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A B S T R A C T

Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is
highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment
fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation
and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species
serve as ‘pro-life’ signals with positive roles in the regulation of the cell cycle and survival. However, very little is
known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We
have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible,
and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for
each protein. We propose that redox regulation may function alongside other known posttranslational mod-
ifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our
current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of
knowledge regarding both which residues are important and how modification of those residues alters protein
function, we discuss how critical redox modifications can be mapped at the molecular level.

1. Introduction

The plant redox signalling network constantly adjusts plant growth
and development, as well as metabolism, to prevailing environmental
conditions. Within this context reactive oxygen species (ROS) produc-
tion controls numerous growth and developmental processes by mod-
ifying enzyme activity and protein-protein interactions. The accumu-
lation of ROS, either through increased production or regulated
decreases in antioxidant capacity, shifts the redox regulatory network
to a more oxidising state, in which thiols are oxidised to protein dis-
ulfides, sulfenic or sulfinic acid derivatives, as well as glutathionylated
and S-nitrosylated forms. ROS are well-known regulators of plant
growth and cell fate, as well as stress signalling molecules in plants and
animals [1–3]. For example, ROS production is important for tip growth
in pollen tubes and root hairs, the respiratory burst oxidase homologue
(rboh) NADPH oxidase homologue being required for elongation ac-
tivities [1]. However, much less is known about the functions of ROS in
plant stem cell niches. Plant growth and development is dependent
upon the activity of two distinct populations of stem cells that are
housed in separate niches, the shoot apical meristem (SAM) that gives
rise to all the above ground plant structures and the root apical

meristem (RAM) that generates the underground root system, as illu-
strated in Fig. 1 [4,5].

Stem cells within these zones are in a process of continuous renewal.
They also generate the precursor cells that subsequently divide and
differentiate to form all the specialized cells within the plant. A cen-
trally located group of organising stem cells (four in Arabidopsis)
within the RAM form the quiescent centre (QC). As in animal stem cell
niches, the multipotent stem cells of the plant root QC maintain the
surrounding cells in an undifferentiated state [6]. These stem cell ‘in-
itials’ continuously produce daughter cells by asymmetric division. In
roots, for example, asymmetric division of the multipotent stem cells
generates the columella cells that form the root cap, which protects the
RAM [7–9]. The columella stem cells are maintained in an un-
differentiated state by the adjacent QC cells [7].

Upon leaving the meristematic stem cell niche, daughter cells of the
multipotent initials undergo subsequent division, elongation, and dif-
ferentiation to form the differentiated cells of the root, including the
vasculature, epidermis and ground tissues [6]. Within the SAM, a
central zone (CZ) of about 35 stem cells is localized above the rib-
meristem region that provides signals for stem cell maintenance [7,8].
Progeny of CZ cells move outwards into peripheral zone (PZ) where
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they undergo division and initiate differentiation into leaf or flower
primordia, or downwards into the RM region to differentiate into the
stem [8,10].

The mitochondria in the SAM cells are organized in a perinuclear
network suggesting a requirement for mitochondrial functions to drive
the cell cycle [11]. The mitochondrial NTPase called APP1 is required
for Complex I activity in Arabidopsis. Loss of APP1 functions led to
lower levels of ROS accumulation, but increased proliferation of the QC
cells and promoted differentiation of distal stem cells [12]. Similarly,
the loss of function of an ATP-dependent mitochondrial protease
(FTSH4) increased ROS accumulation in the SAM, leading to meristem
termination at mildly elevated temperatures [13]. The cellular redox
environment required for the cell-to-cell communication that is essen-
tial for SAM maintenance can be controlled by regulation of plasmo-
desmatal, for example by regulation of callose deposition via a plasti-
dial thioredoxin (TRX)m3 [14].

In addition to ROS signalling and regulation of cellular redox state,
stem cell identity, cell proliferation and fate are regulated in mamma-
lian cells by a tight control of oxygen availability. The stem cell niche in
mammals is maintained at low oxygen partial pressures, physiological
hypoxia being central to the integrity of the stem cell niche [15]. Si-
milarly, it is probable that oxidative metabolism is controlled in the
SAM and RAM by physiological hypoxia [16]. Hypoxia plays an im-
portant role inthe identity and fate of mammalian stem cells [17].
Several lines of evidence suggest that cells in the QC are also main-
tained in a hypoxic state, and that this may help to preserve genome
integrity and pluripotency [18,19].

In addition to control of oxygen gradients, oxidants such as hy-
drogen peroxide prime stem cell differentiation in animals and in plants
[20–26]. Cell type-specific transcript profiling has shown that reactive
oxygen species (ROS) and ROS-associated genes are expressed in spe-
cific zones of the SAM and RAM [27]. ROS and redox components in-
teract with phytohormone signalling to regulate SAM and RAM activ-
ities, and different forms of reactive oxygen species (ROS) have been
shown to have antagonistic roles in plant stem cell regulation [28]. The
UPBEAT1 (UPB1) transcription factor mediates the balance between
superoxide and hydrogen peroxide in the root in a way that influences
the transition from cell proliferation to cell expansion and differentia-
tion [29]. Accumulation of the superoxide anion in stem cells was
shown to activate WUSCHEL, which is the key regulator of plant stem
cell maintenance. In contrast, hydrogen peroxide is more abundant in
the differentiating peripheral zone, where it promotes stem cell

differentiation [29]. Moreover, mutation of an ATP-dependent mi-
tochondrial protease, AtFTSH4, caused increased oxidation of the SAM
at high temperatures leading to altered mitochondrial morphology and
SAM functions [13]. The regulation of the spatiotemporal patterns of
ROS-metabolizing enzymes appears to be important in the orchestration
of the balance between superoxide and hydrogen peroxide [26,29].
Differential and sometimes antagonistic effects of superoxide and hy-
drogen peroxide in the RAM and SAM have been reported. For example,
superoxide was linked to increased expression of the WUSHEL (WUS)
transcription factor, which together with CLAVATA peptides de-
termines SAM activity. In contrast, hydrogen peroxide, which accu-
mulated mainly in the peripheral zone of cell differentiation, inhibited
WUS expression [26]. Such findings are interesting and intriguing be-
cause neither superoxide nor hydrogen peroxide show strong reactivity
with other bio-molecules [30]. However, since superoxide and hy-
drogen peroxide have divergent effects of cell death verses survival
signalling in animals, superoxide having an inhibitory effect on cell
death pathways and apoptotic signalling [31], it may be that super-
oxide also promotes cell survival in plants.

Superoxide is a one-electron reduction product of molecular oxygen
with no reactivity to most biological molecules. It can, however, in-
teract with nitric oxide (NO) and oxidise ascorbic acid, as well as in-
activate several enzymes that are important in energy production and
amino acid metabolism [30]. Perhaps the most physiology-relevant of
these interactions is with the tricarboxylic acid cycle enzyme aconitase.
This enzyme is a sensitive target in the mitochondrial matrix. The su-
peroxide-dependent inactivation of this enzyme leads to enhanced
glycolysis relative to oxidative phosphorylation in cellular energy
generation. While mice lacking Cu, Zn superoxide dismutase have little
phenotype, they develop neurological problems and cancers in later life
[30]. This finding suggests that superoxide accumulation causes pro-
blems only in certain tissues and only at defined stages of animal de-
velopment [30]. The importance of superoxide accumulation in de-
veloping root tips may reside in its effects on intracellular pH rather
than its reactivity per se. A decrease in cellular superoxide levels and an
increase in hydrogen peroxide results in a shift in the cytosolic pH,
making the cellular environment more acid [31].

In plants, extracellular ROS interact with receptor-like kinases
(RLKs) in the communication of information perceived in the cellular
environment to the interior of the cell. The concurrent initiation of
ROS-dependent and ROS-independent signalling linked to RLKs might
also be critical in establishing overall cell fate and responses, the RLK-
dependent modulation of apoplastic and intracellular conditions being
important in regulating ROS perception and signalling [32].

ROS have multi-faceted effects on cell fate. In animals, the concept
that ROS are ‘pro-life’ signals serving as critical mediators of cytokine
signalling with positive roles in survival is supported by a large body of
evidence [31]. For example, superoxide and hydrogen peroxide fulfil
important roles in proliferative signalling, as well as in triggering pro-
grammed cell death, in animals. A burst of ROS stimulate mitogenic
pathways in G1 that control CDK activity and the phosphorylation state
of the retinoblastoma protein (pRB), thereby regulating S-phase entry.
The enhanced oxidation promotes the expression of nuclear factor er-
ythroid-2–related factor 2 (Nrf2). This bZIP transcription factor func-
tions as a master regulator of the cellular response to oxidation [33].
Expression of Nrf2 re-establishes a reduced intracellular redox state by
inducing the expression of cytoprotective genes including those in-
volved in the glutathione and thioredoxin systems. The ROS burst at G1
also triggers the expression of FOXO3, a transcription factor that plays
essential roles in cell survival signalling with targets in the cell cycle
such as the cyclin-dependent kinase inhibitor (CKI) p27 that is involved
in cell cycle withdrawal, as well as defence against oxidative stress
[34]. ROS also activate transcription factors such as AP-1 and NF-kB
and control a number of early growth-related genes such as c-fos and c-
jun as well as regulating the activities of protein kinases and phos-
phatases [35,36]. ROS also have a direct stimulatory effect on tyrosine

Fig. 1. Diagrammatic representation of the structures of the shoot and root
apical meristems. LP: leaf primorium; OC: organising centre; PZ: peripheral
zone; PM: primary meristem; QC: quiescent centre; PZ: proliferation zone; SC:
central zone.

C.H. Foyer et al. Free Radical Biology and Medicine 122 (2018) 137–149

138



kinase activity mitogen activated protein kinases (MAPK) like JNK,
p38MAPK, and ERK [31]. However, many of the mechanisms that allow
ROS to support the pro-life’ and survival signalling activities of ROS
while also facilitating genetically programmed cell suicide pathways
remain to be elucidated in plants and animals.

2. Redox regulation of the cell cycle

Cells use proliferative signalling pathways and stress surveillance
systems to regulate entry and progress through the cell cycle [37–39].
Oxidative signalling is important in plants and animals for both the
activation of proliferation and arrest of the cell cycle upon perception of
environmental or metabolic stresses [40,41]. Cell cycle progression in
animals is driven by an intrinsic redox cycle consisting of reductive and
oxidative phases [42]. In this response, growth stimuli induce the cyclin
D–CDK4/6 complex, which phosphorylates RB, releasing E2F tran-
scription factors and facilitating the G1/S transition. The binding of
growth factors, such as epidermal growth factor (EGF) to their receptors
(such as EGFR) is promoted by oxidation resulting from ROS accumu-
lation [42–44]. Redox processes have also been shown to be important
in the regulation of RNA polymerase (Pol) III in mammals [45]. In
vertebrates, the redox-sensing transcription factor TFIIB-related factor
2 (Brf2), which is a TFIIB-like core transcription factor family member,
regulates the formation of a transcriptionally-active pre-initiation
complex. This finding suggests direct redox-dependent control of a
eukaryotic nuclear RNA polymerase regulates the transcription of genes
encoding essential RNAs, a factor that might contribute to the ability of
cancer cells to evade ROS-induced cell suicide programs [45].

The A-type CDKs (CDKA) in plants regulate the G1/S and G2/M
phase transitions and also function during the S phase, while the B7 1
type CDKs (CDKB) act on the G2/M transition and during the M phase
[18,19]. The D-type CYCs (CYCD) function together with the CDKA
during the G1/S transition. The A3 type CYCs (CYCA) operate during
the S phase, and with B-type CYCs (CYCB) regulate the G2/M transition.
The CYC B1 and CDK1 fractions of mammalian cells that are localised in
the mitochondria phosphorylate Complex I subunits during the G2-to-M
transition, enhancing mitochondrial respiration and ATP production to
drive cell-cycle progression [46]. The concept of redox regulation of
cell proliferation is also found in the plant literature [47–49]. The levels
of CYC and CDK transcripts and their activities are changed by oxida-
tive perturbations [27,35]. Moreover, the regulation of CYC transcrip-
tion by TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL
FACTOR1 (TCP) transcription factors is inhibited by oxidation, possibly
via effects on a conserved redox-sensitive cysteine residue that is re-
quired for DNA binding [50,51].

A recent study using a redox-sensitive in vivo probe provided the
first evidence of a transient oxidation at G1 in the cytosol and nuclei of
proliferating cells in the Arabidopsis embryonic root that is perturbed in
mutants with low cellular antioxidant levels [52]. This finding supports
the concept that "oxidative stress”-sensitive checkpoints are important
in the regulation of the cell cycle [38,39]. The complex redox control of
the cell cycle is often explained very simply in terms of a given
threshold ROS level required to generate cell proliferation or cell cycle
arrest [44]. However, the outcomes of cellular oxidative signalling
pathways depend on a number of parameters, principally the chemical
nature of ROS form produced (i.e. superoxide, hydrogen peroxide or
singlet oxygen) and the nature of the interacting partner (protein thiol,
metabolite, lipid or DNA molecule), as well as cell identity. Moreover,
the different types of oxidative protein modification (reversible and
irreversible) also add a high level of sophistication and specificity to the
redox signalling matrix that controls cell proliferation.

Many cellular functions are controlled by redox processes. Local
changes in the redox environment mediate the spatio-temporal reg-
ulation of protein functions and enzyme activities in a compartment-
specific manner. At the molecular level, this is thought to be effected
primarily via post translational modification (PTM) of cysteine residues

(as discussed below). Redox regulation serves as a crucial PTM and
modulator of protein function that is as yet unexplored in relation to the
plant cell cycle.

Cell cycle progression is regulated by the activity of cyclin depen-
dent protein kinases (CDKs) and their regulatory partners, which are
called cyclins (CYCs) [53], all of which are highly conserved in eu-
karyotes. The activation of CDKs requires phosphorylation by CDK21
activating kinases (CAKs) and their inactivation involves cyclin de-
pendent kinase inhibitors (CKIs), which are called as Kip-Related Pro-
teins (KRPs) in plants. While the G1/S and G2/M transitions are the
major regulatory check points for cell division, meristematic quies-
cence, dormancy and terminal differentiation in plants are generally
characterised by cell cycle arrest at G1 arrest [18]. The cohorts of genes
operating at the G1/S- G2/ M phases in plants are regulated by the E2F
and the MYB3R transcription factors, which are housed in the multi-
protein RBR-MYB3R-E2F complexes that are thought to be related to
the DREAM complex in animals [54]. Progression through the G1/S and
G2/M phase transitions and S phase is regulated by A-type CDKs
(CDKA). For example CDKA;1 is the major RETINOBLATOMA RE-
LATED (RBR) kinase in plants [55]. D-type 2 CYCs (CYCD) operate
together with CDKA to regulate the G1/S transition. A3 type CYCs
(CYCA) function at S phase. B-type CYCs (CYCB) and CDKs (CDKB)
function to regulate the G2/M transition and M. E3 ubiquitin ligases
such as the Anaphase Promoting Complex/Cyclosome (APC/C) and
Skp1/Cullin/F-box protein (SCF)- related complex, are also important
regulators of the cell cycle progress functions to remove cell cycle
regulators by proteolysis. The RB protein also shows E2F-independent
functions through binding to other nuclear or extra-nuclear partners. In
mammals, for example, RB cooperates with the MYOD or RUNX2
transcription factors to regulate cell differentiation in an E2F-in-
dependent manner. Moreover, the direct binding of RB to SKP2 sup-
presses the degradation of p27, attenuating cell cycle progression in an
E2F-independent manner.

Mitogenic signals promote RBR phosphorylation in plants through
the action of CDKs in association with D-type cyclins, particularly
CYCLIN D3:1 (CYCD3:1). RBR1 is a signal-dependent scaffold protein
and a conserved regulator of cell proliferation, differentiation, and stem
cell niche maintenance in Arabidopsis [56]. It is regulated by phos-
phorylation-dependent conformational changes that provide a range of
interaction surfaces for diverse complexes and functions [57–59]. The
hypophosphorylated forms of Rb in animals bind to E2F transcription
factors during G1 leading to inhibition of cell cycle dependent, E2F-
mediated gene expression [49]. Rb preferentially binds to the activating
E2F transcription factors, E2F1, E2F2 and E2F3, with their dimerization
partners DP1 and DP2 and represses their activity. While E2Fs are not
required to drive cell proliferation [60,61], activating E2Fs promote
expression of genes required for DNA synthesis during G1/S. The as-
sociation between Rb and E2F transcription factors is weakened by
sequential phosphorylation, initially by G1-, and then by G1/S- and
finally mitosis-specific CDKs. In this way, Rb regulates cell proliferation
by decreasing E2F-dependent transcription of cell cycle genes.

Upon phosphorylation, the E2FB transcription factors are released
from RBR, enhancing cell cycle gene expression and stimulating cell
proliferation, while E2FA remains associated with RBR and maintains
meristems through repression of differentiation. The initial phosphor-
ylations are thought to prime further CDK sites for phosphorylation
[56]. RBR is phosphorylated on alternative individual sites during G1,
leading to mono-phosphorylated RBR forms with distinct properties
such as the association with activator E2F1 to regulate checkpoint ar-
rest and apoptosis during DNA damage, or the dissociation from re-
pressor E2F4 to enable the entry into G1/S. The regulatory role of RBR
in cell proliferation can be separated from a novel function in safe-
guarding genome integrity [62]. Hence there is diversification of the
RBR functions through phosphorylation during early G1 phase [55]. We
can only speculate that redox regulation of critical cysteines on proteins
such as RBR may afford a similar and possibly more important level of
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control of the cell cycle, in a manner similar to that observed in ani-
mals.

3. Identification of putative redox-regulated cell cycle proteins in
plants

Key questions therefore concern what cell cycle proteins are subject
to redox regulation and how redox regulation functions alone or to-
gether with other post translational modifications such as protein
phosphorylation and ubiquitination to control the cell cycle in plants in
response to metabolic, developmental and environmental cues. As a

first step to addressing this issue, we downloaded from the Gene
Ontology all Arabidopsis gene annotations (http://www.geneontology.
org/page/download-annotations) and then extracted the FASTA protein
sequence for the representative gene model for each loci identified as
cell-cycle related from Ensembl Plants (release-38). We subsequently
used solvent accessibility prediction (NetSurfP v1.0 [63]) to identify
cysteine residues that are potentially accessible based on secondary
structure and solvent accessibility likelihoods for each Arabidopsis
protein (Supplemental Table, S1).

From the annotated genes, a restricted set of 108 core of cell cycle
proteins [64] was created with some additions (Fig. 2). 22 either had no

Fig. 2. Core cell cycle genes from Arabidopsis, arranged by family and complex. Gene names are presented, AGI codes for loci are in Supplementary table. Numbers
represent cysteines potentially surface accessible as calculated by NetSurfP.
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cysteines or are predicted to have only buried cysteines. Of the re-
maining 86, the majority (62) had between 1 and 3 accessible residues
and the remaining 24 had between 4 and 12 potentially exposed cy-
steines. This list includes RBR1, WEE1, the MYB3R transcription factors
and several members of the cyclin A1, B1, B2 and D families that are
key cell cycle regulators, but no CDK, CAK and only one CKI/KRP.
Several families of cell-cycle components, including the KRPs the, cy-
clin D, P and T families, the Anaphase Promoting Complex genes (APC/
C), the MCM genes of the ORC complex and the DP and DEL members of
the E2F-DP complex, all contain members with several (up to 12) and
no exposed cysteine residues, which may be indicative of a sensitive
and insensitive population to modulate redox regulation (Fig. 3).

4. Mapping redox modifications at the molecular level

Our understanding of how redox regulation is involved in cell cycle
control is hindered by a lack of knowledge regarding both which re-
sidues are important and how modification of those residues alters
protein function. Cysteine redox PTMs are generally formed non-en-
zymatically via promiscuous reactive electrophilic species (RES) in-
cluding ROS/RNS/RSS and, whilst widespread redox modification of
the proteome, high RES and formation of irreversible oxidations are
considered hallmarks of damaging oxidative stress, low levels of RES

are crucial for normal cellular function. There is growing appreciation
that redox PTMs are site-specific, governed by the microenvironment of
cysteine residues [65], and subject to temporal and spatial control, as
discussed above.

Cysteine (-SH) is unique amongst amino acid residues in its ability
to adopt oxidation states from -2 to + 6 in vivo, and thus undergoes a
very wide variety of redox-related PTMs [66]. Reversible PTMs include
formation of disulfides via reaction with low molecular weight thiols
such as glutathione (S-glutathionylation, -SSG), with other proteins
(-SSR), or to form S-sulfhydrate (-SSH, also known as persulfide); re-
action with ROS to generate S-sulfenic acid (-SOH), and reaction with
RNS in S-nitrosylation (-SNO) (Fig. 4). Sulfenic acids (-SOH) can react
further to give irreversibly oxidised species, S-sulfinic acid (-SO2H) and
S-sulfonic acid (-SO3H). Historically this complex array of modifications
was difficult to address in a global proteome context and with sufficient
sensitivity to detect endogenous oxidative signalling PTMs. However,
recent advances in redox proteomic technologies are delivering sig-
nificant new insights into the scope and biology of redox regulation.

5. Tools and platforms for redox proteomics

Mass spectrometry (MS)-based proteomics is unrivalled in its ability
to identify and characterise large portions of the proteome at the level

Fig. 3. The generalised plant cell cycle, showing the core cell cycle genes and complexes as described in the text, within the context of the cell cycle. Grey boxes, cell
cycle gene names, coloured boxes number of potentially exposed cysteines: orange, 0 exposed; green, 1–3 exposed; blue, 4–12 exposed.

Fig. 4. A) Cysteine redox modifications. B) Redox regulation of protein function.
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of individual residues and PTMs. Shotgun proteomics requires sample
processing steps including protein denaturation and digest to release
peptides for separation and MS detection. Direct MS detection of cy-
steine redox modifications is therefore not usually possible due to their
low abundance and frequent instability. Most redox proteomics stra-
tegies therefore exploit the intrinsic chemical reactivity of thiols or
cysteine PTMs to introduce labels enabling enrichment (via biotinyla-
tion or thiol-reactive resin). Quantification, including of PTM site oc-
cupancy, is becoming increasingly important and most redox proteomic
approaches lend themselves well to isotope-based comparative quan-
tification, for example exploiting labelling steps to introduce isotopic
moieties. Methods can be broadly divided into two categories: those
that exploit the intrinsic chemistry of redox PTMs to introduce a label
directly at the modification site, and indirect methods that label free
thiols then apply selective reduction to release specific cysteine PTM
sites for differential labelling (Fig. 5A&B).

Here we review the most common and promising methods for
profiling different redox PTMs and their applications in plant biology
(summarised in Supplemental Table, S2). For more in depth discussion
of how redox PTMs form, the methods used to detect them and con-
siderations of sample preparation, the reader is referred to several ex-
cellent recent reviews [67–69], including Akter et al.’s recent survey of
ROS reactivity in plants [70]. The technical details of quantitative
proteomic methods, including isobaric tagging (e.g. iTRAQ, TMT), have
also been reviewed elsewhere [71].

6. Reagents for labelling free thiols

The high nucleophilicity of the free thiol or thiolate relative to other
amino acid residues renders it susceptible to selective alkylation with
electrophiles, the most commonly used of which are based on iodoa-
cetamide (IAM) and maleimide (e.g. N-ethyl maleimide, NEM)
(Fig. 5E). MMTS is another common thiol labelling reagent, which re-
acts via disulfide exchange. Biotinylated versions of IAM and NEM
enable direct labelling and enrichment of cysteine-containing proteins
for MS analysis, and reagents that incorporate isotope tags have also
been developed (see below). These reagents can be used to compara-
tively label thiols across different conditions (e.g. in the presence and
absence of oxidative stress; Fig. 5D). Provided changes in global protein
expression are accounted for, this enables indirect determination of
sites that are differentially oxidised i.e. decreased detection of a site
indicates that it is being blocked by a redox PTM.

A limitation with biotinylation is that bulky reagents may not react
efficiently with all thiols and site quantification is not always
straightforward. Iodoacetamide-alkyne (IAA; Fig. 5E), developed to
profile hyper-reactive cysteines in proteomes [72], contains a small bio-
orthogonal tag (such as an azide or alkyne) that can be subsequently
ligated to biotin via click chemistry (Fig. 5F). IAA has been applied in a
redox proteomics setting to detect changes in thiol oxidation in re-
sponse to NO donors in lysates [73]. Applying a cleavable and iso-
topically labelled click reagent [72] enables precise site identification

Fig. 5. Redox proteomics strategies. Black/white star = label/blocking group. A) Indirect approach to detect reversible redox PTMs. B) Direct labelling approach. C)
Labelling of redox PTMs or free thiols via attachment to an affinity tag (e.g. biotin), a pre-tag (e.g. clickable tag), an isotopic label, or a solid support (resin). D)
Comparative quantitative proteomics: differential labelling of thiols in two samples with heavy and light isotopic reagents for relative quantification of free thiols. E)
Reagents to label free thiols. F) Click-based labelling of thiols with iodoacetamide-alkyne (IAA).
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and quantification. The recently reported isotope-incorporating IAA
variant [74] should also prove useful in comparing across samples.
Another limitation of biotin reagents is that they are not typically cell
permeable, so the snapshot of thiols obtained is subject to perturbations
that occur upon cell lysis. IAM-based probes are also toxic to cells. To
circumvent the toxicity of IAA, versions have been developed which can
be uncaged by UV light following cellular uptake [75] and could fa-
cilitate in vivo detection of cysteine residues.

7. Detecting reversible oxidation: biotin-switch and related
approaches

Labelling thiols and detecting a reduction in labelling due to oxi-
dation is rather indirect. Differential alkylation, or tag-switch, ap-
proaches have been widely applied to label sites of reversible cysteine
oxidation (-SOH, -SNO, -SSH/R/G). In the tag-switch approach, alky-
lation (or blocking) of free thiols is followed by reduction to release
reversibly oxidised thiols and then a second labelling step is performed
to introduce a means of detecting or enriching modified sites. In the
biotin-switch method (BST) [76], biotin is introduced in the second
labelling step, commonly via pyridylthiol-biotin (biotin-HPDP), a re-
agent that forms a reversible disulfide with free thiols and thus enables
release of the captured proteins or peptides following enrichment
(Fig. 5E). Alternatively, thiols exposed by reduction can be captured on
a resin (resin-assisted capture, RAC) [77], labelled with an alternative
affinity reagent [78,79], or alkylated using a different label to that
employed in the first blocking step but not enriched [80,81].

Although biotin is the most common affinity tag due to its extremely
high binding affinity with streptavidin, enrichment introduces at least
one additional step, resulting in quite lengthy protocols that reduce
proteome coverage, and non-specific binding to the resin complicates
analysis. To address these challenges, resin-based methods to capture
thiols have been reported. Commercially available resin, thiopropyl
Sepharose 6B, has been applied to directly capture free thiols via dis-
ulfide exchange, followed by on-resin protein digestion and multiplexed

isobaric labelling [77] (via iTRAQ - an isotope labelling technique
where amines on peptides are labelled with isobaric reagents that can
later be distinguished via MS [71]).

A popular quantitative method using a tag-switch strategy is
OxiCAT, which can be applied to determine PTM site occupancy in a
single sample [82]. In OxiCAT both reduced and oxidised cysteines are
sequentially captured using isotopically labelled, biotinylated thiol-re-
active IAM-based reagents (Fig. 6A). Following digest, biotinylated
cysteine-containing peptides are isolated and analysed by LC-MS/MS.
Heavy and light cysteine-tagged peptides are distinguishable during
MS, generating ratios of oxidised:reduced cysteines. OxiCAT recently
revealed>3800 H2O2-responsive residues in diatoms [83], including 4
with predicted roles in cell cycle control/division and 12 involved in
ROS metabolism or redox signalling.

There are several other reported isotopic/isobaric labelling methods
for introducing quantification into tag-switch workflows. Like OxiCAT,
some introduce isotopic labels at the modification site: these include
cysTMT [79] and iodoTMT [84,85], based on reversible disulfide and
irreversible alkylation chemistry respectively. TMT-resin is available
for affinity enrichment of labelled peptides. Other methods introduce
labels elsewhere on the peptides (usually on free amines). The most
widely used of these is OxiTRAQ, where isobaric iTRAQ reagents are
applied to peptides after biotin or resin-based enrichment (Fig. 6B).
OxiTRAQ has been successfully applied in Arabidopsis suspension cells
treated with various oxidants or other exogenous agents [86,87].

Tag-switch methods can be adapted to address specific modifica-
tions by using a modification-selective reducing agent (Fig. 6C). An
example is detection of S-nitrosylation: free thiols are blocked via al-
kylation, then -SNO modifications reduced to the free thiol using as-
corbate, sometimes in conjunction with copper(I) salts; the newly re-
leased thiols are labelled via biotinylation for enrichment and detection
[76]. Similarly, arsenite was reported to selectively reduce S-sulfenic
acid [88], although concerns about the compatibility of this PTM with
the initial alkylation step means that this strategy has largely been
supplanted by direct labelling methods for S-sulfenylation (see below).

Fig. 6. A) OxiCAT method of quantifying reversible redox PTMs: %oxidation within a sample. B) OxiTRAQ method: quantification is performed via isotopic labelling
of peptides on free amine. C) Biotin-switch methods. Ox = oxidation. Black star = biotin, resin or other tag.
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This highlights the main limitation of tag-switch methods: their reliance
on the selectivity of alkylating and reducing reagents, which is not
complete. In a further example, a recent study investigating cross-re-
activity between nitrosothiols and sulfinic acids found that MMTS may
release methyl sulfinic acid that could react with S-nitrosylation sites
and result in slower reduction to the free thiol, such that subsequent
detection of -SNO is diminished [89]. Incomplete blocking is also a
frequent challenge in tag-switch approaches. Similarly, in most proto-
cols other cysteine PTMs such as S-acylation will also be reduced (and
then the site alkylated), which can complicate interpretation of results.
Nevertheless, these strategies have revealed thousands of potentially
redox-sensitive cysteines across diverse proteomes.

8. Direct methods for profiling S-sulfenylation

S-Sulfenylation (-SOH) is a transient PTM with signalling roles, for
example in the regulation of protein tyrosine kinases and phosphatases
[90,91], but is not stable under typical MS sample processing condi-
tions [92]. -SOH also cross-reacts with the common thiol blocking re-
agents, making it difficult to detect via indirect methods (such as the
biotin-switch methods described above), although a novel blocking
reagent that only reacts with free thiols was recently reported and may
prove useful in circumventing this problem [93]. Several reagents for
directly labelling -SOH have been developed, mostly inspired by the
selective reaction of this PTM with β-dicarbonyls such as dimedone.
Antibodies against the dimedone-sulfenic acid adduct are available and
have been applied for S-sulfenylation profiling in plants [94], but most
approaches use biotinylation [95–97]. Biotinylated reagents [95] are
typically applied in cell lysates but cell permeable dimedone-based
chemical probes incorporating clickable tags have recently been de-
veloped to enable direct labelling of sulfenylated proteins in live cells
[90,98,99] (Fig. 7A). The small clickable tags allow labelled proteins to
be subsequently ligated to biotin after cell lysis. Akter et al. used this
method to demonstrate S-sulfenylation of 226 proteins in Arabidopsis
cell suspensions treated with H2O2, over half of which had not been
previously reported to be modified in plants [100]. Other recent studies
have combined clickable dimedone probes with cleavable biotin re-
agents to detect over 1000 endogenous sulfenylation sites in human
cells [99], suggesting that with optimisation of protocols this tech-
nology can achieve deep coverage of the endogenous S-sulfenome.

A potential limitation of dimedone-based capture is the slow speed
of the reaction in comparison to other reactions of sulfenic acids, such
as disulfide formation or further oxidation [92,101,102]. The Carroll
group recently reported several new probes with accelerated reaction
rates [101,103] and demonstrated that structurally different probes
label surprisingly distinct sets of endogenous sulfenylated proteins in
mammalian cells [103]. Whilst this data suggests that a general probe
capable of targeting all sulfenic acids might be challenging to develop,
it also means that different subsets of the S-sulfenylome, down to

specific proteins or protein families, might be targetable with different
chemical probes [103].

Bicyclo[6.1.0]nonyne has been reported as alternative chemical
probe to trap sulfenic acids, with reaction rates around 100-fold higher
than dimedone [102]. Although the known cross-reactivity of thiols
with such reagents [104] may present a problem for selective sulfenic
acid proteome profiling, subsequent data suggests that this side reaction
is not in fact occurring. Thus strained alkynes represent another po-
tential tool for S-sulfenylation detection [130].

A completely complementary approach for S-sulfenic acid detection
uses a cell-based genetic sensor for this PTM, based on the cysteine-rich
domain of the yeast transcription factor YAP1, which forms disulfides
with S-sulfenic acid modifications on its cognate signalling protein.
Fusion of the cysteine-rich domain of YAP1 with an affinity tag creates
a tool to capture and enrich S-sulfenylated proteins in vivo (Fig. 7B)
[100,105–107]. This approach has identified ∼100 sulfenylated pro-
teins in Arabidopsis thaliana cells [105].

9. Direct probes for S-nitrosylation (-SNO)

S-Nitrosylation is another labile PTM thought to be mediated pri-
marily by RNS, such as •NO formed by nitric oxide synthetases, and
removed via transnitrosylation with small molecular cellular thiols
[69,108]. Whilst the biotin-switch (ascorbate based) method described
above [76] is by far the most commonly used, several approaches to
directly label or enrich -SNO sites based on their chemistry have also
been reported.

Phenylmercury compounds react with -SNO to generate an S-Hg
bond, inspiring the development of mercury-functionalised resins and
biotin reagents that can be applied to capture -SNO modifications after
blocking of free thiols (Fig. 8A) [109]. Enriched proteins or peptides
can then be released via treatment with performic acid, generating a
sulfonic acid (-SO3H) at the site of modification, which is stable under
further sample processing and MS analysis conditions [109]. Another
approach used gold nanoparticles to enrich-SNO sites [110], although
the selectivity for enrichment of -SNO over other thiol modifications
such as disulfides is unclear, which may hinder the utility of this
method in complex samples. Phosphine-based reagents (first reported
in [111]) can also react with -SNO sites and have enabled -SNO imaging
and identification of nitrosylation on select proteins (reviewed in [69]).
This chemistry was developed into a global proteomic profiling ap-
proach termed SNOTRAP (Fig. 8A): free thiols were blocked, then a
biotin-incorporating triphenylphosphine thioester used to label -SNO
sites, generating a disulfide linkage that could be cleaved following
enrichment to release peptides [112]. Phosphine-based probes have
known issues in biological samples, such as reaction with disulfides
[69], and may require further development to be broadly applicable.

Finally, a recent study investigated the reaction of nitrosothiols and
sulfinic acids (-SO2H) for mutual detection of these two PTMs [89].

Fig. 7. Direct labelling of S-sulfenylation. A) Dimedone-based probe chemical labelling. B) YAP1 genetic probe-based labelling.
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Following blocking of free thiols, biotin-SO2H was used to label -SNO,
generating a thiosulfonate (Fig. 8A) for enrichment and detection. This
method successfully identified nearly 1000 candidate endogenous S-
nitrosylated proteins in mammalian cells, pinpointing the site of mod-
ification for around 100 of these. This study also analysed the relative
occupancy of sites.

10. Direct probes for S-sulfinylation (-SO2H) and S-sulfonylation
(-SO3H)

The more highly oxidised and (generally) irreversible redox PTMs of
S-sulfinylation (-SO2H) and S-sulfonylation (-SO3H) have historically
been considered mere markers of oxidative damage, rather than specific
controlled signalling PTMs. However, increasing evidence suggests that
this may be an over-simplification; for example, transient sulfinylation
of peroxiredoxins was shown to be a conserved marker for circadian
rhythms across all domains of life [113]. These PTMs cannot be readily
analysed by tag-switch approaches because selective reagents for their
reduction are not available, and identification of S-sulfonylation
(-SO3H) is thus far limited to direct detection via MS [114] or prior
enrichment on polyarginine resin (which also enriches sulfinylated
peptides) [115]. However, several direct S-sulfinic acid approaches
have been reported recently.

Carroll et al. developed novel aryl-nitroso probe NO-Bio to directly
capture S-sulfinic acids in lysates, following blocking of free thiols
(necessary to avoid cross-reactivity) (Fig. 8B) [116]. This represents the
first direct labelling method for detecting this redox PTM and should be
useful in global MS proteomics studies. Martin et al. have also em-
ployed nitroso compounds to detect S-sulfinylation, in the reverse of
their approach for detecting S-nitrosylation via sulfinylation (discussed
above) [89]. They applied their Biotin-GSNO reagent (Fig. 8B) to
identify endogenous sulfinic acid sites across the human proteome. One
limitation of Biotin-GSNO is the relative instability of the reagent,
which oxidises over time in aqueous solution [89]. Martin et al.
therefore developed an alternative approach, in which, after alkylation
of free thiols with IAM, maleimide (NEM-based) reagents react with S-

sulfinated cysteines to form a sulfone adduct that is stable under acidic
conditions [117] (Fig. 8B).

Combined with quantitative MS, these recently developed direct
labelling approaches should promote investigation of these under-
studied PTMs in different biological contexts.

11. Detection of sulfhydration/persulfides (-SSH)

Identifying sites of sulfhydration (-SSH; also known as persulfides) is
challenging due to the similar chemical properties and reactivity of this
PTM compared to free thiols. Modified tag-switch approaches have had
some success, but site identification is difficult and these methods lack
specificity [69]. One approach designed to address some of these issues
utilises MSBT to label both thiols and persulfides, followed by selective
reduction of the disulfide formed from the latter to generate a free thiol
for tagging with, for example, biotin [118]. One limitation of this ap-
proach is an inability to discriminate between the newly formed dis-
ulfide and other disulfide modifications. To address this and directly
label sites of S-sulfhydration, Zhang et al. developed chemistry to se-
lectively displace the disulfide that is formed upon MSBT reaction with
a CN-biotin reagent, enabling specific enrichment of these sites.
(Fig. 9A) [119]. Another approach reacts both thiols and persulfides
with IAM-biotin, enriches both sites and then selectively releases the
disulfide at the site of persulfide modification from the resin via re-
duction [120].

12. Detection of glutathionylation (-SSG) and disulfides

Protein intra- or intermolecular disulfides are often detected using
biotin-switch approaches (see above). The specific modification of cy-
steine with the low molecular weight thiol glutathione (GSH) and its
homodimer disulfide (GSSG), however, can be monitored directly. The
first of these direct approaches use biotin-functionalised GSH or GSSG
analogues to identify sites susceptible to glutathionylation [121,122]
(Fig. 9B). However, these methods effectively mimic an increase in
oxidative stress in cells, rather than profiling endogenous PTMs. To

Fig. 8. Direct labelling of Cys redox PTMs: A) S-nitrosylation; B) S-sulfinic acid detection methods.
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address this, Ahn et al. developed a method where cells are transfected
with a mutant glutathione synthetase able to generate in situ a GSH
analogue incorporating an azide bio-orthogonal tag, which is then
metabolically incorporated into cellular proteins (Fig. 9C) [123]. The
bio-orthogonal tag is then ligated to biotin using click chemistry. This
approach was applied to profile native glutathionylation in cells in re-
sponse to glucose starvation [124] and shows promise in circumventing
the selectivity challenges faced by tag-switch approaches.

The final class of methods that have been developed to address
disulfide-type redox PTMs exploit the activity of specific enzyme to
classes, including thioredoxin (Trx), which reduces protein disulfides,
and glutaredoxin (Grx), which reduces -SSG modifications. Qian, Thrall
et al. used an enzymatic version of the tag-switch approach to detect
glutathionylation: free thiols were first blocked and then a cocktail
containing active Grx1 applied to selectively reduce glutathionylated
proteins for subsequent capture on resin and identification (Fig. 9D)
[77,125]. Quantification was introduced via on resin isobaric tagging
with either iTRAQ or TMT reagents.

A similar approach has been applied to identify those disulfide-
containing proteins that are substrates for the enzyme Trx. Free cy-
steines are blocked, and then addition of the Trx enzymatic system
results in conversion of disulfide-linked proteins to free thiols, which
are subsequently biotinylated (Fig. 9D) [126]. An alternative method
reported in the same study is to immobilise a mutant Trx on resin and
use this to covalently capture Trx substrates upon flow-through. The
mutant enzyme lacks one of its two active site cysteines and thus sub-
strate-enzyme intermediates remain trapped until eluted by DTT or
another reductant. The “thioredoxome” of the unicellular green alga
Chlamydomonas reinhardtii was recently extensively characterised using
both Trx systems [127].

13. Conclusions and perspectives

Recent years have seen rapid evolution of methods to characterise
the redox proteome. The key approaches are summarised, along with
their advantages and limitations, in Supplemental Table S3. The se-
lectivity of the reagents and enzymes is key to successfully differ-
entiating PTMs across the complex redox landscape, and the chemistry
for analysing these continues to develop. This growing intensity of

research efforts is promising, as approaches that are sufficiently sensi-
tive to map and (importantly) quantify endogenous redox PTMs and
changes at the residue level are absolutely crucial for analysing subtle
changes such as those occurring at different cell cycle stages. Thus the
best methods incorporate both quantification and a means of identi-
fying the precise sites of PTM into their workflow. Integrating chemical
and enzymatic tools with state-of-the-art mass spectrometry-based in-
strumentation and optimised workflows also has a large impact. The
potential increase in coverage is well-illustrated by the example of
OxiCAT: the group who pioneered the method [82] reported quantifi-
cation of redox status for a few hundred cysteines in the yeast pro-
teome, which was a landmark study at that time [128]; a recent report
in yeast identified ~ 4000 sites [129]. Interesting this latter study
reached sufficient depth of coverage to quantify the percentage oxida-
tion of cysteines on several cell cycle regulators. OxiCAT is probably
currently the best method for obtaining an overview of total reversible
oxidation levels across the proteome, as it incorporates quantification
and site identification, uses commercially available reagents, and is
readily applied across different sample types. However, this method
must still be applied in lysates and thus is necessarily subject to artifi-
cial changes in redox status that occur upon cell lysis. Alternative ap-
proaches - such as methods to label thiols inside live cells - should prove
useful in validating data from in vitro methods, although few reported
studies have directly compared multiple techniques.

In addition to technical developments that advance our ability to
interrogate the proteome with existing tools, exciting approaches are
emerging to address previously understudied redox PTMs. Examples
discussed above include the dimedone-based and more recently devel-
oped nucleophilic probes that are able to profile transient S-sulfenic
acid modifications in live cells, and approaches to tackle PTMs that are
difficult to distinguish from other cysteine redox states (e.g. S-sulfhy-
dration). We anticipate that method development will also continue to
underpin advances in redox biology.

In this review, we have highlighted the central roles of oxygen and
redox signalling in regulating cell proliferation, tentatively identified a
number of core cell cycle regulators that have the potential to be
regulated in this way, and discussed the methods that can be used to
analyse and quantify posttranslational redox modifications. Recent
progress in increasing the limit and fidelity of detection make studies on

Fig. 9. Detection of S-sulfhydration, glu-
tathionylation and disulfide modification. A)
MSBT labelling method for profiling -SSH sites.
B) Biotinylated-glutathione probes for analysis
of cysteines susceptible to glutathionylation.
C) Metabolic labelling method for the detec-
tion of S-glutathionylation: Glutathione syn-
thase (GS) produces click-tagged glutathione
mimic inside cells, which is incorporated into
proteins and can be detected following cell
lysis. D) Enzymatic methods for detecting
substrates of Grx or Trx enzymes.
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the redox regulation of cell cycle control a realistic possibility, at least
at the outset in plant cell cultures, where the cell cycle can be syn-
chronised and cell cycle progression can easily be determined, with
appropriate amounts of materials harvested for analysis. It will be in-
teresting to determine whether redox processes influence the properties
and functions of key cell cycle regulators such as RB and E2Fs, which
control DNA replication and mitosis as well as the G1/S transition
during the cell cycle. The RB family proteins regulate the G1/S transi-
tion in animals. Inactivation of RB cause oxidative stress by increasing
ROS production in mitochondria, where RB is localized. The RB–E2F
complex directly suppresses the expression of oxidative metabolism-
related enzymes and mitochondrial protein translation genes. It will be
intriguing to see if similar mechanisms of redox regulation of cell
proliferation are present in plant cells, as well as other redox networks
that link cell cycle regulation to metabolism and environmentally
sensing. A better understanding of these processes will not only identify
the similarities in the redox footprints between plants and animals but
also clarify the mechanisms whereby plant stem cells respond to the
cellular redox environment. Understanding the functional regulation of
redox reactive cysteine residues in cell cycle proteins, and their inter-
actions with mitochondrial and plastid signalling networks, will lead to
a step change in our appreciation of how cell metabolism uses the redox
reactions that harness energy for life to control cell proliferation and
survival in plants and animals.
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