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Abstract

The solution of the Poisson equation is a crucial step in electronic structure calculations,

yielding the electrostatic potential—a key component of the quantum mechanical Hamiltonian.

In recent decades, theoretical advances and increases in computer performance have made it

possible to simulate the electronic structure of extended systems in complex environments.

This requires the solution of more complicated variants of the Poisson equation, featuring non-

homogeneous dielectric permittivities, ionic concentrations with non-linear dependencies, and

diverse boundary conditions. The analytic solutions generally used to solve the Poisson equa-

tion in vacuum (or with homogeneous permittivity) are not applicable in these circumstances

and numerical methods must be used.
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In this work, we present DL_MG, a flexible, scalable and accurate solver library, developed

specifically to tackle the challenges of solving the Poisson equation in modern large-scale

electronic structure calculations on parallel computers. Our solver is based on the multigrid

approach and uses an iterative high-order defect correction method to improve the accuracy of

solutions.

Using two chemically relevant model systems, we tested the accuracy and computational

performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equa-

tions, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼ 109

unknowns and 100s of CPU cores. We also applied DL_MG in actual large scale electronic

structure calculations, using the ONETEP linear-scaling electronic structure package to study

a 2615 atom protein-ligand complex with routinely available computational resources. In these

calculations, the overall execution time with DL_MG was not significantly greater than the

time required for calculations using a conventional FFT-based solver.

1 Introduction

What is the electrostatic potential corresponding to a given charge density? This deceptively

simple question is key to modelling the electronic structure of atoms, molecules and materials,

where the classical electrostatic potential forms a foundation upon which quantum mechanical

many-body effects can be modeled. Consequently, developing efficient techniques for answering

this question—by solving the Poisson equation—is a central concern for researchers interested in

the electronic structure of matter.

For reasons of practicality, electronic structure calculations have historically tended to be

restricted to the study of small systems in vacuum with fully open or fully periodic boundary

conditions (BCs). In this case, the Poisson equation can be efficiently solved using analytic

solutions (as described in section 2.1). However, in recent years it has become possible—perhaps

even routine—to perform electronic structure calculations on systems numbering 100s or 1000s of

atoms and to include the effect of the surrounding environment. This has been driven by prodigious
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growth in the computing power available to researchers and theoretical developments allowing

electronic structure calculations to scale efficiently with respect to system size and number of

processors. In particular, progress in this area has been enabled by the development of so-called

linear-scaling, or O(N), methods, in which the asymptotic computational cost increases linearly

with system size, N . These methods have been implemented in several software packages, including

ONETEP,1 BigDFT,2 CONQUEST,3 OpenMX,4 Quickstep,5 and SIESTA.6

When modelling large chemical systems, such as biomolecules and nanoparticles, neglecting

the environment can have a substantial effect on the properties of the system. For example, without

the screening effect of a solvent, it is possible for systems to develop unphysical surface states

and dipole moments.7 This issue can be resolved by simply including solvent molecules in the

electronic structure calculation. However, this explicit approach is very costly, even using linear-

scaling methods, because of the significant increase in the number of atoms that must be treated

quantum mechanically and the need to statistically average over solvent configurations. In addition,

it is generally the case that the electronic structure of the environment is not of interest and may

complicate the interpretation of results.

The generalized Poisson and Poisson-Boltzmann equations (see section 2.1) offer a computa-

tionally inexpensive means of embedding a charge density in an electrostatic environment, avoid-

ing the complexities of explicit modelling of the environment. Solving these equations yields an

electrostatic potential which includes an implicit representation of the electrostatic effects of the

environment, for example, a solvent. However, analytic solutions for these more complicated vari-

ants of the Poisson equation are only available for specific cases (see section 4.1.1), necessitating

the use of numerical methods.

To be practical in the context of large scale electronic structure calculations, a numerical Poisson

solver must:

• solve the Poisson equation for arbitrary input charge densities,

• have accuracy comparable to methods based on analytic solutions for the Poisson equation

in vacuum (e.g. using FFTs to solve the equation in reciprocal space, section 2.1),
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• scale efficiently with problem size, and

• scale efficiently to large numbers of parallel processors.

In addition, if the solver is to provide an implicit representation of the environment, it must also be

able to solve the more complicated generalized Poisson and/or Poisson-Boltzmann equations.

Using the multigrid approach,8–10 Poisson solvers which satisfy all of these requirements can

be developed. Multigrid methods provide a framework in which relatively simple iterative solvers

can be applied on a hierarchy of progressively coarsening grids, yielding rapid convergence at

low computational cost (section 2.3). With careful design and selection of components, multigrid

solvers can also achieve excellent parallel efficiency (see ch. 6 of Ref. 10).

The use of multigrid solvers for solving the Poisson equation in electronic structure calcu-

lations is well-established, with many publications describing their successful application in this

context.11–17 Multigrid methods have also been applied as efficient solvers for real-space discretiza-

tions of the Kohn-Sham eigenvalue equations in density functional theory (DFT).18–21

Solvers based on the multigrid approach have proven particularly effective for solving the

generalized Poisson equation in implicit solvent models based on Fattebert and Gygi’s electrostatic

model12,14–17,22,23 (section 2.2). The smoothly varying function used to represent the dielectric

permittivity in these models poses no problem for multigrid solvers, requiring only that the operator

stencil (appendix A) is modified to incorporate variable coefficients.

While multigrid is clearly well-suited for solving the Poisson equation in electronic structure

calculations featuring electrostatic embedding, it is not the only approach in use. For example,

Andreussi et al. implemented the self-consistent continuum solvation (SCCS) model24—a variant of

Fattebert and Gygi’s model—by recasting the generalized Poisson equation in terms of a polarization

charge density and solving this self-consistently (see section 2.1). More recently, Fisicaro et al.25

extended this work, presenting efficient solvers for the generalized Poisson and Poisson-Boltzmann

equations based upon preconditioned conjugate gradient and self-consistent methods for use in the

SCCS and similar models.

In this paper, we introduce DL_MG, a flexible, scalable and accurate Poisson solver library based
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upon a high-order defect-corrected multigrid approach. The solver was designed specifically to

tackle the challenges inherent in modern large-scale electronic structure calculations. In particular,

the library was developed to provide a means of accounting for environmental effects in electronic

structure calculations by efficient solution of the generalized Poisson and Poisson-Boltzmann

equations.

In the following, we present the theoretical context for the development of DL_MG (section 2)

and an overview of the implementation of the library (section 3), focusing particularly on the defect

correction component (section 3.1.2). Through careful testing of the solver for chemically relevant

model systems (section 4.1) and in large-scale electronic structure calculations (section 4.2) with

ONETEP,1 we demonstrate that the solver is able to scale efficiently to 100s of processors and

∼ 109 grid points and deliver close agreement with known analytic results and established FFT-

based Poisson solvers. In addition, since DL_MG is freely available under a permissive open source

license, we provide some brief information for developers in appendix B to aid interested readers

who may want to test and possibly integrate the library in their own codes.

2 Theory

2.1 Poisson and Poisson-Boltzmann equation

The electrostatic potential, φ0(r), resulting from a given charge density, n(r), in vacuum can be

obtained by solving the Poisson equation:

∇2φ0(r) = −4πn(r). (1)

The solution of this equation is relevant in the context of electronic structure calculations, where

the potentials due to electronic and ionic densities, nelec(r) and nionic(r), are required.

In open boundary conditions (OBCs), where the potential goes to zero as r goes to infinity,

the non-periodic potential can be expressed in terms of the corresponding Green’s function for the
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Laplacian, ∇2 (see ch. 10 of Ref. 26):

G(r − r′) = −
1

4π
1

|r − r′|
. (2)

This yields the well-known form for Coulomb potential in OBCs:

φ0(r) =

∫
dr′

n(r′)

|r − r′|
, (3)

where the integration is over all space.

Under periodic boundary conditions (PBCs), the potential corresponding to a given periodic

charge density can be obtained directly by solving the equation in reciprocal space, i.e.

φ̃0(G) = 4π
ñ(G)

|G|2
, (4)

where φ̃0(G) and ñ(G) are the Fourier transforms of the real-space potential and charge density,

respectively. This simple expression is of great utility in electronic structure calculations using

periodic basis functions, where Fast Fourier Transforms (FFTs) can be employed to efficiently

transform quantities between real- and reciprocal-space.

While the form of Eq. 4 is convenient, it also illustrates a particular difficulty encountered

when solving the Poisson equation with PBCs, namely that the charge density must be neutral (i.e.

ñ(0) = 0). Non-neutral charge densities result in a singularity in the potential at G = 0. In practice,

this issue is typically avoided by introducing a compensating homogeneous background charge

which ensures that the overall charge in the periodic unit cell is neutral, equivalent to solving

∇2φ0(r) = −4π {n(r) − 〈n〉} , (5)

6



where 〈n〉 is the average charge density over the volume of the unit cell, V , i.e.

〈n〉 =
1
V

∫

V

dr n(r). (6)

The subtraction of 〈n〉 from the real-space charge density, n(r), in Eq. 5 is equivalent to setting

ñ(0) = 0, thus avoiding singularities in Eq. 4. While this is a useful method for obtaining a solution

from the Poisson equation when dealing with a non-neutral periodic density, it necessarily changes

the nature of the problem—the potential obtained corresponds to the periodic density and the

artificial neutralizing background charge.

In electronic structure calculations, it is convenient to deal with the interactions of the electronic

and ionic components of the overall charge density separately. Since the electronic and ionic

densities are independently non-neutral, neutralizing background charges must be used for each

component when solving the Poisson equation in PBCs. As described in section 2.2, this has no

impact on the energy of a neutral system, since the contributions due to the background charges in

each term cancel out.

The generalized Poisson equation (GPE) ,

∇ · (ε(r)∇φ(r)) = −4πn(r), (7)

is a generalization of Eq. 1 in which the dielectric permittivity, ε(r), can vary with position—Eq. 1

(which we will call the “standard” Poisson equation, or SPE) corresponds to the situation where

ε(r) = 1 over all space.27

While analytic solutions for the GPE can be obtained for specific cases (see, for example,

section II.C of Ref. 25), Eq. 7 is typically solved using numerical methods (such as the multigrid

approach, section 2.3). Such techniques allow the equation to be solved for complicated forms of

n(r) and ε(r). An important application of these techniques is in electronic structure calculations

(section 2.2), in which a quantum mechanical charge density is embedded in a polarizable dielectric

medium, implicitly representing the environment (e.g. a solvent).

7



Eq. 7 may also be recast in a non-linear form which resembles the SPE (Eq. 1),

∇2φ(r) = −4π(n(r) + npol[φ](r)), (8)

where the polarization charge density, npol[φ](r), depends upon the potential. This form allows

techniques for solving the simpler SPE to be employed (e.g. via Eq. 4), though the dependence of

npol(r) on the potential means the solution must be obtained via a self-consistent procedure. For

further details, see Ref. 24, which describes an implicit solvent model based upon the self-consistent

solution of Eq. 8, related to the model outlined in section 2.2.

The GPE may be further extended by introducing a potential-dependent density of mobile ions

in the dielectric medium, nions[φ](r), i.e.

∇ · (ε(r)∇φ(r)) = −4π(n(r) + nions[φ](r)). (9)

This mobile ion density at a given r may be generally written as

nions[φ](r) = λ(r)

m∑

i=1

qici[φ](r), (10)

where ci[φ](r) and qi are, respectively, the local concentration and charge of ionic species i; m is

the total number of ionic species present; and λ(r) is a function which describes the accessibility

of r to the mobile ions. When ci[φ](r) takes the form of a Boltzmann distribution,

ci[φ](r) = c∞i exp

(
−

qiφ(r)

kBT

)
(11)

with bulk concentration c∞
i

, Boltzmann constant kB, and temperature T , Eq. 9 becomes the Poisson-

Boltzmann equation (P-BE):

∇ · (ε(r)∇φ(r)) = −4πn(r) − 4πλ(r)
m∑

i=1

c∞i qi exp (−βqiφ(r)) , (12)
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where we have used β = 1/kBT .

For a given charge density n(r), dielectric permittivity ε(r), accessibility function λ(r), and

the charges and bulk concentration of mobile charges {qi} and {c∞
i
}, the P-BE (Eq. 12) can be

solved to yield an overall electrostatic potential, φ(r). The equation may therefore be applied in

situations where a static charge density is embedded in a dielectric medium and surrounded by

mobile charges.

An important application of the P-BE is in classical modelling of the electrostatics of biomolecules

in ionic solutions, where the atoms constituting the biomolecule are typically represented by point

charges, the solvent as a dielectric medium, and the concentrations of species of mobile ions in

solution are represented by a Boltzmann distribution (Eq. 11). The use of Eq. 12 in biomolecular

contexts has been reviewed in Refs. 28,29. The P-BE may be similarly applied in electronic struc-

ture calculations (section 2.2), but with the quantum mechanical electron charge density represented

as a smooth function, rather than a collection of atom-centered point-charges. This allows the effect

of a saline solution on the electronic structure of a solute to be modeled implicitly, without the need

for atomistic modelling of either the solvent or dissolved ions.

The non-linear P-BE (NLP-BE) may be approximated by a simpler linearized form when the

electrostatic potential, φ(r), is small. In this case, the Boltzmann term in Eq. 12 is approximated

as the first two terms in a Maclaurin series:

exp (−βqiφ(r)) ≈ 1 − βqiφ(r). (13)

Inserting this approximation into Eq. 12 yields the linearized Poisson-Boltzmann equation (LP-BE):

∇ · (ε(r)∇φ(r)) = −4πn(r) + 4πλ(r)β
m∑

i=1

c∞i q2
i φ(r). (14)

Note that for a neutral solution of mobile ions

4πλ(r)
m∑

i

c∞i qi = 0 (15)
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and thus this term does not appear in Eq. 14.

In the standard Poisson-Boltzmann model outlined in this section, the mobile charges are point-

like particles with a statistical distribution based on the overall electrostatic potential of the system

(Eq. 11). As a consequence, the model neglects finite size effects, which can lead to unphysical

accumulation of ions where the static charge density is large. This issue can be addressed by

employing a size-modified Poisson-Boltzmann (SMPB) model. See Ref. 30 for a review of models

of this type and Refs. 31,32 for recent work implementing and parameterizing an SMPB-based

implicit solvent model for use in DFT calculations.

2.2 Electronic structure calculations

The classical electrostatic energy of a charge density interacting with itself is given by

Ees[n] =
1
2

∫
dr n(r)φ0[n](r), (16)

where the potential, φ0[n](r), is the solution of the SPE (Eq. 1). If the charge density represents

the total charge of a collection of atoms, then this can be decomposed into contributions from the

electrons and ionic cores, i.e.

Ees[nelec, nion] = EHartree[nelec] + Eelec-ion[nelec, nion] + Eion-ion[nion]. (17)

The Hartree energy EHartree, and ion-ion energy Eion-ion, are defined analogously to Eq. 16 for

each density, though in practice they differ in how they address self-interaction. For the ion-ion

term, the self-interaction is typically explicitly subtracted within Eion-ion, while the electronic self-

interaction is not considered in the classical electrostatic energy—in electronic structure methods,

this is part of the exchange contribution to the total energy. The electron-ion interaction, where no

self-interaction correction is necessary, is given by

Eelec-ion[nelec, nion] =

∫
dr nelec(r)φ0[nion](r) =

∫
dr nion(r)φ0[nelec](r). (18)
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The overall classical electrostatic energy typically represents a significant fraction of the total

energy computed in an electronic structure calculation.

Electronic structure calculations are generally concerned with the behavior of electrons in the

presence of nuclei at set of fixed positions. In this situation, it is convenient to separate the total

charge density into electronic and nuclear components, as in Eq. 17. The electron density, nelec(r),

can then be treated as a continuous function, while the nuclear density, nnuc(r), is represented as a

sum of point charges,

nnuc(r) =
∑

I

ZIδ(r − RI), (19)

with positions {RI} and charges {ZI}. This allows the potentials corresponding to the two densities

to be solved for independently, using methods appropriate to their form.

In self-consistent field (SCF) methods, such as DFT and Hartree-Fock theory, the electron

density is constructed as a sum over one-electron orbitals, ψi(r), weighted by their occupancies, fi,

i.e.

nelec(r) =
∑

i

fiψi(r)ψ
∗
i (r). (20)

The orbitals, and hence the electron density, are obtained by solving one-electron Schrödinger

equations of the general form

(
−

1
2
∇2
+ V̂eff

)
ψi(r),= εiψi(r). (21)

where the electrostatic potentials associated with the nuclei and electrons are components of the

effective potential V̂eff. These equations must be solved self-consistently, since the effective potential

is dependent on the orbitals, in part due to the relationship between the electrostatic potential and

electron density (Eq. 1).

While the nuclear charge density is generally fixed during an SCF calculation, the orbitals,

and hence electron density, are updated as part of the iterative process. As a consequence, the

electrostatic potential due to the electron density—the Hartree potential—must be repeatedly solved

for during the SCF procedure. Efficient methods for solving the SPE for a given electron density
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are therefore of great importance in the implementation of SCF approaches.

For SCF calculations in vacuum, the SPE (Eq. 1) can be solved using the analytic solutions

described in section 2.1. The approach used in a particular calculation is generally determined

by the nature of the underlying basis set—for periodic plane wave basis sets, the reciprocal space

solution is convenient (Eq. 4) while for local, non-periodic basis sets, the OBC solution derived

using a Green’s function method (Eq. 3) is typically used. In the case of periodic plane wave basis

sets, Fast Fourier Transforms (FFTs) allow the solution of the Poisson equation with computational

effort scaling as O(n log n), where n is the number of grid points.33

While there are efficient methods for obtaining the Hartree potential using analytic solutions to

the SPE, numerical approaches have some utility under certain circumstances. One such situation

is the case where a periodic basis set is used to represent a finite system. To reduce the extent of

spurious interactions between periodic images of the finite system, it is typical to use the “supercell”

approximation,34 in which the finite system is surrounded by a large volume of vacuum “padding”.

The additional padding required for this approach can be computationally expensive for basis

sets which grow with cell size (for example, plane-waves). Real-space numerical approaches can

be employed to efficiently solve for the electrostatic potential, while imposing open BCs. This

completely eliminates electrostatic interactions between periodic images, while allowing the use of

a periodic basis set—see Ref. 35, for example.

It is often useful to study the electronic structure of systems embedded in a medium with a

nonhomogeneous dielectric permittivity, ε(r). In this case, the total electrostatic potential can be

obtained by solving the GPE (Eq. 7) and comprises two terms:

φ(r) = φ0(r) + φr(r), (22)

where φ0(r) is the usual electrostatic potential associated with the charge distribution of the system

and φ0(r) is a reaction potential due to the polarization of the dielectric medium, φr(r). A key

application of this model is in modelling solvent effects on electronic structure, using a polarizable
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dielectric medium to implicitly represent the solvent environment.

As mentioned in section 2.1, the dearth of widely applicable analytic solutions for the GPE

means that the equation is typically tackled using numerical approaches or recast as a non-linear

form of the SPE and solved self-consistently (as described in Refs. 24,25). Some of the most

widely used implicit solvent models employ an additional simplifying assumption that the system

is separated into two regions in which the dielectric permittivity is homogeneous, i.e.

ε(r) =




1, solute cavity

ε∞, bulk solvent.

(23)

The solute cavity is defined in such a way that it incorporates the solute charge and the boundary

between the two regions is discontinuous. In this model, it is possible to reformulate the problem of

solving the GPE purely in terms of a polarization charge on the surface of the cavity. This apparent

surface charge (ASC) defines the reaction potential, and so solving the GPE becomes a question of

determining the ASC over the 2-D surface of the cavity—see Ref. 36 for an overview of ASC-type

approaches.

In this work, we are concerned with the numerical solution of the full GPE in 3-D for an arbitrary

nonhomogeneous dielectric permittivity. This provides a flexible foundation for the development

of implicit solvent models in which the form of the dielectric permittivity is not restricted to the

discontinuous piecewise form used in ASC approaches. In particular, solving the full GPE in 3-D

allows the dielectric permittivity to smoothly transition between the bulk values within the solute

cavity and solvent.

An advantage of solving the full GPE in 3-D with a smooth dielectric function is that this yields

a continuous potential, thus evading the difficulties associated with discontinuous gradients which

can arise in ASC approaches.37 This was a motivating factor for Fattebert and Gygi in developing

an electrostatic implicit solvent model based upon a smooth dielectric function for use in molecular

dynamics, where accurate energy gradients are critical.12,22 In Fattebert and Gygi’s model ε(r) is
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a functional of the solute electron density,

ε(r) = 1 +
ε∞ − 1

2

(
1 +

1 − (nelec(r)/n0)
2β

1 + (nelec(r)/n0)2β

)
, (24)

and is defined in terms of the electron density at r, nelec(r), the bulk permittivity of the solvent, ε∞,

and two parameters: β and n0.

The use of the electron density to construct the solute cavity has the advantage that a good

representation of the solute shape can be obtained using very few fitted parameters. Fattebert and

Gygi’s cavity is defined by only two fitted parameters—significantly fewer than the number required

when employing the widely adopted method of constructing the cavity from atom-centered spheres.

This model has since been elaborated and extended in a number of respects, including: inclusion of

non-electrostatic cavitation and dispersion-repulsion effects;15,23,24 alternative dielectric functions

based on the electron density24 and defined based on atom-centered functions;14,38 use of open

(Dirichlet) BCs and their efficient computation using coarse-graining;16 and, extension of the model

to the P-BE and size-modified variants.25,31

A variant of Fattebert and Gygi’s model—the minimal parameter implicit solvent model, or

MPSM15,16—was implemented in ONETEP,1 an electronic structure package capable of perform-

ing calculations with a cost that scales linearly with the number of atoms, N . Using efficient

parallel implementations of algorithms with formal O(N) scaling, ONETEP is able to perform full

DFT calculations on systems consisting of thousands of atoms.39–41 In this context, it was vital to

ensure that the implementation of the solvent model was compatible with overall O(N) scaling of

ONETEP and was able to operate efficiently in parallel.

The need for an efficient parallel GPE solver for use in large-scale MPSM calculations in

ONETEP was the key motivation for the development of DL_MG. The multigrid approach was a

natural choice for this application, for two key reasons. First, the multigrid method is well-suited

to implementation in parallel and exhibits excellent computational scaling with respect to the grid

size.10 Second, the representation of the charge density and electrostatic potential on a regular
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grid in ONETEP is ideal for use with a multigrid solver, allowing well-established and understood

variants of the method to be used, as described in the following sections.

2.3 Multigrid

To solve the Poisson equation in situations where exact reciprocal space solutions are not available,

real-space numerical approaches can be employed. In numerical approaches, a discretized version

of the Poisson equation is required. In the context of electronic structure methods with periodic

plane-wave-type basis sets, it is natural to discretize the problem on the regular real-space grid used

to represent the electronic charge density, i.e.

Âhuh = fh, (25)

where uh and fh are, respectively, the potential we are solving for and source term (the charge

density multiplied by a factor of −4π for Eqs. 1 and 7), both discretized on a regular grid with

spacing h. Âh is the linear operator, the form of which depends on which of the variant of the

Poisson equation we are considering: Â ≡ ∇2 for the SPE (Eq. 1) and Â ≡ ∇ · ε(r)∇ for the

generalized Poisson equation (Eq. 7).

The discretized Poisson equation forms a system of linear equations which are amenable to

solution by stationary iterative methods, such as the Jacobi and Gauss-Seidel methods (see ch. 19

and ch. 2 of Refs. 33 and 9, respectively, for introductions to these and similar techniques). It is well

known that stationary iterative methods can very effectively smooth high-frequency components

of the error. However, the overall convergence of these methods towards the solution is limited by

low-frequency components in the error, which are less effectively removed and become increasingly

prevalent when using finer grids.9

Multigrid methods8–10 simultaneously take advantage of the smoothing property of iterative

solvers while addressing their slow rate of convergence. This is achieved by applying a hierarchy of

progressively coarsening grids to the problem. Since low-frequency components of the error repre-
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sented on a given grid appear as higher-frequency components on a relatively coarser grid, iterative

methods can be applied on the coarser grid to rapidly attenuate the low-frequency components,

avoiding the problematic slow convergence that arises with a single-grid approach.

Consider the general linear equation

Âu = f , (26)

with the corresponding defect (or residual)

r = f − Âu, (27)

and defect equation

Âe = r, (28)

where f is the source term and u is the quantity we wish to solve for. We can define three basic

operations:

Smoothing Apply an iterative method to remove higher frequency components of the error on a

given grid, i.e. solve

Âhuh = fh (29)

starting with some initial guess, uh, to obtain a smoothed result, uh, on a grid with spacing h.

Restriction Transfer the defect computed on a finer grid to a coarser grid:

Î2h
h rh = r2h, (30)

where ÎH
h

is the restriction operator which maps functions on the grid with spacing h to the

coarser grid with spacing, H (in this example, the spacing is doubled).

Prolongation Transfer the error computed on a coarser grid to a finer grid:

Îh
2he2h = eh, (31)
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where Îh
H

is the prolongation operator which maps functions on the coarse grid with spacing

H to the finer grid with spacing, H (in this example, the spacing is halved).

When these operations are combined in an appropriate order, the resulting multigrid approach can

significantly improve convergence compared to applying an iterative solver on a single grid.

A simple two-grid multigrid iteration, starting with the initial approximation, u
(m)

h
, and produc-

ing an improved approximation, u
(m+1)
h

, can be summarized as follows:

1 Smooth approximation Âhu
(m)

h
= fh

2 Compute defect r
(m)

h
= fh − Âhu

(m)

h

3 Restrict defect Î2h
h

r
(m)

h
= r

(m)

2h

4 Solve for error Â2he
(m)

2h
= r

(m)

2h

5 Prolong error Îh
2h

e
(m)

2h
= e

(m)

h

6 Apply correction u
(m+1)
h

= u
(m)

h
+ e

(m)

h

This cycle (u(m)

h
→ u

(m+1)
h

) can be repeated until a convergence criterion is satisfied. Since the

computation of the error in step 4 is of the same form as the linear equation (Eq. 26) we wish

to solve, the two-grid cycle can be applied recursively, leading to multigrid scheme involving a

hierarchy of progressively coarser grids.

With multiple levels of coarse grids, the basic smoothing (Eq. 29), restriction (Eq. 30) and

prolongation (Eq. 31) steps can be combined to produce a variety of recursive schemes. One such

scheme is the “V-cycle”, illustrated in Fig. 1, in which a single two-grid iteration between the most

coarse and second-most-coarse grids is employed. As described in section 3.1.1, V-cycle-type

multigrid iterations are employed in DL_MG. Other schemes are possible, such the W-cycle and

F-cycle which differ from the V-cycle in the arrangement of steps between grid levels—see Ref. 10

for further details.
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Figure 1: Illustration of a three-grid multigrid V-cycle

2.4 Defect correction

The representation of a continuous problem on a grid results in a “discretization error”. In a finite

difference method, this discretization error can be expressed as the remainder from truncating a

Taylor series expansion of the function being discretized, e.g. for the forward difference derivative

of f (x) with grid spacing h:

f (x + h) − f (x)

h
− f ′(x) =

∞∑

n=2

f (n)(x)

n!
hn−1

= O(h). (32)

For small h, the leading term in the error in the discretized derivative in Eq. 32 is a first order

polynomial in h. More generally, the discretization error is the difference between the exact solution

to the continuous problem and the exact solution to the discretized problem, e.g. for the general

linear problem of Eqs. 26 and 29, the discretization error is |u − uh |.

The accuracy of a solution to a discretized problem is limited by the discretization error. To

reduce this error, high-order finite difference approximations, in which the error asymptotically

scales with higher powers of the grid spacing, h, can be employed. Such higher-order approxima-

tions have the advantage that relatively coarser grids can be used while maintaining the same level

of accuracy compared to lower-order approximations.

Higher-order finite difference approximations are necessarily more complicated than lower-
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order approximations, generally involving a greater number of terms. This corresponds to larger

and/or more densely populated operator stencils (see appendix A), which can be challenging to

implement in a manner which is computationally efficient. This is a particular issue for parallel

implementations, where the application of larger stencil on coarse grids may result in the need to

exchange halos which extend across multiple parallel processes.

It is possible to devise compact stencils (containing only points immediately adjacent to the

central point) representing higher-order approximations than the usual 5-point 2-D or 7-point 3-D

stencils. For example, using Mehrstellen discretization,10,42 fourth-order accuracy is possible

using compact 9-point 2-D and 19-point 3-D stencils—this compares favorably to the second-order

accuracy obtained with the compact 5-point 2-D and 7-point 3-D discretizations of the Laplacian

given in appendix A. However, these more complex stencils present additional challenges when

implemented in a parallel solver. For example, the involvement of grid points at the corners of the

stencil complicates halo exchange between parallel processes.

The high-order defect correction approach10,43 provides a means by which approximations

to high-order solutions can be obtained from a multigrid solver while avoiding the complexities

of implementing a high-order multigrid scheme. This is achieved by iteratively correcting the

solution obtained using a lower-order multigrid scheme using a higher-order discretization of the

operator. The higher-order discretization of the operator is applied only on the fine grid on which

multigrid solver deposits the solution, thus avoiding the difficulties associated with applying large,

complicated, stencils in parallel on coarse grids.

The high-order defect correction procedure resembles the multigrid cycle described in sec-

tion 2.3, in that an approximate error, e, is obtained by solving the defect equation,

Â (u − u′) = f − Âu′

Âe = r,

(33)
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and is used to correct the approximate solution, u′, i.e.

u = u′ + e. (34)

The multigrid and defect correction procedures differ in how the defect equation is solved. In a

multigrid cycle the defect equation is solved on a coarser grid with a defect computed on a finer grid.

In contrast, the high-order defect correction involves solving the defect equation with a lower-order

discretization of the operator, using a defect computed using a higher-order discretization of the

operator. In both cases, we solve the defect equation approximately (on a coarser grid, or with a

lower-order operator discretization) so Eq. 34 yields an improved approximation, rather than the

exact result.

Consider the high-order defect for an approximate solution, u(i), obtained via a multigrid scheme

using a second-order-accurate operator, Â2:

r
(i)

d
= f − Âdu(i). (35)

The subscripts now refer to the order of accuracy of the operator, d, rather than grid spacing (in

contrast to section 2.3) and the high-order operator Âd has d > 2. The defect equation may be

approximately solved to second-order using the same second-order multigrid scheme,

Â2e
(i)

2,d = r
(i)

d
, (36)

to yield an approximation to the higher-order error e
(i)

2,d . The approximate error can then be used to

correct the original approximation:

u(i+1)
= u(i) + e

(i)

2,d . (37)

This scheme can be applied iteratively, using the updated approximate solution u(i+1) to construct
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a new defect (Eq. 35), and repeating the process until a convergence criterion is satisfied—the

specific criteria available in DL_MG are described in section 3.

The iterative defect correction method outlined above is an effective method for reducing the

discretization error in the solution obtained from a lower-order method. The scheme converges

toward the solution for the higher-order problem,

Âdu = f , (38)

provided that

ρ(I − (Â)−1
d Âd ′)) < 1 (39)

is satisfied, where ρ(M) is the spectral radius (i.e. largest eigenvalue) of a matrix M , I is the identity

matrix and Âd ′ is the lower-order discretization of Â (d′ < d).10

For further details on the high-order defect correction, see Refs. 10 (ch.5), 43, and 16 (appendix

B).

3 Implementation

3.1 The solver

3.1.1 Second order solver

The implementation of the second-order solver in DL_MG is based upon the “geometric multigrid”

approach,44 whereby the problem to be solved is expressed on a fixed hierarchy of coarsening grids,

as described in section 2.3. This is distinct from the “algebraic multigrid” approach, which works

directly with algebraic equations, rather than grids.45

The algorithms for DL_MG’s geometric multigrid solver were selected following the standard

recommendations for the Poisson and Poisson-Boltzmann equations (section 2.1) given in Refs.

10,46:
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• Grid coarsening is achieved by doubling the grid-point separation in all dimensions at each

multigrid level—this corresponds to the use of grids with spacing 2nh with h the spacing of

the finest grid (n ∈ Z and n ≥ 0).

• The grid stencils used to apply the differential operator ∇ · ε∇ on all grids are 3-D, 7-point

second-order finite differences discretizations (see appendix A).

• Inter-grid transfers are performed with half-weight restriction and bilinear interpolation.

• Smoothing is performed using the Gauss-Seidel red-black (GS-RB) method (see, for example,

Ref. 47).

Under the GS-RB scheme the grid is divided into two sets of points (red and black), with the points

in each set depending only on the points in the other set. This has the advantage that the smoothing

procedure can be applied to all the points in each set simultaneously, making the GS-RB smoother

highly parallelizable.

The solver components described above can be used to construct an efficient solver for the

Poisson and Poisson-Boltzmann equations with close to optimal computational scaling with respect

to grid size, provided that the models used for the permittivity and charge density are smooth and

without strong anisotropies.10

DL_MG was developed for use in large scale electronic structure calculations, the feasibility

of which depends on the efficient use of parallel computing resources. The library was therefore

designed to ensure good parallel performance on modern hardware, using widely adopted parallel

frameworks (MPI and OpenMP) to ensure broad compatibility with existing electronic structure

packages. In particular:

• Multigrid iterations are performed using the V-cycle (Fig. 1), as this generally recommended

for parallel computations.10,46

• The distribution of global grid data among MPI processes is based upon a 3D Cartesian

topology provided to DL_MG as an argument, allowing the solver to adopt the parallel data
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decomposition of the calling program.

• Since grid coarsening is achieved by removing even index points in all directions, MPI

communication is only necessary during grid transfer steps when dealing with points on the

boundaries of the grid held on each MPI process.

The use of a sequence of progressively coarsening grids can be challenging for parallel imple-

mentations of multigrid. In particular, the number of active MPI ranks at each multigrid level can

vary because as the grids become coarser, there are fewer points to share among parallel processes.

Below a certain coarsening level, some MPI ranks may be assigned zero grid points. To deal with

this variation in parallel data distribution, a separate MPI communicator, which includes only the

active MPI ranks, is used to perform MPI communication at each multigrid level.

The communication of domain halos between MPI ranks—required in smoothing, prolongation

and restriction steps—is done using non-blocking MPI sends and receives, allowing communication

to be interleaved with useful computation. Since the 3-D differential operator is discretized as a

7-point stencil (appendix A), smoothing steps only require data exchange between MPI processes

with local domains that share a face. For the inter-grid transfer steps (prolongation and restriction),

points from MPI processes which hold local grids that only share edges or corners are necessary.

The edge and corner points are efficiently communicated by means of ordered communication

along axes between nearest neighbors10—this amounts to extending the size of the halos exchanged

between MPI ranks with local domains which share faces so that the required edge and corner

points are transferred along with the usual points along the shared face.

To take full advantage of modern multicore CPUs, DL_MG employs shared-memory parallelism

within each MPI process via OpenMP threads. This is implemented as a single OpenMP parallel

region, covering the V-cycle loop and the subroutine which builds the stencil coefficients.

The local grid held on each MPI process is decomposed into thread blocks and distributed

to ensure equal work for all threads. The sizes of these blocks can be tuned to optimize cache

utilization, and “first touch policy” (see, for example, Ref. 48) is used to ensure optimal memory

access by OpenMP threads on NUMA architectures.
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Communication between multi-threaded MPI processes is handled by the master thread, i.e.

the so-called “funneled” mode.49 This mode of communication was adopted to ensure portability

between MPI implementations with differing support for multi-threaded communication—funneled

mode is the simplest hybrid MPI/OpenMP mode which allows overlapping of computation and

communication.50 Data transfers between MPI buffers and halos are parallelized using OpenMP

threads, employing “single” directives to assign one thread per local grid side to allow halos along

each direction to be copied asynchronously.

Although DL_MG has been designed to take full advantage of hybrid MPI/OpenMP paral-

lelism, support for MPI and OpenMP is not a requirement. When running calculations on a

single workstation, it might be desirable to use only shared-memory parallelism. Alternatively,

a distributed-memory parallelism only approach might be preferred when DL_MG is called from

an application which is designed to spawn one MPI process per CPU core. DL_MG is flexible in

this respect—the library can be compiled with or without MPI or OpenMP, and can therefore be

applied in contexts where only one type of parallelism is desired (or none at all).

The algorithm used by DL_MG to solve the NLP-BE is based on a specialized inexact-Newton

method.51 In short, the linear multigrid solver is used to find an approximate solution of the

linearized system of equations which correspond to a Newton iteration. A damping factor for the

linear correction is also computed in order to ensure global convergence. See Ref. 51 for a detailed

description of this approach (referred to as the “Damped-Inexact-Newton method”).

For the SPE, GPE and P-BE, DL_MG uses the same general convergence test, based upon the

norm of the residual:

|r (i) | < max(τabs, τrel | f |), (40)

where r (i) is the residual at iteration i, f is the source term and τabs, τrel, are user-configurable

absolute and relative convergence thresholds, respectively. The definition of the residual depends

on the equation being employed—for linear equations (SPE, GPE, linearized Poisson-Boltzmann),

the general form is Eq. 27, while for non-linear equations an extra non-linear term, N(u), is added,

24



i.e.

r = f − Âu − N(u). (41)

Using the maximum of the absolute and relative thresholds allows flexible control of convergence

and can help avoid numerical issues when the source term is small.

The software library was developed in Fortran 95, using modules and derived data types

for information encapsulation and to maintain a hierarchical structure. See appendix B for an

introduction to the application programming interface and organization of the package, or the

online documentation for a more detailed account.52

3.1.2 Defect correction

As described in section 2.4, the high-order defect correction10,43 in DL_MG is applied on the fine

grid, i.e. the grid on which input data is provided from the calling program. The second-order

multigrid solver described in section 3.1.1 is used to approximately solve the defect equation (Eq. 36)

for the residual computed using a high-order discretization of the differential operator. In practice,

this is implemented as a loop, with the second-order solver repeatedly called to approximately solve

the defect equation. In each iteration, the approximate potential is corrected using the second-order

solution to the defect equation (Algorithm 1).

Algorithm 1 High-order defect correction

1: i = 0
2: Solve Â2u(0) = f

3: while not converged do

4: Compute r
(i)

d
= f − Âdu(i)

5: Solve Â2e
(i)

2,d = r
(i)

d

6: Correct u(i+1)
= u(i) + e

(i)

2,d
7: i = i + 1
8: end while

The defect correction procedure is considered to have converged when the following criteria
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are satisfied:

|u(i) − u(i−1) | < max(τabs
u , τrel

u |u(i−1) |), (42)

|r
(i)

d
| < max(τabs

rd
, τrel

rd
|r
(0)
d

|), (43)

where the most-recently updated potential and defect are u(i) and r
(i)

d
, the initial (uncorrected)

defect is r
(0)
d

, and where the absolute, τabs
u,rd

, and relative, τrel
u,rd

, convergence thresholds are user

configurable.

The combination of these two conditions ensures that the iterative process does not stop too

early due to temporary satisfaction of either condition—a truly converged solution will be converged

with respect to both the residual and the error in the potential.

The use of absolute thresholds, τabs, ensures that convergence can be achieved in cases where

the relative threshold is problematic, for example where |u(i−1) | or |r
(0)
d

| are small and it may be

difficult to converge with respect to the relative threshold due to accumulated round-off errors in the

procedure. The convergence thresholds and the maximum number of iterations have defaults set to

values that were tuned for the class of problems solved in ONETEP1 and CASTEP53 calculations.

The differential operator Âd = [∇ · (ε∇)]d used to compute the defect in Algorithm 1 is applied

using 1-D finite difference representations of the first and second derivative operators. The overall

operator can be trivially expressed in terms of these “bare” derivative operators by applying the

product rule, yielding a high-order defect with the following form:

r
(i)

d
(r) = αn(r) − (∇dε(r)) · (∇dφ(r)) − (∇2

dε(r))φ
(i)(r), (44)

where αn(r) is the source term with α a constant which depends on the unit system (in atomic units

it is −4π); φ(i) is the approximate potential from the ith defect correction iteration; and ∇d , ∇2
d

are

dth order finite difference discretizations the gradient and Laplacian operators. In the case of the

P-BE, a further term is subtracted from the defect, the form of which depends on whether the linear

or non-linear form of the equation is being solved.
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The 3-D gradient and Laplacian operators (Eq. 44) used in the defect correction are expressed

in terms of 1-D finite difference approximations to the first and second derivatives, i.e.

∇d =

∑

i=x,y,z

(
∂

∂xi

)

d

(45)

∇2
d =

∑

i=x,y,z

(
∂2

∂x2
i

)

d

. (46)

The stencils for these 1-D operators were derived automatically, using a computer algebra system54

to perform the following procedure:

1. For a generic function f (x) sampled at n + 1 points xi with equal spacing h, construct the

unique n − 1 order interpolating polynomial, P(x).

2. Compute the symbolic k th order derivative of the polynomial, P(k)(x) = ∂k P(x)/∂xk .

3. Evaluate P(k)(x j)where x j is one of the interpolation points, {xi}, and simplify the expression.

This procedure yields general expressions of the form

P(k)(x j) =
1

hk

n+1∑

i=1

si f (xi), (47)

where h is the grid point spacing, {si} are a set of constants and { f (xi)} are the values of the

function at the interpolation points {xi}, which include the point at which the derivative is taken,

x j .

These expressions describe “nth-order” 1-D finite difference stencils, for taking the derivative

at x j , with coefficients, si, i.e.

1

hk

[
s j−n · · · sn

]

h
f (x) =

1

hk

n∑

i= j−n

si f (x0 + ih), (48)

where we have re-numbered the summation to make x0 the point at which the derivative is taken.

Using this scheme, arbitrarily large stencils can be constructed for taking the derivative at any of
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the interpolation points used to construct the polynomial.

1-D stencils for the first and second derivatives of orders 4, 6, 8, 10 and 12 are available in

DL_MG. For each available stencil, the derivative can be taken at any of the grid points involved,

i.e. the stencils for all possible forward, central and backwards differences are available. In periodic

BCs, central differences stencils are always used, while under open BCs, forward and backward

differences stencils are employed at the grid boundaries.

A note on the nomenclature: in this work, where we describe the 1-D stencils used in the defect

correction (Eq. 48) as “nth-order”, we are referring to the order of the interpolating polynomial used

to construct the stencil. We refer to all forward-, backward- and central-differences stencils derived

from an interpolating polynomial of order-n as “nth-order”, regardless of the order of derivative

being discretized. This is not the same as the order of the discretization error which we have

previously referred to (e.g. Eq. 32), since this depends on the order of the derivative and also

whether a given discretization benefits from the cancellation of terms when expanded in Taylor

series.

The high-order 1-D discretizations of differential operators used in the defect correction have

large stencils, which increase in size with the order of discretization—an nth-order stencil will, in

general, include contributions from n + 1 points. This poses a challenge when using distributed-

memory parallelism, since applying these operator stencils at the boundary of the local domain

requires the exchange of large halos between MPI processes. Where the local domain is narrow,

halos may extend over the local grids on more than one MPI rank, increasing the complexity of

communication. Handling these extended halos efficiently is the main difficulty in computing

derivatives with higher order discretization over a distributed domain.

To enable efficient exchange of extended halos during the defect correction procedure, DL_MG

builds two maps on each MPI process which describe the data which must be sent to and received

from other MPI processes. Each of these maps is essentially a list of data blocks, containing the

MPI rank and the relevant global index coordinates of the block of halo data to be sent or received.

The halo exchanges are done with non-blocking send-receive MPI communication, allowing data
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to be dynamically copied to halo arrays as it is received.

The implementation of the high-order defect correction in DL_MG supports fully open (Dirich-

let), fully periodic and mixed open/periodic BCs. As with the second-order multigrid solver the

high-order defect correction is accelerated using hybrid MPI/OpenMP parallelism, employing the

same 3-D Cartesian topology for decomposition of the global grid among MPI processes. Within

each MPI process, the local computation of the derivatives used to construct the defect (Eq. 44) is

parallelized using OpenMP threads.

Algorithm 1 describes the implementation of the defect correction procedure in DL_MG for the

simplest case—correcting the second-order solution to the linear forms of the Poisson equation (SPE

and GPE, Eqs. 1 and 7). In more complicated cases, the algorithm is modified. For example, for

difficult-to-converge problems, the algorithm can be augmented with an error damping procedure.

This is achieved by damping the correction of the potential (Algorithm 1, line 6)

u(i+1)
= u(i) + s e

(i)

2,d (49)

with s ∈ (0, 1], such that

|Adu(i+1) − f | < |Adu(i) − f | , (50)

i.e. the defect for the corrected potential, u(i+1) is smaller than the defect for the uncorrected potential

u(i).

In practice, the damping factor, s, is systematically reduced (starting from s = 1) by a fraction,

q < 1, until Eq. 50 is satisfied—see Algorithm 2. If s becomes smaller than a prescribed value

the entire defect correction process is halted with an error. This procedure can be enabled with

an optional argument of the solver subroutine, but should be used only when the standard defect

correction procedure does not converge, since it involves costly repeated evaluations of the high-

order defect.

Algorithm 1 is also modified when solving the P-BE. While the LP-BE (Eq. 14) may be solved

using Algorithm 1 or Algorithm 2, with a modified linear operator Âd , the NLP-BE requires further
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Algorithm 2 High-order defect correction with error damping (q < 1)

1: i = 0
2: Solve Â2u(0) = f

3: while not converged do

4: Compute r
(i)

d
= f − Âdu(i)

5: Solve Â2e
(i)

2,d = r
(i)

d

6: s = 1
7: repeat

8: Correct udamp
= u(i) + s e

(i)

2,d

9: Compute r
damp
d

= f − Âdudamp

10: s = q s

11: until |r
damp
d

| < |r
(i)

d
|

12: u(i+1)
= udamp

13: i = i + 1
14: end while

modification of the scheme.

In Algorithms 1 and 2, the linear defect equation (Eq. 36) is solved approximately using the

second-order multigrid solver. However, the defect for the NLP-BE (Eq. 12) includes a non-linear

term (see Eq. 41), and thus cannot satisfy this linear equation. To overcome this difficulty, the

defect equation is solved for the P-BE linearized at the current approximation to the potential, i.e.

Â2e
(i)

2,d + N′(u(i))e
(i)

2,d = r
(i)

d
, (51)

where N′(u(i)) is the first derivative of the non-linear Boltzmann term with respect to the potential,

u, evaluated at the current approximation to the potential, u(i). Note that this linearization of the

Poisson-Boltzmann equation is distinct from the linearization in Eq. 14, which is linearized for

potentials close to zero, rather than close to the current approximation of the potential.
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3.2 Electronic structure software

DL_MG exposes an API (appendix B) which allows an external program to call solver routines from

the library in the context of a larger procedure, for example an electronic structure calculation. The

changes required to use the solver in an external program are small. First, the build procedure for

the program should be modified so that the library is appropriately linked. Second, calls to DL_MG

initialization and solver procedures, with appropriate arguments, should be inserted into the main

program where required (see appendix B). Other modifications may be necessary to transform the

quantities used by DL_MG to a suitable form, if they are not stored in a compatible representation

in the external program. For example, if the charge density is stored in a form other than a regular

grid, then it must be converted to this format before being provided to DL_MG.

Since the creation of DL_MG,55 the library has been interfaced with several electronic structure

codes, notably ONETEP,1 CASTEP53 and PSI4.56 In this work, we present results from ONETEP

calculations employing DL_MG (see section 4.2). For results obtained with DL_MG in CASTEP

and PSI4, see Refs. 57 and 58, respectively.

When called from an external program, DL_MG will typically need to operate within additional

constraints imposed by the program. For example, the nature of the overall implementation of the

external program may require that specific grid sizes, numbers of parallel processes/threads or

MPI topologies are employed. This is in contrast to the synthetic tests considered in sections 4.1.1

and 4.1.2, where the problem size and number of parallel processes could be varied flexibly.

In the specific case of ONETEP, the size of the fine grid passed to the solver is related to the

kinetic energy cutoff used to construct the underlying psinc basis.59,60 The MPI topology over

which this global grid is distributed is 1-D, with the grid divided into “slabs” along one coordinate

direction.39 The total number of MPI processes is also restricted—this cannot exceed the number

of atoms used in the calculation.

The additional constraints associated with a ONETEP calculation pose little difficulty for

DL_MG. The 1-D MPI topology can simply be provided to DL_MG via an appropriately set-up

MPI communicator. The sizing of the grid requires a little more care, and for each Cartesian
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direction i should satisfy the condition

Ni = qi2
ni
+ δi, (52)

where Ni is the number of grid points; ni and qi are positive integers (qi ≤ 20); and δi is 1 or 0 for

open or periodic BCs. Roughly speaking, qi determines the size of the coarsest grid level, while

ni determines the number of multigrid levels. For the typical grid sizes encountered in ONETEP

(Ni = 102 to 103), these conditions can be satisfied by passing to DL_MG a slightly truncated grid

(for open BCs) or by slightly increasing the scale factor used to produce the fine grid (for periodic

BCs).

The implementation of an implicit solvent model in an electronic structure code involves more

than simply interfacing the code with an efficient solver for the GPE or P-BE. The details of

this implementation will depend upon the solvent model and the underlying theoretical formalism

employed in the electronic structure package. For example, the dielectric permittivity ε(r) and ion

accessibility functions λ(r) are model-dependent and must be constructed by the electronic structure

code. Similarly, any method of accounting for the non-electrostatic components of solvation (e.g.

cavitation, dispersion-repulsion) must be done outside of the Poisson solver, which deals only with

the electrostatic terms. For an account of the implementation of an implicit solvent model in

ONETEP which includes electrostatic and non-electrostatic components (based on Fattebert and

Gygi’s electrostatic model12,22 described in section 2.2), see Refs. 15,16.

4 Results

4.1 Solver testing

4.1.1 Numerical validation

DL_MG includes a comprehensive suite of self-tests which allows results computed using the

solver to be validated against known analytic solutions to the SPE, GPE and P-BE. The test suite is
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intended to prevent regressions during code development, but can also be used to rigorously study

the accuracy and convergence of the solver.

To examine the numerical behavior of DL_MG, two tests which model physical systems relevant

to chemical physics were selected from the test suite and run with varying grid sizes and orders of

finite differences used in the defect correction.

All calculations presented in this section were run in parallel (8 MPI processes, 4 OpenMP

threads per process) on a single workstation, using a development version of DL_MG version 2.0

compiled using gfortran 5.3.161 and linked to the Intel MPI library 2017.62

The first test represents the type of problem encountered in electronic structure calculations

where an implicit solvent is represented using a smoothly varying dielectric function (as in Fattebert

and Gygi’s electrostatic solvent model and variants,12,22 described in section 2.2). Since the

dielectric function is general and non-homogeneous, this requires the solution of the GPE (Eq. 7).

We shall refer to this test case as “erf_eps”, as in DL_MG’s test suite.

The second test models the interaction of an ionic solution with a charged surface, for example

an electrode immersed in an electrolyte. This situation may be studied by solution of the P-BE

(Eq. 12), representing the solvent via a homogeneous dielectric permittivity and using Boltzmann

distributions to describe the concentrations of mobile ions in solution. This test will be referred to

as “pbez”, following the name used in DL_MG’s test suite.

The erf_eps test is based upon the model system proposed by Fisicaro et al. in Ref. 25 to

represent an isolated solute embedded in implicit solvent. In this situation, the overall electrostatic

potential due to the solute charge and polarization of the dielectric medium is obtained by solving

the GPE for the solute charge n(r), and the dielectric permittivity ε(r), which switches smoothly

between a bulk value ε(r) = ε∞ far from the solute and vacuum value ε(r) = 1 close to the solute.

Defining the electrostatic potential as a normalized Gaussian function,

φ(r) =

(
1

2πσ2

)3/2

exp

(
−
|r − R|2

2σ2

)
(53)
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and using a dielectric permittivity constructed using an error function,

ε(r) = 1 +
(ε∞ − 1)

2

[
1 + erf

(
|r − R| − d0

∆

)]
(54)

the corresponding charge density can be derived analytically, i.e.

n(r) = −
1

4π
φ(r)

σ2

[
ε(r)

(
|r − R|2

σ2
− 3

)

−
(ε∞ − 1)|r − R|

π1/2∆
exp

(
−

(
|r − R| − d0

∆

)2
)]
.

(55)

The Gaussian potential, error-function-based permittivity and corresponding density used in the

erf_epsmodel are defined by a set of parameters: the center of the Gaussian potential and dielectric

cavity R; the permittivity in the bulk solvent ε∞; the distance of the center of the transition region

of the permittivity (where ε(r) = (ε∞ + 1)/2) from the center of the Gaussian potential, d0; and

parameters controlling the widths of the Gaussian potential, σ, and the transition region of the

permittivity, ∆.

We examined the accuracy of the solutions produced by DL_MG for the erf_epsmodel, using

the parameters suggested in Ref. 25 (σ = 0.5 a0, d0 = 1.7 a0, ∆ = 0.3 a0, ε∞ = 78.36) with a

cubic simulation cell with side length 10 a0 and for three grid sizes: 2093, 3053 and 4013. Dirichlet

BCs were used in all directions, with φ(r) set to zero at the boundaries. The accuracy of the

solution, defined as the maximum difference between the analytic and numerical solutions over all

grid points, with increasing finite difference order in the high-order defect correction is plotted in

Fig. 2.63

Fig. 2 clearly demonstrates that the maximum error in the solution for the erf_eps rapidly

decreases as the order of finite differences used in the high-order defect correction procedure is

increased. The magnitude of the error for a given finite difference order generally decreases as

the grid size is increased, in line with expectations since increasing the number of grid points for

fixed simulation cell dimensions implies a finer grid. For the 3053 and 4013 grids, the maximum
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Figure 2: Maximum error in the numerical solution for the erf_eps test, measured against the
analytic solution (Eq. 53), for increasing orders of finite differences used in the high-order defect
correction. The error is plotted for three grid sizes: 2093 (blue circles), 3053 (red triangles) and
4013 (green squares). A finite difference order of 2 implies that no high-order defect correction
was performed, i.e. the error is for the uncorrected second-order multigrid solution. The functional
forms and parameters used to construct the erf_eps model for these calculations are described in
section 4.1.1.

error appears to plateau above 8th-order finite differences, while the 2093 grid does not exhibit

this effect—for 12th-order finite differences, the error from the 2093 grid is slightly smaller than

the error for the 3053 grid. This difference in behavior is likely to be related to the number of

defect correction iterations required to achieve convergence (based on the tests described in Eqs. 42

and 43). All the calculations run with 2093 grid points required 3 defect correction iterations to

converge, while the larger grids required 2 defect correction iterations. As a consequence, the final

defect and error norms (|r (i)
d
| and |u(i) − u(i−1) | in Eqs. 42 and 43) for 2093 are smaller than the

corresponding norms for 3053.

The difference in convergence behavior observed for different grid sizes at high finite difference

orders is interesting, however the key result illustrated by Fig. 2 is that the application of the

high-order defect correction can reduce the maximum error in the solution by several orders of

magnitude. For the grids tested here, the maximum error for 12th-order finite differences was at

least a factor of ∼ 10−6 smaller than the maximum error for the second-order multigrid solver alone.
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The model system used in the pbez test is a 1:1 salt solution (e.g. NaCl in H2O) in contact

with an infinite planar surface of homogeneous charge. Assuming that the ionic concentrations

are described by Boltzmann distributions (Eq. 11), the electrostatic potential for the system can

be found by solving the P-BE. The problem considered in the pbez test is further simplified

by assuming a homogeneous dielectric permittivity, singly charged ionic species, and that the

accessibility function λ(r) = 1 everywhere. In this case, the electrostatic potential can be found by

solving a simplified P-BE in 1-D,

∂2φ(z)

∂z2
= −

4πc0

ε∞
[exp (−βφ(z)) − exp (βφ(z))] , (56)

where c0 is the bulk concentration of the salt, ε∞ is the homogeneous permittivity of the solvent,

β = 1/(kBT) and the z coordinate direction is normal to the plane of the charged surface. The

potential due to the charged surface enters into the equation via boundary conditions, i.e.

φ(z) =




φsurf, z = 0

0 z → ∞,

(57)

where φsurf is the value of the potential at the planar surface.

The 1-D P-BE in Eq. 56 can be solved analytically for the BCs of Eq. 57. For the general

non-linear case, the electrostatic potential is

φ(z) = 2β−1 ln

(
exp (βφsurf/2) + 1 + (exp (βφsurf/2) − 1) exp (−κz)

exp (βφsurf/2) + 1 − (exp (βφsurf/2) − 1) exp (−κz)

)
(58)

with the inverse Debye length for singly-charged 1:1 ionic solutions

κ =

(
8πc0

ε∞kBT

)1/2

. (59)

See Ref. 64 for details of the derivation of Eq. 58.65

We used the pbez test to examine the accuracy of DL_MG when solving the non-linear
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Figure 3: Maximum error in the numerical solution for the pbez test, measured against the analytic
solution (Eq. 58), for increasing orders of finite differences used in the high-order defect correction.
The error is plotted for three grid sizes: 208×208×209 (blue circles), 304×304×305 (red triangles)
and 400×400×401 (green squares). A finite difference order of 2 implies that no high-order defect
correction was performed, i.e. the error is for the uncorrected second-order multigrid solution.
The functional forms and parameters used to construct the pbez model for these calculations are
described in section 4.1.1.

P-BE. The test was performed in a cubic simulation cell with side length 10 a0, with ε∞ = 80,

c0 = 0.1 mol dm−3, T = 300 K, and φsurf = 200 mV. Three grid sizes were used: 208 × 208 × 209,

304 × 304 × 305 and 400 × 400 × 401.66 The accuracy of the numerical solution (defined as for

the erf_eps test case) with increasing finite difference order in the high-order defect correction is

plotted in Fig. 3.

The general trend for rapid reduction in the maximum error for increasing orders of finite

differences seen for the erf_eps test (Fig. 2) is reproduced in Fig. 3. Similarly, as observed for the

erf_eps test, the absolute magnitude of the error for a given order of finite differences decreases as

the number of grid points is increased. This effect is more consistent for pbez than erf_eps, with

smaller grids yielding larger errors for all orders of finite difference. Again, this can be attributed

to the number of defect correction iterations required to achieve convergence—for erf_eps this

was different for 2093 versus the other grid sizes, while for pbez this is the same for all grid sizes.

Unlike for erf_eps, the norms of the final defect |r (i)
d
|, and error |u(i) − u(i−1) |, at each order of
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finite differences consistently decrease for increasing grid sizes.

As noted for the erf_eps test, the key result of interest is overall reduction in this error achieved

by applying the defect correction. The results for the pbez test indicate that, as with erf_eps, the

error in the solution may be very significantly decreased by application of the defect correction.

For the grid sizes used in Fig. 3, the maximum error is at least ∼ 10−5 times smaller with 12th-order

finite differences than for the second-order multigrid solver without defect correction.

4.1.2 Performance tests

DL_MG was originally conceived for use in large-scale electronic structure calculations on mas-

sively parallel computers. For the solver to fulfill this purpose, it must be able to scale efficiently

with problem size and number of parallel processors. To examine the scaling of computational

cost in these two circumstances for problems of the type which would be encountered in electronic

structure calculations, we used the erf_eps and pbez test cases described in section 4.1.1. Us-

ing these synthetic test cases the number of processors and size of the problem could be varied

systematically and the performance of DL_MG studied in isolation.

Figs. 4 and 5 plot the scaling of execution time with respect to problem size, for cubic grids with

between 5773 (∼ 108) and 13453 (∼ 109) grid points (the grids used for pbez are less one grid point

in the x and y directions, for the reasons explained in section 4.1.1). These calculations were run

across 6 nodes on the EPSRC MMM Hub “Thomas” supercomputer67 with 64 MPI processes and

2 OpenMP threads per process, using a development version of DL_MG version 2.0 compiled with

gfortran 4.9.261 and linked to the Intel MPI library 2017.62 The defect correction was performed

with 12th-order finite differences for all grid sizes and the parameters used to construct the models

were as described in section 4.1.1.

For erf_eps (Fig. 4), the total computational cost and the cost attributed to the multigrid

solver and high-order derivative computation increases linearly with respect to the number of grid

points, Ngrid, for the grid sizes used. In addition, for each of the components of the total cost

plotted (second-order multigrid solver, computing high-order derivatives and the communication
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Figure 4: Execution time to reach solution for the erf_eps test for increasing problem size. The
total time (blue circles) is plotted alongside time spent in the second-order multigrid solver (green
diamonds) and computing high-order derivatives (red triangles). The portion of the time for high-
order derivative computation spent preparing and communicating halo data between MPI processes
is also plotted (yellow squares). The plotted values are minimum times taken over 5 repetitions,
where the time recorded for each repetition is the maximum over all MPI processes. The functional
forms and parameters used to construct the erf_eps model for these calculations are as for Fig. 2
(see section 4.1.1). The computational details of these calculations are described in section 4.1.2.

of high-order derivative halo data), the cost is seen to increase linearly with respect to grid size.

The cost of the second-order multigrid solver dominates the overall computational cost, suggesting

that future work to optimize the performance of DL_MG should focus upon the core multigrid

solver, rather than the high-order defect correction.

The scaling of the computational cost per V-cycle for geometric multigrid is known to be

O(Ngrid) (see Ref. 10 for a derivation of this). The overall cost of obtaining a high-order defect-

corrected solution to the Poisson equation from DL_MG would be expected to exhibit O(Ngrid)

scaling, as observed in Fig. 4, only if the number of defect correction and multigrid V-cycles is

constant and independent of Ngrid. For the grid sizes considered in Fig. 4, this was generally the

case—2 defect correction iterations were required for all grid sizes, while the number of multigrid

V-cycles for each of these defect iterations was constant across all grid sizes (6 and 3).

A detailed theoretical convergence analysis of the algorithms employed in DL_MG is beyond
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Figure 5: Execution time to reach solution for the pbez test for increasing problem size. The
quantities plotted are as in Fig. 4, with the addition of a least-squares linear fit to the total execution
times for the five smallest grid sizes (dashed gray line). The functional forms and parameters
used to construct the pbez model for these calculations are as for Fig. 3 (see section 4.1.1). The
computational details of these calculations are described in section 4.1.2.

the scope of this work. Nevertheless, it is clear from Fig. 4 that the cost to obtain a defect-corrected

solution to the GPE for the erf_eps test scales linearly with respect to grid size, within the

range of grid sizes tested. Given that the erf_eps test is designed to mimic the situation of an

isolated molecule in implicit solvent, and the grid sizes used in electronic structure calculations

are typically in the range of grids tested here, it is likely that O(Ngrid) scaling would also apply in

practical implicit solvent calculations.

In Fig. 5, the overall execution time for pbez test is ∼ 5 to 6 times larger than for erf_eps for

a given grid size.68 In this case close-to-linear scaling of computational cost with respect to Ngrid

is observed, though the overall scaling is less clear than for erf_eps.

As described in section 3.1.2, DL_MG obtains defect-corrected solutions to the NLP-BE by

linearizing the defect equation for the NLP-BE at the current approximation to the potential (Eq. 51).

In this scheme, the initial second-order solution to the NLP-BE is obtained by the inexact-Newton

method outlined in section 3.1.1. Consequently, there are three iterative procedures to consider

in the pbez test—the second-order multigrid solution of linearized versions of the P-BE, the
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inexact-Newton procedure, and the high-order defect correction.

As for erf_eps, the number of defect correction iterations required to satisfy the convergence

tests in pbez (Eqs. 42 and 43) is independent of grid size—this is 1 iteration for all grid sizes

tested. Similarly, the number of iterations required to converge the inexact-Newton procedure was

6 for all grid sizes. Interestingly, the number of V-cycle iterations required to obtain a second-

order multigrid solution increased with grid size. For the initial second-order solution (within the

inexact-Newton method), 4 iterations are required for the 4 smallest grids, but for larger grids, this

increases with grid size, rising to 8 for the largest grid. Similarly, for the approximate second-order

solution of the high-order defect equation, 7 iterations are required for all grids except the two

largest, which require 8 and 10 V-cycle iterations. This explains why total execution times for

the largest grids in Fig. 5 are somewhat greater than would be expected for a linear fit to the first

5 points. This is illustrated in the figure by the inclusion of a least-squares linear fit to the total

execution times for all but the two largest grids.

The scaling of computational cost for the erf_eps and pbez tests with respect to number of

parallel processes for a fixed problem size (i.e. strong scaling) is plotted in Figs. 6 and 7. These

calculations were performed on grids with 10893 and 1088× 1088× 1089 grid points for erf_eps

and pbez, respectively, and were run on the EPSRC MMM Hub “Thomas” supercomputer with

between 8 and 216 MPI processes and 1, 2, or 4 OpenMP threads per process. The global grid

data was divided equally along each coordinate direction for distribution to MPI processes, so each

process held an equal (or near-equal) cuboid portion of the grid. For all calculations, 12th-order

finite differences were used and the parameters for constructing the model systems were as described

in section 4.1.1.

The parallel speedup data presented in Figs. 6 and 7 indicates that significant speedups can be

achieved by increasing the number of processes. For erf_eps (Fig. 6), the speedup with respect to

number of MPI processes is near-linear for all NMPI, NOMP combinations (where NMPI and NOMP

are the total number of MPI processes and number of OpenMP threads per process, respectively).

The prefactor for the scaling is less than one, which implies that in this regime, the addition of each
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Figure 6: Parallel speedup for the erf_eps test on a 10893 grid for increasing numbers of MPI
processes. Speedup is plotted for 1 (blue circles), 2 (red triangles) and 4 (green squares) OpenMP
processes per MPI process, and is with respect to the calculation performed with 8 MPI processes
(and the corresponding number of OpenMP threads per process). The plotted speedup values are
calculated using the minimum total calculation time over 5 repetitions, where the time recorded
for each repetition is the maximum over all MPI processes. The ideal speedup (i.e. NMPI/8) is
plotted as a gray dashed line. The functional forms and parameters used to construct the erf_eps
model for these calculations are as for Fig. 2 (see section 4.1.1). The computational details of these
calculations are described in section 4.1.2.

MPI process offers a constant, but less-than-ideal speedup. The difference in speedup obtained

using different number of OpenMP threads per MPI process is small, though for higher-core counts,

it appears that 2 OpenMP threads offers the best speedup per additional MPI process.

The strong-scaling behavior of the pbez test is more complicated than for erf_eps. Fig. 7 shows

that the speedup achieved for a given number of MPI processes, S(NMPI), is strongly dependent on

the number of OpenMP threads per process. With 2 and 4 threads per process, the scaling behavior

is very good. Near-ideal speedup is observed for 2 and 4 OpenMP threads per process for up to 125

MPI processes. The overall trend in this case is for a slow decrease in the performance improvement

offered per additional parallel process (i.e. decreasing parallel efficiency, S(NMPI)/NMPI), in line
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Figure 7: Parallel speedup for the pbez test on a 1088×1088×1089 grid for increasing numbers of
MPI processes. Speedup with respect to 8 MPI processes for 1 (blue circles), 2 (red triangles) and
4 (green squares) OpenMP threads per process is plotted, with the values calculated as for Fig. 6.
The functional forms and parameters used to construct the pbez model for these calculations are
as for Fig. 3 (see section 4.1.1). The computational details of these calculations are described in
section 4.1.2.

with Amdahl’s law.69,70 To illustrate this, Fig. 8 presents a least-squares fit to Amdahl’s law,

SAmdahl(S, p) =
1

(1 − p) + p/Sideal
, (60)

for 2 OpenMP threads per MPI process, under the assumption that the fraction of the execution

time amenable to parallelization, p, experiences ideal speedup, Sideal. This fit yielded a value of

p = 0.98367.

While the parallel speedup for the pbez test with 2 and 4 OpenMP threads per MPI process

follows the expected trend, with 1 OpenMP thread per MPI process the behavior is more erratic,

with the speedup for 64 and 125 MPI processes substantially lower than would be expected. For 64

MPI processes with 1 OpenMP thread per process, the speedup is actually lower than for 27 MPI

processes. This appears to be a consequence of contention for hardware resources.
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Figure 8: Parallel speedup for the pbez test on a 1088×1088×1089 grid for increasing numbers of
MPI processes. The ideal speedup with respect to 8 MPI processes (gray dashed line) and measured
speedup with for 2 OpenMP processes per MPI process (red triangles) are plotted, as in Fig. 7.
Additionally a least-squares fit of the 2 OpenMP thread data to Amdahl’s law (Eq. 60) is plotted
(red dotted line, with p = 0.98367).

For the pbez test, the number of compute nodes allocated for the problem was

max(2, roundup(NMPI × NOMP, 24)/24), (61)

i.e. the next nearest multiple of 24 to the number of cores required, with a minimum of 2 nodes

(roundup(x, y) rounds x up to the next multiple of y). Multiples of 24 were used since each

node on the EPSRC MMM Hub “Thomas” machine on which these calculations were performed

had 24 physical cores, while a minimum of 2 compute nodes was necessary because the memory

requirements to run pbez on a 1088× 1088× 1089 grid exceeded the memory available on a single

node. While this represents a realistic allocation of resources, it results in discrepancies in the

amount of resources available per MPI process for different numbers of OpenMP threads. For

example, with 64 MPI processes, the amount of nodes requested is 3 (72 cores), 6 (144 cores) and

11 (264 cores) with 1, 2 and 4 OpenMP threads per process, respectively. The hardware resources

available per MPI process are substantially less for 1 OpenMP thread and thus these resources will
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be more contested for operations which occur on a per-process (not per-thread) basis (e.g. MPI

communication).

To verify that the unusual speedup behavior for 1 OpenMP thread was due to more contested

resources, we repeated the calculations presented in Fig. 7, but artificially allocated identical

numbers of compute nodes for tests with 1, 2 and 4 OpenMP threads per process. In this case,

the poor speedup for 1 OpenMP thread per process vanished, yielding instead the expected trend

resembling the 2 and 4 OpenMP thread lines plotted in Fig. 7.

Overall, Figs. 6 and 7 demonstrate that DL_MG efficiently scales from 10s to 100s of proces-

sor cores, yielding significant performance improvements at typical core counts used in parallel

electronic structure calculations. 2 OpenMP threads per process offers the best speedup in these

particular tests, and use of > 1 OpenMP thread per MPI process is recommended to avoid issues

with contention for hardware resources, as seen in Fig. 7.

4.2 Electronic structure calculations

In this section, we consider the numerical accuracy and computational performance of DL_MG

when used as a Poisson solver in ONETEP,1 an electronic structure package designed to perform

calculation with a cost that scales linearly with the number of atoms, N .

All DFT results presented in this section were computed using the PBE exchange-correlation

functional71,72 and norm-conserving pseudopotentials from the Rappe-Bennett pseudopotential

library73 (GGA-optimized).74

To evaluate the numerical accuracy of DL_MG in ONETEP, we performed single point DFT

energy calculations for a periodic 448 atom graphene sheet in vacuum, using DL_MG to solve the

SPE. These calculations were performed on the ARCHER UK national supercomputer75 with 48

MPI processes and 4 OpenMP threads per process, using a binary compiled using gfortran 5.161

and linked to FFTW76,77 and the Cray MPI libraries.78

The 448 atom graphene sheet was generated with a C-C bond length of 1.43 Å and made

periodic in the xy plane of a 34.31 Å × 34.67 Å × 31.75 Å cell. All DFT calculations were fully
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Figure 9: Absolute error in the Hartree energy for a 448 atom graphene sheet computed using
DL_MG to solve the SPE in ONETEP. The total error and error per atom are plotted as a function
of order of finite differences used in the defect correction procedure. The error is calculated with
respect to the Hartree energy obtained from a reciprocal space solution to the SPE (Eq. 4).

self-consistent and the SPE was solved (for multigrid and in reciprocal space) on a 256× 264× 240

grid.

Fig. 9 shows the error in the electrostatic energy due to the electron density (the Hartree energy)

computed for increasing order of finite differences used in the defect correction for the 448 atom

graphene sheet. The error is with respect to the electrostatic energy computed when the SPE is

solved in reciprocal space (Eq. 4). As seen in the earlier results for the erf_eps and pbez tests

(Figs. 2 and 3), the error decreases rapidly as the order of finite differences is increased. Since the

reference Hartree energy is 21323.190421 Eh, the relative error in this energy for 12th-order finite

differences is ∼ 10−9.

The superficial similarity between Fig. 9 and Figs. 2 and 3 belies the significant differences in

the calculations performed and the nature of the errors being computed. In the case of the erf_eps

and pbez synthetic tests, the error was computed as the maximum difference (over all grid points)

between the numerical solution of the GPE or P-BE from DL_MG and an analytic solution (Eqs. 53

and 53). In contrast, the error plotted in Fig. 9 represents the error in the electrostatic energy.
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Table 1: Summary of results obtained for single-point DFT calculations on a T4 lysozyme-catechol
complex, performed using ONETEP, where the SPE is solved in reciprocal space (RS) or using
DL_MG (MG). For the ONETEP calculations performed with the RS and MG approaches, energies
E (total and Hartree), timings t (total and for SPE solution) and SCF iterations are reported. “SCF
iterations” refers to the number of outer loop iterations in which ONETEP’s strictly localized
orbitals are optimized (see Ref. 39). The percentage of the total time spent solving the SPE and
the absolute and relative differences in the energies and execution times for the two SPE solution
methods are also included. All MG calculations were performed using 12th-order finite differences
in the defect correction. Timing data was taken from the repetition with minimum total time, ttotal,
for three identical repetitions of the calculation.

MG RS |ERS − EMG |

���ERS−EMG
ERS

���
Etotal / Eh −11632.5015 −11632.5026 1.04 × 10−3 8.96 × 10−8

EHartree / Eh 331669.7612 331669.7628 1.55 × 10−3 4.66 × 10−9

SCF iterations 13 13

MG RS |tRS − tMG |

��� tRS−tMG
tRS

���
ttotal / s 10213 8546 1668 1.95 × 10−1

tSPE / s 1642 34 1608 4.68 × 101

% ttotal for SPE 16.08 0.40

This is the result of a self-consistent DFT calculation in which the electrostatic potential is re-

evaluated multiple times, forming part of the one-electron Hamiltonian (see Eq. 21). The small

error incurred from using DL_MG to solve the SPE is thus a very strong validation of the accuracy

of the electrostatic potential produced by DL_MG—any significant error in the potential would be

compounded during the SCF procedure.

The behavior of DL_MG when solving the Poisson equation for a large biological system was

examined by performing single point DFT energy calculations in ONETEP on a 2615 atom T4

lysozyme-catechol complex. The solvation of this complex was previously studied in Ref. 15 using

the MPSM, a variant of the Fattebert-Gygi electrostatic solvation model described in section 2.2.

To evaluate the numerical accuracy of the results produced by ONETEP with DL_MG, the

complex was first studied in vacuum with periodic BCs. This allowed the results obtained with

DL_MG to be directly compared to the results obtained when solving the SPE using the standard

reciprocal space approach (Eq. 4) employed in ONETEP. Table 1 shows the results of these

calculations, which were run on the EPSRC MMM Hub “Thomas” machine, using a ONETEP

binary (linked to DL_MG), compiled using the Intel Fortran compiler 17.0.1 and Intel MPI 2017.
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The calculations were run on 120 cores (40 MPI processes with 3 OpenMP threads per process),

which represents a typical resource allocation for a job of this size. A 129.5 a0×129.5 a0×129.5 a0

simulation cell was used and the SPE was solved (for both methods) on a 5123 grid, corresponding

to a grid point spacing of 0.253 a0.

The excellent numerical agreement in energies computed using DL_MG and the reciprocal

space approach to solve the SPE seen in Fig. 9 is evident in Table 1. The total energy and Hartree

component (Eqs. 16 and 17) computed using these two approaches agree to within ∼ 10−3 Eh. Con-

sidering the large magnitude of the energies, this represents very good agreement, corresponding

to relative errors of ∼ 10−8 and ∼ 10−9 for the total and Hartree energies, respectively.

The execution times reported in Table 1 indicate that the defect-corrected multigrid approach

is considerably more costly than the reciprocal space method. The time spent solving the SPE with

DL_MG is nearly 50× the time spent solving this in reciprocal space. This is not surprising, given

the well-known superior performance of FFT-based solutions to the SPE on uniform grids (see, for

example, Ref.79).

While DL_MG is substantially outperformed by the reciprocal space method when solving the

SPE, the strength of DL_MG is in its flexibility. Eq. 4 is only applicable to the SPE in periodic

BCs, while DL_MG can be applied to solve more complicated variants of the Poisson equation

(e.g. GPE, Eq. 7; and P-BE, Eq. 12) with fully open, fully periodic and mixed open/periodic BCs.

As described in section 2.2, the solution of these variants of the Poisson equation enables electronic

structure calculations to be performed in the presence of implicit solvent.

Table 2 summarizes the results of a free energy of solvation calculation performed on the same

2615 atom T4 lysozyme-catechol complex considered in Table 1. In these calculations, DL_MG

was used to solve the SPE and GPE with fully open BCs, allowing the free energy of solvation to

be computed using the MPSM.15,16 As before, the calculations were run on the EPSRC MMM Hub

“Thomas” machine, using the same ONETEP binary used in the vacuum PBC calculations and 120

cores (40 MPI processes with 3 OpenMP threads per process).

The physical parameters used in the solvent model were for solvation in H2O (bulk permittivity,
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Table 2: Summary of results obtained for free energy of solvation calculations on a T4 lysozyme-
catechol complex, performed with ONETEP using DL_MG to solve the SPE (vacuum) and GPE
(solvent). The results are for an “auto-solvation” calculation, where the vacuum and solvent energies
required to evaluate the free energy of solvation, ∆Gsolv, are computed in a single job. The total
and electrostatic energies, Etotal and Ees, in vacuum and solvent are reported. Ees is the energy
due to the total charge density (electrons and ionic cores) of the complex interacting with the
total electrostatic potential obtained by solving the SPE (vacuum) or GPE (solvent), subject to
the approximation of smeared ionic core charges (described in Ref. 16). The number of SCF
iterations for each calculation component is as defined for Table 1. The timings are for the full
auto-solvation calculation: ttotal is the total time, tPE is time spent solving the SPE/GPE in DL_MG
(with 12th-order finite differences), and tBC is the time spent computing coarse-grained boundary
conditions in ONETEP (see Ref. 16). Timing data was taken from the repetition with minimum
total time, ttotal, for three identical repetitions of the calculation.

Vacuum Solvent

Etotal / Eh −11632.0051 −11635.8353
Ees / Eh 1306.7135 1303.8631
∆Gsolv / Eh -3.8303
SCF iterations 19 5

Auto-solvation

ttotal / s 29259
tSPE / s 5037
tBC / s 7412
% ttotal for SPE/GPE 17.2
% ttotal for BCs 25.3

ε∞ = 78.54, and surface tension, γ = 4.7624 × 10−5 Eha0
−2), and default values were used for the

empirically determined model parameters. The SPE and GPE were solved on a 5053 grid, which

represented a slightly truncated version of the cubic simulation cell used in the PBC calculations

(128.2304 a0 × 128.2304 a0 × 128.2304 a0)—this was necessary to satisfy DL_MG’s grid size

constraints for OBCs (Eq. 52).

The free energy of solvation computed for the T4 lysozyme-catechol complex in this work

differs from the value presented in Ref. 15 by ∼ 10−2 Eh. This is < 1% of the magnitude of the

value and represents very good agreement considering that the calculation settings used in this

work were not tuned for numerical agreement with Ref. 15.

The total execution time for the free energy of solvation calculation reported in Table 2 is ∼ 3×

the time taken for the vacuum PBC calculation on the same system (MG column in Table 1). Given

that the calculation of the free energy of solvation involves separate calculations in vacuum and
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solvent and the use of open BCs requires the costly computation of Dirichlet BCs, it is not surprising

that the execution time is substantially greater. The time spent computing the BCs in ONETEP

(using the coarse-graining technique described in Ref. 16) is actually greater than the time spent

solving the SPE and GPE for this particular calculation.

The time spent solving the SPE and GPE in the solvation calculation is also ∼ 3×, the time

spent solving the SPE in the vacuum PBC calculation, while the fraction of overall calculation time

occupied by the solver is approximately the same at 16 to 17%.

It is tempting to compare the solver times in the vacuum PBC (Table 1) and solvation OBC

(Table 2) calculations in light of number of SCF iterations in each calculation (26 for both parts of

the solvation calculation and 13 for the vacuum PBC calculation). However, the discrepancies in the

calculations prevent us from drawing meaningful insights from the apparent discrepancy between

the 2× increase in SCF iterations vs. 3× increase in solver time. In particular, the different sizes of

grids used in these calculations changes the number of multigrid levels available: the vacuum PBC

calculations (5123 grid) used 9 levels, while the solvation calculations (5053 grid) used 4.

Overall, the execution times presented in Table 2 demonstrate that, using DL_MG to solve the

SPE and GPE, large-scale electronic structure calculations in implicit solvent are accessible with

modest computational resources and with execution times which are not substantially different to

calculations in vacuum. Even when compared to the vacuum PBC calculation where the SPE is

solved in reciprocal space, the total execution time for the solvation calculation is only 3.4× larger.

5 Conclusions

We have described the implementation of DL_MG, a general-purpose Poisson solver library, and

examined its numerical accuracy and computational performance when applied to chemically

relevant model systems and in large scale electronic structure calculations.

In section 4.1.1, we demonstrated that DL_MG’s defect-corrected multigrid approach could

accurately solve the generalized and Poisson-Boltzmann variants of the Poisson equation for two
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model systems involving implicit solvent. These results (Figs. 2 and 3) demonstrated the critical

importance of the high-order defect correction (sections 2.4 and 3.1.2) in obtaining accurate

solutions—with the second-order multigrid solver alone, the error in the solutions obtained was

several orders of magnitude larger for both model systems.

The scaling of computational cost with respect to problem size was examined in section 4.1.2,

where the solver library was seen to scale efficiently to problems with billions of unknowns for

the two model systems (Figs. 4 and 5). Linear, or near-linear scaling was observed in both model

systems for the range of grid sizes tested, which was selected to represent typical grid sizes used

in electronic structure calculations (∼ 1003 to ∼ 10003). We also demonstrated the capability of

DL_MG to scale efficiently to 100s of cores, typical of the parallel resources used in medium to

large scale electronic structure calculations (Figs. 6 and 7).

We reported the results of electronic structure calculations in vacuum and solution performed

with ONETEP, using DL_MG to solve the standard and generalized variants of the Poisson equation

(section 4.2). Since the SPE (with fully periodic BCs, Eq. 1) is amenable to solution using FFT-

based techniques already available in ONETEP (Eq. 4), we were able to compare numerical

results obtained using multigrid and FFT-based solvers. The electrostatic energies obtained using

potentials returned by DL_MG were in excellent agreement with energies yielded by a reciprocal

space solution to the SPE (Fig. 9 and Table 1). The error in the energies calculated using DL_MG

(with respect to the energy computed using the reciprocal space solution) improved with the order

of finite differences used in the high-order defect correction, demonstrating similar behavior to the

model systems (section 4.1.1).

The differences in the energies computed using DL_MG and the reciprocal space approach

plotted in Fig. 9 emphasize the importance of the defect correction for obtaining chemically

meaningful results. The 448 atom graphene sheet used in these calculations is typical of the types

of surface that may be used in studying the interaction of large systems with a support (see for

example Ref. 80 for a recent study of the interaction of Pt nanoparticles with a graphene monolayer

using ONETEP). In such studies, small energy differences of ∼ 10−3 Eh or less are chemically

51



relevant. Our results for this particular graphene sheet suggest that ≥8th-order finite differences are

necessary to obtain this level of accuracy in electrostatic energies computed with DL_MG. Note

that, for energy differences, error cancellation may allow this level of accuracy to be achieved with

lower order finite differences, as described in Ref. 16.

Fully self-consistent DFT calculations were performed on a 2615 atom T4 lysozyme-catechol

complex, representative of the kinds of systems studied in modern large-scale electronic structure

calculations. These calculations were performed on 120 cores on a tier 2 supercomputer in order to

produce timings representative of the typical usage of modern electronic structure packages, such

as ONETEP. Using DL_MG to solve the GPE with open BCs, we measured the execution time

required to compute the free energy of solvation for the entire complex, and found this to be only

∼ 3.4× the time taken to compute a single-point energy for the system in vacuum using a reciprocal

space SPE solver and periodic BCs. This is a small increase in total cost when it is considered

that computing the free energy of solvation requires single-point calculations in both vacuum and

solvent and that computation of open BCs involves significant additional computational work (see

Table 2).

To assess the performance of DL_MG against an alternative solver, we examined the relative

performance of DL_MG and the reciprocal space approach for solving the SPE in periodic BCs. For

the specific case of the T4 lysozyme-catechol complex on 120 cores, we found that the reciprocal

space approach far outperformed DL_MG, with DL_MG occupying ∼ 50× more of the total

execution time. Despite this large difference in time spent in the solver, the overall execution time

for the calculation using DL_MG was only ∼ 20% larger, indicative of the larger fixed costs of

other parts of the calculation.

As discussed in section 4.2, the superior performance of the reciprocal space approach for

solving the SPE in periodic BCs is well-known.79 For this reason, we recommend that DL_MG

is made available alongside established FFT-based Poisson solvers in electronic structure codes.

Under the specific circumstances where the reciprocal space solution (Eq. 4) is applicable, users

can benefit from the great efficiency of this method. Where non-periodic BCs or more complicated
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variants of the Poisson equation are required, DL_MG may be used. This approach has been

successfully adopted in ONETEP, where the Poisson solver is selected based on the nature of the

calculation being performed.

DL_MG is a well-tested and stable library suitable for use in production calculations, as attested

by the results presented in this work. Nevertheless, as always with scientific software, there is plenty

of scope for improvement and extension.

In terms of code optimization, it is clear that future work in this area should focus on the

second-order multigrid solver, rather than the defect correction, since the fraction of time spent

evaluating high-order derivatives is negligible compared to the time spent in the multigrid solver

(Figs. 4 and 5).

A key practical aspect of the code which would benefit from further development is the grid

size constraint. In order for DL_MG to operate with a sufficient number of multigrid levels, the

external program must provide data on grids that satisfy specific size constraints (Eq. 52). We are

currently investigating methods by which this constraint may be eliminated, for example by having

DL_MG interpolate input data onto an optimally sized grid internally.

Finally, the results we have presented in this work demonstrate that DL_MG is a flexible,

scalable and accurate Poisson solver library. We therefore hope that interested readers will consider

downloading the code and evaluating it for their own purposes—the library is released under a

permissive open source license and is currently available to download.52
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A Stencils

When considering the discrete representation of differential operators, such as those featuring in

the standard and generalized Poisson equations (Eqs. 1 and 7), it is often convenient to think in

terms of stencils. This concept and associated notation is clearly defined in Ref. 10. We provide a

brief summary here for the convenience of interested readers.

The stencil for an operator discretized on a regular grid describes the set of grid points in the

locality of a point of interest which are involved in the application of the operator. It is common

to refer to a stencil in terms of the number of points involved. For example, the forward difference

approximation to the derivative in Eq. 32 corresponds to a two-point stencil on a 1-D grid, with

the point of interest x and adjacent point x + h. For multidimensional grids, and higher-order finite

difference approximations, larger numbers of grid points are involved.

The utility of the stencil concept is in the compact expression of the “shape” of a discretized

operator on a grid. In particular, the geometric arrangement of the points involved in a discretized

operator can easily be discerned using “stencil notation” As an example, consider the SPE discretized

on a 2-D grid,

L̂hφh(x, y) = −4πnh(x, y), (62)

with discretized Laplacian L̂h, potential φh(x, y), and density n(x, y). A 5-point stencil (with
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discretization error O(h2)) has the following form

L̂hφh(x, y) =
1

h2
[−4φh(x, y) + φh(x − h, y) + φh(x + h, y) + φh(x, y − h) + φh(x, y + h)]

=

1

h2



1

1 −4 1

1

 h

φh(x, y).

(63)

The second line of Eq. 63 uses the compact stencil notation described in Ref. 10, where the

geometric relationship between the grid points involved in the stencil is clearly demonstrated.

A general expression of the action of an operator discretized on a 2-D grid on a function on that

grid is, in stencil notation:



. . .
...

...
... . .

.

· · · s−1,1 s0,1 s1,1 · · ·

· · · s−1,0 s0,0 s1,0 · · ·

· · · s−1,−1 s0,−1 s1,−1 · · ·

. .
. ...

...
...

. . .

 h

fh(x, y) =
∑

i, j

si, j fh(x + ih, y + jh). (64)

This is trivially extended to 3-D grids by combining layers of 2-D stencils. For example, a 3-D

7-point stencil (with discretization error O(h2)) for the Laplacian can be written:

1

h2





0 0 0

0 1 0

0 0 0





0 1 0

1 −6 1

0 1 0





0 0 0

0 1 0

0 0 0



 h

. (65)

B Information for developers

The DL_MG library has been designed to be simple to interface with existing electronic structure

packages.
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The current version of the library (v2.0) is written in Fortran 95 and packaged with a GNU

Makefile which automatically compiles the source code into a single static library. The library has

no substantial external dependencies and can be compiled with modern Fortran compilers from

Cray, Intel and GNU. Compilation with MPI and OpenMP is typically as simple as using the an

MPI compiler wrapper (e.g. mpif90) and adding the vendor-specific flag to compile with OpenMP

support (e.g. -fopenmp for gfortran).

The typical procedure for calling DL_MG from within an existing electronic structure code is

very simple:

• Initialize the solver using dl_mg_init.

• Call dl_mg_solver with appropriate arguments.

The arguments that must be passed to the initialization and solver routines depend on the nature

of the problem being solved (e.g. equation type), the type of parallelism employed (if any), and

whether default parameters (e.g. convergence tolerances) are being overridden.

For a typical use case, where DL_MG is used to solve the GPE across several MPI processes and

the default convergence tolerances are used, the calls to dl_mg_init and dl_mg_solver might

take the following forms:

call dl_mg_init(nx, ny, nz, dx, dy, dz, bc, gstart, gend, &

mg_comm, report_unit , report_file , ierror)

call dl_mg_solver(eps, eps_mid, alpha, rho, &

pot, fd_order , ierror)

In these subroutine calls the global grid has dimensions (nx, ny, nz) and dx, dy, dz, grid point

spacing along x, y and z. The boundary conditions are determined by the integer constant bc—for

Dirichlet BCs, bc = DL_MG_BC_DIRICHLET.

The MPI processes which will be used to solve the GPE and their Cartesian topology are

described by the MPI communicator mg_comm, and for each MPI process the start and end points

of the locally held grid within the global grid is given by the integer vectors gstart and gend.
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DL_MG outputs detailed information to a log file while running, which is useful when debug-

ging issues or tuning parameters. The log file has the name report_file and associated Fortran

IO unit report_unit.

The type of equation to solve is inferred from the arguments provided when calling the over-

loaded dl_mg_solver routine. For the GPE (Eq. 7), we need to provide the dielectric permittivity

eps, and charge density rho as input, and the corresponding electrostatic potential pot for output,

all with the dimensions of the local grid held on this rank (i.e. gend(:) - gstart(:) + 1). In

addition, we require the values of the dielectric permittivity at the points located halfway between

the points of the global grid in each Cartesian direction, eps_mid.

The order of finite difference stencil (Eq. 48) used in the high-order defect correction is

determined by fd_order (4, 6, 8, 10 or 12) and alpha is a multiplicative constant defined by

the unit system (in the atomic units used throughout this paper, alpha is −4π). Finally, DL_MG

may return integer-valued error codes through ierror.

This interface is designed to be simple and clean, but also offers a large amount of configuration

options behind optional arguments. For example, it is possible to finely tune the absolute and

relative convergence parameters for the multigrid V-cycle, inexact-Newton method and high-order

defect correction (Eqs. 40, 42 and 43) via optional arguments to dl_mg_solver. For further

details, see the developer documentation provided with the source code.52

C erf_eps test

The erf_eps synthetic test (described in section 4.1.1) is a useful analytic model which imitates

the situation where a small molecule is solvated in an implicit solvent which is represented by a

smoothly varying dielectric function (e.g. Eq. 24). The test implemented in DL_MG is based on

the model described by Fisicaro et al. in Ref. 25, for which we have reproduced the analytic forms

of the electrostatic potential (Eq. 53) and dielectric permittivity (Eq. 54). We have also provided

the corresponding form of the charge density (Eq. 55), in order that developers of other Poisson
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solvers may make use of this useful model.

For interested readers, we include here some of the intermediate steps in the derivation of Eq. 55

from Eqs. 53 and 54.

We start by rearranging the GPE to obtain an expression in terms of the charge density and

expanding the divergence in terms of the product rule, i.e.

n(r) = −
1

4π

[
ε(r)∇2φ(r) + (∇ε(r)) · (∇φ(r)))

]
. (66)

The derivatives ∇ε(r), ∇φ(r) and ∇2φ(r) (using the definitions of ε(r and φ(r) in Eqs. 53

and 54) are

∇ε(r) =
(ε∞ − 1)
∆|r − R|

(r − R)

π1/2
exp

(
−

(
|r − R|2 − d0

∆

)2
)
, (67)

∇φ(r) = −
φ(r)

σ2
(r − R), (68)

∇2φ(r) =
φ(r)

σ2

(
|r − R|2

σ2
− 3

)
. (69)

Substituting Eqs. 67 to 69 into Eq. 66 leads directly to the form of the charge density in the

erf_eps test (Eq. 55)
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