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of the nuclear Skyrme model can reproduce the proton–neutron mass difference.
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1. Introduction

The Skyrme model [9] is a nonlinear sigma model whose per-
turbative quanta are interpreted as pions and whose topological 
solitons are interpreted as nucleons. At the classical level, there is 
no difference between protons and neutrons in this model; the dis-
tinction only emerges after quantization of the internal rotational 
degrees of freedom enjoyed by the static soliton, and is deter-
mined, roughly speaking, by the sense (clockwise or anticlockwise) 
of internal rotation. It is clear, therefore, that in order to account 
for the slight mass difference between the neutron and the proton 
(mn = 939.56563 MeV, mp = 938.27231 MeV), the model’s action 
must contain a small term which breaks time reversal symme-
try, so that “clockwise” and “anticlockwise” internal rotation are 
dynamically inequivalent. Devising such a term, while maintain-
ing Lorentz and parity invariance, does not seem to be possible 
in any version of the model containing only pion fields. It should 
be noted that adding electromagnetic effects to the usual Skyrme 
model has precisely the opposite effect to the one desired: unsur-
prisingly, Coulomb repulsion renders the proton heavier than the 
neutron [3].

As has been long known, the proton–neutron mass splitting can 
be accommodated if one extends the model to include coupled 
vector mesons [5]. There is independent motivation for this: cou-
pling the Skyrme field to the ω meson stabilizes the unit soliton 
without the need for a quartic term in the action [1], produc-
ing a mathematically elegant, but comparatively underexplored, 
model whose static solitons are thought to be qualitatively similar 
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to those of the standard Skyrme model [10]. Another motivation 
comes from holography. Variants of the Skyrme model coupled to 
an infinite tower of vector mesons emerge from Yang–Mills theory 
in 4 +1 dimensions in both the Sakai–Sugimoto model [8] and Sut-
cliffe’s simplification of it [11], which, it has been recently argued, 
can correct the binding energy problem suffered by the conven-
tional Skyrme model [7]. By introducing an explicit mass differ-
ence between up and down quarks into the Sakai–Sugimoto model, 
Bigazzi and Niro have recently computed the proton–neutron mass 
splitting contributed by the whole infinite tower of vector mesons, 
obtaining a phenomenologically satisfactory answer [2]. This result 
lies at the extreme end of the spectrum of sophistication, requir-
ing, as it does, dynamical coupling to infinitely many new meson 
fields (though, of course, holography handles them elegantly). Ear-
lier proposals, motivated directly by chiral perturbation theory, re-
quire the addition of ω, ρ0 and ρ± mesons [4] or ω, ρ0, ρ± and 
η mesons [5], producing models of great complexity, in which the 
full consequences of the various couplings are difficult to appre-
hend.

The purpose of this paper is to point out that a very simple per-
turbation of the usual ω meson version of the Skyrme model [1], 
containing only one symmetry breaking term and no extra mesons 
(beyond the ω), can reproduce the proton–neutron mass split-
ting. A full non-perturbative computation would require one to 
solve the static Euler–Lagrange equations in the presence of axial, 
but not spherical, symmetry, a computationally intensive problem. 
However, working perturbatively in the small coefficient in front 
of the symmetry breaking term, the leading order correction can 
be computed by solving only ODEs. The skyrmion that emerges is 
(to this order) still a spherically symmetric hedgehog with a radial 
ω0 component, but acquires a small azimuthal spatial ω compo-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The perturbed skyrmion: (a) profile functions, and (b) a contour plot of the azimuthal spatial field ω̄ in the right x–z half plane (contours of constant ω̄ · (0,1,0)).
nent localized around the skyrmion’s equator. The action induced 
by rigidly isorotating this skyrmion depends on the sense in which 
it spins, due to both the small ωi field and direct coupling between 
the ω0 and pion fields.

2. The model and its skyrmion

The usual ω meson variant of the Skyrme model [1] has La-
grangian density, in appropriate length and energy units [10],

L = 1

16
tr (∂μU∂μU †) + M2

8
tr (U − I2) − 1

4
ωμνω

μν

+ 1

2
ωμωμ + βωμBμ (2.1)

where U : R3,1 → SU (2) is the Skyrme field, Rμ = ∂μU U † is its 
right-invariant current,

Bμ = 1

3!
1

2π2
εμναβ

1

2
tr (Rν Rα Rβ), (2.2)

is its baryon current, ω = ωμdxμ is a real one-form, representing 
the ω meson, ωμν = ∂μων − ∂νωμ , M = mπ/mω = 0.176 is the 
ratio of the pion mass to the ω mass, and β is an unknown cou-
pling constant. Adkins and Nappi propose [1] the value β = 96.7, 
found by fitting the masses of the nucleon and � resonance, while 
Sutcliffe suggests [10] the alternative β = 34.7, found by fitting 
the masses of the nucleon and α particle. We prefer the latter 
procedure, because fitting to a broad resonance like the � seems 
inherently over-optimistic, so will present numerics in this case 
only.

To L we will add the symmetry breaking term

L∗ = −κ

4
ωμν
μν (2.3)

where κ is a small parameter, 
μν = ∂μπ1∂νπ2 − ∂νπ1∂μπ2 and, 
as usual, U = σ I2 + iτaπa , τa being the Pauli matrices. This breaks 
the symmetry of L under the adjoint action of SU (2), U �→ AU A†, 
to invariance under the U (1) subgroup A = exp(iατ3), but does 
not alter the pion or ω masses, and is invariant under the parity 
operation (t, x) �→ (t, −x), U �→ U †. The Euler–Lagrange equations 
satisfied by a static solution are
1

4
∂iRi − M2

4
π

+ κ

2
{(σ ,−π3,π2)∂iπ2 − (π3,σ ,−π1)∂iπ1} ∂ jω ji = 0,

−∂ j∂ jω0 + ω0 + g B0 = 0,

∂ j∂ jωi − ∂i(∂ jω j) − ωi + κ

2
∂ j
 ji = 0 (2.4)

where Ri = iRi · τ . From this we see that ωi is of order κ , and 
hence U and ω0 receive corrections only at order κ2. Hence, to 
order κ , the B = 1 static solution takes the form

U = cos f (r)I2 + i sin f (r)n · τ , ω0 = ω0(r), ωidxi = κω̄

(2.5)

where

f ′′ + 2

r
f ′ − 1

r2
sin 2 f − M2 sin f + 4g

2π2r2
sin2 f ω′

0(r) = 0,

(2.6)

ω′′
0 + 2

r
ω′

0 − ω0 + g

2π2r2
f ′ sin2 f = 0, (2.7)

∗ d ∗ dω̄ + ω̄ = −1

2
∗ d ∗ (dπ1 ∧ dπ2), (2.8)

π1 = sin f (r) sin θ cosφ, π2 = sin f (r) sin θ sin φ, and ∗ denotes the 
Hodge isomorphism on R3. Equation (2.8) supports solutions of 
the form

ω̄ = �(r) sin2 θ dφ, (2.9)

where

�′′ −
(

1 + 2

r2

)
� = 1

8

(
F ′′ − 1

r2
F + 1

r2

)
, F := cos 2 f .

(2.10)

So constructing the B = 1 skyrmion to order κ amounts to solving 
the coupled ODE system (2.6), (2.7), (2.10) with boundary condi-
tions f (0) = π , ω′

0(0) = �(0) = f (∞) = ω0(∞) = �(∞) = 0.
Fig. 1 presents numerical solutions of this system generated us-

ing a relaxation method, for the coupling value β = 34.7. Note that 
the Skyrme and ω0 fields are unchanged by the perturbation to 
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leading order. Its only effect is to induce a small azimuthal spa-
tial ω field, ωidxi = κ�(r) sin2 θdφ, also depicted. This perturbed 
hedgehog solution is, of course, not unique, since we may act on it 
by spatial translations and rotations, and isorotations about the π3
axis.

3. Rigid body quantization

As usual, we quantize the unit skyrmion by restricting the 
model’s action functional to the symmetry orbit of a fixed static 
skyrmion (neglecting translations, that is, having fixed the
skyrmion’s centre of mass at the origin). Note that only isorota-
tions about the π3 axis are symmetries of the model. The spin–
isospin symmetry group G = SU (2) × U (1) acts (on the right) on 
the space of field configurations by

(g, λ) : (U ,ω) �→ (U ,ω)(g,λ)

:= (h(λ)†U (Rgx)h(λ),ω0dt + R∗
g(ωidxi)), (3.1)

where h(λ) := diag(λ, ̄λ), and Rg : R3 → R
3 denotes the orthogo-

nal linear map corresponding to su(2) → su(2), X �→ g X g†, under 
the standard identification R3 ≡ su(2) defined by X �→ X ·

(
− i

2 τ
)

. 
The G orbit M of our reference skyrmion

(U∗,ω∗) = (cos f (r)I2 + i sin f (t)n ·τ ,ω0(r)dt +κ�(r) sin2 θdφ)

(3.2)

is diffeomorphic to G/H ∼= SU (2)/Z2, where H is its isotropy 
group

H = {(±h(λ),λ) : λ ∈ U (1)}. (3.3)

An explicit diffeomorphism SU (2)/Z2 → M is given by {±g} �→
(U∗, ω∗)(g,1) . The action of G on SU (2)/Z2 induced by this diffeo-
morphism is

(g, λ) : {±g′} �→ {±h(λ)† g′g}. (3.4)

We begin by computing the restriction to M ∼= SU (2)/Z2 of 
the field theoretic Lagrangian L = ∫

R3 (L + L∗). Since L + L∗ is 
a quadratic polynomial in time derivatives, this takes the form

L(g, ġ) = 1

2
γ (ġ, ġ) + A(ġ) − M0 (3.5)

where γ , A, M0 are a symmetric (0, 2) tensor, a one-form and a 
function on SU (2)/Z2 respectively. Moreover, L is invariant under 
the induced action (3.4) of G on SU (2)/Z2, so M0 is constant and

γ = �1(�
2
1 + �2

2) + �3�
2
3, A = C�3 (3.6)

where �a are the right invariant one forms on SU (2) dual to the 
basis {− i

2 τa} for su(2), and �1, �3, C are constants. Note that, up 
to this point, our analysis has used only the axial symmetry of the 
reference skyrmion (U∗, ω∗), and so applies equally well to the 
exact B = 1 skyrmion solving the PDE system (2.4).

To compute the constants �1, �3, C, M0, it suffices to evaluate 
the Lagrangian at t = 0 on the curves g1(t) = exp(−itτ1/2) and 
g3(t) = (−iatτ3/2), where a ∈ R is an arbitrary constant, noting 
that L(g1, ̇g1) = �1/2 − M0 and L(g3, ̇g3) = �3a2/2 + Ca − M0. 
A lengthy but straightforward calculation yields

�1 = 2π

3

∞∫
r2 sin2 f dr + O (κ2)
0

�3 = �1 + O (κ2)

C = κC∗ + O (κ2)

C∗ = 4

3

∞∫
0

f ′ sin f (
β

π
� sin f + πr2ω′

0 cos f )dr + O (κ2)

M0 = 4π

∞∫
0

r2
(

f ′ 2

8
+ sin2 f

4r2
+ M2

4
(1 − cos f )

− ω′ 2
0

2
− ω2

0

2
+ β f ′ω′

0 sin2 f

2π2r2

)
dr + O (κ2).

Of course M0 is the classical rest energy of the static skyrmion. 
Note that the symmetry breaking term L∗ does not break the 
bi-invariance of the metric γ to leading order in κ ; nor does it 
perturb M0 to leading order. Its only effect is to induce a small 
right-invariant one-form on M ∼= SU (2)/Z2, tangent to the unbro-
ken isospin symmetry direction. For the coupling choice β = 34.7, 
we find �1 = 15.242, C∗ = −5.856, M0 = 22.505.

To accommodate the fermionic nature of nucleons, we will 
quantize motion in M̃ ∼= SU (2), the double cover of the space of 
centred skyrmions M . The wavefunction ψ is a map SU (2) → C

satisfying ψ(−g) = −ψ(g). We recognize in (3.5) the Lagrangian 
describing motion of a particle of unit mass and unit electric 
charge moving in the Riemannian manifold (SU (2), γ ) under the 
influence of a magnetic field B = dA. The Hamiltonian describing 
the quantum mechanics of such a system is [6, p. 421]

Hψ = −1

2
∗ dA ∗ dAψ + M0ψ (3.7)

where dA = d − i A and ∗ is the Hodge isomorphism on (SU (2), γ ). 
For our particular metric γ and connexion A,

Hψ = − 1

2�1
(�2

1 + �2
2 + �2

3 − 2iκC∗�3)ψ +
(

M0 + κ2C2∗
2�1

)
ψ,

(3.8)

where {�a} are the right invariant vector fields on SU (2) dual to 
{�a}. Since the final term is of order κ2, we should discard it. 
We denote by θa the left invariant vector fields on SU (2) which 
coincide with �a at I2. To extract the spin and isospin quan-
tum numbers of the eigenstates of H , we will re-write it in terms 
of angular momentum operators. Spatial rotation of the skyrmion 
(U∗, ω∗)(g,1) through angle α about the xa axis corresponds to 
right multiplication of g by exp(αiτa/2), which is generated by the 
left invariant vector field −θa . The corresponding spin operator is 
Sa = −i(−iθa). Similarly, isorotation through angle α about the π3

axis corresponds to left multiplication on SU (2) by exp(−αiτ3/2), 
which is generated by the right invariant vector field �3. The cor-
responding isospin operator is J3 = −i�3. Now �2

1 + �2
2 + �2

3 =
θ2

1 + θ2
2 + θ2

3 and [θa, �b] = 0, so

H = 1

2�1
|S|2 − κC∗

�1
J3 + M0, (3.9)

total spin |S|2 = S2
1 + S2

2 + S2
3, S3 and J3 are a compatible set of 

observables. Hence, by the usual angular momentum algebra, the 
energy spectrum of the rigidly rotating skyrmion is

H|s, j3〉 =
(

s(s + 1) − κC∗ j3 + M0

)
|s, j3〉 (3.10)
2�1 �1
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where s, j3 are half integers interpreted as total spin and isospin 
respectively. The proton corresponds to |1/2, 1/2〉 and the neutron 
to |1/2, −1/2〉. Hence, their masses are

mp = M0 + 1

2�1

(
3

4
− κC∗

)
,

mn = M0 + 1

2�1

(
3

4
+ κC∗

)
. (3.11)

Clearly, for any given parameter value β , we may choose κ so 
that mp , mn have the correct splitting (unless, by some cruel fluke, 
C∗ = 0). We must arrange that the mass difference, as a fraction of 
the average nucleon mass, equals the experimental value:

2(mn − mp)

mn + mp
= 2κC∗

2M0�1 + 3/4
= 0.00137703. (3.12)

For the coupling choice β = 34.7 this requires κ = −0.08075. 
A measure of the size of the perturbation to the skyrmion at this 
parameter value is given by max |ωidxi | = 0.0242, the maximum 
length of the spatial part of the ω meson field over all positions 
in space (recall this field vanishes identically for the unperturbed 
skyrmion). An alternative, more global measure is ‖ωidxi‖/‖ω0‖ =
0.0257, where ‖ · ‖ denotes L2 norm.

4. Concluding remarks

We have proposed a very simple perturbation of the ω me-
son Skyrme model which breaks its isospin symmetry to a U (1)

subgroup, and is capable of reproducing the neutron–proton mass 
splitting. The perturbed skyrmion’s pion and ω0 fields are un-
changed to leading order in the perturbation parameter κ , re-
maining spherically symmetric. The skyrmion acquires an order 
κ azimuthal ωi field, however, and so is only axially symmetric. 
For Sutcliffe’s calibration of the unperturbed model, one must take 
κ = −0.08075 to reproduce the correct mass splitting. One should 
regard |κ | = 0.08075 as a lower bound on the deformation param-
eter required, since electromagnetic effects will partially cancel the 
desired effect. The perturbation will have implications for pion–ω
scattering processes which we have not addressed. It would be 
interesting to see whether |κ | = 0.08075 is compatible with the 
experimental bounds on such processes.

The proposed perturbation is offered in the original Skyrme 
spirit: write down something simple that does the job, worry 
about its microscopic origins later (if at all). In this case, doing 
the job means inducing a one form on the moduli space of static 
skyrmions tangent to the unbroken isospin orbits. This mathemat-
ical structure is, presumably, present in some form in any version 
of the Skyrme model with a neutron–proton mass difference; its 
derivation in this model is particularly direct and transparent.
The calculation presented here could be improved. One could 
numerically solve the Euler–Lagrange equations (2.4), after reduc-
tion to axially symmetric fields, instead of working perturbatively. 
It would be interesting to see whether the pion fields of the 
skyrmion become oblate (or prolate). The basic structure of the 
dynamics on the moduli space would remain unchanged, but the 
metric would have only G symmetry (rather than bi-invariance), 
that is, �1 
= �3, producing an energy spectrum with a j2

3 term:

E(s, j3) = s(s + 1)

2�1
− C j3

�3
+ M0 + C2

2�3
+ �1 − �3

2�1�3
j2
3. (4.1)

Since chiral symmetry is only softly broken, it would be interest-
ing to study the moduli space dynamics on the orbit of the full 
spin–isospin group G ′ = SU (2) × SU (2), rather than just its unbro-
ken subgroup G . The enlarged moduli space M ′ would then be 5
dimensional, with a G invariant metric and potential (of order κ2), 
presumably minimized on M ⊂ M ′ . Calculation of this metric and 
potential, even perturbatively, seems to be a challenging problem.
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