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Abstract 

Distinct neural processes are thought to support the retrieval of semantic information 

that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet 

relevant for the current task or context. While the brain regions that support readily coherent 

and more controlled patterns of semantic retrieval are relatively well-characterised, the 

temporal dynamics of these processes are not well-understood. This study used 

magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic 

stimulation (cTMS) in two separate experiments to examine temporal dynamics during the 

retrieval of strong and weak associations. MEG results revealed a dissociation within left 

temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong 

than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse 

pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, 

showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at 

~150ms disrupted the efficient retrieval of strong associations, indicating a necessary role for 

ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word 

disrupted the retrieval of weak associations, suggesting this site may maintain information 

about semantic context from the first word, allowing efficient engagement of semantic 

control. Together these studies provide converging evidence for a functional dissociation 

within the temporal lobe, across both tasks and time. 

 

Keywords: comprehension; beamforming; semantic memory; anterior temporal; posterior middle 

temporal gyrus 
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Semantic cognition allows us to understand the meaning of our environment to drive 

appropriate thoughts and behaviour. It comprises several distinct yet interacting components 

(Jefferies, 2013; Jefferies & Lambon Ralph, 2006; Lambon Ralph, Jefferies, Patterson & Rogers, 2017). 

Semantic representations capture the meanings of words and objects across contexts, supporting 

coherent conceptual retrieval from fragmentary inputs and generalisation across situations. However, 

the retrieval of specific aspects of knowledge in a context-dependent fashion requires control 

mechanisms that shape evolving retrieval towards currently-pertinent semantic features, and away 

from dominant yet irrelevant associations. While patterns of activation within the semantic store may 

be sufficient to uncover links between items that are highly coherent with long-term knowledge (i.e. 

items that share multiple features or are frequently associated, such as pear-apple or tree-apple), 

additional control processes may be required to recover non-dominant aspects of knowledge, such as 

worm-apple, since strong but currently-irrelevant associations (e.g. worm-soil) must be disregarded 

(Lambon Ralph, Jefferies, Patterson & Rogers, 2017; Gold et al., 2006).  

Although the brain regions that support semantic cognition are relatively well-described, the 

temporal dynamics are not. Neuroimaging studies have highlighted the importance of a distributed 

left-dominant network underpinning semantic cognition, including anterior temporal lobe (ATL), 

posterior middle temporal gyrus (pMTG) and inferior frontal gyrus (IFG) (Jefferies, 2013; 

Vandenberghe et al., 1996; Xu, Qixiang, Zaizhu, Yong, & Yanchao, 2016; Lambon Ralph et al., 2017; 

Binder, Desai, Graves & Conant, 2009). These brain regions make dissociable contributions to 

semantic cognition, although their specific roles remain controversial. The ventral ATL is proposed to 

support heteromodal concepts that are extracted from multiple inputs (e.g., vision, audition, smell; 

Patterson, Nestor & Rogers, 2007; Lambon Ralph et al., 2017). Patients with semantic dementia (SD), 

show progressive degradation of knowledge across modalities following atrophy and hypometabolism 

in ATL (Mion et al., 2010; Bozeat et al., 2000; Rogers et al., 2006). Convergent evidence for a role of 

ATL in multimodal conceptual processing is provided by positron emission tomography (e.g. Bright et 

al., 2004; Crinion et al., 2003; Devlin et al., 2000; Noppeney & Price, 2002; Rogers et al., 2006; Scott et 
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al., 2000), functional magnetic resonance imaging (fMRI) – particularly when magnetic susceptibility 

artefacts within ATL are minimised (Binney et al., 2010; Murphy et al., 2017; Visser et al.,2010; 2012), 

magnetoencephalography (MEG) (Lau et al, 2013; Clarke et al., 2011; Marinković et al., 2003; Fujimaki 

et al., 2009; Mollo et al., 2017), intracranial electrode arrays (Chan et al., 2011; Chen et al., 2016) and 

transcranial magnetic stimulation (TMS) (Lambon Ralph et al., 2009; Pobric et al., 2007; 2009). The 

ATL is allied to the default mode network (DMN) in terms of connectivity and function (Binder et al., 

2003; Davey et al., 2015; 2016; Wirth et al., 2011), although the maximal semantic response in ATL is 

not identical to the site of peak DMN connectivity (Jackson et al., 2016). In common with DMN 

regions, ATL shows a larger response to easy or more automatic aspects of semantic retrieval, such as 

identifying dominant aspects of knowledge (e.g., linking DOG with CAT; Davey et al., 2016), and when 

coherent meaning emerges from conceptual combinations (Bemis & Pylkkänen, 2012; Hoffman, 

Binney & Lambon Ralph, 2015). ATL is also implicated in semantic retrieval during mind-wandering 

(Binder et al., 1999; Smallwood et al., 2016). Collectively, these findings suggest that ATL responds 

most strongly when ongoing semantic retrieval is highly coherent with long-term knowledge – 

although causal evidence is currently lacking.  

Brain regions distinct from ATL are implicated in the control of semantic cognition. The 

contribution of left IFG to executive-semantic processes has been documented by many fMRI studies 

(e.g., Thompson-Schill, D’Esposito, Aguirre &Farah, 1997; Badre, Poldrack, Pare-Blagoev, Insler & 

Wagner, 2005; Noppeney, Phillips & Price, 2004; Noonan et al., 2013; Bedny, McGill & Thompson-

Schill, 2008). Convergent evidence for a causal contribution of this region has been provided by 

transcranial magnetic stimulation (TMS, Hoffman, Jefferies & Lambon Ralph, 2010; Whitney et al., 

2011) and neuropsychology: patients with damage to left IFG have difficulty flexibly tailoring their 

semantic retrieval to suit the circumstances (Thompson-Schill et al., 1998; Jefferies & Lambon Ralph, 

2006; Corbett, Jefferies & Lambon Ralph, 2009; Thompson et al., 2015). While the contributions of 

ATL and IFG align with recent component process views of semantic cognition (e.g., the Controlled 

Semantic Cognition framework, which suggests semantic cognition reflects an interaction of 
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conceptual representations and control processes, Lambon Ralph et al., 2017), the contribution of 

pMTG remains controversial. Some accounts have proposed that posterior temporal areas provide an 

important store of conceptual representations (Martin, 2007), with pMTG specifically implicated in 

knowledge of actions and events (Chao, Haxby & Martin, 1999; Martin et al., 1995). Alternatively, a 

growing literature supports the view that pMTG is part of a distributed network with IFG and other 

regions underpinning semantic control (Vitello et al., 2014; Jefferies, 2013; Davey et al., 2016; Noonan 

et al., 2013; Gold et al., 2006). A meta-analysis showed that a widely distributed set of cortical regions 

is reliably activated across diverse manipulations of semantic control demands, with left pMTG 

showing the second most consistent response after left IFG (Noonan et al., 2013). Semantic control 

deficits can follow from either left prefrontal or posterior temporal lesions (Jefferies & Lambon Ralph, 

2006; Noonan et al., 2010); moreover, inhibitory TMS to left pMTG and IFG produces equivalent 

disruption of semantic judgements that require controlled but not automatic retrieval (Whitney et al., 

2011; Davey et al., 2015), and inhibitory stimulation of IFG elicits a compensatory increase in pMTG 

(Hallam et al., 2017). These regions also show a strong pattern of both structural and functional 

connectivity (Davey et al., 2016; Hallam et al., 2016; Jeyoung & Lambon Ralph, 2016), consistent with 

the view that they form a large-scale distributed network underpinning controlled aspects of semantic 

retrieval, and they respond to semantic control demands across modalities (Krieger-Redwood et al., 

2015). This semantic control network partially overlaps with the frontoparietal control network and 

thus both left IFG and pMTG have a different pattern of large-scale connectivity from ATL (Davey et 

al., 2016). 

Component process accounts of semantic cognition (e.g. Jefferies, 2013; Lambon Ralph et al., 

2017) predict a functional dissociation within the temporal lobe – with ATL supporting efficient 

retrieval when currently-relevant semantic information is highly coherent with dominant aspects of 

long term knowledge, and pMTG (along with IFG) playing a critical role at times when such knowledge 

cannot serve the goal of the moment. The current work tests this predicted dissociation by examining 

how the contribution of these sites changes when dominant conceptual associations no longer 
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support appropriate patterns of retrieval, and more weakly-encoded information is required. We 

presented two words successively and manipulated the strength of the relationship between them. 

When two words are strongly associated, retrieval of the relevant conceptual link is thought to be 

relatively automatic, since the meaning of the second word strongly overlaps with features activated 

from the first word. Consequently, the first word establishes a pattern of semantic activation that is 

strongly coherent with emerging conceptual retrieval to the second word without additional 

constraints. For weaker associations, semantic activation elicited from the first word is less coherent 

with the second input, and with the pattern of conceptual retrieval that is needed to elicit the correct 

response. Consequently, semantic control processes are thought to be engaged to shape conceptual 

retrieval so that it is relevant to the current context (cf. Badre et al., 2005; Whitney et al., 2011). This 

contrast of weak and strong associations has been used commonly in previous fMRI and TMS 

investigations of semantic control (e.g., Badre et al., 2005; Whitney et al., 2011; Davey et al., 2016). 

The associated words were presented successively to provide a clear temporal marker (the onset of 

the second word) from which to examine more coherent and controlled patterns of semantic 

retrieval, and both strong and weakly-associated word pairs required the same response (to indicate 

that ‘yes’ the words were related).  

If different sites play distinct roles in automatic and controlled semantic retrieval, we 

reasoned that, as well as overall differences in their response to strong and weak associations, there 

might also be differences in the timing of these effects. Little is known about differences in the time-

course of semantic retrieval at different sites – and previous work has often used 

electroencephalography (EEG), which may lack the spatial resolution to separately resolve signals 

from ATL and pMTG. MEG studies of ATL show early responses (from 120ms) that appear to reflect 

interactions between semantic representations and inputs (Clarke et al., 2011; Mollo et al., 2017), 

plus later responses (250-450ms) that are influenced by patterns of coherent conceptual retrieval 

across both modalities (Marinkovic et al., 2003) and multiple items (Halgren et al., 2002; Lau et al., 

2013; Bemis & Pylkkänen, 2011). Moreover, a recent chronometric TMS study by Jackson et al. (2015) 
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found that the critical time point of involvement for ATL was around 400ms (although this study did 

not manipulate the strength of association and thus cannot identify when semantic processing in ATL 

is critical for the efficient retrieval of more coherent concepts). An N400 response has also been 

localised to pMTG (Helenius, Salmelin, Service & Connolly, 1998; Halgren et al., 2002; Lau, Phillips & 

Poeppel, 2008). This N400 effect is greater for unexpected meanings (Brown & Hagoort, 1993; Maess 

et al., 2006), although it also responds to a wide variety of semantic and lexical manipulations 

(Halgren et al., 2002; Lau, Phillips & Poeppel, 2008). In line with the N400 literature, ATL and pMTG 

can show a similar response to violations of semantic expectations – i.e., a stronger response to 

unrelated than related items (for a review, see Lau et al., 2008) – and thus the N400 semantic priming 

effect does not readily distinguish between ATL and pMTG; however, research has linked ATL to 

relatively automatic semantic priming (Lau et al., 2013) and the response in pMTG to more controlled 

or strategic semantic priming (Gold et al., 2006). E/MEG work has shown that the response to 

unexpected meanings corresponds to a decrease in oscillatory power in the beta band, suggesting 

that oscillatory activity in this frequency range might support the maintenance of an appropriate 

network for comprehension given current expectations (Luoa et al., 2010; Wang et al., 2012; Kielar et 

al., 2014; Lewis & Bastiaansen, 2015). A recent MEG study also identified a potential role for both left 

IFG and pMTG in the detection and implementation of a suitable context for semantic retrieval 

(indicated by presentation of the words ‘to’ or ‘the’, which established a noun or verb-based 

interpretation); this response was stronger for ambiguous words within the first 100ms after 

presentation, suggesting that semantic control sites might play a role in initiating control processes 

when these are required, even before the meaning of a word has been fully accessed, as well as 

selecting specific interpretations or features at a later stage (Mollo et al., 2018 in press; see also Ihara 

et al., 2007). 

Here, we used two temporally-sensitive methods (MEG, chronometric TMS) to examine the 

engagement of left ATL and pMTG in semantic retrieval through time. In the MEG experiment, we 

also characterised responses within left IFG. By manipulating the strength of association between two 



8 

 

words during explicit semantic decisions, we were able to test predictions of the Controlled Semantic 

Cognition framework (Lambon Ralph et al., 2017; Jefferies, 2013). By this account, left IFG and pMTG 

are expected to show a stronger response to weak compared with strong associations, consistent 

with a role in controlled aspects of semantic retrieval, while ATL is predicted to show a stronger 

response to items coherent with dominant aspects of knowledge (i.e., effects of strong > weak 

associations). We were also able to test two alternative hypotheses about the timing of these effects. 

By one view, information is first retrieved and then selected: this account might envisage effects of 

strong associations in ATL that precede the engagement of controlled retrieval in pMTG and IFG. 

Alternatively, controlled retrieval processes may be engaged at an early stage following the onset of 

the second word, to shape patterns of semantic retrieval in ATL. For example, semantic control 

regions might maintain a semantic ‘context’ (or meaning-based biases) that can shape retrieval such 

that it suits the circumstances: by this view, ATL maintains long-term conceptual relationships, while 

the information represented in pMTG and/or IFG might change rapidly and adaptively, reflecting 

recent and currently-relevant conceptual information. An emerging lack of coherence between the 

processing of a new input and the existing semantic context might be critical to the engagement of 

semantic control processes in pMTG and IFG. Consequently, these regions might be engaged rapidly 

following the onset of a weakly-associated second word. These predictions are motivated by 

emerging evidence that visual word processing does not occur in a linear sequence from orthography 

to semantic and/or articulatory representations (Klein et al., 2012; Sereno et al., 2003; Wheat et al., 

2010; Woodhead et al., 2014; Yvert et al., 2012). Instead, the interplay between vision and meaning 

will depend on the extent to which input processing is supported by the current state of conceptual 

representations; effects of associative strength could then emerge in advance of full semantic 

retrieval to the second item in a sequence.  

In Experiment 1, we used beamforming analyses to characterise changes in total oscillatory 

power in ATL, pMTG and IFG during the retrieval of strong and weak associations. Total power 

includes components that are not phase-locked to an event/stimulus (i.e., responses that are 
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generated at a slightly different time point across trials or participants). These so-called “induced” 

responses might be prominent in the retrieval of semantic relationships that span successive items 

(since the emergence of relationships between inputs might not be time and phase-locked to the 

onset of the second word). In Experiment 2, chronometric TMS was used to determine the causal role 

that anterior and posterior regions of the temporal lobe play in the retrieval of strong and weak 

associations at different time points. Together these two experiments, using different neuroscientific 

techniques, characterise the spatiotemporal basis of semantic retrieval when information is coherent 

with strongly-encoded aspects of knowledge, and show how this changes when non-dominant 

aspects of knowledge are required.  

 

Experiment 1: MEG 

Materials and Methods:  

Participants:  

Participants were 20 right-handed native English speakers, with normal or corrected-to-

normal vision, and no history of language disorders (14 female, mean age 23.3 years, range 20-35). 

Data from one participant was excluded because their accuracy in the task fell below the acceptable 

minimum of 75% correct. Written consent was obtained from all participants and the study was 

approved by the York Neuroimaging Centre Research Ethics Committee. 

Materials:  

The task and stimuli were adapted from Badre et al. (2005). Word pairs were presented, one 

word at a time, with varying associative strength between the first and second word, and participants 

were asked to decide if the two words were related in meaning or not. Participants were presented 

with 440 word pairs that were strongly-related (n=110), weakly-related (n=110), or unrelated (n=220). 

The correct response was the same for strong and weak trials (i.e., participants had to indicate that 

these words were related). Strong and weak word pairs were selected using free association response 
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data from the Edinburgh Associative Thesaurus (EAT). Strong associates were produced relatively 

frequently by participants (23%), while weak associates were produced more rarely (1%). The 

difference in mean association strength between strong and weak conditions was highly significant 

(t(188)=16.05, p<.001; Table 1). The first word was expected to initiate a pattern of conceptual 

retrieval (i.e., biases within the semantic system); semantic retrieval to the second word then 

occurred within this context. The biases established by the first word facilitated the semantic decision 

substantially for strongly-associated trials and rather less for weakly-associated trials. 

While our analyses focussed on the second word in each pair (which were identical across 

conditions between subjects), Table 1 confirms that there were no significant differences in word 

frequency or length across strong and weak conditions for the initial word. While the words were 

related in diverse ways, there were also no significant differences between the weak and strong 

conditions in the frequency of these different kinds of semantic association. The associations could 

be: (i) categorical (e.g., deer-cow: 40% and 37% of strong and weak trials respectively); (ii) thematic 

(e.g., soup-bowl: 42% and 50% of strong and weak trials); (iii) both categorical and thematic (e.g., 

holly-ivy: 8% and 4% of trials); (iv) part-whole relationship (e.g., pony-mane: 10% and 8% of trials) and 

(v) linguistic-only (e.g., pop-corn: <1%). A chi-square analysis including the four most frequent trial 

types revealed no significant difference between the strong and weak conditions (χ2 = 4.4, p = .22). 

While very few trials fell within the linguistic-only category, most of the semantically-related items 

were also linguistically related and we are not able to separate the effects of these factors within the 

current study (although as noted in the Introduction, both ATL and pMTG are associated with 

semantic processing across modalities).   
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Table 1: Comparing word frequency and length for the first word across conditions, plus the 

associative strength between the two words in the MEG experiment 

Measure  Strong Association Weak Association  p-value 

  M (SD) M (SD)   

Word frequency 

Word length (letters) 

Association strength 

 26.6 (64.20) 

5.5 (1.80) 

0.23 (0.19) 

29.1 (38.0) 

5.0 (1.5) 

0.01 (0.005) 

 .59 

.16 

.001 

 

Unrelated trials were created by randomly shuffling words across pairs and manually 

removing any associations arising by chance. Target words were presented either following a strong 

or weak associate (not both), and in the unrelated condition. This meant that there was a 50% chance 

on any trial that a pair of words was semantically related.  

Procedure:  

An illustration of the procedure can be seen in Figure 1a. Nonius lines (acting as a fixation 

cross) were present at all times. Before each trial, there was a rest period of 800 ms, plus an 

unpredictable jittered interval from 0 to 1000 ms, designed to reduce anticipatory responses. The first 

word was presented for 200 ms, there was an inter-stimulus interval (ISI) of 150 ms, and then the 

second word appeared for 200 ms followed by a 1000 ms interval. After each trial, the nonius lines 

were dimmed (for 1200 ms) and participants were encouraged to confine blinking to this period. The 

task required participants to make an explicit judgement about the relationship between the two 

words. On 10% of the trials, participants were cued to make an overt response by the presence of a 

question mark (on screen for 1000ms). They pressed one of two buttons with their left hand to 

indicate whether they had identified an association. These ‘catch trials’ were used to monitor 

performance in the task, and were excluded from further analysis. Since we only collected 

behavioural data for a small number of trials during MEG (to keep participants attending to the task), 

we also ran a behavioural version of the experiment outside the scanner, with the same participants, 
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a minimum of 4 weeks before MEG data collection. This experiment was identical to the MEG version, 

except a response was given on every trial, and the pairings between stimuli were reversed – if a 

particular target was paired with a strong associate in the behavioural experiment, it was presented 

following a weak associate in MEG (and vice versa). Data from the behavioural experiment and the 

catch-trials in MEG are shown in Figure 1b and c. 

 

Figure 1: a) Example trials and timelines for the MEG and TMS experiments. b) Reaction time and c) 

accuracy data from the behavioural (gray bars) and MEG (white bars) experiments. Standard errors 

are corrected for repeated measures. 
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Stimulus presentation:  

The MEG experiment was carried out in a dark, magnetically shielded room. Presentation 

version 16.1 (Neurobehavioral Systems) was used to present the stimuli, communicate their timings 

to the MEG data acquisition system and to record participants’ responses on catch trials. Stimuli were 

back-projected onto a screen with a viewing distance of ~75 cm, so that letter strings subtended ~1˚ 

vertically and ~5˚ horizontally at the retina. Light grey letters on a dark grey background were used, 

such that the screen luminance was in the mesopic range, and a neutral density filter was used to 

minimize glare. 

Data collection:  

During MEG recordings, participants were seated in an upright position, with the 

magnetometers arranged in a helmet shaped array, using a whole-head 248-channel, Magnes 3600 

system (4D Neuroimaging, San Diego, California). Data were recorded in continuous mode, with a 

sampling rate of 678.17 Hz and pass-band filtered between 1-200 Hz. Electrooculography was not 

recorded. 

Before MEG data acquisition, participants’ head shape and the location of five head coils 

were recorded with a 3D digitizer (Fastrak Polhemus). The signal from the head coils was used to 

localize the participant’s head position with respect to the magnetometer array before and after the 

experiment. The 3D digitized head shape of each participant was used for the co-registration of 

individual MEG data onto the participant’s structural MRI image using a surface-based alignment 

procedure from Kozinska, Carducci, and Nowinski (2001). For each participant, a high-resolution 

structural T1-weighted anatomical volume was acquired in a GE 3.0 T Signa Excite HDx system 

(General Electric, USA) at the York Neuroimaging Centre, University of York, with an 8-channel head 

coil and a sagittal-isotropic 3-D fast spoiled gradient-recalled sequence (repetition time/echo time/flip 

angle = 8.03 msec/3.07 msec/20°, spatial resolution of 1.13 mm × 1.13 mm × 1.0 mm, in-plane 

resolution of 256 × 256 × 176 contiguous slices).  
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External, non-biological noise detected by the MEG reference channels was subtracted, and 

MEG data were converted into epochs of 1500 ms length, starting 800 ms before the onset of the first 

word. All channels from all trials were inspected visually and epochs containing artifacts, such as 

blinks, articulatory movements, swallowing, and other movements, were rejected manually. Data 

from three malfunctioning channels were automatically rejected for all participants. Statistical 

analyses included only datasets with at least 75% of trials retained after artefact rejection. 20 (of 21) 

datasets reached this criterion. On average, 17% of the trials were rejected from these datasets (min 

7.3% - max 25%). 

MEG analysis strategy:  

 Our analysis strategy involved first localising effects for the paradigm across the entire brain, 

collapsing across conditions, and then selecting points of interest that showed a strong response to 

the task as a whole and that also related to hypothesised sites relevant to semantic control from the 

literature (sites which were additionally used as the focus for TMS stimulation). This analysis approach 

allows us to characterise differences between conditions in time and frequency within sites of interest 

relevant to the Controlled Semantic Cognition hypothesis (Jefferies, 2013; Lambon Ralph et al., 2017), 

without biasing the MEG analysis towards the hypothesised differences between conditions. In 

previous studies using a similar approach, condition differences in spectral plots were often localised 

to specific frequencies and points in time, as opposed to reflecting differences in the mean signal 

(e.g., Klein et al., 2014, Cerebral Cortex). Consequently, we expected the whole-brain beamforming 

that constituted the first step of our analysis to be largely insensitive to condition differences: these 

analyses necessarily aggregate data across relatively wide time windows and frequency bands in order 

to provide full coverage of the parameter space. Given our reliance on ROIs, the study was optimised 

to characterise the nature of differences at points-of-interest, as opposed to localising these effects 

across the whole brain. This approach adds value to the literature since previous fMRI studies have 

already localised regions that respond to relatively automatic and more controlled patterns of 
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semantic retrieval (e.g., Davey et al., 2016; Noonan et al., 2013), yet the temporal evolution of 

semantic retrieval at these sites is less clear. 

For both whole-brain and POI analyses, sources of neural activity were reconstructed with a 

modified version of the vectorised, linearly-constrained minimum-variance (LCMV) beamformer (Van 

Veen et al., 1997; Huang et al., 2004), implemented as part of the public domain Neuroimaging 

Analysis Framework (NAF) pipeline at the York Neuroimaging Centre 

(http://vcs.ynic.york.ac.uk/docs/naf/index.html). We used a multiple spheres head model (Huang et 

al., 1999), with co-registration checked manually. An MEG beamformer (spatial filter) allows the signal 

coming from a location of interest in the brain to be estimated while attenuating signals from 

elsewhere. This is achieved by reconstructing the neuronal signal at a specific point (referred to as a 

Virtual Electrode) as the weighted sum of the signals recorded by the MEG sensors. The covariance 

matrix, used to generate the weights for each beamformer, was regularized using an estimate of 

noise covariance (Prendergast et al., 2011; Hymers et al., 2010). This procedure was performed 

separately for each condition and/or analysis window, in order to optimise sensitivity to the effect of 

interest (Brookes et al., 2008; 2011). The outputs of the three spatial filters at each point in the brain 

were summed to generate estimates of oscillatory power. This analysis strategy and the parameters 

used for the current study were similar to those used in recent MEG studies of visual word 

recognition, object naming and semantic processing (Wheat et al., 2010; Klein et al., 2014; Urooj, 

2014; Mollo et al., 2017).  

 

Whole brain beamforming: 

The brain’s overall response to the task (collapsing the strong and weak trials) was 

characterised within broad frequency ranges and relatively long periods of 200ms. A cubic lattice of 

points was defined in the brain (5 mm spacing), and at each point, an independent set of spatial filters 

was defined to estimate the source current at that point. A noise-normalised volumetric map of total 

oscillatory power (i.e., including both the evoked and non-phase locked components) was then 
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produced over these broad temporal windows and frequency bands. Since our main research 

question concerned how the brain’s response to the second word changed as a function of its 

relationship to the first word, we defined time zero as the onset of the second word of the pair; the 

onset of the first word was at -350ms relative to this. We then characterised whole-brain oscillatory 

responses to the second word by contrasting responses in “active” time windows at 0-200ms, 200-

400ms, and 400-600ms post-onset of the second word with a 200ms “passive” time window at -700 

to -500ms (prior to the onset of the trial). The Neural Activity Index (NAI; Van Veen et al., 1997), 

which is an estimate of oscillatory power that takes account of spatially-inhomogeneous noise, was 

calculated at each point in the lattice, within the following frequency pass-bands: 5-15 Hz, 15-25 Hz, 

25-35 Hz and 35-50 Hz. These frequency ranges were taken from previous MEG studies of reading 

(Klein et al., 2014; Wheat et al., 2014). This analysis produced an NAI volumetric map for the active 

and passive period, separately for each participant at each frequency band, from which paired-

samples t-statistics were calculated. Individual participant’s t-maps were then transformed into the 

MNI standardized space in order for group level statistics to be calculated. To do this, a null 

distribution was built up by randomly relabelling the active and passive windows for each participant 

at each grid point, using the permutation procedure developed by Holmes et al. (1996). The 

maximum t-value obtained with random relabelling across 10000 permutations was established. We 

then compared the real distribution of t-values in the data with the maximum t-value obtained from 

the permuted data. Maximum statistics can be used to overcome the issue of multiple comparisons 

(i.e. controlling experiment-wise type I error), since the approach uses the highest permuted t-value 

across the brain to provide a statistical threshold for the whole lattice of points, over which the null 

hypothesis can be rejected (Holmes et al., 1996). Figure 2 shows those areas in the brain with t-values 

equal or higher than the top 5% of t-values present in the null distribution.  

Time-Frequency Analysis: Point of Interest (POI):  

In the whole brain analysis, oscillatory signals were strongest and most extensive in the 25-

35Hz frequency band, within the 200-400ms time window (see Figure 2 and Supplementary Figure 1) 
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and therefore peaks in these maps were used to identify POIs. Following the selection of POIs from 

the whole-brain beamforming analysis, separate beamformers (Huang et al., 2004) were used to 

reconstruct the neural activity in left ATL (MNI coordinates -48,8,-18, in anterior STG), pMTG (MNI 

coordinates -50,-52,8) and posterior IFG (MNI coordinates -36,16,22). These sites corresponded to 

points showing the strongest task-induced changes in oscillatory power within the relevant regions of 

cortex. Although bilateral ATL is implicated in semantic representation, we focused on left-

hemisphere sites since (i) the stimuli were written words; (ii) fMRI and patient studies reveal a greater 

contribution of the left hemisphere to semantic processing, especially for written words (Binder et al., 

2009; Rice, Lambon Ralph & Hoffman, 2015; Noonan et al., 2013); and (iii) right motor cortex was 

expected to show irrelevant responses related to the preparation of button presses with the left hand 

(even though button presses were only required on catch trials), and therefore contaminate the 

signals of interest.  

We then used the Stockwell transform (Stockwell, Mansinha, & Lowe, 1996) to calculate time-

frequency representations for each POI from 5-50 Hz over the time period -800 to 700 ms, where 0ms 

was the onset of the second word. This allowed us to examine the response to semantic matching 

from 0-600ms, with reference to a passive period before the onset of the first word (defined as -700 

to -500 ms as in the whole brain analysis). The Stockwell transform, implemented in the NAF 

software, uses a variable window length for the analysis which is automatically adapted along the 

frequency range according to the sample rate and the trial length (4th order Butterworth filters with 

automatic padding). The time-frequency representations of total power were normalized, separately 

for each condition and for each participant, with respect to the mean power per frequency bin in a 

baseline period prior to the start of trials in that condition (-700 to -500 ms). This window length was 

also used in earlier studies (Mollo et al., 2017; Wheat et al., 2010; Klein et al., 2014), since it provides 

a compromise between the minimum length sufficient to estimate power at the lowest frequency 

reported here (i.e., 5Hz) and the requirement to characterise the state of the brain immediately 

before the onset of each trial.   
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  To compare the time-frequency representations between experimental conditions, we used 

PROC MIXED in SAS (SAS Institute Inc., North Carolina, US) to compute generalized linear mixed 

models (GLMM). Time-frequency plots of percentage signal change were treated as two dimensional 

arrays of small time-frequency tiles, indexed in the model by three main effects: time, frequency and 

the interaction between time and frequency. Therefore, random effects were included in each GLMM 

to account for the fact that each participant’s time-frequency plot is made up of multiple time-

frequency tiles. Time-frequency (or spatial) co-variance in the spectrogram was controlled for by 

assuming the estimates of power followed a Gaussian distribution: consequently a Gaussian link 

function was used in the model. The time-frequency (spatial) variability was integrated in the model 

by specifying an exponential spatial correlation model for the model residuals (Littel et al., 2006). 

Finally, the data were resampled at a frequency resolution of 2.5Hz and time resolution of 25ms, the 

smallest time and frequency bin consistent with model convergence. This time-frequency resolution 

proved optimal in other similar published studies (Mollo et al., 2017; Klein et al., 2014; Urooj et al., 

2014; Wheat et al., 2010). PROC MIXED constructs an approximate t test to examine the null 

hypothesis that the LS-Mean for percentage signal change between conditions was equal zero in each 

time-frequency tile, and the procedure automatically controls for multiple comparisons (i.e. 

controlling experiment-wise type I error). The statistical contours on the percentage signal change 

figures for total power encompass time-frequency tiles fulfilling both of the following criteria: a) the 

difference between conditions reached p < 0.05; b) any region in the time-frequency plot defined by 

(a) also showed a response that was significantly different from zero in at least one of the two 

contributing conditions. 

 

Results 

Behavioural experiment  

          While traditional priming experiments show facilitation for weakly-related as well as strongly-

related primes, compared with unrelated words (Neely, 1977; 1991), weak associations are expected 
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to show a processing cost when making explicit semantic decisions (Badre et al., 2005; Whitney et al., 

2011). The behavioural data were consistent with these predictions (Figure 1b and 1c). A one-way 

repeated-measures ANOVA of reaction times from the behavioural pre-scan results showed a 

statistically significant main effect of experimental condition (F(2,38) = 22.26, p<.001; Figure 1b). 

Post-hoc comparisons showed that reaction times were faster for strong associations compared with 

both the weak and unrelated conditions (t(38)=6.25, p<.001 and t(38)=5.15, p<.001 respectively). 

There was no statistically significant difference in reaction times between the weak and unrelated 

conditions. A similar analysis for accuracy showed a statistically significant main effect of condition 

(F(2,38) = 31.47, p<.001; Figure 1c). Post-hoc comparisons showed that accuracy for the weak 

condition was significantly lower than that for both the strong and unrelated conditions (t(38)=6.78, 

p<.001 and t(38)=6.95, p<.001). There was no significant difference in accuracy between the strong 

and unrelated conditions within pre-scan behavioural experiment.   

Reaction times were generally longer for catch-trials recorded during MEG acquisition, 

perhaps because participants did not always reach an explicit decision until the requirement to 

respond was indicated. Nevertheless, the data followed a similar pattern to the pre-scan experiment. 

A one-way repeated-measures ANOVA of reaction times from the catch-trials in MEG showed a 

statistically significant main effect of experimental condition (F(2,38)=10.63, p<.001), as shown in 

Figure 1b. Post-hoc comparisons showed faster reaction times for strong associations compared with 

both the weak and unrelated conditions (t(38)=4.60, p<.001 and t(38)=2.50, p<.05 respectively). In 

addition, reaction times for the unrelated condition were significantly faster than those for the weak 

condition (t(38)=2.10, p<.05). A similar analysis of catch-trial accuracy showed a main effect of 

condition (F(2,38)=89.03, p<.001), as shown in Figure 1c. Post-hoc comparisons showed that accuracy 

for the weak condition was significantly lower than that for both the strong and unrelated conditions 

(t(38)=11.66, p<.001 and t(38)=11.45, p<.001). However, there was no significant difference in 

accuracy between the strong and unrelated conditions.  
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Whole-brain results  

The response to the task as a whole (i.e., the response to the second word of the pair 

collapsed across both experimental conditions, versus a period prior to the start of the trial), is shown 

in Figure 2. The most extensive changes in total power in response to the task were power decreases, 

relative to the resting passive period, in the 25-35Hz frequency band (shown in Figure 2 below). Other 

frequency bands showed similar effects of the task in the temporal lobe but only the 25-35Hz 

frequency band showed a response in anterior cortical regions (see supplementary Figure 1). These 

decreases in total oscillatory power were focussed on temporal, occipital, inferior frontal and parietal 

lobe regions implicated in visual and semantic processing, starting within the first 200ms and lasting 

for at least 600 ms after target presentation. Decreases in total power are commonly interpreted as 

reflecting an increase in neural activity that is not phase-locked to stimulus presentation (Hanslmayr 

et al., 2012). Reductions in total power have been shown to correlate with an increased BOLD 

response in fMRI (Hanslmayr et al., 2011; Singh et al., 2002; Hall et al., 2014), and a recent review 

proposed that decreases in total power reflect active engagement of neocortex in the encoding and 

retrieval of memories (Hanslmayr, Staresina & Bowman, 2016). Thus, the whole-brain beamforming 

results are consistent with an increase in visual and semantic processing following the onset of the 

second word. 

 

 

 

 

 

 

 

 

Figure 2: Whole-brain beamforming 

results for the 25-35 Hz frequency 

band, showing differences in total 

oscillatory power between an active 

period following target onset and a 

passive period prior to each trial. The 

first 600ms following presentation of 

target word are displayed, in 200ms 

windows. Task effects were 

decreases in total power in all cases. 

The images show a t-value map, 

thresholded at p<.05.  
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Points of interest results 

Whole epoch data for each site 

For each POI, Figure 3 shows time-frequency plots of total power for the whole epoch, 

corresponding to the first and second word responses in each semantically-related pair. These plots 

are included to illustrate the response to the task at each site, and to inform the interpretation of 

contrasts between conditions that were computed from the onset of the second word, in the context 

of ongoing task activity. Orange-red-brown colours indicate power increases, whereas green-purple-

black colours indicate power decreases relative to the baseline (with no change shown in green). In all 

three sites, there was a subtle increase in oscillatory power in response to the first word, while the 

presentation of the second word was characterised by a large reduction in total oscillatory power 

relative to baseline. The reduction in oscillatory power followed the offset of the first word in pMTG, 

anticipated the onset of the second word in IFG, and followed the onset of the second word, building 

over time in ATL.  
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Figure 3:  Total oscillatory power across the whole epoch for related trials, including both words 

presented in the relatedness judgement task. Presentation of the prime word (first word of the pair) 

is shown within white vertical lines, while presentation of the target word (second word of the pair) is 

illustrated within black vertical lines. Orange-brown indicates regions of power increase relative to the 

baseline, while green-purple indicates power decreases relative to the baseline, and yellow indicates 

no change from baseline 

 

Differences between conditions in POIs  

As shown in Figure 4c, we found statistically significant differences between strong and weak 

associations throughout the epoch, in the beta and low gamma frequency bands, in all three sites. 

However, strength of association had opposite effects at the two temporal lobe sites, in line with the 

predictions of the Controlled Semantic Cognition framework (Lambon Ralph et al., 2017). ATL showed 

a greater change from baseline during the retrieval of strong vs. weak associations. This effect was 

significant from 400ms post-target onset until the end of the epoch at 7-12 Hz. PMTG, in contrast, 
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showed stronger changes in oscillatory power during the retrieval of weak associations, from within 

100ms of the onset of the second word, and this effect lasted throughout the epoch (to 550ms, at 

around 15Hz, plus brief significant differences at 25Hz and 30Hz). Like pMTG, IFG also showed 

stronger changes in oscillatory power during the retrieval of weak than strong associations soon after 

the onset of the second word: there were greater power increases for this condition at a very low 

frequencies (below 10Hz) from 0-200ms, and stronger task-induced decreases in power at 25Hz and 

50ms post-onset of the second word. However, from around 200ms, this response reversed, such 

that task-induced decreases in total power were greater for strong associations in IFG from 15-20Hz. 

 

Figure 4: a) Percentage signal change in the strong condition, relative to baseline. b) Percentage signal 

change in the weak condition, relative to baseline. c) Percentage signal change between strong and 

weak conditions, separately for ATL, pMTG and IFG. White lines are derived from the statistical 
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comparison between strong and weak conditions. The boundaries enclose regions fulfilling two 

criteria: i) percentage signal change between the strong and weak conditions is significantly different 

from zero (p<0.05) and ii) percentage signal change computed separately for each condition is 

significantly different from zero for at least one of the two conditions. Yellow-red colours indicate 

regions of power increase relative to the baseline, while cyan-blue indicates power decreases relative 

to the baseline, and green indicates no change from baseline.  

 

While the focus of this study was on differences between strong and weak associations to 

test the predictions of the Controlled Semantic Cognition Framework (Lambon Ralph et al., 2017), we 

also computed differences between related and unrelated trials to allow comparison with previous 

studies that employed similar contrasts (for a review, see Lau et al., 2008). The results of this analysis 

can be seen in Supplementary Materials.  

 

Summary of MEG results 

Comparisons of strong and weak associations revealed a dissociation in the temporal lobe, in 

both space and time, which depended on the match between the semantic retrieval required by the 

task and the structure of long-term conceptual knowledge. ATL showed a strong response during the 

retrieval of both strong and weak associations soon after the presentation of the second word, plus 

greater oscillatory power for strong than weak associations from around 400ms after target onset. 

This is consistent with the view that ATL supports coherent semantic retrieval when inputs and task 

requirements align with long-term conceptual representations (Feng et al., 2016; Binder, 2016). The 

timing of this result is consistent with previous studies showing strong semantic effects in ATL around 

400ms and suggests that effects of coherent semantic retrieval emerge over time (Jackson, Hoffman, 

Pobric, & Lambon Ralph, 2016; Lau et al., 2013; 2014; Marincovic et al., 2003). In contrast, pMTG and 

IFG both showed greater oscillatory power for weak than strong associations soon after the onset of 

the second word, suggesting a role in detecting circumstances where inputs are inconsistent with the 

semantic context elicited by the first word (triggering the recruitment of controlled retrieval 
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processes). Given the rapid response in pMTG to the offset of the first word and the sustained 

engagement at this site for weak > strong associations throughout the trial, this site might also play a 

role in maintaining aspects of knowledge that are currently relevant. 

 

Experiment 2: Chronometric TMS 

Experiment 1 demonstrated a dissociation in oscillatory power within the temporal lobe in space and 

time, reflecting the extent to which the pattern of semantic retrieval required by the task was 

consistent with dominant aspects of long-term conceptual knowledge. To determine the causal role 

of ATL and pMTG in semantic retrieval, Experiment 2 used chronometric TMS to disrupt processing in 

these two regions at different points in time in the same paradigm. Stimulation of ATL during the 

presentation of the second word in the pair might disrupt the efficient retrieval of strong associations, 

given the MEG findings above. In addition, stimulation of pMTG at an earlier time-point after the 

onset of the second word might be expected to disrupt the retrieval of weak more than strong 

associations. 

Materials and Methods 

Participants: 

Participants were 15 right-handed native English speakers, with normal or corrected-to-

normal vision, and no history of language disorders (8 males, mean age 23, age range 20-32 years). 

This experiment employed a separate sample from Experiment 1. Written consent was obtained from 

all participants and the study was approved by the York Neuroimaging Centre Research Ethics 

Committee.  

Design 

 The experiment employed a 3x2x4 repeated-measures design, with site (ATL, pMTG and sham 

mid-MTG), task (semantic association task and digit parity judgement task), and TMS timings (0 & 

40ms; 125 & 165ms; 250 & 290ms; 450 & 490ms) as within-subject factors. At each time point, a pair 
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of pulses 40ms apart was applied, since this dual-pulse method is thought to generate more 

significant behavioural disruption than single pulses (Gagnon, Schneider, Grondin & Blanchet, 2011; 

Strafella & Paus, 2001; Chen, 2000). The stimulation times were selected to provide coverage of time 

points of interest from the MEG experiment: these included processes already in play by the onset of 

the second word, which are likely to be important given the successive stimulus presentation used in 

our paradigm, responses observed 100-200ms after the onset of the second word (by which point the 

differential response in pMTG was established), effects within the first 300ms (e.g., related > 

unrelated differences in ATL), and later effects. This allowed us to explore these sites’ causal 

involvement in retrieving dominant and weaker aspects of knowledge. 

Materials 

The semantic task was the same as for Experiment 1. Word pairs were presented 

sequentially, and participants decided whether the two words were related or not. The pairs were 

either strongly or weakly associated, or they were unrelated. To maximise sensitivity to the effects of 

TMS on the retrieval of strong and weak associations, each session comprised 70% related trials 

(which were the focus of the analysis) and 30% unrelated trials (to ensure participants attended to 

the task, which were excluded from the analysis). The same target words were presented across 

conditions, although each target was only presented once per session. In addition, the first words of 

the strong and weak pairs did not differ in word frequency or length (see Table 2).  
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Table 2: Comparing word frequency and length for the first word across conditions, plus the 

associative strength between the two words in the TMS experiment 

Measure  Strong Association Weak Association  p-value 

  M (SD) M (SD)   

Word frequency 

Word length (letters) 

Association strength 

 17.43 (32.38) 

5.62 (1.81) 

0.43 (0.19) 

19.28 (32.91) 

5.48 (1.51) 

0.03 (0.06) 

 .66 

.49 

.001 

 

 

A non-semantic task involving numerical judgements was designed to match the semantic 

task in overall difficulty. Previous fMRI and TMS experiments have employed similar numerical control 

tasks (e.g., Pobric et al., 2007) because number representations are thought to be independent of 

temporal lobe semantic regions. We therefore used this task in an attempt to control for non-specific 

effects of TMS. Two three-digit numbers were presented sequentially, and subjects were asked to 

decide whether both numbers were odd or even. The proportion of yes/no trials was identical to the 

semantic task (i.e., 70% match). One participant was tested on a different number judgement task 

and was excluded from the statistical comparisons of semantic vs. number task performance. For the 

word conditions, there were 25 trials with TMS delivered to each of the three stimulation sites at 4 

different timings (25×4×3), for each condition (strongly related, weakly related, unrelated). For the 

digit task, there were 12 trials for each of the three stimulation sites at 4 different timings (12×4×3), 

for each number “condition” (both even, both odd, different). 

Stimulus presentation 

 The three experimental sessions were divided into 5 runs, each lasting approximately 12 

minutes. TMS was delivered in 4 of the 5 runs, and a block without TMS was placed in the middle of 

the 5 runs for safety reasons. Each run was made up of 6 blocks for each task (numerical or semantic), 

lasting around 60 seconds. Blocks were arranged in pseudorandom order to minimise task switch 
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costs. When switching between tasks, a short instruction screen informed the participant which task 

would be presented next. The first trial after the task switch was a dummy trial which was discarded 

from further analysis. The first word of the pair was presented for 200ms, followed by an inter-

stimulus interval (ISI) of 150ms, and then the second word requiring a relatedness judgement 

appeared for 500ms (see Figure 1a). The nonius lines remained on screen for 1000ms, and were then 

dimmed for 1150ms after the participant’s response, to signal the end of the trial. Following this, the 

bright nonius lines returned, to cue the onset of the next trial, for a randomly variable interval of 0-

1000ms (500ms on average) before the onset of the first word of the next pair. Each trial lasted on 

average 3500ms. As in the MEG experiment, participants were asked to decide if the two words were 

related in meaning or not. They responded with their right hand and were instructed to be as quick 

and accurate as possible. Before starting the experiment, participants performed a practice session 

with 10 trials of both tasks (without TMS), and three practice trials with stimulation. Participants took 

self-paced breaks between the runs. 

Stimulation sites 

 TMS was applied to left ATL, left pMTG, and a sham site in the mid-temporal lobe (halfway 

between these two sites). Stimulation sites were taken from published studies; participants’ structural 

T1 MRI scans were co-registered to the scalp using the Brainsight frameless stereotaxy system (Rogue 

Research, Montreal, Canada) to identify the stimulation targets in each participant’s brain. The left 

ATL site was in anterior ventrolateral temporal cortex (MNI -51, 6, -39; coordinates from Binney et al., 

2010). This site showed greater activation for synonym judgement than numerical magnitude 

judgement in fMRI, and is located close to the region of peak atrophy in semantic dementia (Binney et 

al., 2010). The left ATL coordinates for TMS fell within the area of statistically significant oscillatory 

power revealed by whole-brain beamforming in Experiment 1, although the peak in the MEG data was 

anatomically superior (21 mm), and somewhat lateral and anterior (3 mm and 2 mm respectively) 

relative to the stimulation site. Similarly, the choice of left pMTG site for TMS was based on a meta-

analysis of neuroimaging studies of semantic control by Noonan et al. (2013; MNI -58, -50, -6). This 
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site activates across a wide range of manipulations of semantic control, and shows a stronger 

response to weak than strong associations (Davey et al., 2016; Gold et al., 2006). It was also located 

within the area of statistically significant oscillatory power revealed by whole-brain beamforming in 

Experiment 1, but was inferior (14 mm) and lateral (8 mm) to the pMTG POI. We opted to use 

stimulation sites from the literature rather than peaks from Experiment 1 given the relatively poor 

spatial resolution of MEG. The sham control site was selected by finding the midpoint on the y-axis 

between the two experimental sites, varying the z coordinate to ensure that stimulation was 

delivered to the middle temporal gyrus. 

TMS stimulation protocol 

Chronometric TMS was delivered using a Magstim Rapid2 stimulator and a 50mm diameter 

figure-eight coil. Stimulation intensity for ATL and pMTG was 60% of the maximum output of the 

stimulator. We did not measure the intensity of stimulation required to elicit a visible hand twitch 

(i.e., active motor threshold) as it is unclear whether this predicts excitability at stimulation sites far 

from motor cortex (Antal et al., 2004; Gerwig et al., 2003). The sham stimulation was applied at 30% 

of stimulator output since this intensity is thought to be too weak to produce a neural effect, but it 

still mimics the sound and scalp sensations of TMS stimulation (Duecker et al., 2013). Dual-pulse TMS 

was delivered at 25Hz (pulses 40 ms apart) in each trial (see Figure 1a for illustration). The position of 

the coil was monitored and tracked in real time. The mean difference between the intended target 

and the stimulated site on each trial was 0.3mm (s.d. = 0.26; maximum displacement = 5.6mm). Trials 

in the different timing conditions were arranged in an ascending or descending staircase of 4 trials 

(i.e. four trials with stimulation at 0 & 40ms followed by four trials of stimulation at 125 & 165ms 

etc.). We used this strategy to limit the participants’ awareness of the different TMS timings, and to 

reduce any tendency to wait until stimulation had been delivered before responding (Sliwinska et al., 

2012). Following safety guidelines (Rossi et al., 2009), an inter-train interval of 5000ms was added 

after every sequence of 24 double pulses. Where possible this interval corresponded to the task 

switching instruction screen; in other cases it was added after a button press response.  
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Analysis strategy 

We wanted to know how speeded judgements about strong and weak semantic relationships 

between pairs of words would be affected by TMS, delivered at different time points following the 

onset of the second word in a pair, at the two different cortical sites. To maximize the sensitivity of 

these analyses, we used generalised linear mixed models (GLMM) which retained information about 

all trials and permitted random effects at both the participant and item levels to be modelled (see 

Baayen, Davidson & Bates, 2008). To do this, we specified an ‘unstructured’ variance-covariance 

structure for each random effect in the model’s G-matrix. The mixed models were implemented in 

PROC MIXED in SAS v9.4 (SAS Institute, North Carolina, USA).  

Previous TMS studies have reported consistent slowing for semantic decisions following 

inhibitory stimulation, and little effect on accuracy (Walsh & Cowey, 2000; Pasqual-Leone, Walsh & 

Rothwell, 2000; Devlin, Matthews & Rushworth, 2003). Therefore, our primary outcome variable for 

each trial was the magnitude of the TMS effect, defined as the difference in response time between a 

word pair subject to TMS and its corresponding sham version. Incorrect responses and outlying data 

points that fell more than 2SD from each participant’s mean RT were removed, for each session, prior 

to analysis.  

For the initial models, we included the main effects of task condition (e.g., strong vs. weak 

association), site (ATL, pMTG), and TMS time (i.e., pulses at 0-40ms; 125-165ms; 250-290ms; 450-

490ms after the onset of the second word), plus their interactions. We also included as covariates 

structural aspects of the experiment (i.e. session and block order). In addition, supplementary 

analyses, characterising (i) the effect of TMS on accuracy for strong and weakly-related targets and (ii) 

the effect of TMS on semantic judgements overall (vs. numerical judgements), highlighted non-

specific effects of TMS on both RT and accuracy in our data, as we report in the Supplementary 

Materials. For these reasons, accuracy per block and performance in the numerical task were also 

included as covariates in the initial models for reaction time. The criteria we used to optimize the final 

model were: (i) a significant reduction in -2Log-Likelihood relative to the empty model, (ii) only 
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explanatory variables that were statistically significant at p<.05 should be retained. Once the final 

model was fitted, we used PROC MIXED to estimate pairwise t-test comparisons of the least squared 

(LS) mean reaction times, with and without TMS, carried out separately at each site for each condition 

(a total of 5041 observations). These post-hoc comparisons were controlled for multiple comparisons.  

 

Results 

The main effects from the optimized GLMM of reaction time are shown in Table 3. Since our 

dependent measure was the TMS effect (computed as the difference between TMS and sham trials), 

there was no main effect of condition. We found significant main effects of TMS time (reflecting 

greater differences between stimulation and sham at later time points) and site (reflecting a greater 

difference between ATL and sham than between pMTG and sham). These effects are likely to be 

explained by non-specific effects of stimulation. Larger TMS effects for ATL than for pMTG might 

reflect the distracting effects of the strong temporalis muscle contractions that occur during 

stimulation of this site. Moreover, a similar main effect of time has been observed in previous 

chronometric TMS studies (Sliwinska et al., 2012) and is thought to reflect a tendency for participants 

to wait before responding on trials in which the TMS pulse is applied comparatively late (see 

Supplementary Analysis 3 for further discussion). The covariates of block, session order, and number 

RT (characterising non-specific effects of TMS) were also statistically significant, although the accuracy 

covariate did not improve model fit and was not included in the final model. Critically, there was a 

significant three-way interaction between condition (strong vs. weak), TMS time and site, suggesting 

that the disruption of strong and weak associations occurred at a different point in time after the 

onset of the second word of the pair, and that this effect was different comparing ATL with pMTG.  
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Table 3: Effect of TMS on RT for strong and weak associations 

Model Parameter F-value (d.f.) Z-value p-value -2Log 

likelihood 

Empty model 

 

Time 

 

 

4.86 (3, 302) 

  

 

 .0026 

63784.3 

 

63277.5 

Site 12.39 (1, 4783)   <.001   

Condition × Time  × Site 

Block order 

1.95 (11, 4920) 

15.16 (3,5004) 

  .029 

<.001 

 

Testing session  4.41 (2, 4465)   .012  

Number task RT 191.9 (1,1955)  <.001  

     

 

Participant covariance 

Target covariance 

    

  

2.59 

4.75 

.0048 

<.001 

  

 

 

Figure 5 shows mean reaction times (upper row) and the post-hoc comparisons of LSmean 

reaction times (low row), separately for ATL and pMTG. For ATL, we found a significantly larger effect 

of TMS on strongly-related than weakly-related pairs (giving rise to a positive LSmean difference in 

the bottom row of Figure 5), when pulses were applied at 125-165ms after the onset of the second 

word. At the other time points, the magnitude of the TMS effect was equivalent for the strong and 

weak associations. This suggests that at around 150ms post-presentation of the second word, the 

efficient retrieval of strong semantic relationships was disrupted by the perturbation of ongoing 

processing within ATL. Although strong associations did not evoke a stronger change in oscillatory 

response at this site until later (400ms in the MEG data), and the behavioural response was later still 

(between 500-600ms in this experiment), disruption of a settling process within ATL might potentially 

disrupt or delay both of these subsequent effects.  
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Figure 5: Effect of TMS on RT for strong and weak associations. TOP ROW: RT (in ms) for the strong 

and weak conditions for ATL (left) and pMTG (right). RT data for the strong and weak condition for the 

sham site is showed in dashed lines. These plots show the raw (un-modelled) means. BOTTOM ROW: 

A comparison of LS Means differences between strong and weak conditions in the effect of TMS. Data 

points above the red line indicate greater disruption for the strong condition, while data points below 

the red line indicate greater disruption for the weak condition. Statistically significant differences (at 

p<.05) between the effects of TMS on strong and weak trials are indicated with asterisks. Error bars 

show 95% confidence intervals. 

 

For pMTG, we found a significantly larger effect of TMS on weakly-related than strongly-

related pairs (giving rise to a negative LSmean difference in the bottom row of Figure 5), when pulses 

were applied at 0-40ms after the onset of the second word in the pair. At the other time points, the 

magnitude of the TMS effect was equivalent for the strong and weak associations. This very early 

differential response suggests that pMTG may make a critical contribution to the capacity to engage 
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controlled retrieval when it is needed. Stimulation at this early point may have disrupted the 

maintenance of current contextual information generated by the first word in the pair. This could 

disproportionately affect weak associations if, for example, pMTG plays a critical role in detecting the 

need to employ controlled retrieval. Although weak associations did not evoke a stronger change in 

oscillatory response at pMTG until slightly later (from around 60ms in the MEG data), effects linked to 

controlled retrieval at pMTG in both MEG and TMS were observed very early after the onset of the 

second word, allowing us to reject one view of the emergence of semantic retrieval over time, in 

which conceptual knowledge is first activated or retrieved and then subsequently selected to suit 

current task demands or the context.   

 

Discussion 

A significant body of research has characterised the brain regions that support semantic 

processing but less is known about the temporal evolution of semantic retrieval across these regions. 

While studies have examined the time course of semantic access from written words and pictures 

following a semantically-related or an unrelated item (Dikker & Pylkkänen, 2013; Halgren et al., 2002; 

Lau et al., 2013; 2014), the focus here was on the brain processes that support the explicit retrieval of 

strong associations (which are expected to be supported by their coherence with the structure of 

long-term semantic knowledge) as opposed to weak associations (which are less well-supported by 

long-term conceptual information and thus might require greater engagement of controlled retrieval 

processes to shape retrieval to suit the demands of the task). We examined how the retrieval of 

strong and weak semantic conceptual relationships was reflected in (i) changes in oscillatory power 

over time, as measured by MEG; and (ii) vulnerability to inhibitory online brain stimulation, using 

chronometric TMS. 

 In both experiments, the same behavioural paradigm was used to explore the functional and 

temporal organisation of semantic processing in the left anterior and posterior temporal lobe (ATL 

and pMTG) and inferior frontal gyrus (IFG; in the MEG experiment only; this site was not stimulated 
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with cTMS). Previous work has associated ATL with the retrieval of strong associations, in conjunction 

with other regions in the default mode network (Davey et al., 2016; Jackson et al., 2015), while 

controlled retrieval is thought to engage semantic control processes in left pMTG, together with IFG, 

to allow non-dominant aspects of meaning to come to the fore (Noonan et al., 2013; Badre et al., 

2005; Gold et al., 2006; Davey et al., 2015; 2016). In line with these predictions, task-induced changes 

in oscillatory power were greater for strong than weak associations in ATL, while pMTG showed the 

opposite pattern (weak > strong associations). TMS confirmed a causal role for these sites in the 

efficient retrieval of strong and weak associations respectively. IFG initially showed stronger 

oscillatory power for weak associations, suggesting that this site contributes to the establishment of a 

suitable network for semantic retrieval (Mollo et al., 2018, in press) but later this effect was reversed, 

suggestive of a more general role in semantic retrieval. 

Timing differences between the sites were also found: ATL showed greater oscillatory power 

for the strong associations around 400ms post-target onset, although a strong task-related response 

was observed in the MEG data across conditions even before the onset of the second word (reflecting 

the successive presentation of multiple meaningful items in our paradigm). TMS to ATL disrupted 

performance for strong associations at around 150ms, around the time that early effects of semantic 

manipulations have been reported at this site in other studies (Clarke et al., 2011; 2012; Hauk et al., 

2006). This time point may have been sensitive to the disruptive effects of TMS (even though the 

difference between strong and weak conditions was not significant in the MEG data until later) since a 

coherent pattern of semantic retrieval was not yet fully established (and was therefore vulnerable to 

interference). pMTG showed an even earlier differential response to the strong and weak conditions 

in both MEG and TMS: this site responded more strongly to weak associations throughout the analysis 

window (from about 60ms post-onset of the second word), and TMS delivered to pMTG at the point 

of target onset impaired the efficient retrieval of weak associations. Thus, the MEG and TMS results 

followed the same temporal sequence across sites, although the critical time for TMS-induced 

disruption preceded the emergence of condition differences in MEG. IFG also showed an early 



36 

 

response to weak associations, although this effect was not sustained as it was for pMTG, and we did 

not investigate critical time-points for IFG using cTMS. Below, the contributions of left ATL, pMTG and 

IFG to semantic cognition are discussed in light of these findings. 

Anterior temporal lobe: The ATL is proposed to play a crucial role in heteromodal conceptual 

representation (alongside modality-specific ‘spokes’; Patterson, Nestor & Rogers, 2007; Rogers et al., 

2006; Coutanche & Thompson-Schill, 2014). ATL is important for accessing conceptual knowledge 

from visual inputs (alongside other modalities) – a process that activates the ventral visual stream 

which terminates in ATL (Visser, Jefferies, Embleton & Lambon Ralph, 2012; Visser, Jefferies & 

Lambon Ralph, 2009). MEG studies of this aspect of ATL processing have identified responses in this 

region within 120ms of stimulus onset (Clarke et al., 2013; Fujimaki et al., 2009; Yvert et al., 2012). In 

addition, ATL is implicated in relatively automatic aspects of semantic access and retrieval (Lau et al., 

2013; Davey et al., 2016). The current findings are highly consistent with this emerging story about 

the contribution of the ATL to semantic processing but add several important elements.  

First, we used beamforming to characterise the response in ATL to strong and weak 

associations in total oscillatory power. In contrast, other MEG studies localising semantic effects to 

ATL have largely used measures maximally-sensitive to evoked power (Halgren et al., 2002; Bemis & 

Pylkkänen, 2011; Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015; Lau et al., 2014; Fujimaki 

et al., 2009). Total power includes both phase-locked components and signals that are not phase-

locked to the onset of the stimulus. Since the emergence of coherent semantic activation over time 

draws on long-term knowledge of the meanings of words across contexts, one might expect this 

process to generate neural oscillations that are not directly linked to stimulus onset. In line with these 

considerations, strong task-induced decreases in total power to the second item were found in all 

three sites. These effects were not seen in response to the presentation of the first word in the pair 

(see Figure 3), and therefore this response could be a marker of meaning retrieval that is at least 

partly decoupled from the stimulus itself. This interpretation draws on the view that power decreases 

are not necessarily associated with a decrease in neural activity (Hanslmayr et al., 2012; Hanslmayr, 
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Staresina & Bowman, 2016): decreases in total power can reflect an increase in desynchronised 

neural activity that allows the representation of richer informational content, and our results can be 

interpreted within this framework – strong associations are more coherent with the structure of long-

term conceptual knowledge and might generate richer or more meaningful experiences in ATL.  

TMS to ATL disrupted the efficient retrieval of strong more than weak associations at 150ms 

post-stimulus onset – i.e., at the point when interactions between visual cortex and ATL are thought 

to become established (Clarke et al., 2011; 2012). In the MEG data, there was a strong task-related 

response in ATL by 150ms, although there was not yet a significant difference between the strong and 

weak conditions. Thus, the emergence of coherent semantic retrieval for the strongly-linked items 

may have been vulnerable to perturbation from TMS before the pattern of response within the ATL 

was well-established. Although a previous cTMS study found disruption when TMS pulses were 

applied to ATL at 400ms post-trial onset (Jackson et al., 2015), this study did not examine differential 

disruption of strong vs. weak associations, and it involved a more complex two-alternative-forced-

choice decision as opposed to yes/no decisions about the presence or absence of a relationship 

between two words – thus the timings are unlikely to be comparable.  

Posterior middle temporal gyrus and inferior frontal gyrus: The involvement of left IFG in 

semantic control is relatively well-established (e.g., Badre et al., 2005; Noonan et al., 2013), yet there 

is considerable controversy about the role of left pMTG in semantic cognition, since dominant 

theoretical frameworks have suggested that this site (i) represents particular aspects of lexical or 

semantic knowledge – such as event representations; or (ii) supports controlled semantic cognition as 

part of a large-scale network that includes IFG (see Davey et al., 2016). Studies have shown a common 

response in left pMTG and IFG using a wide range of manipulations of semantic control – including 

contrasts of ambiguous over non-ambiguous words, decisions with strong vs. weak distracters, and 

the retrieval of weaker versus stronger semantic links, in paradigms similar to the one adopted here 

(Noonan et al., 2013). pMTG is functionally connected to both the executive network and ATL, 

suggesting this region may be well-placed to control retrieval from the semantic store (Davey et al., 
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2016). Offline TMS studies have provided convergent evidence for the disruption of weak (but not 

strong) semantic association judgements when inhibitory stimulation is applied to pMTG as well as 

IFG (Whitney et al., 2011; Davey et al., 2015). When the relationship between the two words is weak, 

the first word in the sequence will tend to activate features and associations that are irrelevant to the 

decision that has to be made, and consequently we expect controlled retrieval processes will be 

triggered to shape the emerging pattern of semantic retrieval so that it focusses on the relevant link.  

The time-course of these effects place important constraints on theories of controlled 

semantic retrieval: IFG and pMTG would be expected to show a relatively late response to the 

comparison of weak and strong if controlled retrieval takes time to become established, and if activity 

at this site reflects a re-interpretation or re-shaping of semantic activation following initial semantic 

retrieval driven by the written input. Alternatively, these semantic control regions might show an 

early response to the same comparison if they are important for triggering the recruitment of the 

semantic control network when incoming information is not strongly coherent with ongoing semantic 

retrieval. This hypothesis is predicated on recent accounts of visual word recognition which suggest 

extremely rapid interactions between visual, semantic and articulatory codes, as opposed to an 

orderly sequence of steps from orthography to meaning (Klein et al., 2012; Sereno et al., 2003; Wheat 

et al., 2010; Woodhead et al., 2014; Yvert et al., 2012). By this view, pMTG and IFG may reduce the 

propagation of dominant features and associations recovered from ATL when initial processing of new 

inputs suggests that these aspects of knowledge may be insufficient for comprehension. In addition, 

these regions might show a sustained response to weak associations if they maintain currently-

relevant semantic information which can be used to appropriately constrain activation within ATL.  

The current MEG data showed early engagement of both IFG and pMTG that was stronger for 

weak associations, supporting this alternative interactive view. The weak > strong effect commenced 

within 50ms of target-onset at both sites implicated in semantic control. This pattern then continued 

throughout the analysis window for pMTG; however, in IFG, the effect reversed to reveal a strong > 

weak association pattern by 400ms. Consequently, while both sites might play a crucial role in setting 
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up an appropriate network for controlled retrieval when input processing for the second item was not 

well-supported by ongoing semantic retrieval to the first item in the pair, pMTG might play a greater 

role than IFG in sustaining a non-dominant pattern of semantic retrieval. cTMS also provided evidence 

for an early role of pMTG in the efficient retrieval of weak associations, since there was greater 

disruption of weak trials when TMS was applied at the onset of the second word (when semantic 

retrieval was also underway but not tuned to the relevant semantic link). These findings are 

consistent with the hypothesis that pMTG (potentially together with LIFG) maintains currently-

relevant features or interpretations and detects situations in which incoming information is not well-

aligned with these aspects of knowledge. This interpretation is consistent with studies that have 

shown a stronger response to more predictive primes in pMTG, including adjectives (Fruchter et al., 

2015) and pictures (Dikker & Pylkkänen, 2013) that are informative about upcoming items. In our 

task, information about the semantic context might have been more critical for the efficient retrieval 

of weak associations, since it might have supported the rapid engagement of controlled retrieval 

processes when expectations were partially met. In contrast, for strong associations, relevant features 

in the semantic store will have been primed by the first word and thus this process may be less 

critical. If this interpretation is correct, application of TMS even before the onset of the second item 

may have had a similar effect, since it would have disrupted maintenance of a conceptual ‘prediction’ 

that allowed the detection of a situation in which semantic control processes needed to be deployed. 

However, this remains an untested prediction. This perspective is further consistent with studies 

suggesting that pMTG shows strong engagement when meaningful inputs themselves determine a 

context that requires semantic retrieval to be shaped in a particular way (Davey et al., 2016; Badre et 

al., 2005).  

Some limitations of this research are worth noting. First, this study focuses on the role of key 

locations predicted to show a functional dissociation in the Controlled Semantic Cognition framework 

(left ATL, pMTG and IFG). By combining targeted analysis of MEG data (examining local peaks within 

these regions) with chronometric TMS delivered to these sites, strong conclusions can be drawn 
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about the nature of the dissociation in the temporal lobe, although the study is uninformative about 

other regions in the brain. Secondly, there is increasing evidence of functional subdivisions within 

these sites. In ATL, temporal pole, ventral ATL and aSTG appear to have different functional profiles 

(Lambon Ralph et al., 2017; Murphy et al., 2017). There are also functional subdivisions within IFG 

(Badre et al., 2005; Davey et al., 2016; Noonan et al., 2013), while pMTG lies at the intersection of 

several networks, including default mode, visual and auditory regions (Braga et al., 2013; Yeo et al., 

2011) – which might be critical to its contribution to semantic cognition. The limited spatial resolution 

of MEG, combined with practical limits on the number of TMS sessions, does not permit the 

separation of these regions. Our MEG analysis was optimised to characterise the oscillatory dynamics 

of semantic processing for strong and weak associations for regions that responded robustly to the 

task but the lack of spatial precision inherent in this data does not allow us to draw specific inferences 

about specific locations.  

Thirdly, it may not be appropriate to directly compare timings across the MEG and TMS 

experiments, since Figure 1b demonstrates that the behavioural responses recorded within the MEG 

scanner were considerably slower than those obtained in the laboratory. This may have contributed 

to differences between our experiments; particularly the earlier effects of strength of association 

seen in the TMS study relative to the MEG study. More generally, this observation supports the view 

that it may not be possible to precisely specify the timing of neurocognitive responses, since these 

timings will critically depend on the task or paradigm that they are measured within. For example, the 

timing of differential responses to strong associations and weak associations might be influenced by 

experimental factors such as the stimulus-onset asynchrony (SOA), which is known to modulate the 

extent to which semantic priming draws on automatic or controlled processes (Gold et al., 2006). This 

study used brief stimuli presentation (200 ms) and a short SOA (150 ms), in order to limit the impact 

of factors such as stimulus repetition and the proportion of related to unrelated trials (Neely, 1977; 

1991). Furthermore, though the priming literature is relevant to our interpretations, our paradigm is 

not directly comparable to priming experiments, since we required participants to make an explicit 
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judgement of the relationship between the two words, as opposed to examining the facilitatory 

influence of meaning on reading. An alternative approach, which we adopted here, is to consider the 

relative timing of behavioural effects within a paradigm which can then be localised to different brain 

regions.  

Taken together, these results indicate dissociable roles of ATL and pMTG in semantic 

retrieval. ATL and pMTG showed opposite effects of strength of association in a semantic judgement 

task in both the MEG and cTMS experiments, supporting the proposal that these sites make a 

differential contribution to more automatic and controlled aspects of semantic retrieval.  
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Supplementary Materials 

Supplementary Analysis 1: Whole-brain beamforming for a range of frequency bands 

The most extensive changes in total power in response to the task were power decreases in the 25-

35Hz frequency band. Data for all frequency bands from 200-400ms are provided in Supplementary 

Figure 1 below. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: Additional frequency bands for the 200-400ms time window, related 

condition  



58 

 

Supplementary Analysis 2: Contrasts between related and unrelated words within the temporal lobe 

In addition to the strong/weak differences focused on in the main analysis, we also computed 

differences between related and unrelated trials to allow comparison with previous studies that 

employed similar contrasts (for a review, see Lau et al., 2008). The results can be seen in 

Supplementary Figure 2. In line with this literature, ATL, pMTG and IFG all showed stronger task-

related changes in oscillatory power for semantically-associated compared with unrelated items, 

consistent with the purported role of these sites in semantic retrieval. At ATL and pMTG, there was 

more sustained engagement for related items at around 10Hz, producing a marked difference 

between conditions around 400ms post-onset. ATL also showed an earlier response to semantic 

relatedness around 250ms, from 40-50Hz, demonstrating a relatively rapid sensitivity to semantic 

variables in ATL, even though the effect of semantic coherence (strong > weak) emerged later, 

consistent with previous findings (Lau et al., 2013). In pMTG, oscillatory power was also greater for 

unrelated than related words at 350-400ms at 20Hz. Effects of relatedness were most marked in IFG, 

which showed both early and late effects, from 0-200 and 400-600ms, centred on 25Hz. 

Discussion: The effects of relatedness and strength of association were similar in time-

frequency space in ATL – i.e., both effects occurred from 400ms and from 10-15Hz. These effects 

might reflect a building pattern of coherent semantic retrieval, which is strengthened when related 

items are highly associated. In pMTG, however, the stronger response to weak associations started 

soon after the onset of the second word and lasted until 400ms, when the stronger response to 

related items commenced. If pMTG plays a role in representing a semantic context which can differ 

from the pattern of long-term associations in ATL, the early and sustained response from 50-400ms 

could reflect efforts to identify a context in which two weakly-related (or potentially unrelated) words 

can be coherently associated (while for strong association trials, an appropriate context is already 

present at the onset of the second word). Finally, in IFG, the early effect of relatedness overlapped 

with the weak>strong effect at 50ms and 25Hz, suggesting this initial response to meaning reflected 

controlled retrieval processes. Later, however, IFG showed both effects of relatedness and 
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strong>weak associations: presentation of strong associations expanded the response to related 

items to include lower frequencies (15Hz to 20Hz. Therefore, we speculate that by 400ms, a pattern 

of coherent retrieval across semantic sites might be established, eliciting an overall effect of 

relatedness at all three sites.   

 

 

 

Supplementary Figure 2: a) Percentage signal change in the related condition, relative to baseline. b) 

Percentage signal change in the unrelated condition, relative to baseline. c) Percentage signal change 

between related and unrelated conditions, separately for ATL and pMTG. White lines are derived 

from the statistical comparison between related and unrelated conditions. The boundaries enclose 

regions fulfilling two criteria: i) percentage signal change between the related and unrelated 

conditions is significantly different from zero (p<0.05) and ii) percentage signal change computed 

separately for each condition is significantly different from zero for at least one of the two conditions. 
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Yellow-red colours indicate regions of power increase relative to the baseline, while cyan-blue 

indicates power decreases relative to the baseline, and green indicates no change from baseline.  

 

Supplementary Analysis 3: Additional TMS analyses 

The supplementary analyses below examine (i) the effects of TMS on accuracy for strong and 

weak associations, and (ii) the effects of TMS on the semantic and number tasks overall. In this 

analysis, there are 14 as opposed to 15 participants, since data for the even/odd digit task were not 

recorded for one participant. The results of Analysis 1 motivated the inclusion of accuracy as a 

covariate in the analysis of response time above. Results from Analysis 2 reveal non-specific effects of 

TMS and therefore motivated the inclusion of the number control task as a covariate in the main 

analyses reported above. In addition, Supplementary Table 1 provides full summary statistics for this 

experiment. 
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Supplementary Table 1: Behavioural data for Experiment 2 (Chronometric TMS) 

Measurement Site Condition 

0 & 

40ms 

125 & 

165ms 

250 & 

290ms 

450 & 

490ms 

No  

TMS 

0 & 

40ms 

125 & 

165ms 

250 & 

290ms 

450 & 

490ms 

No 

TMS 

    Mean  SD 

RT 

ATL strong 

 

539.53 559.05 584.54 616.85 573.43 

 

120.50 138.41 156.16 195.46 143.09 

ATL weak 601.16 613.62 641.42 704.06 630.98 167.37 174.36 192.62 214.26 163.98 

ATL number 535.45 565.54 576.62 616.55 571.87 144.29 163.49 187.26 210.41 165.70 

pMTG strong 616.55 506.63 527.08 516.72 534.54 210.41 132.87 145.15 130.08 119.15 

pMTG weak 498.46 512.79 529.29 543.91 595.16 105.49 100.93 116.69 141.97 123.20 

pMTG number 578.90 590.26 585.17 610.58 531.61 156.50 142.16 139.25 164.37 129.47 

SHAM strong 510.81 499.79 531.80 550.76 551.33 113.94 119.35 119.68 147.79 130.21 

SHAM weak 559.64 573.55 588.73 617.25 606.62 133.06 144.95 145.19 158.97 125.16 

SHAM number 492.95 512.32 513.29 524.02 517.83 126.25 132.99 127.71 145.03 127.27 

Accuracy 

ATL strong 0.96 0.95 0.96 0.96 0.94 0.04 0.06 0.04 0.05 0.05 

ATL weak 0.82 0.76 0.83 0.78 0.83 0.13 0.17 0.11 0.18 0.08 

ATL number 0.92 0.92 0.95 0.95 0.92 0.05 0.05 0.06 0.05 0.04 

pMTG strong 0.97 0.97 0.97 0.97 0.95 0.05 0.03 0.04 0.03 0.06 

pMTG weak 0.84 0.83 0.82 0.80 0.85 0.09 0.15 0.11 0.09 0.10 

pMTG number 0.89 0.94 0.93 0.94 0.93 0.12 0.04 0.06 0.06 0.04 

SHAM strong 0.97 0.97 0.97 0.97 0.95 0.04 0.04 0.04 0.04 0.06 

SHAM weak 0.82 0.78 0.78 0.77 0.85 0.11 0.09 0.15 0.14 0.11 

SHAM number 0.95 0.95 0.96 0.94 0.94 0.07 0.04 0.05 0.05 0.05 
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Effect of TMS on accuracy for strong and weak associations 

We wanted to check whether the accuracy of speeded judgements about strong and weak 

semantic relationships between pairs of words was affected by TMS. To test this, we pooled the total 

number of correct responses, or hits, for the total number of trials in each block, separately for 

participant, stimulation site, TMS timing, condition and session. We used these pooled data as input 

to a generalised linear mixed model (GLMM), implemented in PROC GLIMMIX in SAS v9.4. Since 

accuracy data have a binomial distribution (hit = 1, 0 = error), we used a logistic link function in the 

model for the outcome. For the starting model, the fixed effects were: site (ATL, pMTG, sham), TMS 

time, condition (strong vs. weak) and their two- and three-way interactions. In addition, we included 

block number and session number as covariates and the per-subject intercept as a random effect. The 

criteria we used to optimize the final model were: (i) a significant reduction in -2Log-Likelihood 

between it and the empty model, (ii) only explanatory variables that were statistically significant at 

p<.05 should be retained. The exception to this was that we had to include the three way interaction 

between condition (strong vs. weak association), TMS time and site in order to compute post-hoc 

pairwise comparisons. Supplementary Table 2 shows the outcome for the fixed effects in the final 

model for which the generalised chi-square per degree of freedom was 1.05, suggesting a good model 

fit with no over-dispersion. Once the final model was fitted, we used PROC GLIMMIX to estimate 

pairwise t-tests to compare the LS mean accuracy with and without TMS, carried out separately at 

each site for each condition. These post-hoc comparisons were controlled for multiple comparisons.  
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Supplementary Table 2: Effect of TMS on accuracy for strong and weak associations 

Model Parameter F-value (DF) p-value -2Log 

likelihood 

Empty model 

 

Condition 

 

 

405.40 (1, 1399) 

 

 

 <.001 

63784.3 

 

63277.5 

Condition × Time 2.40 (6, 1399)    .026   

Condition × Time  × Site 

Block order 

1.17 (16, 1399) 

3.92 (3,1399) 

   .29 

   .0084 

 

    

 

Plotted separately for ATL and pMTG, Supplementary Figure 3 (upper row) shows the 

proportion of correct responses for the strong and weak conditions for both the experimental and the 

sham data. Supplementary Figure 3 (lower row) shows post-hoc paired t-test comparisons between 

the experimental and sham data, separately for the strong and weak conditions. We found a 

statistically significant difference between sham and ATL stimulation for weak associations at ~250ms 

(t(1399) = 2.37, p = 0.018 and between sham and pMTG stimulation for strong associations at ~125ms 

(t(1399) = 2.08, p = 0.038). These results reflect facilitation of performance, potentially following 

increases in alertness or motivation (Devlin & Watkins, 2007). 
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Supplementary Figure 3: Effect of TMS on accuracy for strong and weak associations; TOP ROW: 

Accuracy for strong and weak association for ATL (left) and pMTG (right) relative to sham 

stimulation. BOTTOM ROW: LS Means difference in accuracy for ATL (left) and pMTG (right) relative 

to sham site. Points above the red line indicates higher accuracy relative to sham, whereas point 

below the red line indicates lower accuracy relative to sham. Differences in accuracy (which in all 

cases correspond to TMS-induced behavioural facilitation) that were statistically significant at p<.05 

are indicated by asterisks. Error bars show 95% confidence intervals. 

 

Effect of TMS on response times in the semantic word vs. number control task 

We wanted to test whether there might be non-specific effects of administering 

chronometric TMS that should be controlled for in the main analysis of reaction times in relation to 

strong versus weal semantic association. To do this we compared reaction times in the digit parity 

task with the semantic task overall. We used PROC MIXED in SAS v9.4 to build an initial GLMM with 

the following fixed effects: site (ATL, pMTG, sham), TMS time, condition (semantic vs. number task) 

and their two- and three-way interactions. The starting model also included block number, session 
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number and mean accuracy per block as covariates. We included the per-subject intercept as a 

random effect. Incorrect responses and outlying data points that fell more than 2 SD from each 

participant’s mean RT were removed, for each session, prior to analysis. The criteria we used to 

optimize the final model were: (i) a significant reduction in -2Log-Likelihood between it and the empty 

model, (ii) only explanatory variables that were statistically significant at p<.05 should be retained. 

Once the final model was fitted, we used PROC MIXED to estimate pairwise t-test comparisons 

between experiment and sham reaction times at each time point for TMS administration, computed 

separately for ATL and pMTG as well as word versus number stimuli. All post-hoc comparisons were 

controlled for multiple comparisons. The fixed effects that were retained in the optimized model are 

reported in Supplementary Table 3. We found statistically significant main effects of TMS time, 

condition (number vs. word task) and site (ATL vs. pMTG vs. sham), and we retained only the non-

significant three-way interaction in order that we could compute the pair-wise post-hoc comparisons. 

The covariates of block and session order were also statistically significant at p<.05. 

 

Supplementary Table 3: Effect of TMS on RT to semantic and number parity tasks 

Model Parameter F-value (DF) Z-value p-value -2Log 

likelihood 

Empty model 

 

Time 

 

 

53.80 (3, 11000) 

  

 

 <.001 

146110.3 

 

144796.6 

Site 122.78 (2, 

11000) 

  <.001   

Condition × Time  × Site 

Block order 

1.20 (17, 11000) 

41.10 (3, 11000) 

    .26 

 <.001 

 

Testing session  178.80 (2, 

11000) 

  <.001  

 

Participant covariance    2.74 .0031   
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As illustrated in Supplementary Figure 4, post-hoc comparisons for the semantic task showed 

statistically significant differences between LS mean RT for ATL stimulation compared to sham at all 

four time points (0ms: t(11000) = 4.38, p <.001; 125ms: t(11000) = 5.72, p <.001; 250ms: t(11000) = 

5.38, p <.001; 450ms: t(11000) = 6.90, p <.001). We found no equivalent differences between sham 

and pMTG stimulation. Post-hoc comparisons for the number task showed statistically significant 

differences in LS mean RT for the ATL stimulation compared to sham at all four time points (0ms: 

t(11000) = 4.50, p <.001; 125ms: t(11000) = 4.10, p <.001; 250ms: t(11000) = 5.25, p <.001; 450ms: 

t(11000) = 6.97, p <.001), as well as for pMTG relative to sham at 450ms (t(11000) = 3.25, p = 0.0012). 

These results suggest that despite the use of a staircase procedure (Sliwinska et al., 2012) which was 

designed to reduce sensitivity to the variability in TMS onset time (see Methods), RTs increased with 

systematically with TMS onset time. This may correspond to an expectancy effect in participants who 

waited for the TMS pulse to have occurred before responding. This interpretation is made all the 

more plausible because we found a similar pattern of increasing RTs following sham stimulation which 

was administered at 30% of stimulator output. This is not thought to be strong enough to stimulate 

cortex (Duecker et al., 2013) but is sufficient to produce scalp sensations. The increase in RT, relative 

to sham, was more marked for ATL than for pMTG, which may reflect the stronger scalp sensations 

associated with ATL stimulation.  
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Supplementary Figure 5: Effect of TMS on RT for semantic and digit parity tasks; TOP ROW: RT (ms) for 

three sites for semantic (left) and digit task (right). BOTTOM ROW: LS Means difference in RT for ATL 

and pMTG relative to sham site for semantic (left) and digit (right) task. Points above the red line 

indicate longer RT relative to sham, whereas points below the red line indicate faster RT relative to 

sham. Differences which are statistically significant at p<.05 are indicated by asterisks. Error bars 

show 95% confidence intervals. 

 


