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We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by

directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We

determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional

via one of several physically justified constraints, including the generalized Koopmans’ theorem. We find that

hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated

systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.
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A key measure of success for any electronic-structure theory

is its ability to yield accurate electron densities and energies

for many-electron systems. For example, Kohn-Sham (KS)

density functional theory (DFT) [1,2] is in principle exact, but

the use of an approximate exchange-correlation (xc) potential,

such as the local density approximation (LDA) [3] or the

generalized gradient approximation (GGA) [4], is associated

with a self-interaction error which can cause the spurious delo-

calization of localized charge [5] and incorrect dissociation be-

havior for molecules [6]. Recently, hybrid functionals that mix

Hartree-Fock (HF) exchange with a (semi)local approximation

(such as the LDA or GGA) [7] have become popular as an

alternative approach to xc. However, hybrids introduce at least

one additional parameter, the mixing parameter α. This is often

determined empirically, e.g., via experimental data, or through

the adiabatic connection [8]. We determine α using a group of

more physically justified constraints, including the generalized

Koopmans’ theorem [9–13]. While it has been shown that

this constrained hybrid approach results in ionization energies

and band gaps close to experimental values [9,11], to date

the electron density of this approach has not been directly

compared to the exact density.

As Medvedev et al. [14] argue, progress in the accuracy

of electronic-structure calculations requires improvements in

both energies and densities. Srebro et al. indirectly assessed

densities obtained via hybrid functionals using the electric field

gradient at the nucleus [15]. Reference [16] obtained densities

from popular empirical hybrid functional parametrizations and

found sensitivity to the value of the various mixing parameters.

Good agreement between hybrid and coupled-cluster singles

and doubles densities has been found for the CO molecule [17].

In order to address the density more directly, we consider

a set of model systems where the many-body problem can be
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solved exactly for a small number of electrons, allowing for

a direct comparison of densities, energy gaps, and ionization

potentials (IPs) obtained from the constrained hybrid approach

to the exact values. We show that an ab initio determination

of α results in hybrid functionals yielding extremely accurate

densities and gaps.

The exact total energy E (of a many-electron system) is

piecewise linear with respect to the number of electrons N

[18,19]. In exact KS DFT, the slope of each straight-line seg-

ment ∂E/∂N is shown by Janak’s theorem to equal the highest

(partly) occupied molecular orbital (HOMO) eigenvalue [20].

The usual approximate density functionals (LDA and GGAs),

and HF, exhibit nonzero curvature ∂2E/∂N2, which can lead to

qualitatively wrong physical behavior [21–23]. The curvatures

are of opposite signs which means that hybrid approximations

benefit from a partial cancellation of these errors [9,10,24].

The exact total energy difference E(N − 1) − E(N ) is both

the ionization energy of the N -electron system I (N ) and the

electron affinity of the (N − 1)-electron system A(N − 1).

In HF, the equivalent of Janak’s theorem [25] shows that

the slope (∂E/∂N )N−δ is equal to the HOMO eigenvalue,

and (∂E/∂N )N+δ to the lowest unoccupied molecular orbital

(LUMO) eigenvalue. In exact KS DFT, the LUMO eigenvalue

differs from the negative electron affinity −A by a discon-

tinuity � in the xc potential [18]. Thus all three quantities

εN (N − 1) + � [26], εN (N ), and E(N ) − E(N − 1) should,

in principle, be equal, where � is nonzero for exact DFT

methods. But for approximate methods such as hybrids where

exchange and correlation are explicitly analytical functionals

of the single-particle orbitals and therefore exhibit zero deriva-

tive discontinuity �, the first quantity becomes εN (N − 1)

[25,27,28]. We may therefore identify three requirements,

(A) εN (N − 1) = −A(N − 1) ≡ E(N ) − E(N − 1),

(B) εN (N − 1) = εN (N ),

(C) εN (N ) = −I (N ) ≡ E(N ) − E(N − 1),

which may be used to constrain a hybrid calculation by

enforcing internal consistency. In practice, the parameter α of

the basic hybrid approach provides a single degree of freedom
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and so can be used to impose (A) the LUMO-A condition or (B)

the LUMO-HOMO condition or (C) the HOMO-I condition,

or generalized Koopmans’ theorem (GKT). The merits, as

regards electron energies, of satisfying the last two conditions

using a more elaborate hybrid form has been investigated

[29–31].

A key point regarding the hybrid approach is that the

derivative discontinuity � in the xc potential not only is zero,

but also should be zero, when viewed from the perspective of

many-body perturbation theory. This is most clearly seen by

noting that the description of exchange and correlation in the

hybrid approach includes a reduced-strength Fock operator,

essentially mimicking the screened exchange operator that is

at the heart of the well-known GW approximation to the self-

energy operator [32–35], plus LDA exchange and correlation

reduced in strength. This identification of the hybrid approach’s

“self-energy” as a screened-exchange approximation to the

exact self-energy �xc, as noted by other authors [36,37], means

that �xc would yield exact electron addition and removal ener-

gies through its one-electron eigenvalues that then acquire the

significance of quasiparticle energies. Hence in both the N and

(N − 1)-particle systems both the HOMO and LUMO energies

may be regarded as fairly sophisticated approximations to the

ionization potential and electron affinity, and therefore require

no � correction.

The hybrid functional that we use for our main tests

straightforwardly mixes HF with an LDA xc potential,

V HYB
xc (α) = αV HF

x + (1 − α)V LDA
xc , (1)

where V HYB
xc , V LDA

xc , and V HF
x denote the hybrid and LDA

xc potentials [38] and the nonlocal HF exchange potential,

respectively. This has the advantage of focusing more on the

variational power of HF for exchange-dominated systems and

accommodating better the crossover between exchange and

correlation when the LDA is applied to inhomogeneous sys-

tems. We also explore the retention of the full LDA correlation

potential, mixing only the exchange terms, in common with

other hybrid functionals such as the Perdew-Burke-Ernzerhof

hybrid functional PBE0 [7].

We assess hybrid functionals both in systems where corre-

lation is relatively unimportant (“exchange dominated”) and

systems in which correlation is more significant. The exact

many-body wave function (used to compute the exact density)

is obtained by direct solution of the many-body Schrödinger

equation using the iDEA code [39]. The electrons interact via the

softened Coulomb interaction (|x − x ′| + 1)−1 and are treated

as spinless in order to model more closely the richness of

correlation found in systems containing a large number of

electrons.

Performance for exchange-dominated systems. In Fig. 1 we

demonstrate for the harmonic well with angular frequency ω =

0.25 (an exchange-dominated system) that application of any

of the conditions (A)–(C) yields an α very close to pure HF,

i.e., α ≈ 1, as expected. Other exchange-dominated systems

we tested yield similarly good results from the constrained

hybrid.

Conditions (A)–(C) correspond to three “crossing points,”

as shown in Fig. 1. Using the argument laid out previously,

the self-energy should satisfy all three of these conditions.

FIG. 1. Upper: The variation in hybrid ionization energy I (3)

[=A(2)], exact I (3) [=A(2)], ε3(3), and ε3(2) with α are illustrated

for three electrons in an harmonic oscillator with ω = 0.25, an

exchange-dominated system. Energies are in Hartree atomic units.

There are three “crossing points”: (A) A-LUMO, (B) HOMO-

LUMO, and (C) I -HOMO. Center: The integrated absolute error

in the density �ρ is shown for each value of α. This is defined as∫
|ρEXT(x) − ρHYB(x)|dx, where the ρEXT and ρHYB correspond to

the exact and hybrid densities. Lower: The densities for crossings (A)

and (C) are benchmarked against the exact, LDA, and HF cases; the

hybrid, HF, and exact curves lie close together.

Generally, (A)–(C) correspond to different conditions that

specify where the HOMO, LUMO, and IP of a system lie with

respect to one another. Although it clear from Fig. 1 that the

three conditions cannot be exactly satisfied, the three crossing

points lie pleasingly close together, and the density error �ρ

(see the figure caption) is small in their vicinity. Generally,

we find that densities obtained from α values lying between

crossing points (A) and (C) are in excellent agreement with the

exact case.

Performance for correlated systems. Given that both of the

underlying functionals usually fail to produce a near-exact

density in these systems, we ask the following: Is a hybrid

functional capable of reproducing a near-exact density for any

value of α? We show the results in Fig. 2 for three electrons in

an atomlike potential. Once again, all three conditions (A)–(C)

produce values of α that yield strikingly accurate densities [40].

Although in the exchange-dominated case crossing points

(A) and (C) correspond to an α differing by only 1%, in

the correlated system we find that they differ more (∼10%).

Crucially, however, the density error �ρ corresponding to

conditions (A) and (C) is better than 0.03. Hence, as before,

each density corresponding to these conditions is in excel-

lent agreement with the exact. We note that condition (A)
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FIG. 2. As Fig. 1, for three electrons in an atomlike external

potential [Vext(x) = −1/(0.05|x| + 1)]. The system is correlated as

HF fails to predict the exact density and energy.

corresponds to a slightly better density than (C), the GKT,

for both this correlated system and the exchange-dominated

system. The alternative hybrid strategy of mixing only the

exchange potentials yields accurate, but slightly inferior, den-

sities [41].

In order to verify that the curvature ∂2E/∂N2 in our func-

tionals is indeed better using the constrained hybrid approach,

we calculate the derivative of energy with respect to number of

electrons ∂E/∂N , shown in Fig. 3 [42]. It can be seen that the

HF case is exact for values leading up to one electron, however,

FIG. 3. The derivative of energy with respect to total number of

electrons N , ∂E/∂N , for a number of approximations. The external

potential and α values chosen are the same as that of Fig. 2. We

verified that the ∂E/∂N curve lies exactly on that of the HOMO

eigenvalue within each approach. Each node at integer numbers of

electrons corresponds to the HOMO and LUMO, with the lower-

energy value being the HOMO.

FIG. 4. Upper: Densities for various approximations are shown

for an exchange-dominated asymmetric double-well potential. The

dashed line, illustrating the potential (scaled by 0.15), shows that the

two wells are asymmetric. The HF case follows the exact one, placing

one electron in each well of a strongly localized system. The LDA

predicts that an additional 0.1 electrons are present in the deeper

well. The GKT yields α ≈ 1, effectively HF. We show the density

for α = 0.2, which places the correct charge in each well, but has

an incorrect density shape. Lower: The integrated charge of the left

(shallower) well is shown for a range of α values.

curvature is present for anything larger. This is as expected, as

the HF energy and density are exact for one-electron systems.

Unlike HF, the LDA is inexact for all numbers of electrons.

The α values corresponding to conditions (A) and (C) in the

atomlike potential follow the exact line much more closely than

the LDA and HF between two and three electrons, the region

where conditions (A)–(C) have been imposed. This suggests

that the curvature has indeed been reduced. Comparing the

curvature for conditions (A) and (C), we see that the two are

comparable to one another.

Fractional dissociation problem. We now demonstrate that

hybrids are capable of rectifying the fractional charge problem

common to many xc approximations for molecular dissocia-

tion. Specifically, we test a system with two separated wells

where the usual DFT approximations inaccurately predict the

amount of charge present in each well. Figure 4 demonstrates

that, when compared with the exact case, the constrained

hybrid approach and HF yield near-exact densities. In addition,

we show that even for a small fraction of exact exchange

(α = 0.200), the correct charge in each well is obtained, and

hence a large range of values of α yields accurate densities.

However, the density has an incorrect shape within each well

when an α not corresponding to conditions (A)–(C) is used

[43].

We now show in Table I that the accuracy of hybrid

functionals for densities is not at the expense of energies.

Of particular interest is the quasiparticle energy gap (I − A),

which the LDA and HF usually under- and overestimate,

respectively, as well as the values of I and A individually.

This establishes contact with the performance of Koopmans-

compliant hybrids in three-dimensional (3D) systems [9,30,34]
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TABLE I. The quasiparticle gap of two-electron systems as

extracted from the LDA, HF, and hybrida HOMO-LUMO eigenvalue

differences, compared to the exact gap calculated from many-body

total energies. Gaps are compared for the exchange-dominated (har-

monic) and correlated (atomlike) systems. The two-electron IPs are

shown for the same systems.

(a.u.) LDA HF Hybrid Exact

Quasiparticle gaps

Harmonic 0.222 0.491 0.472 0.469

% error 53% 5% 1%

Atomlike 0.037 0.172 0.152 0.141

% error 74% 22% 8%

Ionization potentials

Harmonic −0.761 −0.620 −0.629 −0.628

% error 21.2% 1.3% 0.2%

Atomlike 0.551 0.620 0.608 0.612

% error 9.9% 1.4% 0.5%

aConstrained using condition (C), though (A) and (B) yield similar

results.

and suggests that useful quasiparticle energies can be extracted

from functionals which also produce an accurate density. The

tendency of constrained hybrids to reduce these energy gaps

from HF to near-exact levels further supports the idea that this

approach is similar to a screened-exchange method.

Conclusion. Through direct comparison of solutions to the

exact many-body Schrödinger equation, we have shown that

hybrid functionals yield accurate densities and quasiparticle

energy gaps in both exchange-dominated and correlated sys-

tems, if the fraction of exact exchange α is chosen using phys-

ically justified constraints, such as the generalized Koopmans’

theorem. Particularly accurate densities are obtained from a

hybrid strategy that mixes LDA correlation, as well as LDA ex-

change. The three studied constraints are all in close agreement

with one another and all yield accurate densities and gaps. In

double-well systems, we find that hybrid functionals perform

well and are free from the fractional dissociation problem for

a large α range. A key perspective is the interpretation of a

hybrid method as a simple screened-exchange approximation

within many-body perturbation theory.
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