSRAQHPNLVLLRGFCFYKNDRLLIYSYMENGSLDYWLHERVDGNM VYKATLPDGTKVAIKKLSGDTGQMDREFQAEVETLSRAQHPNLVHLLGYCNYKNDKLLIYSYMDNGSLDYWLHERVDGPP 	:::::::::::::::::::::::::::::::::::::::	823 859 827 847 836
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	 LLDWDLRLOTAQGAARGLAYLHLACEPHILHRDIKSSNILLDENFEAHLADFGLARIIRPYDTHVTTDVVGTLGYIPPEY SLTWDMRLKIAQGAARGLAYLHKEPNIVHRDIKTSNILLDENFEAHLADFGLARLTRPYDTHVTTDLVGTLGYIPPEY LLKWKTRLRIAQGAAKGLLYLHEGODPHILHRDIKSSNILLDENFNSHLADFGLARLMSPYETHVSTDLVGTLGYIPPEY TLIWDVRLKIAQGAARGLAYLHKVCEPNVIHRDVKSSNILLDENFFEAHLADFGLARLTPYDTHVTTDLVGTLGYIPPEY SLDWKTRLRIARGAAEGLAYLHQSCEPHILHRDIKSSNILLSDTFVAHLADFGLARLTPYDTHVTTDLVGTLGYIPPEY 	::	903 937 907 927 916
Slpskr1 Slpskr2 Atpskr1 Atpskr2 Dcpskr	: GQASVATYKGDVYSFGVVLLELLTCKRPMDPCKPRASRDLISWVIOMKKOKRETEVFD SQTLTATFRGDVYSFGVVLLELLTGKRPVESGGDIRYNDMGYKLREAASGGVKYSLSMHSARSTTEALDRSSCLVARGNR : GQASVATYKGDVYSFGVVLLELLTDKRPVDMCKPKGCRDLISWVVKMKHESRASEVFD	:::::::::::::::::::::::::::::::::::::::	961 1017 965 985 974
SlpskR1 SlpskR2 AtpskR1 AtpskR2 DcpskR	:PLIYDKQHAKEMLLVLEIACLCLHESPKIRPSSQQLVTWLDNINTPPDVHVF : KCKGEIPRTVVDDGTVDREERARSVGESLTDGAAKAVETGLDVGEKAKESIDEAWDAAKETTNNIKDAMVDDANDEMKK :PLIYSKENDKEMFRVLEIACLCLSENPKQRPTTQQLVSWLDDV :TTRENVNERTVLEMLEIACKCIDHEPRRRPLIEEVVTWLEDLPMESVQQQ :PFIYDKDHAEEMLLVLEIACRCLGENPKTRPTTQQLVSWLENIDVSS	:::::::::::::::::::::::::::::::::::::::	1013 1097 1008 1036 1021

 SlpskR1
 :
 - :

 SlpskR2
 :
 GI
 :
 1099

 AtpskR1
 :
 - :

 AtpskR2
 :
 - :

 DcPsKR
 :
 - :

Supplemental Data Set 3. Nucleotide sequence alignments based on mRNA region of tomato *PSKR* homologs (supports Figure 2 and Supplemental Figure 2).

Supplemental Data Set 4. Nucleotide sequence alignments based on mRNA region of tomato *CaM* homologs (supports Figure 7 and Supplemental Figure 7).

Gene	Annotation	Accession No.	Primer pairs	Assay
SIPSK1	putative	Solyc09g009130.2	F: 5'- AACAGCTCGTTTATTGC -3'	qPCR
	phytosulfokine		R: 5'- CATTCTTCTATTCCCAT -3'	
SIPSK2	putative	Solyc11g066880.1	F: 5'- CTTGCAAGTGGAAAAGGAAGCA -3'	qPCR
	phytosulfokines 2		R: 5'- GGGTGATTATGGTGTTGAGTGT-3'	
SIPSK3	putative	Solyc02g092110.2	F: 5'-TCCcccgggCCAAGGACCAAAATGAT -3'	VIGS
	phytosulfokines 3		R: 5'-CGCggatccTAACGTACAGGGGAAAA -3'	
			F: 5'-ACCAGGATGTTGTTGAACC -3'	qPCR
			R: 5'-GGTCCTTGGGAATCGTAAAC -3'	
SIPSK3L	phytosulfokines 3 like	Solyc02g092120.2	F: 5'- TCCcccgggCCAGGATCATGTTAGGGAAT -3'	VIGS
			R: 5'- CGCggatccTCAAGGTGAGCAGCCAAG -3'	
			F: 5'- ATCAGAACCCGTGAACTA -3'	qPCR
			R: 5'- TACCGCCAAATACAAAGC -3'	
SIPSK4	putative	Solyc01g106830.2	F: 5'-TCCcccgggAACATTTGTCCCTTCACT-3'	VIGS
	phytosulfokines 4		R: 5'-CGCggatccATCCTCCACATCTTCTTT-3'	
			F: 5'-CGCCTTATCGCGATGTTAC -3'	qPCR
			R: 5'-CCAGGGCCTTCACATCTATC -3'	
SIPSK5	putative	Solyc10g083580.1	F: 5'- CGGTTCGTCTACCTCCTACA -3'	qPCR
	phytosulfokines 5		R: 5'- GTGAGCCTCAGCTACCATCC -3'	
SIPSK6	putative	Solyc06g074540.2	F: 5'- TCTCAACATGTTCCTCTTTGTCT -3'	qPCR
	phytosulfokines 6		R: 5'- CGTTGGTTTCCATGTGGTCA -3'	
SIPSK7	putative	Solyc04g077580.2	F: 5'-TCCcccgggACATTTGCTGTTCGTCCT-3'	VIGS
	phytosulfokines		R: 5'-CGCggatccGCCATTGTCCTCCTCTTC -3'	

Supplemental Data Set 5. Primers used in this study.

Gene	Annotation	Accession No.	Primer pairs	Assay
			F: 5'- TCGATCCCAAAATTCAGGTTGC -3'	qPCR
			R: 5'- AGATGAGCAGCCATTGTCCT -3'	
SITPST	protein-tyrosine	Solyc11g069520.1	F: 5'-CCGgaattcGGGCGTCTTCTTCACTCG -3'	VIGS
	sulfotransferase		R: 5'-CGCggatccGGAACCTGGCTGCTACCT -3'	
			F: 5'-CGTGGAAGTATTTGGTCCCT -3'	qPCR
			R: 5'-CGTGTAGAGGCATCACCATC -3'	
SIPSKR1	receptor like kinase	Solyc01g008140.3	F: 5'-TGCtctagaGGGTGGTGAAGTTGGAGC -3'	VIGS
			R: 5'-CGCggatccCAGGCAAACTACCAGACAGAAG -3'	
			F: 5'-CCGTGGGTTAGTTCCTGATT -3'	qPCR
			R: 5'-GAAAGGGACGAAAGGCTATG -3'	
				truncated protein
			F: 5'-GCGggatccAATCTCCAGAACTTGATATG -3'	(23-653 aa)
			R: 5'-GCGgtcgacTCAAGTTCCTTTGCGCCTCTTTCC-3'	expression
				for SPR
			F: 5'- TCCcccgggGAATGGGTGTGTGCAAGTTTG -3'	GFP
			R: 5'- CATGccatggAAAACACATGAACATCAGGTG -3'	Fluorescence
SIPSKR2	receptor like kinase	Solyc07g063000.3	F: 5'- CgagctcTGCTGTAAATGGGATGGG -3'	VIGS
			R: 5'- TCCcccgggGCAACAAGGTTAGGGAAT -3'	
			F: 5'-GGAAATCGCTTTCATGGTTT -3'	aPCR
			R: 5'-CAAGCACCCTAAGCACAGAA -3'	1 -
				truncated protein
			F: 5'-GCGggatccGAAACCCCAGTTCAAAACTG -3'	(28-689 aa)

Gene	Annotation	Accession No.	Primer pairs	Assay
			R: 5'-GCGgtcgacTCAACCTCGGCCAAGCCTACTAC -3'	expression for
				SPR
			F: 5'- TCCcccgggGAATGGTGATTTGGGAGTTTCTGCC -3'	GFP
			R: 5'- CGCggatccCCTCTCCTTTACACTTGCGATTG -3'	Fluorescence
SIPR1b	pathogenesis-related	Solyc00g174340.1	F: 5'-ATCTCATTGTTACTCACTTGTC -3'	qPCR
	protein 1b		R: 5'-AACGTGCCCGACCA -3'	
SICOI1	coronatine-insensitive	Solyc05g052620.2	F: 5'-GGATGCTTCTGGGATACGTT -3'	qPCR
	1		R: 5'-TGGATGCTCCGAGACTACAG -3'	
SIERF1	ethylene-responsive	Solyc05g051200.1	F: 5'-ATTGGAGTTAGAAAGAGGCCAT -3'	qPCR
	factor 1		R: 5'-CTCATTGATAATGCGGCTTG -3'	
SIARF5	auxin response factor	Solyc04g081240.2	F: 5'-CACGTGTGCGGACATATACA -3'	qPCR
	5		R: 5'-TCGAGTGTCATTCAGAAGCC -3'	
SIACTIN	actin	Solyc03g078400.2	F: 5'-TGGTCGGAATGGGACAGAAG -3'	~DCD
			R: 5'-CTCAGTCAGGAGAACAGGGT -3'	YPCR
SICaM1	calmodulin 1	calmodulin 1 Solyc01g008950.2	F: 5'-ACTTGGAACAGTAATGCGGTCATTG -3'	qPCR
			R: 5'-TGTCCTTCATCTTGCGAGCCA -3'	
				BiFC-cYFP
SICaM2	colmodulin 2	Solvo10a091170 1		VICS
SICalviz		301yc10g001170.1		V103
			R. 5 - CCGgaallee TTCCCTAATCATCTCATCG - 5	
			F: 5'- ACTGACTCTGAGGAGGAGTTGA -3'	qPCR
			R: 5'- ACTTGGCCATCATGACCTTAACA -3'	
			F: 5'- TTggcgcgccATGGCGGATCAGCTGACGGA -3'	Co-IP

Gene	Annotation	Accession No.	Primer pairs	Assay
			R: 5'- CGGggtaccCTTGGCCATCATGACCTTAAC -3'	
			F: 5'- CCttaattaaCATGGCGGATCAGCTGACGGA -3'	BiFC-cYFP
			R: 5'- CTAGactagtCTTGGCCATCATGACCTTAAC -3'	
SICaM3	calmodulin 3	Solyc10g077010.1	F: 5'- AAGGACGGAGATGGTTGC -3'	*DOD
			R: 5'- GCTCAGCTTCAGTTGGGT -3'	qPCR
			F: 5'- CCttaattaaCATGGCAGATCAGCTCACCGATG -3'	
			R: 5'- CTAGactagtCTTGGCCATCATGACCTTAAC -3'	BIFC-CTFP
SICaM4	calmodulin 4	Solyc11g072240.1	F: 5'-GGCGGATCAGCTCACTGAC -3'	~DCD
			R: 5'- GTTGTGATGCAACCATCTCCAT -3'	YPCR
SICaM5	calmodulin 5	Solyc12g099990.1	F: 5'- GACAAGGATCAGAATGGA -3'	*DOD
			R: 5'- GAATCATCTCGTCAACCT -3'	qPCR
SICaM6	calmodulin 6	Solyc03g098050.2	F: 5'- AGGATGGCGATGGCTGTA -3'	aDCD
			R: 5'- GTGGGATTCTGACCAAGTGA -3'	4rck
			F: 5'- CCttaattaaCATGGCAGAGCAGCTGACGGAG -3'	
			R: 5'- CTAGactagtCTTGGCAAGCATCATACGGAC -3'	BIFC-CYFP
SIYUC1	monooxygenase	Solyc06g008050.2	F: 5'- TGGACATTGGTGCATTGGAA -3'	- 000
			R: 5'- AGCCAGTAGCAAGAAGAACAGA -3'	qPCR
			F: 5'- CCttaattaaCATGGCTAGCTTCAATGACCAT -3'	
			R: 5'-TTggcgcgccCCAAGGTTGAAATTTTTTTGC -3'	BiFC-nYFP
SIYUC2	monooxygenase	Solyc06g065630.2	F: 5'- AAATGCAGAGGCAGTTAT -3'	
			R: 5'- ATGAGGAATGGCGTTATG -3'	qPCR

Gene	Annotation	Accession No.	Primer pairs	Assay
			F: 5'- CCttaattaaCATGGGTTGTTGTAAAGAGG -3'	BiFC-nYFP
			R: 5'-TTggcgcgccCAAAACATATGCCTTGGTTATC -3'	
SIYUC3	monooxygenase	Solyc06g083700.2	F: 5'- TGGCCCTGTAATTGTTGGTG -3'	~DOD
			R: 5'- GCCACAGTGATGCGATACAG -3'	qρ <u>c</u> κ
			F: 5'- CCttaattaaCATGTTTACCTTCTCATCAGAAC -3'	
			R: 5'- TTggcgcgccCAAAAGTTGAGATGCATCTTC -3'	BIFC-NYFP
SIYUC4	monooxygenase	Solyc08g068160.1	F: 5'- CCttaattaaCATGGATTCTTATTTGAAAGA -3'	
			R: 5'- TTggcgcgccCTTGAAAATATTGATGAATGT-3'	BiFC-nYFP
			F: 5'- CGTCCCGACTCGGATTAGAT -3'	qPCR
			F: 5'- GCGTTCCAACGTCAAGTACA -3'	
SIYUC5	monooxygenase	Solyc09g064160.2	F: 5'-ATGGCTTGTCGTTGCTACTG -3'	~DOD
			R: 5'-CAACCAACGACCACCACTTT -3'	qPCR
			F: 5'- CCttaattaaCATGTTTAGTTTTTCAGATAACG -3'	
			R: 5'-TTggcgcgccCAAAGGTTGAGATGCAACGTCTG -3'	BIFC-NYFP
SIYUC6	monooxygenase	Solyc09g074430.2	F: 5'- CCttaattaaCATGGCAACATTTGATAATC -3'	BiFC-nYFP
			R: 5'- CGGactagtTTCAGAGAGCAGAGAGTTG -3'	
			F: 5'- TTggcgcgccATGGCAACATTTGATAATC -3'	Co-IP
			R: 5'-CGGggtaccTTCAGAGAGCAGAGAGTTG -3	
			F: 5'- CaaactcATGGCAACATTTGATAATC -3'	GFP
			R: 5'- CGCggatccTTCAGAGAGCAGAGAGTTG -3'	

Gene	Annotation	Accession No.	Primer pairs	Assay
			F: 5'- TGGCAACATTTGATAATCATGTAGA -3'	qPCR
			R: 5'- TGCAGATGTAGCAAGACCAC -3'	
SIYUC7	monooxygenase	Solyc09g091090.1	F: 5'- CCttaattaaCATGAATCAATATTGTAATAG -3'	
			R: 5'- TTggcgcgccCGAAGGAAGATAACTTGTTTCTT -3'	BiFC-nYFP
			F: 5'- GAGTCGGTCCACTCTGCTAA -3'	qPCR
			R: 5'- TCCTTCGAATTCGGGCACTA -3'	
SIYUC8	monooxygenase	Solyc09g091720.1	F: 5'- GGGAGATGGTGTACATGGCAA -3'	
			R: 5'- AATGGGCCTTCTTCTGGTTGT -3'	4PCK
SIYUC9	monooxygenase	Solyc09g091870.1	F: 5'-GGCTCTACGCTGCTGGATTT -3'	
			R: 5'-TTGTCTCCTCTGACAGACTT -3'	YPCR
B. cinerea	B. cinerea actin	XM_001553318.1	F: 5'-GGTAACATTGTTATGTCTGG -3'	~DCD
actin		(NCBI)	R: 5'-CTTGACCTTCATCGACG -3'	YFUR